机械接合式无杆气缸

合集下载

无杆气缸的工作原理

无杆气缸的工作原理

无杆气缸的工作原理无杆气缸和普通气缸的的工作原理一样,只是外部连接、密封形式不同无杆气缸和普通气缸的的工作原理一样,无杆气缸里有活塞,而没有活塞杆的,活塞装置在导轨里,外部负载给活塞,无杆气缸里有活塞外部负载给活塞相连,作动靠进气。

在气缸缸管轴向开有一条槽,在气缸缸管轴向开有一条槽活塞与尚志在槽上部移动。

为了防止泄漏及防尘需要,为了防止泄漏及防尘需要在开口部采用不锈钢封带和防尘不锈钢带固定在两端缸盖上,活塞架穿过槽地在开口部采用不锈钢封带和防尘不锈钢带固定在两端缸盖上活塞架穿过槽地,把活塞与尚志连成一体。

活塞与尚志连接在一起,活塞与尚志连接在一起带动固定在尚志上的执行机构实现往复运动带动固定在尚志上的执行机构实现往复运动。

气动元件的流通能力,气动元件的流通能力,KV 值:被测元件全开,元件两端压差元件两端压差△p.==0.1MPa,流体密度ρ=1g/cm 时;通过元件的流量为通过元件的流量为qv(m /h),则流通能力Kv 值为3 3 CV 值:被测元件全开,元件两端压差△p.=1bf/in (1lbf/in =6.89kPa) 温度为60℉ ,(15.5℃)的水,通过元件的流量为qv,单位为USgas/min(USgas/min=3.785L/min),则流通能力Cv 值为2 2 测定Cv 值和Kv 值都是以水为工作介质,可能对气动元件带来不利的影响(如生锈)。

而且,它是测定特定压力降下的流量,只表示流量特性曲线的不可压缩流动范围上的一个点,故用于计算不可压缩流动时的流量与压力降之间的关系比较合理。

Cv 值与Kv 值只是使用了不同的计量单位,它们之间的关系是:二、有效截面积S 气体流经孔时,由于实际流体存在粘性,使流束收缩得比节流孔名义截面积S0 还小,此最小截面积S 称为有效截面积,它代表了节流孔的流通能力实验表明,当气动元件处于壅塞流态下,不论气动元件上游的总压P0 和总温度T0 怎样变化,元件的S 值大小几乎都不变。

【气动基础与应用】无杆气缸的特点,原理及选型计算!

【气动基础与应用】无杆气缸的特点,原理及选型计算!

【气动基础与应用】无杆气缸的特点,原理及选型计算!【气动基础与应用】无杆气缸的特点,原理及选型计算无杆气缸(Rodless Cylinder)是一种外形紧凑和机械构造简单的气动元件,它是由修长的圆筒体内安装有可拆卸的活塞杆组成的气缸。

它的工作原理是,气袋和流量控制阀的调节,在气袋内依次产生添加压力使活塞移动。

它有优异的空间利用率,可以有效缩小机械装置体积。

无杆气缸的特点:(1)体积小:由于无杆气缸没有杆,可以有效地减小气缸的体积,使机械装置变得更加紧凑。

(2)精度高:无杆气缸可以通过丝杆驱动系统来提高精度,从而实现高精度。

(3)承载力大:无杆气缸可以用材料更坚固的外壳结构,更好的外壳加强件,提高它的承载能力,使它能够承受更大的压力。

(4)刚性好:无杆气缸的活塞结构设计比一般的有杆气缸的活塞结构更加刚性,使气缸可以承受更大的压力。

(5)防尘能力强:无杆气缸的外壳结构设计比一般的有杆气缸更为紧凑,使它具有很强的防尘性能。

无杆气缸的工作原理:无杆气缸是气动元件中的一种,它的工作原理主要利用气袋和流量控制阀的调节,在气袋内依次产生添加压力使活塞移动,它的活动运动是由压缩空气进行驱动,因此,在使用无杆气缸之前,务必检查所使用的空气源是否满足技术标准。

无杆气缸选型计算:在选型无杆气缸之前,首先要考虑的是实际工作要求,例如安装长度,升降量,升降速度,压力,工作环境等。

如果是一次性只能完成一个动作的工作,可以选择小型、小体积的无杆气缸。

反之,如果要求多次工作,可以选择大型的无杆气缸。

若是强力的作动,可以选择大型的无杆气缸。

此外,在选择无杆气缸的时候,还要考虑气缸结构的安全性、耐久性、防尘性等因素,在安装使用无杆气缸的时候,要注意安装和调试操作要符合手册指导,避免有误操作造成损坏。

通过以上描述,我们可以了解无杆气缸的特点,原理及选型计算,无杆气缸可以有效减小机械装置体积,提高工作精度,提供更大的承载力,承受更大的压力,有较好的防尘能力,因此在设计机械装置的精度和空间利用率等方面优越。

自动化知识—01气缸的工作原理及应用

自动化知识—01气缸的工作原理及应用

13.1 气缸的选型步骤
气缸的选型应根据工作要求和条件,正确选择气缸的类型。下面以单活 塞杆双作用缸为例介绍气缸的选型步骤。
(1)气缸缸径。根据气缸负载力的大小来确定气缸的输出力,由此计 算出气缸的缸径。
(2)气缸的行程。气缸的行程与使用的场合和机构的行程有关,但一 般不选用满行程。
(3)气缸的强度和稳定性计算 (4)气缸的安装形式。气缸的安装形式根据安装位置和使用目的等因 素决定。一般情况下,采用固定式气缸。在需要随工作机构连续回转时 (如车床、磨床等),应选用回转气缸。在活塞杆除直线运动外,还需作 圆弧摆动时,则选用轴销式气缸。有特殊要求时,应选用相应的特种气缸。 (5)气缸的缓冲装置。根据活塞的速度决定是否应采用缓冲装置。 (6)磁性开关。当气动系统采用电气控制方式时,可选用带磁性开关 的气缸。 (7)其它要求。如气缸工作在有灰尘等恶劣环境下,需在活塞杆伸出 端安装防尘罩。要求无污染时需选用无给油或无油润滑气缸。
排气侧的无背压时无法控制。 (活塞杆快速飞出现象)
排气压力
时 间 →
进气节流
不受排气侧的背压有无的影响。 启动快。
负载变化的影响大。 负载的惯性的作用影响大。垂直方向的控制 困难。 断熱膨胀・易发生结露。 气缓冲失效。
9.4 配管长度的不同
A:设置在气缸侧
B:设置在电磁阀侧
10 允许横向载荷
横向载荷的界限值根据作用在气缸部分的力判断
p 3.14 0.4
按标准选定气缸缸径为63 mm。
谢谢大家!
技术说明: 1)给油气缸请用透平1号油(ISOVG32号)进行给油润滑。 2)不给油气缸也可以作为给油气缸使用,但是注意给油也需要使用透平1号 油(ISOVG32号),并且必须持续给油不能中停止,否则会使以前的润滑剂消 失而引起动作不良。

无杆气缸工作原理

无杆气缸工作原理

无杆气缸工作原理无杆气缸是一种常见的气动执行元件,它通过压缩空气产生的力来实现线性运动。

无杆气缸由气缸本体、活塞、密封件和连接件等部件组成,其工作原理相对简单但非常有效。

本文将从无杆气缸的结构特点、工作原理和应用领域等方面进行详细介绍。

首先,无杆气缸的结构特点是什么呢?与传统的有杆气缸相比,无杆气缸的最大特点就是没有活塞杆。

这意味着无杆气缸的体积更小、重量更轻,因此在一些空间受限的场合,无杆气缸具有明显的优势。

此外,无杆气缸的密封性和稳定性也更高,因为无杆气缸的密封件更少,摩擦力更小,容易实现高精度的运动控制。

因此,无杆气缸在一些对运动精度要求较高的场合也有着广泛的应用。

其次,无杆气缸的工作原理是怎样的呢?无杆气缸的工作原理基本上与有杆气缸相似,都是利用压缩空气产生的力来推动活塞实现线性运动。

当压缩空气进入气缸本体时,活塞会受到压力的作用而向前运动,当排出气体时,活塞则会向后运动。

无杆气缸的活塞通常是双作用的,即可以通过进气和排气两种方式来控制活塞的前后运动。

此外,无杆气缸的密封件通常采用双向密封结构,以确保气缸在工作过程中不会出现泄漏现象,从而保证了其稳定性和可靠性。

最后,无杆气缸在哪些领域有着广泛的应用呢?无杆气缸由于其结构紧凑、运动精度高、密封性好等优点,在自动化设备、机械制造、航空航天、医疗器械等领域都有着广泛的应用。

例如,在自动化生产线上,无杆气缸常常被用来实现物料的输送、夹持、定位等功能;在航空航天领域,无杆气缸则被用来实现航天器的姿态控制、舱门开合等功能;在医疗器械领域,无杆气缸则被用来实现手术机器人的运动控制等。

综上所述,无杆气缸作为一种常见的气动执行元件,具有结构紧凑、运动精度高、密封性好等优点,在自动化设备、机械制造、航空航天、医疗器械等领域都有着广泛的应用。

其工作原理简单但非常有效,通过压缩空气产生的力来推动活塞实现线性运动。

随着工业自动化水平的不断提高,相信无杆气缸在未来会有着更加广阔的发展前景。

无杆气缸原理

无杆气缸原理

无杆气缸原理介绍无杆气缸是一种常见的气动元件,用于实现直线运动的转换。

它具有结构简单、工作可靠、使用寿命长等特点,在各个领域得到广泛应用。

本文将对无杆气缸的原理进行全面、详细、完整且深入地探讨。

工作原理无杆气缸的工作原理基于气体控制和力平衡原理。

它由气缸筒、活塞、气体进出口、密封元件等主要组成部分组成。

1.气体进出口:无杆气缸通常具有两个进出口,分别为进气口和排气口。

进气口用于供应气体,排气口用于排放气体。

2.气缸筒:气缸筒是一个空心圆筒状结构,通常由金属材料制成。

它具有良好的密封性和刚性,以承受气压的作用。

3.活塞:活塞是无杆气缸中的关键组件,它通常由金属材料制成。

活塞与气缸筒紧密配合,可在气缸内做往复直线运动。

4.密封元件:无杆气缸中的密封元件主要包括密封圈、密封带等。

它们的作用是确保气缸的密封性,防止气体泄漏。

无杆气缸的工作过程如下:1.气体供应:气体通过进气口进入气缸中,使气缸内形成一定压力。

2.活塞运动:气体压力作用在活塞上,使其产生往复直线运动。

当气压作用在活塞的一侧时,活塞向对侧移动;当气压作用在活塞的另一侧时,活塞向原来的位置运动。

3.力平衡:无杆气缸通过活塞运动实现力平衡。

当气压作用在活塞上的力与其受到的负载力相平衡时,活塞保持在静止状态;当气压作用在活塞上的力大于负载力时,活塞向负载方向运动;当气压作用在活塞上的力小于负载力时,活塞向反方向运动。

无杆气缸的工作原理简单明了,通过控制气体进出口,实现活塞的往复直线运动,并通过力平衡来维持活塞的平衡状态,从而实现了转换直线运动的功能。

应用场景无杆气缸广泛应用于各个行业和领域,以下是一些常见的应用场景:1.工业自动化:在自动化生产线上,无杆气缸常用于实现工件的定位、夹持、推拉等动作。

它可以精确控制运动速度和力量,提高生产效率。

2.机械制造:在机械制造中,无杆气缸常用于实现机械装置的运动控制。

例如,无杆气缸可以用于控制机床工作台的升降和前后移动。

一般无杆气缸重量

一般无杆气缸重量

一般无杆气缸重量一、无杆气缸的定义和作用无杆气缸是一种传动元件,主要用于作为运动控制设备的驱动器件。

它是一种利用气体压力来产生运动的装置,由于没有活塞杆,因此又被称作“非杆式气缸”或“干涉式气缸”。

无杆气缸广泛应用于食品加工、电子设备、纺织机械、精密机床、汽车制造等领域。

它们具有结构简单、运动平稳、噪音小、维护方便等特点,被称为现代工业自动化领域的一种重要组成部分。

二、无杆气缸的重量无杆气缸的重量主要与其规格、材质和制造工艺有关。

从目前市场上常见的无杆气缸重量来看,大致在几百克至几千克不等。

以下是一些常见规格无杆气缸的重量范围:1. 直径12mm的气缸,重约0.1kg2. 直径16mm的气缸,重约0.2kg3. 直径20mm的气缸,重约0.3kg4. 直径25mm的气缸,重约0.5kg5. 直径32mm的气缸,重约1.0kg6. 直径40mm的气缸,重约1.5kg7. 直径50mm的气缸,重约2.5kg8. 直径63mm的气缸,重约3.5kg9. 直径80mm的气缸,重约6.5kg10. 直径100mm的气缸,重约10.5kg三、影响无杆气缸重量的因素1. 材质:无杆气缸多采用铝合金、不锈钢、塑料、铜等材质制作,不同材质的重量有所不同。

2. 结构形式:针对不同的气动系统要求,无杆气缸的结构形式也各不相同,如单作用、双作用、单作用弹簧归位、单作用气动弹簧复位等不同结构形式,重量也不同。

3. 尺寸规格:无杆气缸的直径、行程、活塞以及柱塞长度等尺寸规格不同,也会影响其重量大小。

4. 制造工艺:无杆气缸生产过程中采用的制造工艺也会影响其重量大小,如气密性、装配精度等制造流程与技术的先进程度等。

综上所述,无杆气缸重量因素较多,使用需选择适当的规格、材质、结构,这样才可以达到更加稳定有效的运动控制效果,并且减小不必要的成本和浪费。

无杠气缸

无杠气缸

浮动机构
MY无杆缸使用过程中,由于气缸的负载较大 及气缸的偏载现象,会对活塞造成偏磨,严重 时会导致活塞漏气及使用寿命降低。因此,负 载较大或有偏载的情况下,推荐配套选用浮动 支座。MY1B、MY3A/MY3B
SMC气缸扩展系列
直线气缸-多样化
无杆型-磁耦合式-扩展系列
直 接 安 装 型
滑 尺 型
低 平 型
高 精 度 型
SMC气缸扩展系列
无杠气缸辅件
侧向支座
MY系列长行程无杆缸在使用过程中,由于气缸自 重及负载重量,缸筒在负载作用下可能会产生向下 弯曲的现象,影响气缸的正常使用。因此,建议在 选用较长行程的无杆缸时,向客户推荐订购气缸侧 向支座予以支撑。 MY系列机械耦合式无杆缸
菱形活塞型-MY3系列 带滑动支撑型-MY1M系列
带导轨型-MY2系列
带防护罩型-MY1#W系列
SMC气缸扩展系列
直线气缸-多样化
无杆型-磁耦合式
1.节省空间- 有杆气缸的安装空间约 2.2L(行程), 无杆气缸约1.2L 2.定位精度高-活塞两侧受压面积相等, 推 力相同, 有利于提高定位精度 3. 磁耦式无杆气缸重量轻、结构简单 4.无外泄漏,适用于中位停止
SMC气缸扩展系列
: (1)基本型缸体尺寸最小 (2)扩展型有优良的行走精度和抗力矩性能 (3)MY1M、MY1C、MY1H三个系列安装尺寸相同,可互换 (4)优良的安装性能,省空间,滑台面积大 (5)滑台两侧有微泄露
SMC气缸扩展系列
直线气缸-多样化
无杆型-机械连接式-扩展系列
SMC(中国)有限公司 天津所--王烁
无杆气缸: 1.没有活塞杆,省空间。 2.避免由于活塞杆及杆密封圈的损伤带来的故障。 3.活塞两侧受压面积相等,具有同样的推力。 有利于提高定位精度。 机械接合式无杠气缸(MY系列) 无杆型

无杆气缸的技术参数介绍

无杆气缸的技术参数介绍

无杆气缸的技术参数介绍无杆气缸为了限制速度,防止对气缸造成的破坏,两端的气孔都做了节流,气孔非常小,扩大气孔是的提高速度的方法,当然也要配合大流量的电磁阀、较大的气管等1)无杆气缸的输出力无杆气缸理论输出力的设计计算与液压缸类似,可参见液压缸的设计计算.如双作用单活塞杆无杆气缸推力计算如下:理论推力(活塞杆伸出)Ft1=A1p(13-1)理论拉力(活塞杆缩回)Ft2=A2p式中(13-2)Ft1,Ft2——无杆气缸理论输出力(N);A1,A2——无杆腔,有杆腔活塞面积(m2);p—无杆气缸工作压力(Pa).实际中,由于活塞等运动部件的惯性力以及密封等部分的摩擦力,活塞杆的实际输出力小于理论推力,称这个推力为无杆气缸的实际输出力.2)无杆气缸耗气量无杆气缸的耗气量是活塞每分钟移动的容积,称这个容积为压缩空气耗气量,一般情况下,无杆气缸的耗气量是指自由空气耗气量.4)无杆气缸的特性无杆气缸的特性分为静态特性和动态特性.无杆气缸的静态特性是指与缸的输出力及耗气量密切相关的工作压力,工作压力,摩擦阻力等参数.无杆气缸的动态特性是指在无杆气缸运动过程中无杆气缸两腔内空气压力,温度,活塞速度,位移等参数随时间的变化情况.它能真实地反映无杆气缸的工作性能3)负载率β从对无杆气缸运行特性的研究可知,要精确确定无杆气缸的实际输出力是困难的.于是在研究无杆气缸性能和确定无杆气缸的出力时,常用到负载率的概念.无杆气缸的负载率β定义为β=无杆气缸的实际负载F×99%无杆气缸的理论输出力Ft(l3-5)无杆气缸的实际负载是由实际工况所决定的,若确定了无杆气缸负载率θ,则由定义就能确定无杆气缸的理论输出力,从而可以计算无杆气缸的缸径.对于阻性负载,如无杆气缸用作气动夹具,负载不产生惯性力,一般选取负载率β为0.8;对于惯性负载,如无杆气缸用来推送工件,负载将产生惯性力,负载率β的取值如下β0.65当无杆气缸低速运动,v100mm/s时;β0.5当无杆气缸中速运动,v=100~500mm/s 时;β0.35当无杆气缸高速运动,v500mm/s时。

无杆气缸内部结构及应用

无杆气缸内部结构及应用

无杆气缸内部结构及应用无杆气缸(也称为直动无杆气缸或直推无杆气缸)是一种具有特殊结构和工作原理的气动元件,它广泛应用于各种工业领域,如汽车制造、机械设备、输送系统等。

本文将从无杆气缸的内部结构和工作原理以及其应用领域等方面进行详细介绍。

无杆气缸的内部结构主要由气缸体、活塞和密封元件组成。

气缸体是无杆气缸的壳体,通常由铝合金或不锈钢等材料制成。

活塞是气缸内部移动的部件,其外形通常为圆柱形或圆锥形,具有密封环槽和密封环。

密封元件是为了确保气缸内部气体密封性而使用的,通常包括密封圈、密封垫等。

无杆气缸的工作原理基于膜片型和活塞式气缸的原理,通过气压差将活塞推动在缸体内移动。

当气源通入气缸时,气体压力作用在活塞上,使活塞与密封元件之间形成密封之后,气源通入活塞的一侧,而活塞另一侧的气体则被释放出来。

通过控制气源的流动,可以在气缸内部形成高压和低压区域,从而推动活塞在气缸内部移动。

无杆气缸具有以下几个特点:1. 结构简单:相比于传统的杆式气缸,无杆气缸的结构更加简单,没有杆件附加在活塞上,减少了杆件的摩擦和磨损,同时也减少了故障率。

2. 紧凑性好:无杆气缸的结构紧凑,体积小,重量轻,便于安装和组合。

3. 响应速度快:由于无杆气缸无杆及杆导向结构,活塞在气缸内部移动时没有与杆件产生摩擦,故响应速度较快。

4. 力矩输出大:相比于传统的气缸,无杆气缸具有更大的力矩输出,可以满足不同应用场景下的力矩需求。

无杆气缸广泛应用于各个领域,下面介绍几个主要应用场景:1. 汽车制造:无杆气缸可以用于汽车制造中的横向移动、纵向移动、吸附、夹持、托举等工艺环节,如汽车装配线上的零部件搬运机构、焊接机构等。

2. 机械设备:无杆气缸被广泛应用于机械设备中,如数控机床、搬运机械、输送设备等,用于实现机械元件的移动、夹持、举升等操作。

3. 输送系统:无杆气缸可以用于输送系统中的包装、分拣、定位等任务,如邮件分拣系统、包裹传送机构等。

4. 自动化生产线:无杆气缸可以与其他自动化元件(如气动夹爪、气动夹具)配合使用,实现自动化生产线中的物料的快速夹持、移动和定位等操作。

无杆气缸的工作原理

无杆气缸的工作原理

无杆气缸的工作原理
无杆气缸是一种特殊类型的气缸,与传统的带杆气缸相比,无杆气缸没有杆连接活塞和工作台面,而是通过气缸壁本身直接与活塞连接。

无杆气缸的工作原理主要包括以下几个步骤:
1. 压缩空气进入气缸:当空气源通过气缸的进气口进入气缸内部时,气缸内部的压力开始增加,同时使活塞向外推动。

2. 活塞移动:由于压缩空气的作用,活塞开始向外移动,并带动与之连接的工作台面、物体等进行相应的运动。

3. 排气过程:当气缸内的活塞到达预定位置时,空气源停止向气缸供气,气缸内的压力开始减小。

同时,通过气缸的排气口,废气被排出。

4. 活塞返回:当气缸内的压力降低到一定程度时,气缸底部的恢复弹簧开始发挥作用,推动活塞返回到初始位置。

这个过程中,气缸的排气口关闭,同时开启进气口,为下一个工作循环做准备。

无杆气缸适用于一些特殊的工况,如有受阻、受限的工作空间,或者对杆的重量和抗弯扭刚度有特殊要求的场合。

其工作原理简洁高效,减少了杆的摆动和振动,具有良好的动态性能和高精度,因此在自动化、机械加工、机器人技术等领域得到广泛应用。

机械耦合式无活塞杆气缸结构和工作原理

机械耦合式无活塞杆气缸结构和工作原理

机械耦合式无活塞杆气缸结构和工作原理嘿,你有没有想过,气缸这个东西,居然也有“无活塞杆”的版本?是的,你没听错,今天我们要聊的,就是这种“新潮”的机械耦合式无活塞杆气缸。

乍一听是不是觉得有点儿高大上?但是,实际上,它比我们想象中的要简单、实用得多。

听我慢慢道来。

你得知道,气缸在机械世界里,简直就是个“大明星”了,几乎在任何需要力的地方都能看到它的身影。

通常,气缸内有个活塞杆,靠着气体压力推动活塞运动,从而完成各种任务。

简单说,就是通过气体来推动某个物体动或者停,作用力巨大的,直接能搞定很多重活。

可就是有些“刁钻”的设计,它们会去掉活塞杆,这样一来,气缸的设计看起来就更简洁了。

没了活塞杆,整体结构就简化了,反而更好看了,不容易卡壳。

你能想象吗?就好像衣服少了几根拉链和纽扣,反而穿着更舒服。

是不是很酷?不过,最厉害的地方,还是它那“耦合”功能。

别看名字挺专业,实际上就是一种巧妙的设计,能让气缸里各个部件协同工作,互相“搭配”得天衣无缝。

比如说,它会利用外部的机械耦合系统来帮助气缸发挥作用,能够让气缸实现更精准的控制。

也就是说,机械耦合式无活塞杆气缸,直接把传统气缸的复杂性给剔除了,剩下的都是高效和耐用。

这不就像某些聪明的朋友,他们不复杂,直接给你办了事儿,还做得妥妥的?当然了,这种设计有它的优势,也有它的局限。

优势在于,去掉了活塞杆后,整个气缸的体积变得小巧,重量也轻了很多。

这样一来,不管是装配到机器里,还是在有限空间中使用,都不再是问题。

还好,现代工业上需要节省空间的场合特别多,气缸的小巧玲珑简直就是为这些场合量身定做的。

就像有些人,明明长得娇小,却有着超大的能量,不输任何“大块头”。

大家都知道,活塞杆一旦有了,就容易产生摩擦,磨损得也快。

而无活塞杆设计,几乎就避免了这一点。

我得说,维护保养这事儿,机械耦合式无活塞杆气缸简直让人省心。

不用频繁检查活塞杆的磨损,也不容易堵塞,整体运转更平稳。

人活一辈子,难免会摔跟头、磕磕碰碰,活塞杆也一样,磨损是自然规律,而气缸一旦没有了它,减少了不少“烦恼”。

无杆气缸和直线导轨组合的原理

无杆气缸和直线导轨组合的原理

无杆气缸和直线导轨组合的原理无杆气缸和直线导轨是一种常见的机械传动组合,用于实现直线运动控制和定位。

它们通常被应用于各种自动化设备和机械系统中,例如包装机械、机床、搬运设备等。

本文将从无杆气缸和直线导轨的工作原理、结构特点以及应用领域等方面进行详细介绍。

一、无杆气缸的工作原理无杆气缸又称为气动直线执行器,是一种通过气压驱动执行器来实现直线运动的装置。

它的工作原理是利用压缩空气产生的气压力推动活塞在气缸内做直线运动。

无杆气缸的结构相对简单,通常由气缸体、气缸盖、活塞和密封件等部件组成。

当气缸内通入气压时,气压力将对活塞施加一个推力,从而推动活塞在气缸内做直线运动。

无杆气缸相比传统的有杆气缸具有结构更加简单、自重轻、响应速度快、寿命长等特点,因而在工业自动化领域得到了广泛的应用。

它们通常被用于需要频繁快速移动且行程较短的场合,例如包装机械、搬运设备、装配线等。

二、直线导轨的工作原理直线导轨是一种用于支撑和引导直线运动的装置,其工作原理是通过滚珠或滑块与导轨之间的摩擦来实现活动部件的平稳和精准的直线运动。

直线导轨通常由导轨、滑块和滚珠组成,其中导轨上刻有精密的导向槽,滑块内部安装了滚珠和导向装置。

直线导轨具有高精度、高刚性、低摩擦等特点,因此广泛应用于各种需要精密定位和直线运动的设备和系统中。

它们通常被用于机床、数控设备、自动化生产线等领域。

三、无杆气缸和直线导轨的组合原理无杆气缸和直线导轨是一种常见的机械传动组合,其原理是通过将无杆气缸安装在直线导轨上,利用气压推动活塞在导轨上做直线运动。

这种组合可以实现精准的直线运动控制和定位,并且具有响应速度快、反应灵敏等优点。

在无杆气缸和直线导轨的组合中,无杆气缸负责提供推动力,而直线导轨则负责支撑和引导活塞的直线运动,同时保证其运动的稳定性和精度。

此外,通过在直线导轨上安装传感器和控制装置,还可以实现对活塞位置和运动速度的精确控制。

四、无杆气缸和直线导轨的优势和应用领域1.优势无杆气缸和直线导轨的组合具有以下优势:-高精度:直线导轨提供精密的直线引导和支撑,使得无杆气缸的直线运动可以实现高精度的定位。

无杆气缸常见故障及维修方法

无杆气缸常见故障及维修方法

无杆气缸常见故障及维修方法
无杆气缸常见故障及维修方法如下:
1. 无杆气缸发生内、外泄露。

大部分是由于液压缸安裝轴力、润滑脂不够,密封环和密封圈损坏或毁坏,汽缸内有残渣及液压缸有伤疤等导致的。

2. 当无杆气缸发生内、外泄露时,应当再次调节液压缸的管理中心,确保液压缸和缸套的平行度;并且要常常查验气动三联件工作中是不是一切正常,确保无杆气缸润化优良;若汽缸内存有残渣,应立即消除;活塞杆液压密封件上面有伤疤时,应换新,当密封环和密封圈发生损坏或损环时,立即拆换。

3. 磁性开关不工作,没有信号输出。

这是因为磁性开关的位置安装发生了变化,导致其感应不到气缸中的磁铁,这就要求我们要经常检查它是否紧固。

4. 活塞杆弯曲或断裂。

气缸在最大行程位置受到强烈冲击或活塞杆承受过大的轴向力而造成弯曲或断裂。

5. 气缸不动作或动作缓慢。

可能是由于无杆气缸漏气、不动作、动作缓慢或串气的现象所导致,可以使用卡簧钳将气缸尾部的的卡簧(螺丝)卸掉,将气
缸活塞取出,活塞上面会有一个橡皮圈,一般气缸不动作、动作缓慢或串气都是由于这个橡皮圈磨损过多造成的,将橡皮圈取下,然后再将新的橡皮圈装上,然后将气缸缸体清洗干净并确保两个进气口通畅,一切OK后将缸体内壁擦少量的无杂质的黄油再将气缸尾部的的卡簧装好。

以上内容仅供参考,如需更多信息,建议咨询专业技术人员或者查阅相关技术手册。

SMC部分产品型号

SMC部分产品型号

SMC三杆气缸MGPM40-20 SMC三杆气缸MGPM40-30 SMC三杆气缸MGPM40-40 SMC三杆气缸MGPM40-50 SMC三杆气缸MGPM40-75 SMC三杆气缸MGPM40-100 SMC三杆气缸MGPM50-10 SMC三杆气缸MGPM50-20 SMC三杆气缸MGPM50-30 SMC三杆气缸MGPM50-40 SMC三杆气缸MGPM50-50 SMC三杆气缸MGPM50-75 SMC三杆气缸GPM63-100 SMC三杆气缸MGPM50-100 SMC三杆气缸MGPM63-10 SMC三杆气缸MGPM63-20 SMC三杆气缸MGPM63-30 SMC三杆气缸MGPM63-40 SMC三杆气缸MGPM63-50 SMC三杆气缸MGPM63-75 MGPL12-10 SMC薄型带导杆气缸 MGPL12-2 SMC薄型带导杆气缸 0 MGPL12-30 SMC薄型带导杆气缸 MGL12-40 SMC薄型带导杆气缸 MGPL12-50 SMC薄型带导杆气缸 MGPL12-75 SMC薄型带导杆气缸 MGPL12-100SMC薄型带导杆气缸 MGPL16-10 SMC薄型带导杆气缸 MGPL16-20 SMC薄型带导杆气缸 MGPL16-30 SMC薄型带导杆气缸
63、气爪(平行开闭型)/圆柱形爪体:MHS?3系列 64、气爪(平行开闭型)/中心贯通孔:MHSH3系列 65、气爪(平行开闭型)/圆柱形爪体:MHS4系列 66、气爪(支点开闭型)/标准型:MHC?2系列 67、气爪(支点开闭型)/肘节型:MHT2系列 68、气爪(支点开闭型)/凸轮式180°开闭:MHY2系列 69、气爪(支点开闭型)/齿轮式180°开闭:MHW2系列 70、薄型气爪:MHF2系列 71、抖料气爪:MIW/MIS系列 72、摆动气爪:MRHQ系列 73、微型带导杆气缸:MGJ系列 74、新薄型带导杆气缸:MGP系列 75、薄型带导杆气缸:MGQ系列 76、带导杆气缸/基本型:MGG系列 77、带导杆气缸/小型:MGC系列 78、导台式气缸MGF系列 79、滑台式气缸:CXT系列 80、带摆台气缸:MGT系列 81、倍力气缸:MGZ系列 82、小型气动滑台:MXJ系列 83、小型精密气动滑台:MXP系列 84、小型气动滑台(长行程型):MXY系列 85、小型气动滑台(直线导轨):MXH系列 86、气动滑台(十字滚柱导轨)/双缸型:MXS系列 87、气动滑台(循环式直线导轨)/双缸型:MXQ系列 88、小型气动滑台(直线导轨):MXU系列 89、超薄型气动滑台(十字滚柱导轨):MXF系列 90、精确气动滑台(循环式直线导轨):MXW系列 91、高精度气缸:MTS系列 92、止动气缸/安装高度固定型:RSQ系列 93、止动气缸/安装高度可调型:RSG系列 94、重载型止动气缸:RSH/RS1H系列

演示-MY无杆气缸维修过程

演示-MY无杆气缸维修过程
够位置.
注意:装上端盖, 安装时不能左右 摆动,慢慢将端盖 推进缸筒,以防扭 断白色密封带.
取出的缸盖,注意 这两个密封圈,容 易丢失..
GZ-营业开发部
装上缸盖连接 螺栓.
装上银色外密 封带.
切去长出的内 密封带.
GZ-营业开发部
装上两端端盖.
注意:将外密 封带手指所指 长度弯曲,以
保密封性能
产品 生産綫上使用的MY无杆气缸
问题 使用一段時間後,密封带与防尘带损坏,出现泄气现象.
MY系列机械接合式无杆气缸
Why?
解决 *更换密封带与防尘带. *应用时,应适当调节绶冲.
1.应用环境温度过高. 2.速度过高,瞬间缓冲,温差太大. 3.缓冲调节不当,产生大量热量.
GZ-营业开发部 2019-10-24

GZ-营业开发部
装上止动螺钉.
装上止动螺钉, 完成左边缸盖
安装.
装上密封带压 板.
GZ-营业开发部
完成安装
GZ-营业开发部
谢谢!
25
定外密封带的 长度,稍比缸
盖短一些.
GZ-营业开发部
装上止动螺钉.
装上止动螺钉, 完成右边缸盖
安装.
装上密封带压 板.
GZ-营业开发部
内外密封带 放入右边缸

切去长出白 色内密封带
用力拉紧白 色内密封带
GZ-营业开发部
拉紧银色 外密封带
定长,稍比缸 盖短一些,弯 曲装入缸盖.
切去长出的 银色外密封
油以免密封件被泡脤.
对内密封带 和活塞架加
润滑油.
GZ-营业开发部
维修过程
注意:活塞杆密封圈上有一个凹槽,安装时白色内 密封带一定要在凹槽正上方,压缩空气通过凹槽给 白色内密封带一个向上压的力,起密封作用.

无杆气缸的原理

无杆气缸的原理

无杆气缸的原理
无杆气缸(Rodless Cylinder)原理:
(一)定义:
无杆气缸是相对普通的有杆气缸的一种新型的活塞型气缸。

它在减少空气容器的多余成分,减少空气回路行程的空间,提高空气体能和降低气缸行程运动量等综合优点方面具有一定优势。

(二)结构原理:
无杆气缸一般由活塞、活塞杆、活塞杆密封以及活塞杆封座等部件组成。

活塞上安装有滑块,滑块与机床上安装有特殊凸痕的滑台相配合,活塞杆整体上安装于活塞封座内,活塞杆封座装有待定的密封元件,活塞的上工作面和活塞杆的外圆面密封,使两者在压缩、拉伸和扭转运动时不会漏气。

(三)工作原理:
无杆气缸的真正工作原理是基于活塞阀门上的活塞和活塞杆等组件,当进气口有压缩空气时,空气会推动活塞杆往两端移动,活塞杆膨胀后推动活塞前进,活塞的行程被凸痕的滑台限制,根据滑台的凸痕形状及数量可以得到一定的行程变化。

此外,活塞两端都装有活塞杆密封以及活塞杆封座,以此防止漏气。

当空气出气口出去时,活塞将会反弹回去,然后重复上述过程,实现无杆气缸的运动。

(四)特点:
1. 比有杆气缸节省空间:由于没有活塞杆,可以显著减少传动装置的附加负担。

2. 空气体能消耗更少:精确地控制工作行程,可以有效减少消耗的空气体能和多余的气容。

3. 同步性强:可通过活塞和活塞杆的密封件迅速增大停稳时对应受力,从而实现同步和跟踪。

4. 扩展性强:可根据实际需要应用多种结构,实现各种动作,如左右移动、拚錝、多动等。

5. 维护方便:无杆气缸的维护比有杆气缸更容易,因为它更小,可以直接被施工机械覆盖。

MY3

MY3

RB1007 RB1412 0 ~ -12
RB1412
RB2015
RB2015
RB2725
0 ~ -16
液压缓冲器规格
型号
RB0806 RB1007 RB1412 RB2015 RB2725

最大吸收能量(J)
0.84
最大冲击速度
最高使用频度 (cyle/min)
80
2.4
10.1
29.8
1000mm/s
73.2 42.2
99
62.0
S
SD
T
40.8 25.8
06
46.7 25.2
07
67.3 36.3
12
73.2 36.2
15
(mm)
T 液压缓冲器型号
7
RB1007
12
RB1412
15
RB2015
25
RB2725
TU
TT
h
TT
TU
0.9
25.0
1.4
28.5
0.9
39.0
0.9
43.0
(mm)
W 液压缓冲器型号
型号
NE NG NH NW
P
PA PB PC PD PE PF PG Q QW T TT UU YW Z
MY3B16 22.5 8 17.2 43 M5×0.8 44 26 32.5 4.0 9.7 8.5 4.0 114 19 7 6.5 30 42 122
MY3B25 32.0 10 24.0 65 Rc,NPT,G1/8 64 40 47.5 6.0 14.5 12.2 6.0 166 30 10 9.0 47 62 178 MY3B40 46.0 15 37.0 94 Rc,NPT,G1/4 112 60 80.0 7.5 19.5 16.5 8.5 259 40 14 14.0 66 92 276 MY3B63 70.0 29 58.0 139 Rc,NPT,G3/8 162 84 110.0 10.0 23.5 27.5 10.0 336 64 16 20.0 99 136 356

气缸的工作原理及详细介绍

气缸的工作原理及详细介绍

缸体
密封圈
活塞杆
磁环
活塞
密封圈
Page: 3
气缸的基本组成部分及工作原理
典型气缸的结构和工作原理
以气动系统中最常使用的单活塞杆双作用气缸为例来说明,气缸典型结构如下图1所示。它由缸筒、活塞、活塞杆、前 端盖、后端盖及密封件等组成。双作用气缸内部被活塞分成两个腔。有活塞杆腔称为有杆腔,无活塞杆腔称为无杆腔。 当从无杆腔输入压缩空气时,有杆腔排气,气缸两腔的压力差作用在活塞上所形成的力克服阻力负载推动活塞运动, 使活塞杆伸出;当有杆腔进气,无杆腔排气时,使活塞杆缩回。若有杆腔和无杆腔交替进气和排气,活塞实现往复直线 运动。
机械接触式无杆气缸,其结构如下图3所示。在气缸缸管轴向开有一条槽,活塞与滑块在槽上部移动。为了防 止泄漏及防尘需要,在开口部采用聚氨脂密封带和防尘不锈钢带固定在两端缸盖上,活塞架穿过槽,把活塞与滑 块连成一体。活塞与滑块连接在一起,带动固定在滑块上的执行机构实现往复运动。 这种气缸的特点是:1) 与普通气缸相比,在同样行程下可缩小1/2安装位置;2) 不需设置防转机构;3) 适用于 缸径10~80mm,最大行程在缸径≥40mm时可达7m;4) 速度高,标准型可达0.1~0.5m/s;高速型可达到0.3~ 3.0m/s。其缺点是:1) 密封性能差,容易产生外 泄漏。在使用三位阀时必须选用中压式;2) 受负载力小,为了增 加负载能力,必须增加导向机构。
掌握气缸常见故障的判断及基本维修技巧;
了解气缸的常见技术参数及选型要求
Page: 2
普通气缸的基本组成和原理:
组成 : 缸体,活塞,密封圈,磁环(有sensor的气缸)
原理 : 压力空气使活塞移动,通过改变进气方向,改变活塞杆的移动方向。

无杆气缸参数

无杆气缸参数

无杆气缸参数摘要:一、无杆气缸简介二、无杆气缸的参数1.气缸类型2.行程范围3.负载能力4.速度和加速度5.接口和安装方式三、无杆气缸的选择与应用1.根据工作需求选择合适的无杆气缸2.无杆气缸在工业领域的应用四、无杆气缸的优缺点1.无杆气缸的优点2.无杆气缸的缺点五、无杆气缸的发展趋势正文:无杆气缸是一种具有广泛应用的气缸类型,与传统的有杆气缸相比,无杆气缸具有更高的速度和加速度,同时安装和维护也更加方便。

本文将详细介绍无杆气缸的参数以及选择与应用。

无杆气缸的参数主要包括气缸类型、行程范围、负载能力、速度和加速度以及接口和安装方式。

气缸类型有无磁性气缸、机械式无杆气缸和电磁式无杆气缸等,不同类型的无杆气缸具有不同的特点和适用范围。

行程范围决定了无杆气缸能够完成的动作范围,用户可以根据实际需求选择合适的行程。

负载能力是指无杆气缸能够承受的最大负载,用户在选择时应根据负载的大小来选择合适的无杆气缸。

速度和加速度是无杆气缸的重要性能指标,它们影响了无杆气缸的工作效率和响应速度。

接口和安装方式包括螺纹接口、法兰接口和内置安装等,用户可以根据安装环境和安装方式来选择合适的无杆气缸。

在选择无杆气缸时,用户需要根据实际工作需求来选择合适的无杆气缸。

例如,在需要快速响应和高加速度的场合,可以选择电磁式无杆气缸;在需要高负载能力的场合,可以选择机械式无杆气缸。

无杆气缸在工业领域的应用非常广泛,例如在机床、机器人、自动化生产线等领域都有广泛应用。

无杆气缸具有许多优点,例如高加速度、高效率、低维护成本等。

但是,无杆气缸也存在一些缺点,例如制造成本相对较高、对安装精度要求较高等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

神威气动 文档标题:机械接合式无杆气缸
一、机械接合式无杆气缸的介绍:
引导活塞在缸内进行直线往复运动的圆筒形金属机件。

空气在发动机气缸中通过膨胀将热能转化为机械能;气体在压缩机气缸中接受活塞压缩而提高压力。

涡轮机、旋转活塞式发动机等的壳体通常也称“气缸”。

气缸的应用领域:印刷(张力控制)、半导体(点焊机、芯片研磨)、自动化控制、机器人等等。

二、气缸种类:
①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。

②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。

③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。

它的密封性能好,但行程短。

④冲击气缸:这是一种新型元件。

它把压缩气体的压力能转换为活塞高速(10~20米/秒)
运动的动能,借以做功。

⑤无杆气缸:没有活塞杆的气缸的总称。

有磁性气缸,缆索气缸两大类。

做往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴做摆动运动,摆动角小于280°。

此外,还有回转气缸、气液阻尼缸和步进气缸等。

三、气缸结构:
气缸是由缸筒、端盖、活塞、活塞杆和密封件等组成,其内部结构如图所示:
2:端盖
端盖上设有进排气通口,有的还在端盖内设有缓冲机构。

杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。

杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命。

导向套通常使用烧结含油合金、前倾铜铸件。

端盖过去常用可锻铸铁,为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的。

3:活塞
活塞是气缸中的受压力零件。

为防止活塞左右两腔相互窜气,设有活塞密封圈。

活塞上的耐磨环可提高气缸的导向性,减少活塞密封圈的磨耗,减少摩擦阻力。

耐磨环长使用聚氨酯、聚四氟乙烯、夹布合成树脂等材料。

活塞的宽度由密封圈尺寸和必要的滑动部分长度来决定。

滑动部分太短,易引起早期磨损和卡死。

活塞的材质常用铝合金和铸铁,小型缸的活塞有黄铜制成的。

神威气动 4:活塞杆
活塞杆是气缸中最重要的受力零件。

通常使用高碳钢、表面经镀硬铬处理、或使用不锈钢、以防腐蚀,并提高密封圈的耐磨性。

5:密封圈
回转或往复运动处的部件密封称为动密封,静止件部分的密封称为静密封。

缸筒与端盖的连接方法主要有以下几种:
整体型、铆接型、螺纹联接型、法兰型、拉杆型。

6:气缸工作时要靠压缩空气中的油雾对活塞进行润滑。

也有小部分免润滑气缸。

四、气缸工作原理:
1:根据工作所需力的大小来确定活塞杆上的推力和拉力。

由此来选择气缸时应使气缸的输出力稍有余量。

若缸径选小了,输出力不够,气缸不能正常工作;但缸径过大,不仅使设备笨重、成本高,同时耗气量增大,造成能源浪费。

在夹具设计时,应尽量采用增力机构,以减少气缸的尺寸。

2:下面是气缸理论出力的计算公式:
F:气缸理论输出力(kgf)
F′:效率为85%时的输出力(kgf)--(F′=F×85%)
D:气缸缸径(mm)
P:工作压力(kgf/C㎡)
例:直径340mm的气缸,工作压力为3kgf/cm2时,其理论输出力为多少?芽输出力是多少?
将P、D连接,找出F、F′上的点,得:
F=2800kgf;F′=2300kgf
在工程设计时选择气缸缸径,可根据其使用压力和理论推力或拉力的大小,从经验表1-1中查出。

神威气动 例:有一气缸其使用压力为5kgf/cm2,在气缸推出时其推力为132kgf,(气缸效率为85%)问:该选择多大的气缸缸径?
由气缸的推力132kgf和气缸的效率85%,可计算出气缸的理论推力为F=F′/85%=155(kgf)
由使用压力5kgf/cm2和气缸的理论推力,查出选择缸径为?63的气缸便可满足使用要求。

五:气缸图片展示:
抱紧气缸如下图:
带阀气缸:
神威气动
带锁气缸
迷你气缸
笔型气缸
神威气动
薄型气缸
手指气缸。

相关文档
最新文档