数据库优化方面表设计sql优化
数据库设计对SQL Server数据库性能优化分析
数据库设计对SQL Server数据库性能优化分析在当今数字化的时代,数据的管理和处理对于企业和组织的运营至关重要。
SQL Server 作为一种广泛使用的关系型数据库管理系统,其性能优化是确保系统高效运行的关键。
而数据库设计作为性能优化的基础,对于提高 SQL Server 数据库的性能起着决定性的作用。
一、数据库设计的重要性一个良好的数据库设计能够为数据库的性能优化奠定坚实的基础。
它不仅影响着数据的存储和检索效率,还关系到数据库的可维护性、可扩展性以及数据的完整性和一致性。
如果数据库设计不合理,可能会导致数据冗余、查询性能低下、数据不一致等问题,从而严重影响系统的整体性能。
例如,如果在设计表结构时没有合理地规划字段的数据类型和长度,可能会导致存储空间的浪费或者数据截断的错误。
此外,如果没有正确地建立表之间的关系,可能会导致数据的完整性无法得到保证,从而影响数据的准确性和可靠性。
二、数据库设计对性能的影响1、表结构设计字段选择与数据类型:选择合适的数据类型对于节省存储空间和提高查询性能非常重要。
例如,对于整数类型的数据,如果使用了过大的数据类型,会浪费存储空间;而对于字符串类型的数据,如果长度估计不准确,可能会导致数据截断或者存储空间的浪费。
字段长度:合理设置字段长度可以避免不必要的存储空间浪费。
同时,过短的字段长度可能无法容纳实际的数据,导致数据截断。
主键和索引:主键的选择应该具有唯一性和稳定性。
合适的索引可以大大提高查询和连接操作的性能,但过多或不合理的索引也会导致性能下降,因为每次数据插入、更新和删除时都需要维护索引。
2、数据规范化第一范式(1NF):确保每个字段都是原子性的,即不可再分。
第二范式(2NF):在满足 1NF 的基础上,消除部分依赖,即非主键字段完全依赖于主键。
第三范式(3NF):在满足 2NF 的基础上,消除传递依赖。
适当的数据规范化可以减少数据冗余,提高数据的一致性和完整性,但过度规范化可能会导致查询时需要进行大量的连接操作,从而影响性能。
sql优化常用面试题
sql优化常用面试题SQL优化是数据库开发和维护中非常重要的一项工作。
在面试过程中,面试官通常会提出一些与SQL优化相关的问题,以下是一些常见的SQL优化面试题:1. 如何进行SQL优化?SQL优化可以通过以下几个方面实现:1.1. 索引优化:合理创建索引并保证索引的使用;1.2. 查询优化:使用合适的查询语句、减少不必要的查询、优化查询条件和排序等;1.3. 数据库设计优化:合理设计数据库结构,避免冗余字段和表,减少数据的存储和检索;1.4. 优化表结构:适当分割数据表,避免表过大,减少数据操作的时间;1.5. SQL语句优化:合理编写SQL语句,避免使用子查询、JOIN 操作等可能导致性能下降的语句。
2. 什么是索引?为什么要使用索引?索引是一种数据结构,用于加快数据库的检索速度。
通过将特定列上的索引值与实际数据进行映射,可以快速定位到包含指定数据的记录,提高查询效率。
索引的使用可以带来以下优点:- 加快数据检索速度:通过索引,数据库可以直接访问到符合查询条件的数据,加快查询速度;- 提高查询性能:索引可以减少数据库的扫描操作,降低系统资源的占用;- 支持唯一性约束:通过创建唯一索引,可以确保数据表中某些列的唯一性;- 支持排序:通过创建排序索引,可以直接按照索引顺序返回数据。
3. 什么是SQL执行计划?SQL执行计划是数据库执行SQL语句时生成的一种执行计划,用于指导数据库如何执行SQL查询。
执行计划是由数据库的查询优化器生成的,它会根据表结构、索引情况等因素评估查询的成本,并生成一种最优的执行计划。
SQL执行计划包括了查询语句的扫描方式、连接类型、索引使用情况等信息,有助于分析查询的性能瓶颈以及优化性能。
4. 如何通过查看SQL执行计划来进行优化?通过查看SQL执行计划,可以获取查询语句的执行细节,从而进行性能优化。
4.1. 扫描方式优化:通过查看执行计划中的扫描方式,可以了解查询是如何扫描表的(全表扫描、索引扫描等),针对不同的扫描方式,可以针对性地进行优化,如创建合适的索引、优化查询条件等。
如何进行SQL调优
如何进行SQL调优SQL调优是优化数据库性能的一个重要步骤。
通常情况下,优化SQL查询的效率会使整个系统的性能得到提升。
在这篇文章中,我们将探讨如何进行SQL调优。
一、分析SQL语句首先,我们需要分析SQL查询语句。
如果SQL查询不正确或不充分,则不可能实现有效的调优。
我们需要了解查询的目的、查询的表、所需的数据以及查询的条件等等。
在分析查询语句时,我们需要关注以下几个方面:1.查询完成的时间是否满足需求;2.过滤条件是否合适;3.表之间的关系是否正确;4.是否使用了合适的索引;5.查询中使用了哪些函数;6.是否将复杂的查询分解为简单的查询;7.是否存在重复数据;8.是否使用了动态语句。
二、优化数据表结构第二个优化策略是优化数据表结构。
优化数据表结构可以使查询更快并减少查询时间。
以下是一些优化数据表结构的建议:1.将表拆分为更小的表;2.对于大型的表,可以使查询更快,更好地维护和管理;3.添加数据到表中时,使用批量插入而不是单独插入;4.为表的主键添加索引;5.使用适当的数据类型;6.删除不必要的列;7.标准化表设计。
三、使用优化查询技术第三个优化策略是使用优化查询技术。
以下是一些优化查询技术的建议:1.使用预编译语句;2.使用存储过程;3.将大的表拆分为小表;4.优化查询过程中使用的函数;5.范围查询的优化技术;6.优化复杂查询;7.熟悉查询缓存的工作原理;8.使用正确的JOIN语句。
四、使用合适的索引使用合适的索引是第四个优化策略。
索引是用于查找表中数据的一种结构。
以下是一些使用索引的建议:1.只有在需要时才使用索引;2.使用准确性为索引提供数据;3.使用索引可以使查询更快,但也会增加插入和修改的时间;4.对于大型表,使用索引可以显著提高性能;5.使用覆盖索引;6.避免使用不规范的索引;7.使用联合索引;8.使用优化查询缓存。
五、优化数据库服务器优化数据库服务器是第五个优化策略。
以下是一些优化服务器的建议:1.选择正确的硬件;2.选择正确的操作系统;3.使用正确的配置参数;4.配置正确的缓存大小;5.使用内存表代替磁盘表;6.合理设置自动增量字段;7.优化写和读的优化区域;8.备份和压缩数据。
数据库性能调优与SQL调整方案
数据库性能调优与SQL调整方案在今天的信息时代中,数据库是许多企业关键的数据存储和处理工具。
为了确保数据库系统的高效运行和响应时间,数据库性能调优是至关重要的。
本文将介绍数据库性能调优的基本概念,并提供一些建议的SQL调整方案,帮助优化数据库系统的性能。
一、数据库性能调优的概念数据库性能调优是指对数据库系统的硬件、软件以及相关应用程序进行综合优化,以提高数据库系统的响应和处理能力,提升数据库系统的性能。
数据库性能调优的目标是通过优化数据库的结构、查询语句和系统参数等来提高数据库的效率,减少系统的资源消耗,提升用户的体验。
二、数据库性能调优的原则1.合理设计数据库结构:合理的数据库设计是数据库性能调优的基础。
需要关注表的大小、索引的使用、数据模型的规范化和冗余等,以确保数据库结构的高效性和易维护性。
2.优化SQL查询语句:提高SQL查询语句的效率可以极大地改善数据库系统的性能。
使用索引、避免全表扫描、避免使用复杂的子查询和联合查询,以及减少SQL查询语句的执行次数等,都是优化SQL查询语句的常用方法。
3.优化系统参数设置:根据数据库的性能需求,合理设置数据库系统的参数。
例如,调整内存分配、缓存设置、并发连接数、日志文件大小等,以提高数据库系统的性能和稳定性。
三、SQL调整方案1.使用合适的索引:索引在数据库查询中起着重要的作用,可以快速定位数据。
正确选择索引类型、建立合适的复合索引以及定期更新索引等,都是优化SQL查询的有效手段。
2.避免全表扫描:全表扫描是一种效率较低的数据检索方法,应尽量避免使用。
可以利用索引和适当的查询条件,增加筛选条件,提高查询效率。
3.尽量减少数据库访问次数:通过合并多个查询语句、使用批量操作等方式,减少数据库系统的访问次数,可以有效地提高数据库的处理能力和响应时间。
4.避免使用过多的函数:在查询语句中使用函数会增加数据库的负担和计算成本。
可以尝试将一些函数的计算操作移至应用程序层面进行处理,减轻数据库的负担。
使用PostgreSQL进行高性能数据库设计与优化
使用PostgreSQL进行高性能数据库设计与优化引言:在当今信息时代,数据的存储和管理变得越来越重要。
作为一种强大的关系型数据库管理系统,PostgreSQL在高性能数据库设计与优化方面拥有丰富的经验和技术。
本文将探讨如何使用PostgreSQL进行高性能数据库设计与优化。
一、数据库设计数据库设计是构建高性能数据库的基础。
在设计数据库时,需要考虑以下几个方面:1. 数据库范式化范式化是一种规范化的数据库设计方法,可以减少数据冗余,提高数据的一致性和完整性。
在设计过程中,应根据实际需求选择合适的范式化级别,并进行适当的冗余处理。
2. 索引设计索引是提高数据库查询性能的关键。
在设计索引时,应根据查询频率和数据更新频率进行权衡。
过多的索引会增加数据更新的负担,而过少的索引会降低查询性能。
因此,需要根据实际情况选择合适的索引策略。
3. 数据库分区数据库分区是将大型数据库分割为多个较小的部分,以提高查询性能和数据管理的效率。
在设计分区方案时,需要考虑数据的访问模式、数据量以及硬件资源等因素。
二、查询优化查询优化是提高数据库性能的关键。
PostgreSQL提供了丰富的查询优化工具和技术,以下是一些常用的优化方法:1. 使用合适的查询语句合理选择查询语句可以减少不必要的计算和数据传输,提高查询效率。
在编写查询语句时,应尽量避免使用复杂的子查询和多重连接,同时合理使用分组、排序和限制等操作。
2. 使用合适的索引索引是提高查询性能的关键。
在使用索引时,应根据查询的字段和条件选择合适的索引类型。
同时,定期对索引进行优化和维护,以保证其性能和稳定性。
3. 数据预取和缓存PostgreSQL提供了数据预取和缓存机制,可以提高查询效率。
通过合理设置缓存大小和预取策略,可以减少磁盘IO次数,提高数据访问速度。
三、并发控制并发控制是保证数据库性能和数据一致性的重要手段。
以下是一些常用的并发控制方法:1. 事务管理PostgreSQL支持ACID事务,可以保证数据的一致性和完整性。
当sqlserver数据量很大时,如何优化表格能加快处理速度
表设计和查询的一些参考1.合理使用索引索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。
现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构。
索引的使用要恰到好处,其使用原则如下:●在经常进行连接,但是没有指定为外键的列上建立索引,而不经常连接的字段则由优化器自动生成索引。
●在频繁进行排序或分组(即进行group by或order by操作)的列上建立索引。
●在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引。
比如在雇员表的“性别”列上只有“男”与“女”两个不同值,因此就无必要建立索引。
如果建立索引不但不会提高查询效率,反而会严重降低更新速度。
●如果待排序的列有多个,可以在这些列上建立复合索引(compound index)。
● 使用系统工具。
如Informix数据库有一个tbcheck工具,可以在可疑的索引上进行检查。
在一些数据库服务器上,索引可能失效或者因为频繁操作而使得读取效率降低,如果一个使用索引的查询不明不白地慢下来,可以试着用tbcheck工具检查索引的完整性,必要时进行修复。
另外,当数据库表更新大量数据后,删除并重建索引可以提高查询速度。
2.避免或简化排序应当简化或避免对大型表进行重复的排序。
当能够利用索引自动以适当的次序产生输出时,优化器就避免了排序的步骤。
以下是一些影响因素:●索引中不包括一个或几个待排序的列;●group by或order by子句中列的次序与索引的次序不一样;●排序的列来自不同的表。
为了避免不必要的排序,就要正确地增建索引,合理地合并数据库表(尽管有时可能影响表的规范化,但相对于效率的提高是值得的)。
如果排序不可避免,那么应当试图简化它,如缩小排序的列的范围等。
3.消除对大型表行数据的顺序存取在嵌套查询中,对表的顺序存取对查询效率可能产生致命的影响。
比如采用顺序存取策略,一个嵌套3层的查询,如果每层都查询1000行,那么这个查询就要查询10亿行数据。
数据库性能优化中的IO调优技术
数据库性能优化中的IO调优技术数据库是现代应用系统中重要的数据存储和管理工具之一。
然而,随着业务的扩展和数据的增长,数据库的性能问题愈发显著。
其中最关键的问题之一就是IO性能瓶颈。
IO(输入/输出)操作是数据库中时间消耗最大的部分之一,因此进行IO调优对于提高数据库的性能至关重要。
本文将介绍数据库性能优化中的IO调优技术。
一、表设计和索引优化在进行IO调优之前,我们首先要确保表的设计和索引的优化。
合理的表设计和索引可以减少IO操作的次数,从而提高数据库的性能。
具体的优化策略包括:1. 使用适当的数据类型:对于某些字段,选择合适的数据类型可以降低存储空间和IO操作的需求,例如使用整型代替字符型。
2. 正确使用索引:根据查询需求选择合适的索引,并确保索引的选择覆盖了常用的查询条件。
同时,避免创建不必要的索引,因为索引会增加插入和更新操作的开销。
3. 数据库分区:对于大型数据库,可以考虑将数据按照某种规则进行分区,以减少单个表上的IO操作。
例如按照时间范围、地理位置等对数据进行分区。
二、磁盘子系统的优化磁盘子系统是数据库IO性能的关键因素之一。
以下是一些优化磁盘子系统的技术:1. RAID级别选择:RAID技术可以提高磁盘的容错性和性能。
根据对读写性能和容错性的需求,选择合适的RAID级别。
例如,RAID 0提供了较高的性能但没有容错能力,而RAID 5提供了较好的性能和容错能力。
2. 磁盘分区和文件系统:合理的磁盘分区和文件系统设置可以提高IO性能。
将数据库日志、数据文件和临时文件等分开保存在不同的磁盘分区上,以减少IO竞争。
同时选择高性能的文件系统,如XFS、Ext4等。
3. 内存缓存:数据库的内存缓存可以降低磁盘IO的频率。
通过合理设置数据库缓存大小,尽量将频繁访问的数据保留在内存中,减少IO操作。
4. 数量和速度:增加磁盘数量和使用高速磁盘(如SSD)都可以提高数据库的IO性能。
使用磁盘阵列技术可以增加磁盘吞吐量,同时使用高速缓存设备如SSD也可以加速数据库的IO操作。
SQLServer数据库的性能优化
SQLServer数据库的性能优化随着企业数据量不断增长,数据库系统已经成为企业不可或缺的一部分。
随之而来的问题是,在应对海量数据的同时,如何保证数据库系统的高效运行,以满足业务需要。
而数据库性能优化就是为了解决这一问题而存在的。
但是,由于SQLServer数据库系统具有复杂性和高度的可配置性,使得数据库性能优化成为了非常复杂的工作。
如果我们没有足够的知识与技巧,很容易导致不经意间影响数据库系统的正常工作。
本文将介绍SQLServer数据库性能优化的关键点。
1. 容量规划在数据库性能优化的开始阶段,我们需要明确数据库的容量规划,该规划应该包含这些内容:- 确认数据库的大小和增长趋势;- 选择合适的服务器硬件配置;- 选择合适的存储设备和存储配置;- 确认数据库备份和还原方案。
当确认好这些规划后,我们可以愉快地开启数据库系统的优化之旅了。
2. 关注I/O操作I/O操作是数据库性能优化中最重要的因素之一。
在SQLServer 中,我们需要通过以下几点来关注IO操作:- 确认合适的RAID配置;- 选择合适的磁盘类型;- 确认合适的磁盘块大小。
对于I/O操作的优化,我们可以在两个方面进行,一个是硬件方面,另一个则是SQLServer配置。
硬件方面,我们需要考虑到一下几个方面:- 升级服务器硬件设备;- 将磁盘储存设备升级为SSD硬盘;- 增加内存的容量。
对于SQLServer的配置,则可以通过以下几点进行:- 合适的磁盘和RAID配置;- 合适的max degree of parallelism 配置;- 合适的max server memory配;3. 使用合适的索引在SQLServer中,索引的作用是加速数据查询和数据修改,从而提高整个数据库系统的运行效率。
而在使用索引时,我们需要特别注意这些要素:- 创建索引可以减少IO操作;- 索引优化的关键点是选择合适的包含数据条目最多的列;- 在大型多元素表中使用Clustered Index;- 对于包含大量重复元素的列,可以直接采用非聚集索引。
一条sql执行过长的时间,你如何优化,从哪些方面入手?
一条sql执行过长的时间,你如何优化,从哪些方面入手?当一条SQL查询执行时间过长时,优化可以从多个方面入手。
以下是一些可能的优化方向:1. 执行计划分析:使用数据库提供的工具分析查询执行计划。
在MySQL中,可以使用EXPLAIN关键字来查看查询的执行计划,了解数据库是如何执行查询的。
通过分析执行计划,可以找到潜在的性能问题,例如是否使用了索引、是否有全表扫描等。
2. 索引优化:确保查询中涉及的列上有适当的索引。
缺乏索引或者使用不当的索引可能导致查询性能下降。
可以考虑创建、调整或删除索引以优化查询性能。
注意,索引并不是越多越好,需要根据具体查询模式和数据分布来合理选择索引。
3. 适当使用缓存:利用数据库缓存,如MySQL的查询缓存或其他缓存机制,可以避免重复执行相同的查询。
但要注意,在某些情况下,查询缓存可能并不总是有益的,因此需要谨慎使用。
4. 分析慢查询日志:启用慢查询日志并分析其中记录的查询,找出执行时间较长的语句。
慢查询日志可以提供有关执行时间、索引使用等方面的信息,有助于定位潜在的性能问题。
5. 表结构优化:检查表的设计,确保表结构符合业务需求。
有时,调整表的结构,如拆分或合并表,可以改善查询性能。
6. 分批处理:如果查询涉及大量数据,考虑使用分页或分批处理的方式,以避免一次性处理大量数据导致的性能问题。
7. 数据库参数调整:调整数据库系统的参数,如连接池大小、内存配置等,以适应查询的需求。
不同的数据库系统有不同的配置参数,需要根据具体情况来调整。
8. 使用合适的数据类型:选择合适的数据类型可以减小存储空间、提高查询效率。
尽量避免在 WHERE 子句中对字段进行函数操作,因为这可能导致索引失效。
9. 数据库版本升级:考虑将数据库升级到最新版本,因为新版本通常包含了性能改进和优化。
在进行优化时,通常需要综合考虑以上多个方面,并根据具体的业务场景和数据特点来制定合适的优化策略。
同时,对于复杂的查询和大规模数据,可能需要结合数据库监控工具来实时监测系统性能。
大数据量数据库设计与优化方案(SQL优化)
⼤数据量数据库设计与优化⽅案(SQL优化)⼀、数据库结构的设计如果不能设计⼀个合理的数据库模型,不仅会增加客户端和服务器段程序的编程和维护的难度,⽽且将会影响系统实际运⾏的性能。
所以,在⼀个系统开始实施之前,完备的数据库模型的设计是必须的。
在⼀个系统分析、设计阶段,因为数据量较⼩,负荷较低。
我们往往只注意到功能的实现,⽽很难注意到性能的薄弱之处,等到系统投⼊实际运⾏⼀段时间后,才发现系统的性能在降低,这时再来考虑提⾼系统性能则要花费更多的⼈⼒物⼒,⽽整个系统也不可避免的形成了⼀个打补丁⼯程。
所以在考虑整个系统的流程的时候,我们必须要考虑,在⾼并发⼤数据量的访问情况下,我们的系统会不会出现极端的情况。
(例:对外统计系统在7⽉16⽇出现的数据异常的情况,并发⼤数据量的的访问造成,数据库的响应时间不能跟上数据刷新的速度造成。
具体情况是:在⽇期临界时(00:00:00),判断数据库中是否有当前⽇期的记录,没有则插⼊⼀条当前⽇期的记录。
在低并发访问的情况下,不会发⽣问题,但是当⽇期临界时的访问量相当⼤的时候,在做这⼀判断的时候,会出现多次条件成⽴,则数据库⾥会被插⼊多条当前⽇期的记录,从⽽造成数据错误),数据库的模型确定下来之后,我们有必要做⼀个系统内数据流向图,分析可能出现的瓶颈。
为了保证数据库的⼀致性和完整性,在逻辑设计的时候往往会设计过多的表间关联,尽可能的降低数据的冗余。
(例:⽤户表的地区,我们可以把地区另外存放到⼀个地区表中)如果数据冗余低,数据的完整性容易得到保证,提⾼了数据吞吐速度,保证了数据的完整性,清楚地表达数据元素之间的关系。
⽽对于多表之间的关联查询(尤其是⼤数据表)时,其性能将会降低,同时也提⾼了客户端程序的编程难度,因此,物理设计需折衷考虑,根据业务规则,确定对关联表的数据量⼤⼩、数据项的访问频度,对此类数据表频繁的关联查询应适当提⾼数据冗余设计但增加了表间连接查询的操作,也使得程序的变得复杂,为了提⾼系统的响应时间,合理的数据冗余也是必要的。
oracle sql优化常用的15种方法
oracle sql优化常用的15种方法1. 使用合适的索引索引是提高查询性能的重要手段。
在设计表结构时,根据查询需求和数据特点合理地添加索引。
可以通过创建单列索引、复合索引或者位图索引等方式来优化SQL查询。
2. 确保SQL语句逻辑正确SQL语句的逻辑错误可能会导致低效查询。
因此,在编写SQL语句前,需要仔细分析查询条件,确保逻辑正确性。
3. 使用连接替代子查询在一些场景下,使用连接(JOIN)操作可以替代子查询,从而减少查询的复杂度。
连接操作能够将多个数据集合合并为一个结果集,避免多次查询和表的扫描操作。
4. 避免使用通配符查询通配符查询(如LIKE '%value%')在一些情况下可能导致全表扫描,性能低下。
尽量使用前缀匹配(LIKE 'value%')或者使用全文索引进行模糊查询。
5. 注意选择合适的数据类型选择合适的数据类型有助于提高SQL查询的效率。
对于整型数据,尽量使用小范围的数据类型,如TINYINT、SMALLINT等。
对于字符串数据,使用CHAR字段而不是VARCHAR,可以避免存储长度不一致带来的性能问题。
6. 优化查询计划查询计划是数据库在执行SQL查询时生成的执行计划。
通过使用EXPLAIN PLAN命令或者查询计划工具,可以分析查询计划,找出性能瓶颈所在,并对其进行优化。
7. 减少磁盘IO磁盘IO是影响查询性能的重要因素之一。
可以通过增加内存缓存区(如SGA)、使用高速磁盘(如SSD)、使用合适的文件系统(如ASM)等方式来减少磁盘IO。
8. 分区表对于大数据量的表,可以考虑使用分区表进行查询优化。
分区表可以将数据按照某个规则分散到不同的存储区域,从而减少查询范围和加速查询。
9. 批量操作尽量使用批量操作而不是逐条操作,可以减少数据库的事务处理开销,提高SQL执行效率。
可以使用INSERT INTO SELECT、UPDATE、DELETE等批量操作语句来实现。
Access如何进行数据查询的优化和效率提升
Access如何进行数据查询的优化和效率提升随着数据的不断增长,数据查询的效率越来越成为数据管理的瓶颈。
而在所有关系型数据库中,Access相对来说是个不大的数据库,但对于小型业务系统来说,并不失为一款好的选择。
本文将从Access数据库查询的优化和效率提升两个方面入手,分别谈谈如何优化SQL语句以及如何更好的利用Access数据库,使得数据查询更加高效。
一、SQL语句优化在进行数据库查询优化时,优化SQL语句是一个非常关键的环节。
以下是一些优化SQL语句的技巧:1.避免使用*通配符在Access中,使用*通配符可以查询所有字段,但这是一种效率低下的方式。
推荐使用明确的字段名来代替*通配符查询,这样Access 只会检索需要的字段,同时也提高了查询效率。
2.使用索引索引可以加快数据库的查询,因为索引可以将记录按照特定字段的值排序。
在Access中,可以通过单击表菜单上的索引和关系管理器按钮,来为查询的表上添加索引。
3.避免使用Distinct去重在查询中,使用Distinct会导致许多重复的数据被去除,在有大量数据时,该操作会导致查询效率非常低下。
4.使用Inner Join代替WHERE子句内连接指两个表之间的数据存在完全匹配时,才会返回记录。
使用Inner Join代替WHERE子句可以提高查询效率。
5.使用Update而不是Append或Delete从Access的设计角度来看,更新一个现有记录的效率是最高的。
因此,在进行数据库更新操作时,使用Update查询代替Append或Delete会更加高效。
二、数据库的效率提升除了优化SQL语句之外,还可以通过以下方式提升Access数据库的查询效率:1.优化表设计在Access中,表的设计是优化数据库性能的一个关键环节。
当表的设计不合理时,查询效率会受到影响。
因此,在设计Access表时,应该将常用的查询规划在数据库中,同时避免重复信息的存储等。
数据库优化方案
数据库优化方案1. 高效地进行SQL语句设计:通常情况下,可以采用下面的方法优化SQL对数据操作的表现:(1)减少对数据库的查询次数,即减少对系统资源的请求,使用快照和显形图等分布式数据库对象可以减少对数据库的查询次数。
(2)尽量使用相同的或非常类似的SQL语句进行查询,这样不仅充分利用SQL共享池中的已经分析的语法树,要查询的数据在SGA中命中的可能性也会大大增加。
(3)避免不带任何条件的SQL语句的执行。
没有任何条件的SQL语句在执行时,通常要进行FTS,数据库先定位一个数据块,然后按顺序依次查找其它数据,对于大型表这将是一个漫长的过程.(4)如果对有些表中的数据有约束,最好在建表的SQL语句用描述完整性来实现,而不是用SQL 程序中实现。
一、操作符优化:1、IN操作符用IN写出来的SQL的优点是比较容易写及清晰易懂,这比较适合现代软件开发的风格.但是用IN的SQL性能总是比较低的,从Oracle执行的步骤来分析用IN的SQL与不用IN的SQL有以下区别:ORACLE试图将其转换成多个表的连接,如果转换不成功则先执行IN里面的子查询,再查询外层的表记录,如果转换成功则直接采用多个表的连接方式查询。
由此可见用IN的SQL 至少多了一个转换的过程。
一般的SQL都可以转换成功,但对于含有分组统计等方面的SQL 就不能转换了.在业务密集的SQL当中尽量不采用IN操作符.优化sql时,经常碰到使用in的语句,一定要用exists把它给换掉,因为Oracle在处理In 时是按Or的方式做的,即使使用了索引也会很慢。
2、NOT IN操作符强列推荐不使用的,因为它不能应用表的索引。
用NOT EXISTS或(外连接+判断为空)方案代替3、IS NULL或IS NOT NULL操作判断字段是否为空一般是不会应用索引的,因为B树索引是不索引空值的。
用其它相同功能的操作运算代替,a is not null改为a>0 或a>’’等.不允许字段为空,而用一个缺省值代替空值,如业扩申请中状态字段不允许为空,缺省为申请。
数据库查询优化-20条必备sql优化技巧
数据库查询优化-20条必备sql优化技巧0、序⾔本⽂我们来谈谈项⽬中常⽤的 20 条 MySQL 优化⽅法,效率⾄少提⾼ 3倍!具体如下:1、使⽤ EXPLAIN 分析 SQL 语句是否合理使⽤ EXPLAIN 判断 SQL 语句是否合理使⽤索引,尽量避免 extra 列出现:Using File Sort、Using Temporary 等。
2、必须被索引重要SQL必须被索引:update、delete 的 where 条件列、order by、group by、distinct 字段、多表 join 字段。
3、联合索引对于联合索引来说,如果存在范围查询,⽐如between、>、<等条件时,会造成后⾯的索引字段失效。
对于联合索引来说,要遵守最左前缀法则:举列来说索引含有字段 id、name、school,可以直接⽤ id 字段,也可以 id、name 这样的顺序,但是 name; school 都⽆法使⽤这个索引。
所以在创建联合索引的时候⼀定要注意索引字段顺序,常⽤的查询字段放在最前⾯。
4、强制索引必要时可以使⽤ force index 来强制查询⾛某个索引: 有的时候MySQL优化器采取它认为合适的索引来检索 SQL 语句,但是可能它所采⽤的索引并不是我们想要的。
这时就可以采⽤ forceindex 来强制优化器使⽤我们制定的索引。
5、⽇期时间类型对于⾮标准的⽇期字段,例如字符串的⽇期字段,进⾏分区裁剪查询时会导致⽆法识辨,依旧⾛全表扫描。
尽管 TIMESTAMEP 存储空间只需要 datetime 的⼀半,然⽽由于类型 TIMESTAMP 存在性能问题,建议你还是尽可能使⽤类型 DATETIME。
(TIMESTAMP ⽇期存储的上限为2038-01-19 03:14:07,业务⽤ TIMESTAMP 存在风险;)6、禁⽌使⽤ SELECT *SELECT 只获取必要的字段,禁⽌使⽤ SELECT *。
数据库管理和优化的策略和技巧
数据库管理和优化的策略和技巧数据库管理和优化是确保数据库系统高效运行的关键任务。
以下是一些常用的数据库管理和优化的策略和技巧,帮助提高数据库系统的性能。
1.合理设计表结构:-根据数据的特点和存储需求,合理设计表的字段类型和长度。
避免使用过大或过小的字段类型,以减少存储空间的占用和提高查询效率。
-使用适当的索引来加快查询速度。
选择索引字段时要考虑经常用于条件过滤、排序和连接的字段,并避免过多的索引以减少空间消耗和性能损耗。
2.定期备份和恢复:-定期备份数据库是保护数据安全的重要手段。
使用数据库管理软件提供的备份工具,制定并执行备份策略。
根据业务需求和数据敏感程度,选择完整备份、增量备份或差异备份等备份方式。
-在灾难恢复时,对数据库进行恢复操作。
确保备份的完整性和可恢复性,以减少数据丢失和恢复时间。
3.优化SQL查询:-编写高效的SQL查询语句,减少不必要的数据操作以提高性能。
使用连接和子查询时要注意关联字段的索引使用。
-避免使用“%”开头的LIKE查询条件,以提高查询效率。
如果必要,可以考虑使用全文检索等高性能的查询方式。
-使用合适的连接方式,如INNER JOIN、LEFT JOIN等,并为表和字段起更有意义的别名以提高代码可读性。
4.规划合适的数据库缓存:-利用数据库缓存技术,如查询缓存、索引缓存和数据缓存等,减少数据库的IO操作,提高查询速度。
-设置合适的缓存大小和缓存策略,根据数据库访问模式和系统资源情况进行调整和优化。
5.定期维护和优化:-定期执行数据库的维护操作,如数据整理、索引重建和数据库统计等,以优化数据库性能。
-监控数据库的性能指标,如CPU、内存和磁盘使用率等,发现性能瓶颈并及时优化。
-清理无用数据和冗余数据,减少存储空间占用和提高查询效率。
6.水平和垂直扩展:-当单台数据库服务器无法满足性能需求时,可以考虑水平扩展或垂直扩展。
-水平扩展即增加数据库服务器数量,通过分片技术将数据分布到不同服务器上,提高并发处理能力。
如何通过SQL优化来提升数据库查询速度(一)
如何通过SQL优化来提升数据库查询速度数据库查询是数据处理过程中常见的操作,而查询速度的快慢直接影响了系统的性能。
为了提升数据库查询速度,我们可以通过SQL 优化的方式来改善查询效率。
本文将通过几个方面来讨论如何通过SQL 优化来提升数据库查询速度。
1. 数据库索引的优化数据库索引是提高查询速度的常用工具之一。
通过对关键字段创建索引,可以加快查询的速度。
在设计数据库时,需要考虑到经常被查询的字段,并为这些字段创建索引。
但是,索引不是越多越好,过多的索引会增加插入、更新以及删除操作的时间,还会占用更多的存储空间。
因此,在进行索引优化时,需要权衡不同字段的查询频率,并选择适当的字段进行索引。
2. SQL语句的优化优化SQL语句也是提升查询速度的一种重要方式。
一条高效的SQL语句可以极大地减少执行时间。
以下几个方面可以帮助我们进行SQL语句的优化:- 使用合适的数据类型:选择合适的数据类型可以减小存储空间的占用,同时提升查询效率。
- 避免使用通配符:在查询时,尽量避免使用通配符(如%),因为它们会导致全表扫描,影响查询性能。
- 限制结果数量:如果只需要查询结果的前几条数据,可以使用LIMIT来限制查询结果的数量,避免不必要的开销。
- 避免使用子查询:子查询会导致嵌套查询的执行,增加了查询的复杂度和执行时间。
可以通过联接表或者使用临时表来代替子查询。
- 使用批量操作:在需要插入、更新或删除大量数据的时候,可以使用批量操作(如INSERT INTO ... SELECT ...)提高效率。
3. 数据库表的优化数据库表的设计和优化也会对查询速度产生影响。
以下几个方面可以帮助我们进行数据库表的优化:- 合理设计表结构:数据库表的设计应该符合实际需求,并遵循规范化原则。
冗余的字段会增加存储空间的占用,同时也会影响查询性能。
- 适当拆分大表:当一个表的数据量很大时,可以考虑将其拆分成多个小表,以减小查询开销和提高查询效率。
SQL数据库怎么进行优化_SQL数据库有什么优化方式
SQL数据库怎么进行优化_SQL数据库有什么优化方式优化SQLServer数据库的一些经验和注意事项,详细介绍了SQL 语句优化的基本原则,包括索引、查询和游标的使用等。
下面由店铺为大家整理的SQL数据库优化方式,希望大家喜欢!SQL数据库优化的方式1. 利用表分区分区将数据在物理上分隔开,不同分区的数据可以制定保存在处于不同磁盘上的数据文件里。
这样,当对这个表进行查询时,只需要在表分区中进行扫描,而不必进行全表扫描,明显缩短了查询时间,另外处于不同磁盘的分区也将对这个表的数据传输分散在不同的磁盘I/O,一个精心设置的分区可以将数据传输对磁盘I/O竞争均匀地分散开。
对数据量大的时时表可采取此方法。
可按月自动建表分区。
2. 别名的使用别名是大型数据库的应用技巧,就是表名、列名在查询中以一个字母为别名,查询速度要比建连接表快1.5倍。
3. 索引Index的优化设计索引可以大大加快数据库的查询速度。
但是并不是所有的表都需要建立索引,只针对大数据量的表建立索引就好。
缺点:1.创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。
2.索引需要占物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,那么需要的空间就会更大。
3.当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。
索引需要维护:为了维护系统性能,索引在创建之后,由于频繁地对数据进行增加、删除、修改等操作使得索引页发生碎块,因此,必须对索引进行维护。
4. 物化视图(索引视图)一般的视图是虚拟的,而物化视图是实实在在的数据区域,是要占据存储空间的,另外系统刷新物化视图也需要耗费一定的资源,但是它却换来了效率和灵活性。
索引视图更适合在OLAP(读取较多,更新较少)的数据库中使用,不适合在OLTP(记录即时的增、删、改、查)的数据库中使用。
物化视图的注意事项:1.对于复杂而高消耗的查询,如果使用频繁,应建成物化视图。
数据库性能优化有哪些措施
数据库性能优化有哪些措施1.使用合适的数据结构和类型:选择合适的数据类型,可以减小存储空间的占用,并提高查询效率。
例如,使用整型而不是字符串类型存储数字数据,可以提升数据处理的速度。
2.设计合理的表结构:通过合理的表设计,可以减少不必要的数据冗余和关联,提高查询效率。
例如,使用联合索引来加速多表关联查询,避免大表的全表扫描。
3.建立索引:根据查询需求建立合适的索引,可以大大提高查询效率。
索引可以加速对表的查找和排序操作,但同时也会增加数据修改的开销,因此需要权衡和评估使用索引的成本与收益。
4.优化查询语句:优化查询语句是提高数据库性能的关键。
通过对SQL语句的优化,可以减少数据库的I/O操作和数据量的传输,提高查询的效率。
常用的优化手段包括:减少子查询的使用,使用连接操作替代子查询,避免使用SELECT*,减少使用函数和操作符等。
5.配置适当的缓存:数据库缓存是提升性能的重要手段。
通过配置适当大小的查询缓存和结果缓存,可以减少对磁盘的访问,从而提高查询速度。
同时,利用应用程序的缓存,可以减少对数据库的查询请求。
6.分区表:对于大型数据库,采用分区表的方式可以提高查询效率。
通过将表按照一定的规则进行分区,并在查询时仅查找所需的分区,可以减少查询范围,提高查询速度。
7.压缩数据:对于大量重复的数据,可以采用数据压缩的方式来减少存储空间的占用。
数据库系统提供了多种压缩算法,可以根据实际情况选择合适的压缩方法。
8.数据库分布式部署:对于大规模的数据库系统,可以考虑采用分布式部署的方式来提高并发性能。
将数据库分为多个节点,并通过负载均衡技术来分配请求,可以提高系统的吞吐量和可用性。
9.定期维护数据库:定期对数据库进行维护和优化,可以提高系统的性能和可靠性。
包括定期进行数据库备份和日志归档,清理无用数据和索引,优化数据库参数配置等。
10.使用批量操作:对于需要频繁进行插入、更新和删除等操作的情况,可以采用批量操作的方式,将多个操作合并为一次操作。
SQL优化的几种方法
SQL优化的⼏种⽅法1、对查询进⾏优化,应尽量避免全表扫描,⾸先考虑在where及order by上建⽴索引。
2、应尽量避免在where⼦句中进⾏以下操作:对字段进⾏null判断;使⽤!=或<>操作符;使⽤or连接条件;使⽤in或not in;使⽤like;等号左侧使⽤算术运算;对字段进⾏函数运算等。
以上操作将导致引擎放弃索引⽽进⾏全表扫描。
3、不要写⼀些没有意义的查询,如⽣成⼀个空表。
4、使⽤exists替代in,⽤not exists替代not in。
not in 是低效的,因为它对⼦查询中的表执⾏了⼀个全表遍历,他执⾏了⼀个内部的排序和合并。
select num from a where exists(select 1 from b where num=a.num)5、对只含数值信息的字段尽量使⽤数值型代替字符型,否则会降低查询和连接性能。
6、尽可能使⽤varchar代替char,节约存储空间,提⾼效率。
7、尽量⽤具体字段代替*进⾏查询。
8、在使⽤索引字段作为条件时,如果索引是复合索引,必须使⽤该索引的第⼀个字段作为条件才能保证系统使⽤该索引。
9、当索引中有⼤量重复数据时,索引是⽆效的。
10、当进⾏update或insert操作时,索引的存在会降低该操作的效率。
11、尽量避免频繁创建或删除临时表,减少系统资源消耗。
12、在新建临时表时,如果⼀次性插⼊数据量很⼤,那么可以使⽤select into代替create table,避免产⽣⼤量log,提⾼效率。
13、如果使⽤到了临时表,在存储过程的最后务必将所有的临时表显⽰的删除,先truncate table ,然后drop table,避免系统表长时间锁定。
14、尽量避免使⽤游标,因为游标效率较差,如果游标操作的数据超过1万⾏,那么就应该考虑改写。
15、对于⼩型数据集使⽤fast_forward游标要优于其他逐⾏处理⽅法,尤其是在必须引⽤⼏个表才能获取所需要的数据时。
SQL Server数据库性能优化
SQL Server数据库性能优化SQL Server 数据库是许多组织和企业中最常用的关系型数据库之一。
它被广泛应用于数据存储和管理,但随着数据库规模和负载的增加,性能问题可能出现。
本文将探讨一些 SQL Server 数据库性能优化的策略,并提供一些建议和实践方法来提高数据库性能。
1. 使用适当的索引:索引是优化查询性能的重要因素之一。
通过为常用的查询添加适当的索引,可以提高查询的速度。
然而,索引的设计需要谨慎考虑。
过多或不必要的索引可能会导致额外的存储和维护开销。
在选择索引列时,经常使用用于过滤、排序和连接的列,并避免在频繁更新的列上创建索引。
2. 慎重使用数据库范围的约束:数据库的完整性约束如主键、外键和唯一约束是必要的,但过多或复杂的约束可能会影响性能。
当插入大量数据时,暂时禁用约束可以提高性能,之后再重新启用。
3. 使用合理的数据类型:选择正确的数据类型对于提高数据库的存储效率和查询性能至关重要。
使用合理的数据类型可以节省存储空间,并减少磁盘 I/O 操作的次数。
4. 对查询语句进行优化:优化查询语句是提高数据库性能的重点。
确保使用正确的查询语法,避免在WHERE 子句中进行非索引列的计算,避免重复计算和不必要的 JOIN 操作。
使用EXPLAIN 等工具来分析和调试查询计划,并根据需要更改查询策略。
5. 定期进行数据库维护:进行定期的数据库维护活动可以帮助提高性能。
这包括索引重建、数据库压缩、统计信息更新和日志清理等操作。
定期的数据库备份和恢复测试也是数据库性能优化的重要组成部分。
6. 有效管理数据库日志文件:SQL Server 使用事务日志(或事务日志文件)来记录数据库中发生的更改。
大型事务日志文件可能导致性能下降。
通过定期备份、压缩和定期清理事务日志文件,可以最大程度地减少数据库维护操作对性能的影响。
7. 并行处理和资源管理:将适当的操作并发处理可以提高查询性能。
有效管理系统资源,如 CPU、内存和磁盘 I/O,可以防止资源竞争和瓶颈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于数据库优化方面的文章很多,但是有的写的似是而非,有的不切实际,对一个数据库来说,只能做到更优,不可能最优,并且由于实际需求不同,优化方案还是有所差异,根据实际需要关心的方面(速度、存储空间、可维护性、可拓展性)来优化数据库,而这些方面往往又是相互矛盾的,下面结合网上的一些看法和自己的一些观点做个总结。
一个系统的性能的提高,不单单是试运行或者维护阶段的性能调优,也不单单是开发阶段的事情,而是在整个软件生命周期都需要注意。
所以我希望按照软件生命周期的不同阶段来总结数据库性能优化相关的注意事项。
一、分析阶段一般来说,在系统分析阶段往往有太多需要关注的地方,系统各种功能性、可用性、可靠性、安全性需求往往吸引了我们大部分的注意力,但是,我们必须注意,性能是很重要的非功能性需求,必须根据系统的特点确定其实时性需求、响应时间的需求、硬件的配置等。
最好能有各种需求的量化的指标。
另一方面,在分析阶段应该根据各种需求区分出系统的类型,大的方面,区分是OLTP(联机事务处理系统)和OLAP(联机分析处理系统)。
二、设计阶段设计阶段可以说是以后系统性能的关键阶段,在这个阶段,有一个关系到以后几乎所有性能调优的过程—数据库设计。
在数据库设计完成后,可以进行初步的索引设计,好的索引设计可以指导编码阶段写出高效率的代码,为整个系统的性能打下良好的基础。
以下是性能要求设计阶段需要注意的:1、数据库逻辑设计的规范化数据库逻辑设计的规范化就是我们一般所说的范式,我们可以这样来简单理解范式:第1规范:没有重复的组或多值的列,这是数据库设计的最低要求。
第2规范: 每个非关键字段必须依赖于主关键字,不能依赖于一个组合式主关键字的某些组成部分。
消除部分依赖,大部分情况下,数据库设计都应该达到第二范式。
第3规范: 一个非关键字段不能依赖于另一个非关键字段。
消除传递依赖,达到第三范式应该是系统中大部分表的要求,除非一些特殊作用的表。
更高的范式要求这里就不再作介绍了,个人认为,如果全部达到第二范式,大部分达到第三范式,系统会产生较少的列和较多的表,因而减少了数据冗余,也利于性能的提高。
2、合理的冗余完全按照规范化设计的系统几乎是不可能的,除非系统特别的小,在规范化设计后,有计划地加入冗余是必要的。
冗余可以是冗余数据库、冗余表或者冗余字段,不同粒度的冗余可以起到不同的作用。
冗余可以是为了编程方便而增加,也可以是为了性能的提高而增加。
从性能角度来说,冗余数据库可以分散数据库压力,冗余表可以分散数据量大的表的并发压力,也可以加快特殊查询的速度,冗余字段可以有效减少数据库表的连接,提高效率。
3、主键的设计主键是必要的,SQL SERVER的主键同时是一个唯一索引,而且在实际应用中,我们往往选择最小的键组合作为主键,所以主键往往适合作为表的聚集索引。
聚集索引对查询的影响是比较大的,这个在下面索引的叙述。
在有多个键的表,主键的选择也比较重要,一般选择总的长度小的键,小的键的比较速度快,同时小的键可以使主键的B树结构的层次更少。
主键的选择还要注意组合主键的字段次序,对于组合主键来说,不同的字段次序的主键的性能差别可能会很大,一般应该选择重复率低、单独或者组合查询可能性大的字段放在前面。
4、外键的设计外键作为数据库对象,很多人认为麻烦而不用,实际上,外键在大部分情况下是很有用的,理由是:外键是最高效的一致性维护方法,数据库的一致性要求,依次可以用外键、CHECK约束、规则约束、触发器、客户端程序,一般认为,离数据越近的方法效率越高。
谨慎使用级联删除和级联更新,级联删除和级联更新作为SQL SERVER 2000当年的新功能,在2005作了保留,应该有其可用之处。
我这里说的谨慎,是因为级联删除和级联更新有些突破了传统的关于外键的定义,功能有点太过强大,使用前必须确定自己已经把握好其功能范围,否则,级联删除和级联更新可能让你的数据莫名其妙的被修改或者丢失。
从性能看级联删除和级联更新是比其他方法更高效的方法。
5、字段的设计字段是数据库最基本的单位,其设计对性能的影响是很大的。
需要注意如下:A、数据类型尽量用数字型,数字型的比较比字符型的快很多。
B、数据类型尽量小,这里的尽量小是指在满足可以预见的未来需求的前提下的。
C、尽量不要允许NULL,除非必要,可以用NOT NULL+DEFAULT代替。
D、少用TEXT和IMAGE,二进制字段的读写是比较慢的,而且,读取的方法也不多,大部分情况下最好不用。
E、自增字段要慎用,不利于数据迁移。
6、数据库物理存储和环境的设计在设计阶段,可以对数据库的物理存储、操作系统环境、网络环境进行必要的设计,使得我们的系统在将来能适应比较多的用户并发和比较大的数据量。
这里需要注意文件组的作用,适用文件组可以有效把I/O操作分散到不同的物理硬盘,提高并发能力。
7、系统设计整个系统的设计特别是系统结构设计对性能是有很大影响的,对于一般的OLTP系统,可以选择C/S结构、三层的C/S结构等,不同的系统结构其性能的关键也有所不同。
系统设计阶段应该归纳一些业务逻辑放在数据库编程实现,数据库编程包括数据库存储过程、触发器和函数。
用数据库编程实现业务逻辑的好处是减少网络流量并可更充分利用数据库的预编译和缓存功能。
8、索引的设计在设计阶段,可以根据功能和性能的需求进行初步的索引设计,这里需要根据预计的数据量和查询来设计索引,可能与将来实际使用的时候会有所区别。
关于索引的选择,应改主意:A、根据数据量决定哪些表需要增加索引,数据量小的可以只有主键。
B、根据使用频率决定哪些字段需要建立索引,选择经常作为连接条件、筛选条件、聚合查询、排序的字段作为索引的候选字段。
C、把经常一起出现的字段组合在一起,组成组合索引,组合索引的字段顺序与主键一样,也需要把最常用的字段放在前面,把重复率低的字段放在前面。
D、一个表不要加太多索引,因为索引影响插入和更新的速度三、编码阶段编码阶段是本文的重点,因为在设计确定的情况下,编码的质量几乎决定了整个系统的质量。
编码阶段首先是需要所有程序员有性能意识,也就是在实现功能同时有考虑性能的思想,数据库是能进行集合运算的工具,我们应该尽量的利用这个工具,所谓集合运算实际是批量运算,就是尽量减少在客户端进行大数据量的循环操作,而用SQL语句或者存储过程代替。
关于思想和意识,很难说得很清楚,需要在编程过程中来体会。
下面罗列一些编程阶段需要注意的事项:1、只返回需要的数据返回数据到客户端至少需要数据库提取数据、网络传输数据、客户端接收数据以及客户端处理数据等环节,如果返回不需要的数据,就会增加服务器、网络和客户端的无效劳动,其害处是显而易见的,避免这类事件需要注意:A、横向来看,不要写SELECT *的语句,而是选择你需要的字段。
B、纵向来看,合理写WHERE子句,不要写没有WHERE的SQL语句。
C、注意SELECT INTO后的WHERE子句,因为SELECT INTO把数据插入到临时表,这个过程会锁定一些系统表,如果这个WHERE子句返回的数据过多或者速度太慢,会造成系统表长期锁定,诸塞其他进程。
D、对于聚合查询,可以用HAVING子句进一步限定返回的行。
2、尽量少做重复的工作这一点和上一点的目的是一样的,就是尽量减少无效工作,但是这一点的侧重点在客户端程序,需要注意的如下:A、控制同一语句的多次执行,特别是一些基础数据的多次执行是很多程序员很少注意的。
B、减少多次的数据转换,也许需要数据转换是设计的问题,但是减少次数是程序员可以做到的。
C、杜绝不必要的子查询和连接表,子查询在执行计划一般解释成外连接,多余的连接表带来额外的开销。
D、合并对同一表同一条件的多次UPDATE,比如UPDATE EMPLOYEE SET FNAME=’HAIWER’WHERE EMP_ID=’VPA 30890F’UPDATE EMPLOYEE SET LNAME=’YANG’WHERE EMP_ID=’VPA30890F’这两个语句应该合并成以下一个语句UPDATE EMPLOYEE SET FNAME=’HAIWER’,LNAME=’YANG’WHERE EMP_ID=’VPA30890F’E、UPDATE操作不要拆成DELETE操作+INSERT操作的形式,虽然功能相同,但是性能差别是很大的。
F、不要写一些没有意义的查询,比如SELECT * FROM EMPLOYEE WHERE 1=23、注意事务和锁事务是数据库应用中和重要的工具,它有原子性、一致性、隔离性、持久性这四个属性,很多操作我们都需要利用事务来保证数据的正确性。
在使用事务中我们需要做到尽量避免死锁、尽量减少阻塞。
具体以下方面需要特别注意:A、事务操作过程要尽量小,能拆分的事务要拆分开来。
B、事务操作过程不应该有交互,因为交互等待的时候,事务并未结束,可能锁定了很多资源。
C、事务操作过程要按同一顺序访问对象。
D、提高事务中每个语句的效率,利用索引和其他方法提高每个语句的效率可以有效地减少整个事务的执行时间。
E、尽量不要指定锁类型和索引,SQL SERVER允许我们自己指定语句使用的锁类型和索引,但是一般情况下,SQL SERVER优化器选择的锁类型和索引是在当前数据量和查询条件下是最优的,我们指定的可能只是在目前情况下更有,但是数据量和数据分布在将来是会变化的。
F、查询时可以用较低的隔离级别,特别是报表查询的时候,可以选择最低的隔离级别(未提交读)。
4、注意临时表和表变量的用法在复杂系统中,临时表和表变量很难避免,关于临时表和表变量的用法,需要注意:A、如果语句很复杂,连接太多,可以考虑用临时表和表变量分步完成。
B、如果需要多次用到一个大表的同一部分数据,考虑用临时表和表变量暂存这部分数据。
C、如果需要综合多个表的数据,形成一个结果,可以考虑用临时表和表变量分步汇总这多个表的数据。
D、其他情况下,应该控制临时表和表变量的使用。
E、关于临时表和表变量的选择,很多说法是表变量在内存,速度快,应该首选表变量,但是在实际使用中发现,这个选择主要考虑需要放在临时表的数据量,在数据量较多的情况下,临时表的速度反而更快。
F、关于临时表产生使用SELECT INTO和CREATE TABLE + INSERT INTO的选择,我们做过测试,一般情况下,SELECT INTO会比CREATE TABLE + INSERT INTO的方法快很多,但是SELECT INTO会锁定TEMPDB的系统表SYSOBJECTS、SYSINDEXES、SYSCOLUMNS,在多用户并发环境下,容易阻塞其他进程,所以我的建议是,在并发系统中,尽量使用CREATE TABLE + INSERT INTO,而大数据量的单个语句使用中,使用SELECT INTO。