电路第七章正弦稳态分析3
正弦稳态电路分析和功率计算
2
Y = 0.1 + j0.2S
0.025F 0.1S
0.02F
十、利用相量图求解电路
例 如图所示电路,uS 2US cost ,求输出电压 uO(t) 对 uS(t) 的相位关系。
C
解:(一)解析法
+
+
1
uS
R uO
–
–
(二)相量图法
U O②
I jC
+ US
U C
R
+ UO
–
–
I ①
③ U C
直流电阻电路:( m个网孔,m个网孔电流 Im1 , Im2 , … Imm)
R11Im1 R12Im2 R1mImm uS11
R
21I
m1
R
22I
m2
R 2mImm
uS22
R m1Im1 R m2Im2 R mm Imm uSmm
正弦稳态电路:( m个网孔,m个网孔电流 Im1 , Im2 , … Imm)
ZZ1211IImm11
Z12I m 2 Z 22I m 2
Z1m I mm Z 2 m I mm
U S11 U S22
Zm1Im1 Zm2Im2 Zmm Imm U Smm
例 uS = 6cos3000t V,求正弦稳态时的 i1 , i2 。
i1 1k
+2000–i1 i2
uS
(3)
Z
U I
U I
u i
= R + jX = |Z| Z
Z R2 X2
Z
arctg
X R
ZU I
Z = u – i
(4) 阻抗的性质
正弦稳态电路的分析
14、如图所示14正弦稳态电路,R=XL=5Ω,I1=10A,
UC=100V,XC=10Ω,
试求U和I。
解:设 2=I2 A
=50 V
=100 2=10 A 1=10 A
所以,I= =10 AI12+I2=I22
易知 与 同相
U= UC=100 V
15、如图15a所示正弦稳态电路,R1=1KΩ,R2=2KΩ,L=1H,求Ucd=Uab时C的值。
解:电路的总阻抗为
Z=-jXC+ = +j( -XC)
当XC=1Ω和XC=2Ω,可以列出如下两个方程
(1)
(2)
解(1)、(2)得,R=2 Ω,XL=2Ω
4、图4所示工频正弦电流电路中,U=100V,感性负载Z1的电流I1=10A,功率因数λ1=0.5,R=20Ω。
(1)求电源发出的有功功率、电流I、功率因数λ
(3)u= u1+u2+u3的表达式
解:(1)将 , 写成标准指数形式,即
=-100∠150°V=100∠-30°V
=-100+j100 V=100 ∠135°V
根据相量和正弦量的关系,可得
u1=50 cos(314t+60°) V,u2=100 cos(314t-30°) V
u3=200cos(314t+135°) V
解: =Y =( ) = 45°
I= A
11、列出图11所示电路相量形式的回路方程和结点方程。
解:设各回路方向如图所示。
回路方程如下:
(1)
(2)
(3)
(4)
- = S(5)
选结点0作为参考结点,结点方程如下:
电路分析基础-7 正弦稳态功率的计算
功率因数角。对无源网络,为其等效阻抗的阻抗角。
功率因数。 纯电阻
纯电抗
上页 下页
例+
_
解
已知:电动机 PD=1000W,
D
CHale Waihona Puke cos D=0.8(感性),U=220,
f =50Hz,C =30F。
求电路总的功率因数。
上页 下页
功率因数提高
功率因数低带来的问题 (1) 设备不能充分利用
S 75kVA
上页 下页
2.结论
(1) 是复数,而不是相量,它不对应任意正弦量; (2) 把P、Q、S 联系在一起,它的实部是平均功率,虚
部是无功功率,模是视在功率; (3)复功率满足守恒定理:在正弦稳态下,任一电路的所
有支路吸收的复功率之和为零。即
上页 下页
例 电路如图,求各支路的复功率。 +
10W
解一
5W _ 10∠0o A j25W
电路分析基础 Fundamental Circuits Analysis
杨飞
feiyounger@
1
第七章 正弦稳态功率的计算
重点
1. 有功功率; 2. 无功功率; 3. 视在功率; 4. 复功率
下页
7.1 正弦稳态电路的瞬时功率 (instantaneous power)
无源一端口网络吸收的功率( u, i 关联)
单位:W 单位:var 单位:VA
S
Q
P
功率三角形
上页 下页
7.2.4-6 R、L、C元件的有功功率和无功功率
i
+
u
R
-
i
+
u
L
-
电路分析基础-正弦稳态分析
7. 1 正弦量的基本概念
一. 正弦量的三要素
正弦量的表达式: f(t)=Fmcos(w t+)
波形:
f(t)
Fm
T
/ O
t
Fm, , 这3个量一确定,正弦量就完全确定了。
所以,称这3个量为正弦量的三要素:
正弦量的三要素: (1) 振幅 (amplitude) :反映正弦量变化幅度的大小。
(2) 角频率(angular frequency)w : 反映正弦量变化快慢。
工程上说的正弦电压、电流一般指有效值,如设备铭牌 额定值、电网的电压等级等。但绝缘水平、耐压值指的是最 大值。因此,在考虑电器设备的耐压水平时应按最大值考虑。
测量中,电磁式交流电压、电流表读数均为有效值。 * 区分电压、电流的瞬时值、最大值、有效值的符号。
例:求如图周期信号的有效值。
u1(t)(V) 10
iC(t)
+
u(t)
C
-
+ 相量模型
时域形式:
相量形式:
有效值关系: IC=w CU 相位关系:i=u+90° (i 超前 u 90°)
i u
相量图
令 Xc=1/w C ,称为容抗,单位为 W(欧姆) B c = w C , 称为容纳,单位为 S
容抗和频率成反比, 0, |XC| 直流开路(隔直)
;
关系:
|Z|—复阻抗的模;z—阻抗角。
R=|Z|cosz 或 X=|Z|sinz
|Z|=U/I ——反映u, i 有效值关系
z =u-i ——反映u, i 相位关
系
|Z| X
z
R 阻抗三角形
阻抗Z与电路性质的关系:
Z=R+j(wL-1/wC)=|Z|∠ z wL > 1/w C ,X>0, z >0,电路为感性,电压领先电流; wL<1/w C ,X<0, z <0,电路为容性,电压落后电流; wL=1/w C ,X=0, z =0,电路为电阻性,电压与电流同相。
电路原理-正弦稳态电路的分析
对记录的数据进行分析,验证正 弦稳态电路的原理和性质。
实验结果与讨论
实验结果
通过实验观察和数据记录,可以 得出正弦稳态电路中电压和电流 的波形关系,以及元件参数对波
形的影响。
结果分析
对实验结果进行分析,验证正弦稳 态电路的基本原理,如欧姆定律、 基尔霍夫定律等。
实验讨论
讨论实验中可能存在的误差来源, 如电源稳定性、示波器的测量误差 等。同时,可以探讨如何减小误差、 提高实验精度的方法。
04 正弦稳态电路的分析实例
单相交流电路分析
总结词
分析单相交流电路时,需要计算电流、电压的有效值以及功率等参数,并考虑阻 抗、导纳和相位角等因素。
详细描述
在单相交流电路中,电压和电流都是时间的正弦函数。为了分析电路,我们需要 计算电流和电压的有效值,以及功率等参数。此外,还需要考虑阻抗、导纳和相 位角等因素,以便更准确地描述电路的性能。
实验步骤与操作
3. 观察波形
2. 连接电源
将电源连接到电路中,为电路提 供稳定的交流电压。
使用示波器观察电路中各点的电 压和电流波形,并记录数据。
4. 调整元件参数
通过调整电阻器、电容器和电感 器的参数,观察波形变化,并记 录数据。
1. 搭建正弦稳态电路
5. 分析数据
根据实验要求,使用电阻器、电 容器和电感器搭建正弦稳态电路。
相量法
1
相量法是一种分析正弦稳态电路的方法,通过引 入复数相量来表示正弦量,将时域问题转化为复 数域问题,简化计算过程。
2
相量法的核心思想是将正弦电压和电流表示为复 数形式的相量,并利用相量图进行电路分析。
3
相量法的优点在于能够直观地表示正弦量的相位 关系和幅度关系,简化计算过程,提高分析效率。
电路分析基础_第7章1
2 沿任一回路全部支路电压振幅(或
有效值)的代数和并不一定等于零,
即一般来说 n
Ukm 0
k 1
n
Uk 0
k 1
例6 求uS(t)和相应的相量,并画出相量 图。已知 u1(t ) 6 2 cos ωt V
u2 (t ) 8 2 cos(ωt 90 ) V
u3 (t ) 12 2 cos ωt V
(a) 电流i1超前于电流i2, (b) 电流i1滞后于电流i2
(c) 同相 (d) 正交 (e) 反相 注意:角频率不同的两个正弦间的相 位差为
(t) (1t 1) (2t 2) (1 2)t (1 2)
是时间t的函数,不再等于初相之差。
例3 已知正弦电压u(t)和电流i1(t), i2(t)的表达式为 u(t) 311cos( t 180 ) V
1 T
T u2 (t)d t
0
1 T
T 0
U
2 m
cos2 ( t
)d
t
0.707Um
7-2 正弦量的相量表示法 复数
直角坐标形式:A=a1+ja2
三角形式: A =a (cos +jsin)
指数形式: A =a e j
极坐标形式: A =a
a1=acos a2=asin
a
a12 a22
arctg a2
2Ikejt ] 0
k 1
k 1
n Ikm 0 或
k 1
n Ik 0
k 1
相量形式的KCL定律:对于具有相同 频率的正弦电路中的任一节点,流出 该节点的全部支路电流相量的代数和 等于零。
注意:
1 流出节点的电流取”+”号,流入 节点的电流取”-”号。
正弦稳态电路分析
正弦稳态电路分析一、正弦量及其三要素?1. 初相位:时间t=0时所对应的相位;2. 一般取正弦量的正最大值到正弦量计时零点(t=0)所对应的角度为该正弦量的初相位3. 正弦量的正最大值到向右的初相位为正。
即φi>0;向左即为负;4. 各种表示法(1) F=a+jb;a=Ucos ab=Usin a(2)F=a+jb=|F|(cos a+jsin a ) =|F|e ja =|F| a (4)计算器使用pol(-4.07,3.07)=5.09 RCL tan二、电路元件的伏安关系及相量表示形式?X L =wL,X C =1/wCjX L =jwL,jX C =j*1/wC=1/(-jwC)三、阻抗、导纳及其串并联? 阻抗与导纳互为倒数关系1. 复阻抗:不含独立电源的一端口网络的端电压相量与端电流相量的比值2. 的比值;3. 电压三角形 OZ4. 阻抗三角形四、正弦量的相量表示法?1.有向相量的长度(复数的模)代表正弦量的幅值(有效值);2.复数的幅角代表正向量的初相位;3.向量形式用大写字母表示并在字母上方加点; 五、阻抗和导纳的性质?电感角大于电容角就呈感性,小于呈容性,等于呈阻性; 六、正弦稳态电路的分析?(1)画出电路的相量模型(电压、电流、各种阻抗) (2)选择适当方法(KVL 、KCL )列方程(3)求出未知量Q(4)写出电压电流的瞬时值 七、正弦稳态电路的功率?1.有功功率:电阻所消耗;P=UIcosa2.无功功率:电感、电容负载与电源进行能量交换的功率;Q=UIsina3.视在功率:电源输出的功率;S=UI=上述两者平方和的算术平方根4.复功率:S=P+jQ 八、功率因素的提高?在电感两端并联电容的操作,使两者夹角减小1)C=P/wU 2(tan a1-tan a2); 2)Q C =-P(tan a1-tan a2)九、最大功率传输? 当Z L =R eq -jX eq =Zeq *时,P MAX =U OC2/4R eq十、解题步骤?1.设。
正弦稳态电路公式总结
正弦稳态电路公式总结正弦稳态电路是指电路中的电流和电压随时间变化呈正弦函数的情况。
在正弦稳态下,电路中的电压和电流具有特定的振幅、频率和相位关系。
在正弦稳态电路中,有一些重要的公式可以用来描述电路中的电压、电流及功率等参数。
1.电压和电流的关系:正弦稳态下,电压和电流之间的关系可以用欧姆定律和电压与电流的相位差来描述。
对于单一的电阻元件,电压和电流之间的关系可以用以下公式表示:u(t) = U_m 某cos(ωt + φ)i(t) = I_m 某cos(ωt)其中,u(t)为电压,U_m为电压振幅,cos(ωt)为电压波形,i(t)为电流,I_m为电流振幅,ω为角频率,t为时间,φ为电压和电流之间的相位差。
2.电阻的功率:在正弦稳态下,电阻元件所消耗的功率可以通过电压和电流的乘积来计算。
电阻元件所消耗的平均功率可以用以下公式表示:P = (1/2) 某 U_m 某 I_m 某cos(φ)3.电容和电感元件的电压和电流关系:在正弦稳态下,电容和电感元件的电压和电流之间存在相位差。
对于电容元件,电压和电流之间的关系可以用以下公式表示:u(t) = U_m 某cos(ωt)i(t) = I_m 某cos(ωt + φ)其中,u(t)为电压,U_m为电压振幅,cos(ωt)为电压波形,i(t)为电流,I_m为电流振幅,φ为电压和电流之间的相位差。
对于电感元件,电压和电流之间的关系可以用以下公式表示:u(t) = U_m 某cos(ωt + φ)i(t) = I_m 某cos(ωt)其中,u(t)为电压,U_m为电压振幅,cos(ωt)为电压波形,i(t)为电流,I_m为电流振幅,φ为电压和电流之间的相位差。
4.电容和电感元件的功率:在正弦稳态下,电容元件和电感元件不消耗功率,因此它们的功率为零。
这是因为电容元件存储电能而不消耗功率,电感元件存储磁能而不消耗功率。
综上所述,正弦稳态电路的公式可以用来描述电路中的电压、电流及功率等参数。
正弦稳态电路向量分析方法
•
U ab
•
Va
I sa Gaa
1
jX L 1
jX C 1
j5
j4 155.3 155.38 V
1 1 1
R jX L jX C
5 j5 j4
因为 •
•
•
•
•
•
U ab I1 . jX L U s1 I 2 .( jXC ) U s2 I 3 .R
则
•
•
•
I1
U s1 V a
1000
0
•
•
10090 I 3 .5 I 2 .( j4) 0 对以上方程求解得:
•
I1 49.94 74.98 A,
•
I 2 54.23139.4 A,
•
I 3 31.06 155.38 A。
(2)运用节点电位法求解
设b点为参考点,由弥尔曼定理可得
•
•
•
U s1 U s2
1000 10090
1.功率因数
由图5-54所示的功率三角形可知 cos P
S
式中 cos 称为功率因数,用 表示,即 cos ,而φ称为
功率因数角。功率因数表征了电能的利用率,当视在功率一定时,功 率因数越大,用电设备的有功功率越大,无功功率越小,电能利用率 越高。
2.提高功率因数的一般方法 实际应用中,功率因数不高的原因,主要是由于大量电感性负载
5-52所示。
设 u= 2U sin(t ) , i= 2I sint ,则该无源网络的瞬时
功率为 p ui= 2U sin(t ). 2I sint
=2UI sin(t ).sint =UI cos UI cos(2t )
正弦稳态电路的分析
正弦稳态电路的分析1.复数法分析:a. 复数电压和电流表示:将正弦波电流和电压表示为复数形式,即I = Im * exp(jωt),V = Vm * exp(jωt),其中Im和Vm为幅值,ω为角频率,j为虚数单位。
b.使用欧姆定律和基尔霍夫定律来建立复数表达式。
c.找到电路中的频域参数,如电阻、电感和电容等,并使用复数法计算电路中的电流和电压。
d.计算电源电压和电流的相位差,这会决定电路中的功率因数。
2.相量法分析:a.相量表示:将电路中的电流和电压表示为相量形式,即以幅值和相位角表示,例如I=Im∠θ,V=Vm∠θ。
b.使用欧姆定律和基尔霍夫定律来建立相量表达式。
c.对电路中的频域参数应用相量法,计算电路中的电流和电压。
d.计算电源电压和电流的相位差,以确定电路中的功率因数。
无论是复数法还是相量法,分析正弦稳态电路的关键是计算电路中的电流和电压的幅值和相位。
在计算过程中,需要使用复数代数、欧姆定律、基尔霍夫定律以及频域的电路参数等相关知识。
在实际应用中,正弦稳态电路的分析主要包括以下几个方面:1.交流电路中的电阻:电阻对交流电流的影响与直流电路相同,即按欧姆定律计算。
复数法计算时,电流和电压与频率无关,可以直接使用欧姆定律计算。
2.交流电路中的电感:电感器对交流电流的响应取决于电流的频率。
复数法计算电感电压和电流时,需要将频率变量引入到电感的阻抗中。
3.交流电路中的电容:电容器对交流电压的响应取决于电压的频率。
复数法计算电容电压和电流时,需要将频率变量引入到电容的阻抗中。
4.交流电路中的复数阻抗:电路中的电感、电容和电阻组成复数阻抗。
复数阻抗可以用来计算电路中的电流和电压。
根据欧姆定律和基尔霍夫定律,可以建立复数电流和电压之间的关系。
5.交流电路中的功率因数:功率因数是电路中有功功率与视在功率之比。
在分析正弦稳态电路时,可以计算电路中电源电压和电流的相位差,从而确定功率因数。
总结起来,正弦稳态电路的分析步骤包括选择复数法或相量法、建立复数或相量表达式、计算电流和电压的幅值和相位、计算功率因数等。
第七章 三相电路
g g g
对称时还有关系式:
I A 3 I AB 30 g g I B 3 I BC 30 g g I C 3 I C A 30
对称三相电路Y-Y联结时有以下特点:
1) 中线不起作用 。无论有无中线、中线阻抗为多大,N、N’两 点 均可用无阻抗的导线相连接,而不影响电路工作状态;
2)独立性。每相负载直接获得对称的电源相电压。各相电压、电
流只与本相的电源及阻抗有关,而与其它两相无关; 3)对称性。各相负载线电流、相电流均对称。可以只求一相,其 他两相由对称原则推出。
图7-3 三相电源的星形联接
电工基础
第二节 三相电源的连接
(3)对称电源星形连接时相电压与线电压间的关系:
& & U AB 3U A30 & 3U &30 U BC B & & U CA 3U C 30
图7-4
三相电源星形联接时的相量图
电工基础
第二节 三相电源的连接
& 2200 U & I A1 A 11 53.1o A Z1 12 j16 I& 11 173.1o A
B1 o I& 11 66 . 9 A C1
三角形连接负载Z2的相电压等于线电流为380V,ÙAB=380∠30oV,相电流为
& U 38030 & I AB AB 6.33 6.8o A Z AB 48 j 36 I& 6.33 126.8o A
正弦稳态电路分析法概述
1k var 103 var
电感元件储存磁场能量,其储能公式为
WL
1 2
L.iL2
1.3.3 电容元件
1.电压和电流
相量形式的伏安特性。图5-13给出了电阻元件的相量模型及相量图。
2.功率和能量 (1)电阻元件上的瞬时功率
p uRiR URm sin t.IRm sin t U Rm IRm sin2 t
其电压、电流、功率的波形图如图5-14所示。
由图可知:只要有电流流过电阻,电阻R上的瞬时功率恒≥0,即 总是吸收功率(消耗功率),说明电阻元件为耗能元件,始终消耗电 能,产生热量。
相位或相位角,它描述了正弦信号变化的进程或状态。φ为t=0时刻
的相位,称为初相位(初相角),简称初相,习惯上取
-180°≤φ≤180°。 正弦信号的初相位φ的大小与所选的计时时间起点有关,计时起
点选择不同,初相位就不同。
1.1.2 正弦信号的相位差
两个同频率的正弦信号的相位之差称为相位差。例如任意两
给定了正弦量,可以得出表示它的相量;反之,由已知的相 量,可以写出所代表它的正弦量。
正弦量:u Um sin(t u ),i Im sin(t i )
对应的相量分别为
•
U
Um 2
u
,
•
I
Im 2
i
1.2.2 相量图及其应用
相量和复数一样,可以在复平面上用矢量表示,这种表示相 量的图,称为相量图。 下面通过例题加以说明:
另外,可以把复数在复平面内表示,即复数对应的复相量,如图
5-6所示,复数A的模r为有向线段OA的长度,辐角φ为有向线段OA与实
轴的夹角。
(2)复数的加减运算 复数相加(或相减),采用复数的代数形式进行,即实部和
正弦交流电电路稳态分析
详细描述
含有非线性元件的交流电路是指包含非线性电阻、非线性电感和非线性电容等元件的交流电路。在稳态分析中, 需要采用适当的数学方法来计算各元件的电压、电流和功率,并确定它们在含有非线性元件的交流电路中的分布 情况。
含有非线性元件的交流电路稳态分析
正弦交流电电路稳态分析
目 录
• 引言 • 正弦交流电基础知识 • 电路稳态分析方法 • 正弦交流电电路稳态分析实例 • 结论与展望
01 引言
背景介绍
正弦交流电的产生
交流发电机利用电磁感应原理将机械能转换为电能。当转子 绕组中的电流随时间变化时,就会产生旋转磁场,该磁场会 与定子绕组中的感应电流相互作用,从而产生正弦交流电。
02 03
详细描述
三相交流电路是指电源和负载之间的电压和电流在三个相位上变化的电 路。在稳态分析中,需要计算各相的电压、电流和功率,并确定它们在 三相电路中的分布情况。
总结词
考虑三相阻抗、三相感抗和三相容抗对电路的影响。
三相交流电路稳态分析
• 详细描述:在三相交流电路中,三相阻抗、三相感抗和三相容 抗是影响各相电压和电流分布的重要因素。三相阻抗包括电阻、 电感和电容在三相电路中的作用,而三相感抗和三相容抗则是 由于电感和电容产生的磁场和电场对电流的阻碍作用。
解决实际工程问题
在实际的电力系统和电子设备中,正弦交流电的应用非常广泛。因此,对正弦交流电电路 稳态分析的研究有助于解决实际工程问题,提高电力系统和电子设备的性能和稳定性。
推动相关领域的发展
正弦交流电电路稳态分析涉及到多个学科领域,如电路理论、电磁场理论、控制系统理论 等。因此,对正弦交流电电路稳态分析的研究有助于推动相关领域的发展,促进多学科交 叉融合。
正弦稳态电路分析3
同频率正弦量的相位差 u(t)=Umsin(t+1)
-0.5T -
1
u(t) 0.5T T
i(t)
i(t)=Imsin(t+2)
0 2
2
t t
0 180 (t+1)- (t+2)= 1-2 =
u 超前i(i 滞后u)
-180 0 u 滞后i(i 超前u) =0 u与i 同相 = 180 u与i 反相 = 90 u与i 正交
(2) 乘除运算 —— 采用指数形式或极坐标形式比较方便。
若
则
即复数的乘法运算满足模相乘,辐角相加。除法运算满足模 相除,辐角相减.
例3-1
解:
计算复数
本题说明进行复数的加减运算时应先把极坐标形式转为代数形式。
例3-2
计算复数
解:
二. 正 弦 量 的 相 量 表 示
j (t ) A ( t ) A e 设有一复数
2
) 2 I c sin(t i )
由以上分析可得如下关系 (a) 电容电压、电流有效值的关系为IC =ωCU (b) 电感电压滞后电流90°,即Ψu =Ψ -90°
i
C
电容电压与电流的瞬时波形如图。
(2)C中的电压相量与电流相量 设电容电压相量为
则电容电流相量 所以电容元件的电压、电流相量的关系式:
根据欧拉公式可将复数的三角形式转换为指数表示形式:
4)指数形式有时改写为极坐标形式:
2. 复数的运算 (1) 加减运算 —— 采用代数形式比较方便。 若 则 即复数的加、减运算满足实部和实部相加减,虚部和虚 部相加减。 复数的加、减运算也可 以在复平面上按平行四边形 法用向量的相加和相减求得, 如图3.2所示 图3.2
正弦稳态交流电路
在正弦稳态交流电路中,电压和 电流的波形都是正弦波,其幅度 和频率可以发生变化,但相位差 保持恒定。
正弦稳态交流电路的重要性
正弦稳态交流电路是现代电力系统和电子工程中应用 最广泛的电路类型之一,因为许多自然现象和人工系
统的输出都是正弦波形的交流信号。
输标02入题
正弦稳态交流电路的分析方法相对简单,可以通过代 数方法和复数运算来求解,从而简化了电路分析和设 计的过程。
总结词
电感元件在正弦稳态交流电路中具有阻碍电流变化的作用,即产生感抗。
详细描述
电感元件由线圈绕组构成,当交流电流通过电感元件时,会产生自感电动势,阻碍电流的变化。在正弦稳态交流 电路中,电感元件产生的感抗与交流电的频率成正比,因此对于不同频率的交流电具有不同的阻碍作用。
电容元件
总结词
电容元件在正弦稳态交流电路中具有储存电荷的作用,即产生容抗。
相量法的运用
总结词
相量法是一种将正弦稳态交流电路中的时域问题转化为频域问题的方法。
详细描述
相量法是一种有效的分析工具,它通过引入复数相量来表示正弦稳态交流电路中 的电压和电流,从而将时域问题转化为频域问题。这种方法简化了计算过程,使 得电路分析更加方便快捷。
04 正弦稳态交流电路的元件 分析
电感元件
02
启动实验,观察示波器 显示的电压和电流波形,
记录相关数据。
04
实验结果与数据分析
01
02
03
04
根据实验数据,绘制电压和电 流波形图,分析波形特征和参
数变化。
比较理论计算结果与实验数据 ,验证正弦稳态交流电路的基
本原理和特性。
分析电路元件参数对正弦稳态 交流电路性能的影响,探究元
电路基础电子教案第七章正弦稳态的功率 三相电路
之间变化,功率因数cos在0到1之间变化。
此时瞬时功率p(t)随时间作周期性变化,所吸收的平均 功率为
P UI cos I 2 Re(Z ) U 2 Re(Y )
(7 6)
式中的Re(Z)是单口网络等效阻抗的电阻分量,它消耗 的平均功率,就是单口网络吸收的平均功率。
与此相似,式中的Re(Y)是单口网络等效导纳的电导分
i=90, cos=0,式(7-2)变为
pL ( t ) UI cos(2t 2 u 90 ) UI sin( 2t 2 u ) pC ( t ) UI cos(2t 2 u 90 ) UI sin( 2t 2 u 180 )
值得注意的是在用UIcos计算单口网络吸收的平均功 率时,一定要采用电压电流的关联参考方向,否则会影响 相位差的数值,从而影响到功率因数cos以及平均功率 的正负。
二、功率因数
从式(7-3)可见,在单口网络电压电流有效值的乘积 UI一定的情况下,单口网络吸收的平均功率P与cos的大 小密切相关,cos表示功率的利用程度,称为功率因数,
2 cos x cos y cos( x y ) cos( x y )
p(t ) UI cos UI cos(2t 2 u )
其中=u-i是电压与电流的相位差,瞬时功率的波形 如图所示。
周期性变化的瞬时功率在一个周期内的平均值,称为 平均功率,用P表示,其定义是
量,它消耗的平均功率,就是单口网络吸收的平均功率。
当单口网络中包含有独立电源和受控源时,计算平均 功率的式(7-3)仍然适用,但此时的电压与电流的相位差 可能在 +90 到 +270 之间变化,功率因数 cos 在 0 到 -1 之间 变化,导致平均功率为负值,这意味着单口网络向外提供
正弦稳态分析-电路分析
第二节 电阻、电感和电容的相量形式的VCR
一、R元件:
设 : iR 2IR cos(ωt i) 则 : uR R iR 2RI R cos(ωt i )
U
R
RI R
u i
即: UR RIR
IR R UR
UR Ψi IR
二、L元件: 设 : iL 2IL cos(ωt i) ,
知:A a jb
则: A a 2 b2 , φ arctg b , A a 2 b2tg 1 b Aφ
a
a
若知:A Aφ
则: a A cos φ, b A sin φ, A A cos φ j A sin φ
(3)复数的四则运算 相等:两复数的实部和虚部分别相等。
则 45 30 15
解:i2 20cos(314t 30 90) 20cos(314t 60)
则 45 (60) 105
或i1
10sin( 314t 45 90) 则 135 30 105
10sin(
例2:(5+j4) ×(6+j3)=18+j39
2ndF CPLX 5 a 4 b × 6 a 3 b =显示“18” b 显示
“39”
例3: 3 j4 5(126.87)
3 +/- a 4 +/- b 2ndF →rθ 显示“5” b 显示“-126.8698…”
例4: 10 ∠-60° =5-j8.66…
同理
t
idt
的相量为:
I
jω
ωI
90
电路原理-正弦稳态电路的分析.ppt
1. 瞬时功率 (instantaneous power)
p(t) ui 2U cos t 2I cos(t φ) UI[cos φ cos(2t φ)] UI cosφ(1 cos 2t) UI sin sin 2t
第一种分解方法:p(t) UI[cos φ cos(2t φ)]
cos =0.7, P=0.7S=52.5kW
设备容量S (额定)向负载送多少有用功要由负载的阻抗 角决定。
一般用户: 异步电机 空载 cos =0.2~0.3
日光灯
满载 cos =0.7~0.85 cos =0.45~0.6
(2) 当输出相同的有功功率时,线路上电流大,I=P/(Ucos), 线路压降损耗大。
i
+
PR =UIcos =UIcos0 =UI=I2R=U2/R
u
R
-
QR =UIsin =UIsin0 =0
i
+
PL=UIcos =UIcos90 =0
u
L
-
QL =UIsin =UIsin90 =UI=I2XL =I2ωL
i
+ห้องสมุดไป่ตู้
PC=UIcos =UIcos(-90)=0
u -
C QC =UIsin =UIsin (-90) = -UI =I2XC
is
I1
L R1
RI23 C I4
is
I2
R4
R3
解 回路法:
(R1 R2 jL)I1 (R1 jL)I2 R2I3 US
(R1 R3 R4 jL)I2(R1 jL)I1 R3I3 0
I4 IS
_ us + Un1
L R1 R2 C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2课I件m
2
R
1 2
Um2 R
7
2、网络等效阻抗为一个电抗。 此时单口网络电压与电流相位为正交关
系,即Z=u-i =90, (+电感-电容)
pL (t) UI cos(2 t 2u 90)
pC (t) UI cos(2 t 2u 90)
课件
8
若假设电压初相为零,得
pC
(t )
Um
UI cos Z UI cos(2 t 2u Z )
Z=u-i是电压与电流的相位差。瞬时功 率由一个恒定分量和一个频率为2ω的正
弦分量组成,周期性变化,当p(t)>0时,
该网络吸收功率;当p(t)<0时,该网络发
出功率。瞬时功率的波形如图所示。
课件
3
UIcos
Z
Z
课件
4
2、平均功率(有功功率) 简称功率:在一个周期内的平均值:
Z 0.5 j1.5
0.5 j1.5 0.5 j0.5 1 j1
1 j1 课件
28
用欧姆定律求电流 分流公式求电流
I1
US Z
20 1 j1
2 45A
I2
j1 1 j1
I1
j1 2 45
2 45 j1 1 90A
可用以下几种方法求电源发出的平均功率
1 P发出 USI1 cos Z 2 2 cos45 2W
P I2P U2 GR
电阻分量消耗的平均功率,就是单口
网络吸收的平均功率课件。
12
3、视在功率
S UI
表示一个电气设备的容量,是单口网 络所吸收平均功率的最大值,单位: 伏安(VA)。例如我们说某个发电机的 容量为100kVA,而不说其容量为 100kW
课件
13
4、功率因数
网络吸收的平均功率P与cosZ的大小
课件
30
负载电流:
I Uoc
Uoc
Z0 ZL R0 jX0 RL jX L
I
Uoc
(R0 RL )2 ( X 0 X L )2
负载吸收的平均功率:
P
I 2 RL
( R0
U
2 oc
RL
RL )2 ( X 0
X L )2
课件
31
当XL=-Xo时,分母最小,此时
P
U
2 oc
RL
(R0 RL )2
1T
P T 0 p(t)dt
1 T
T
0 [YI cos Z UI cos(2 t u i )]dt
UI cos Z
平均功率不仅取决于电压电流有效值乘
积VI,还与阻抗角Z=u-I有关。
课件
5
几种特殊情况。
1、网络等效阻抗为一个电阻。
此时网络电压与电流相位相同,即
Z=u-i=0, cosZ=1,
求导数,并令其等于零。
dP dRL
(R0 RL )2 2(R0 RL )RL (R0 RL )4
U
2 oc
0
得 RL=Ro。 负载获得最大功率的条件是
*
ZL RL jXL Z o Ro jXo
所获最大功率:
课件
Pmax
U
2 oc
4 Ro
32
最大功率传输定理:工作于正弦稳态的
网 络 向 一 个 负 载 ZL=RL+jXL 供 电 , 由 戴
Q UI sin Z
可验证L和C时的特殊情况。
课件
16
无功功率反映电源(或外电路)和单 口网络内储能元件之间的能量交换 情况,单位为乏(var)(无功伏安: volt amper reactive)
与功率计算类似:
Q UI sin Z I 2 X U 2B
Q I2Q U2
B
X
课件
17
密切相关,cosZ表示功率的利用程度
,称为功率因数
pf
cos Z
P S
Z=u-i为功率因数角。当二端网络
为无源元件R、L、C组成时:
|Z|<90 ,0< pf <1。
Z<0
,电路呈容性,电流导前电压; Z>0
,电路感呈性,电流滞后电压。
课件
14
为了提高电能的利用效率,电力部门 采用各种措施力求提高功率因数。例 如使用镇流器的日光灯电路,它等效 于一个电阻和电感的串联,其功率因 数小于1,它要求线路提供更大的电流。 为了提高日光灯电路的功率因数,一 个常用的办法是在它的输入端并联一 个适当数值的电容来抵销电感分量, 使其端口特性接近一个纯电阻以便使 功率因数接近于1。
6、复 功 率
为了便于用相量来计算平均功率,引
入复功率。工作于正弦稳态的网络,其
电压电流采用关联的参考方向,设
U Uu I Ii S~ UI* UIu i UI Z
I
U N
UI cosZ jUIsin Z P jQ
单位:VA
课件
18
复功率还有两个常用的公式:
~
S
UI
ZII
I
2Z
~
S
7-6 正弦稳态电路的功率
本节讨论正弦稳态单口网络的瞬时
功率、平均功率(有功功率)、无功功
率、视在功率、复功率和功率因数。
正弦稳态单口网络向可变负载传输最
大功率的问题。
课件
1
7-6-1 二端网络的功率
1、瞬时功率
端口电压和电流采用关联参 考方向,它吸收的功率为
p(t) u(t)i(t)
正弦稳态时 ,端口电压和电流是相同 频率的正弦量,即
课件
20
正弦稳态电路中,由每个独立电源发出 的有功功率的总和等于电路中其它元件 所吸收的有功功率的总和;由每个独立 电源发出的无功功率的总和等于电路中 其它元件所吸收的无功功率的总和:
P发出 P吸收
Q发出 Q吸收
由此可得网络吸收的有功功率等于该网
络内每个电阻吸收的平均功率总和。注
意正弦稳态电路中视在功率并不守恒。
2
S~
US
*
I1
2
245 2 j2 P Re( S~) 2W
3
P发出
I12 R1
I
2 2
R2
2
0.5
11
2W
4 P发出 I12 Re( Z ) I12 Re(1 j1) 21 2W
课件
29
7-6-2 最大功率传输
图(a)所示含独立电源网络用戴维南等效 电路代替,得到图(b)。其中, U是oc含源网 络的开路电压,Zo=Ro+jXo是含源网络的 输出阻抗,ZL=RL+jXL是负载阻抗。
-
j2
ZL
b
Z+ 0
U-oc
ZL
b
解:ab以左运用戴维南电路,得右图。
UOC
2
j2 j2
100
5
245 V
课件
34
ZO
2 2
j2 j2
1
j1
所以,当
ZL
*
ZO
时1 , j1
可获最大功率.
Pmax
U
2 oc
4Ro
(5 2)2 41
12.5 W
课件
35
在通信和电子设备的设计中,常常要求 满足共轭匹配,以便使负载得到最大功 率。在负载不能任意变化的情况下,可 以在含源单口网络与负载之间插入一个 匹配网络来满足负载获得最大功率的条 件。
2
1000
8.26W
2 若采用匹配网络满足共轭匹配条件,
1000Ω负载电阻可能获得的最大平均功
率为
PL
100 100 100
2
100
25W
可见,采用共轭匹配网络,负载获得的
平均功率将大大增加。
课件
38
3 设计一个由电感和 电容构成的网络来满 足共轭匹配条件,以 使负载获最大功率。
课件
10
定义:无功功率
把瞬时功率的振幅(最大值)定义为电 感和电容的无功功率,以表明电感和电 容与外电路电流和电压不断往返的程度。 即
QL UI QC UI
课件
11
3、任意二端网络的情况
P U IcosZ
设二端网络
Z R jXY G jB
P UI cos Z I 2 R U 2G
课件
21
8、功率三角形
S Q
ZP
阻抗三角形,导纳三角形,电压三角 形,电流三角形和功率三角形都是相 似三角形。
课件
22
例17 电路相量模型如图,端口电压的
有效值U=100V.试求该网络的P、S~Q、
、S、pf。
解:设端口电压相量 为: U 1000V
-j14
+
U 16
-
j16
网络的等效阻抗:
Z j14 16 j16 j14 8 j8 16 j16
UC
IC
感性 负载
感性负载的阻抗角: Z arccos 0.5 60
设电压相量为: U 2200V
课件
25
则负载电流相量: I 10 60A
并联电容后,电源电流有效值:
I ' P 1.1103 6.25A U pf ' 220 0.8
由于pf’=0.8 (滞后), 因此功率因数角: Z ' arccos 0.8 36.9
维南定理(其中 Zo=Ro+jXo),则在负载阻
抗等于含源网络输出阻抗的共轭复数(即
)时ZL,
*
Zo
负载可以获得最大平均功率:
Pmax
U
2 oc
4 Ro