浅谈博弈论在电力市场中应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈博弈论在电力市场中应用

1、博弈论概述

博弈论又称为对策论,一种使用严谨数学模型来解决现实世界中的利害冲突的理论。由于冲突、合作、竞争等行为是现实世界中常见的现象,因此很多领域都能应用博弈论,例如军事领域、经济领域、政治外交,解决诸如战术攻防、国际纠纷、定价定产、兼并收购、投标拍卖甚至动物进化等问题。

博弈论的研究开始于本世纪,1944年诺依曼和摩根斯坦合著的《博弈论和经济行为》一书的出版标志着博弈理论的初步形成,随后发展壮大为一门综合学科。1994年三位长期致力于博弈论研究实践的学者纳什、海萨尼、塞尔顿共同获得诺贝尔经济学奖,使博弈论在经济领域中的地位和作用得到权威性的肯定。

2.博弈论的基本原理和方法

文献[1][2]用浅白的语言叙述了博弈论的思想精髓和基本概念。文献[3][4]更注重理论上的分析和数学的严谨。概括起来,博弈论模型可以用五个方面来描述

G={P, A, S, I, U}

P:为局中人,博弈的参与者,也称为博弈方,局中人是能够独立决策,独立承担责任的个人或组织,局中人以最终实现自身利益最大化为目标。A:为各局中人的所有可能的策略或行动的集合。根据该集合是否有限还是无限,可分为有限博弈和无限博弈,后者表现为连续对策,重复博弈和微分对策等。

S:博弈的进程,也是博弈进行的次序。局中人同时行动的一次性决策的博弈,成为静态博弈,如齐威王和田忌赛马;局中人行动有先后次序,称为

动态博弈,如下棋。

I:博弈信息,能够影响最后博弈结局的所有局中人的情报,如效用函数,响应函数,策略空间等。打仗强调知己知彼,百战不殆,可见信息在博弈中占重要的地位,博弈的赢得很大程度依赖于信息的准确度与多寡。得益信息是博弈中的重要信息,如果博弈各方对各种局势下所有局中人的得益状况完全清楚,称之为完全信息博弈(game with complete information),例如齐威王和田忌赛马,各种马的组合对阵的结果双方都不严而喻。反之为不完全信息博弈(game with incomplete information),例如投标拍卖,博弈各方均不清楚对方的估价。在动态博弈中还有一类信息:轮到行动的博弈方是否完全了解此前对方的行动。如果完全了解则称之为具有完美信息的博弈(game with perfect information),例如下棋,双方都清楚对方下过的着数。反之称为不完美信息的动态博弈(game with imperfect information)。由于信息不完美,博弈的结果只能是概率期望,而不能象完美信息博弈那样有确定的结果。

U:为局中人获得利益,也是博弈各方追求的最终目标。根据各方得益的不同情况,分为零和博弈和变和博弈。零和博弈中各方利益之间是完全对立的。变和博弈有可能存在合作关系,争取双赢的局面。

还有另一类型博弈称为多人合作博弈,例如安理会投票表决,OPEC联合限产保价等问题。这类问题重点放在联盟利益的分配上,它的理论和方法广泛应用于利益损失的共同分担问题。多人合作博弈的研究方法主要是特征函数模型。以个可能的联盟为定义域,特征函数表示各个联盟的得益(N

是局中人的数目),它的分配解必须符合一定的合理性和稳定性,它的解的概念也发展成多种多样,包括稳定集、核心、核仁、Shapely值等。解的多样性符合现实世界复杂多样的需要,针对不同的问题选择或创造合适的

解的概念是博弈论深入研究的课题。

不管博弈各方是合作、竞争、威胁还是暂时让步,博弈论模型的求解目标就是使自身最终的利益最大化,这种解建立在对方也采取各自最好策略为前提,各方最终达到一个力量均衡,也就是说谁也无法通过偏离均衡点而获得更多的利益。这就是博弈论求解的本质思想。

3、博弈论与电力市场

博弈论是研究市场经济的重要工具。电力作为特殊的商品,它的生产、运输、销售和消费也逐渐走向市场化。世界范围内很多国家的电力工业走向放松管制、引进竞争的进程中,遇到很多前所未有的新课题,运用博弈论来分析解决其中一些问题是一个研究方向。用博弈论模拟电力市场,模拟的结果可能更加接近实际,为市场模式设计提供依据。另外,电厂或用电用户作为市场的参与者,可以用博弈论来分析市场,研究如何报价获利最大。

正确运用博弈论关键要针对电力市场的特点正确选择模型和解的概念。例如:力量相当的两个区域电网之间交换功率的情形比较适合用古诺模型和Nash谈判解方法;而自备电厂与公用电网之间的交易可能更适合用Stackleberg模型。还有局中人结盟问题:如何识别合作伙伴,结盟利益如何在联盟内分配。电力市场环境下,电网输电作为一项服务,它的网损、固定资产投资如何在网络使用者之间分担。这些分配问题有不同的概念的解:稳定集,核心,核仁,Shapely值等,如何合理选择或创造最接近实际的解的概念也是面临的课题。

博弈的结果是依赖于拥有的信息,采用什么样的信息披露政策是设计电力市场模式的一个方面。例如:电厂竞价上网,一个成功的报价不仅取决于自己的实力,还有赖于他人如何报价。但是各方往往不清楚互相之间成本、

报价等信息,因为这些信息都是各自的商业秘密。如何处理这种信息既不完全也不完美的博弈是一个重要的课题。反过来,博弈的实验结果也为电力市场披露怎样的信息提供依据。

博弈论和电力市场理论都是很年轻的科学,两者都有广阔的发展天地,两者的结合可以互相促进。

4、博弈论在电力市场中的应用

4.1自备电厂与公用电网之间的交易

开放发电市场的进程中,拥有自备电厂的用户是一类特殊的市场参与者,它既是用电用户,也可以是电力的供应者。随着电力市场深入发展和工业的进步,自备电厂将成长为一支生力军。

文献[5]用博弈论来分析评价在分时定价的环境下拥有自备电厂的用户(NCP)对定价的影响作用。NCP既可以从公用电网购电,也可以自己发电来满足自身需求。为解决两者的冲突,作者提出了三种博弈模型:非合作Nash博弈模型,合作博弈模型和超博弈模型。作者构造了三个局中人:公用电网,普通用户,带自备电厂的用户(NCP),并且假设它们的需求函数、边际成本、收益函数等均是线性的,通过数字模拟得出了一些有趣的结果:①NCP的加入促使公用电网降低出售给NCP的电价;②冲突还使普通用户得到更多益处。该文为解决自备电厂与公用电网的相互作用提供了很有用的分析思想。但是尚有三点可以进一步改进:①该文尚未考虑NCP将自己多余的自发电卖给公用电网的情况;②该文将公用电网和NCP置于平等的市场地位可能不符合实际市场,如果公用电网规模很大,NCP数目很多但规模小,考虑Stackerlberg模型更符合两者实际;③该文假设公用电网的目标函数是整个社会利益最大化,而并非是自身利益最大化,这个假设不符合电力市场需要解除管制的发展方向。

相关文档
最新文档