Solar cells 太阳能电池

合集下载

太阳光伏能源系统术语

太阳光伏能源系统术语

太阳光伏能源系统术语Just be happy, remember on the morning of June 18, 2022太阳光伏能源系统术语一、一般术语1、太阳光伏能源系统—solar photovoltaic energy system指利用太阳能电池的光生伏特效应;将太阳辐射能直接转换成电能的发电系统..2、太阳电池—solar cell指太阳辐射能直接转换成电能的一种器件..3、硅太阳电池—silicon solar cell指以硅为基体材料的太阳电池..4、单晶硅太阳电池—single crystalline silicon solar cell指以单晶硅为基体材料的太阳电池..5、非晶硅太阳电池a-Si太阳电池—amorphous silicon solar cell指用非晶硅材料及其合金制造的太阳电池..亦称无定形硅太阳电池;简称a-Si太阳电池..6、PINNIP非晶硅太阳电池—PINNIPa-Si solar cell指由PN型非晶硅;本征非晶硅和NP型非晶硅构成的太阳电池..其光照面为PN型区..7、集成型非晶硅太阳电池—integrated a-Si solar cell指用激光切割或其他方法把生长在同一块玻璃衬底或其它衬底上的非晶硅太阳电池切割成许多单体;使其串联、并联而构成的电池.. 8、多晶硅太阳电池—polycrystalline silicon solar cell指以多晶硅为基体材料而制作的太阳电池..9、多晶太阳电池—polycrystalline solar cell指用多晶材料为基体而制作的太阳电池..10、多结太阳电池—multi-junctions solar cell指由多个p-n结形成的太阳电池..这类电池的光电转换效率较高..光谱响应有所改善..11、垂直多结太阳电池—vertical multi-junction solar cell指与常规不同的一种太阳电池;其光照表面层被腐蚀成许多相互平行;有一定间距和深度的槽;用适当工艺在槽壁、槽底和槽顶部制成一个连续的p-n结;结的大部分或全部与光照面垂直..12、水平多结太阳电池—horizontal multi-junction solar cell指按制造多结太阳电池工艺制成的p-n结中大部分或全部的p-n结与光照面平行的多结太阳电池..13、化合物半导体太阳电池—compound semiconductor solar cell指用化合物半导体材料制成的太阳电池..14、Ⅱ---Ⅵ族太阳电池—Ⅱ---Ⅵ group solar cell指用元素周期表中第Ⅱ族和第Ⅵ族元素形成的化合物半导体材料制成的太阳电池..15、Ⅲ---Ⅴ族太阳电池—Ⅲ---Ⅴ group solar cell指用元素周期表中第Ⅲ族和Ⅴ族元素形成的化合物半导体材料制成的太阳电池..16、硫化镉太阳电池—cadmium sulfide solar cell指以硫化镉为基体材料的太阳电池..17、砷化镓太阳电池—gallium arsenide solar cell指以砷化镓为基体材料的太阳电池..18、有机半导体太阳电池—organic semiconductor solar cell指用有机半导体材料制成的太阳电池..19、聚光太阳电池—concentrator solar cell指在基体电阻率、结深和栅线结构等方面进行特殊设计的、适用于聚光条件下工作的太阳电池..20、常规太阳电池—conventional solar cell指用常规工艺制造的太阳电池;通常指只有一个P—n结、没有背场;没有绒面等特殊结构的单晶硅太阳电池..21、掺锂太阳电池—lithium-doped solar cell指在基区中掺锂的硅太阳电池;这种电池具有较高的抗辐射能力.. 22、带硅太阳电池—silicon ribbon solar cell指用带壮硅制造的太阳电池..23、叠层太阳电池级联太阳电池—stacked solar cell; tandem solar cell;cascade solar cell指在入射光方向上做成两个以上彼此串联的单结太阳电池;它能充分吸收太阳光能;提高开路电压..24、多带隙非晶硅太阳电池—multi – band gap a-Si solar cell指为充分利用太阳光能;以不同带隙的a-Si 材料制成的叠层电池;其受光面的带隙最宽;中间次之;第三层最窄;以充分利用太阳能..25、背场太阳电池—back surface fieldBSFsolar cell指在电池基区背面加一个与原建内电场指向相同的电场;形成高地结电场;以提高开路电压..26、背反射太阳电池—back surface reflection cell指在电池基区材料的背表面加上一薄层具有高反射能力的介质薄层;使透过基区的光被反射回来;从而提高了电池的长波响应..27、背场背反射太阳电池—back surface reflection and back surface field solar cell指具有背反射结构的背场太阳电池..28、卷包式太阳电池—wrap – around type solar cell指将电池的结面沿电池边缘卷包到电池背面;使两个电极都在背面的太阳电池..29、聚合物半导体太阳电池—polymer semiconductor solar cell指用聚合物如聚乙炔制成的有机半导体太阳电池..30、紫光太阳电池—violet solar cell指对太阳光谱中短波响应较好的一种硅太阳电池;其特点是浅结、密栅..31、绒面太阳电池—textured solar cell亦称黑电池或无反射太阳电池;指太阳电池受光面采用各向异性腐蚀法制成绒面状以减少光反射的太阳电池..32、肖特基太阳电池—Schottky solar cell指利用金属-半导体界面上的肖特基势垒而构成的太阳电池..33、MIS太阳电池— MIS solar cell指由金属—绝缘体—半导体结构制成的一种太阳电池..34、MINP太阳电池——MINP solar cell指一种改进的n—P结高效率太阳电池;其结构为n-p结太阳电池的光照面;先生长一层绝缘氧化物再蒸发金属栅和减反射膜;实际上是MIS和n-p结电池串联而成的复合电池..35、整体二极管太阳电池—integral diode solar cell指二极管和太阳电池制在同一基片上的组合体..36、薄膜太阳电池— thin film solar cell指用硅、硫化镉、砷化镓等薄膜为基体材料的太阳电池;这些薄膜通常用辉光放电、化学气相淀积、溅射、真空蒸镀法等方法制得.. 37、同质结太阳电池—homo-junction solar cell由同一种半导体材料所形成的P—n 结或梯度结称为同质结..用同质结构成的电池称为同质结太阳电池..38、异质结电池—hetero-junction solar cell指由两种禁带宽度不同的半导体材料形成的结称为异质结..用异质结构成的电池称为异质结太阳电池..39、漂移型光伏器件—drift type photovoltaic device指对于像非晶硅这样的半导体材料;由于其扩散长很小..用它做成光伏器件都采用PINNIP结构..Ⅰ层中有较强的电场;使其漂移电流远大于扩散电流..此类器件称为漂移型光伏器件..40、太阳电池面积—solar cell area指太阳电池全部光照面面积包括栅线..41、单体太阳电池—single solar cell指具有正、负电极并能把光能转换成电能的最小太阳电池单元.. 42、单体太阳电池的有效光照面积—active area of a solarcell指单体太阳电池受光面的几何面积与电极所占面积的差43、定域态密度—density of localized state指非晶态材料中;由于其组分排列的无序和存在着杂质与缺陷;在带隙中产生了分立的能级;这些分立的能级称定域态..单位体积单位能量间隔中定域态的数目叫定域态密度..它包括带尾定域态和缺陷定域态..44、迁移率边—mobility edge指扩展态与定域态的分界..45、欧母接触—ohmic contact指电流通过金属---半导体接触面时;不呈现整流效应的接触..46、光电效应—photo-electric effect指光辐射和物质之间的一种相互作用;其特征是物质吸收光子产生电子空穴..47、光伏效应—photovoltaic effect指以出现电动势为特征的光电效应48、光电子—photo-electron指由光电效应放出的电子..49、光吸收—absorption of the photons指光电材料接受光子产生载流子或声子的效应称为光吸收..在光伏效应中当能量大于禁带宽度的光子被吸入时;太阳电池内的电子从价带迁到导带;产生电子——穴对..50、光电导效应—photo- conductive effect指以导电率变化为特征的光电效应..51、太阳聚光器—solar concentrator指会聚太阳辐射的光学器件交太阳聚光器..太阳聚光器通常有反射式、透射式、荧光式等多种..52、参考太阳电池—reference solar cell见三-29条53、菲涅尔透镜— frensnel lens指利用微分原理将通光口径划分成若干个环带而设计和制成的透镜在光伏系统中多为薄板式..54、聚光率—concentration ratio指聚光器接收到的阳光辐照度与太阳电池接收到的辐照度之比.. 55、二次聚光器—secondary concentrator指将通过聚光器的会聚阳光再一次进行会聚的光学装置..56、几何聚光率—geometrical concentrator ratio指聚光器面积与太阳电池面积之比..57、能量偿还时间—energy payback time指太阳电池工作后累计输出的总能量等于制造它所耗用的能量所需要的时间..二、光电转换和光伏、光谱特性术语1、光生电流光电流—photo –generated currentphotocurrent指太阳电池在光照下;光生载流子的移动所产生的电流..2、光生电压—photovoltage指电池吸收光能后;在电池的内建电场两侧;分别有空穴和电子的积累;因而产生的电压..3、量子效率—quantum efficiency指某个波长的光子产生电子---空穴对的几率..4、收集效率—collection efficiency指收集到的光生载流子对数目与所产生的光生载流子对总数之比..5、太阳电池的伏安特性曲线—the Ⅰ-Ⅴ characteristic curve ofa solar cell指受光照的太阳电池;在不同的外电路负载下;流入负载的电流Ⅰ和电池端电压V的关系曲线..6、短路电流I sc—short – circuit current指在一定的温度和辐照度条件下;光伏发电器在端电压为零时的输出电流..用Isc表示..7、短路电流密度—short – circuit current density指单位面积上的短路电流;常用J sc表示..8、开路电压V oc—open –circuit voltage指在一定的温度和辐照度条件下;光伏发电器在空载开路情况下的端电压;通常用Voc来表示..9、最大功率—maximum power指在太阳电池的伏安特性曲线上;电流电压乘积的最大值..10、最大功率点—maximum power point指在太阳电池的伏安特性曲线上对应最大功率的点;亦称最佳工作点..11、最佳负载—optimum load指使受光照的电池工作在最大功率点的负载..12、最佳工作电压—optimum operating voltage指太阳电池伏安特性曲线上最大功率点所对应的电压;通常用Vm表示..13、最佳工作电流—optimum operating current指太阳电池在伏安特性曲线上最大功率点所对应的电流;通常用Im 表示..14、填充因子曲线因子—fill factor curve factor指太阳电池的最大功率与开路电压和短路电流乘积之比;通常用FF或CF表示..15、本征填充因子理论填充因子—intrinsic fill factor theoretical fill factor指太阳电池略去串联电阻和并联电阻之后;最大功率与开路电压和短路电流乘积之比..16、曲线修正系数—curve correction coefficient指测试电池时;由于温度的不同而引起伏安特性曲线的变化;修改此项变化的系数称曲线修正系数;用KmΩ/℃表示..17、太阳电池温度—solar cell temperature指太阳电池中势垒区的温度..18、电流温度系数—current temperature coefficient指在规定的试验条件下;被测太阳电池温度每变化1℃;太阳电池短路电流的变化值..通常用法α来表示..19、电压温度系数—voltage temperature coefficient指在规定的试验条件下;被测太阳电池温度每变化1℃;太阳电池开路电压的变化值..通常用β表示..20、串联电阻—series resistance指太阳电池内部的与p-n结或MIS结等串联的电阻;它是由半导体材料体电阻、薄层电阻、电极接触电阻等组成..21、并联电阻—shunt resistance指太阳电池内部的、跨连在电池两端的等效电阻..22、转换效率—conversion efficiency指受光照太阳电池的最大功率与入射到该太阳电池上的全部辐射功率的百分比..23、本征转换效率本征效率intrinsic conversion efficiency intrinsic efficiency指太阳电池略去串、并联电阻上的损失和太阳电池表面反射损失等之后的转换效率..24、暗电流—dark current指在光照情况下;产生于太阳电池内部与光生电流方向相反的正向结电流..25、暗特性曲线—dark characteristic curve指在无光照条件下给太阳电池加外部偏压所得到的伏安特性曲线.. 26、蓝红比红蓝比—blue-red ratio指用滤光片滤除标准太阳光中波长小于λm的光谱成分;测得太阳电池的短路电流;称为红电流..再用另一滤光片滤除标准太阳光中波长大于λm的光谱成分;测得太阳电池的短路电流;称为蓝电流..两者之比称为蓝红比或红蓝比..Λm应选介于红光与蓝光之间的某一波长;一般选0.45-0.6um之间..27、光谱效应光谱灵敏度—spectral responsespectral sensitivity指各个波长上;单位辐照度所产生的短路电流密度与波长的函数关系..28、绝对光谱响应绝对光谱灵敏度—absolute spectral responseabsolute spectral sensitivity指在规定的波长上;短路电流密度与辐照度之比..29、相对光谱响应—relative spectral response指以某一特定的波长通常是以光谱响应的最大值进行归一化的光谱响应..30、偏置光—bias light指以单色光照射到太阳电池表面进行光谱响应测试时;为了模拟太阳电池的实际工作环境;有时附加一个模拟阳光照射到太阳电池表面..这个附加光照称为偏置光..31、辐射—radiation指以电磁波的形式或粒子光子形式传播能量的过程..32、辐射光谱—spectrum of a radiation辐射能量分解成单色成分的能量分布;即辐射能量与波长的关系.. 33、辐射计-radiometer指测量辐射能的仪器..34、辐射通量radiant flux指单位时间内向一定的立体角范围内辐射和传播的辐射能量;单位为W/s..35、临界通量—critical flux指在空间辐射粒子轰击太阳电池;使其最大功率下降到初始值的75%时;太阳电池所承受的辐射粒子的累计通量..36、粒子辐射损伤—particle radiation damage当太阳电池受到空间粒子如电子、质子、中子等轰击后;使太阳电池产生的缺陷称为粒子辐射损伤;其结果表现为电性能衰减..三、组件、方阵和系统术语1、组件太阳电池组件—module;solar cell module指具有封装及内部联结的;能单独提供直流电输出的;最小不可分割的太阳电池组合装置..2、太阳电池组件面积—solar cell module area指太阳电池组件全部光照面面积包括边缘、框架和任何凸出物..3、太阳电池组件表面温度—solar cell module surface temperature指太阳电池组件背表面的温度..4、组件的电池额定工作温度—NOCTnominal operating cell temperature指在辐照度为800Wm-2、环境气温20℃;风速为1ms-1;开路状态;在中午时太阳光垂直照射于敞开安装于框架中的组件上;在这个标准参考环境中;测得的组件内太阳电池的平均平衡温度..5、组件效率—module efficiency指按组件外形尺寸面积所计算的转换效率..6、组件实际效率—practical module efficiency指按组件中所有单体电池几何面积之和计算得到的转换效率..7、平板式组件平板式太阳组件—flat plate moduleflat plate solar cell module指上、下盖板由平板材料构成的组件..8、聚光太阳电池组件—photovoltaic concentrator module指组成聚光太阳电池方阵的中间组合体;由聚光器、太阳电池、散热器、互连引线和壳体等组成..9、板太阳电池板—panelsolar cell panel指由若干个太阳电池组件按一定方式组装在一块板上的组装件叫做板太阳电池板;通常作为方阵的一个安装单元..10、方阵太阳电池方阵—arraysolar cell array指由若干个太阳电池组件或太阳电池板在机械和电气上按一定方式组装在一起并且有固定的支撑结构而构成的直流发电单元..地基、太阳跟踪器、温度控制器等类似的组件不包括在方阵中..11、地面太阳电池方阵—terrestrial solar cell array指工作在地球大气层内的太阳电池方阵..12、卷式方阵—roll—up type solar array指使用前被卷在一个滚筒或一个滚轴上;使用时才伸展为一个较大面积的方阵..13、折叠式方阵—fold—out type solar array指使用前被折叠在一起;使用时可伸展为一个较大面积的方阵.. 14、壳体式方阵—body—mounted type solar array指布置于载体外壳的太阳电池方阵..15、定向方阵—oriented array指对太阳定向的太阳电池方阵..16、聚光太阳电池方阵—photovoltaic concentrator array指由若干聚光电池组件组合成的方阵..17、方阵效率—efficiency of solar array指按方阵的外形尺寸面积所计算的方阵转换效率18、方阵的实际效率—practical efficiency of solar array指方阵所有单体电池几何面积的总和计算的方阵转换效率..19、方阵的重量比功率—weight to power ratio of solar array指方阵输出的电功率与方阵总重量之比;单位为W/kg..20、方阵的面积比功—area to power ratio of solar array指方阵输出的电功率与方阵总面积之比;单位为W/m221、方阵的面积利用率—area utilization of solar array指所用单体电池几何面积的总和与方阵总面积的百分比..22、子方阵太阳电池子方阵sub-arraysolar cell sub-array指如果一个方阵中有不同的组件或组件的连接方式不同;其中结构和连接方式相同部分称为子方阵...23、方阵场—array field指某个发电系统内发电的全部太阳电池方阵..24、聚光太阳电池方阵场—photo-voltaic concentrator array field指由一系列聚光太阳电池方阵组成的发电系统..25、方阵子场—array sub-field指如果一个方阵场中有不同的方阵、不同的排列方式、不同的连接方式和不同的功率调节方式、其中方阵、排列方式、连接方式和调节方式全部相同的部分成为子方阵..26、隔离二极管—blocking diode指与太阳电池组件或太阳电池板串联的二极管;用于防止反向电流流过它们..27、旁路二极管—bypassshuntdiode指与太阳电池、太阳电池组件或太阳电池板并联的二极管;当部分太阳电池、太阳电池组件或太阳电池板被遮或损坏时;方阵中的太阳电池可由旁路二级管形成通路;保证整个方阵还能正常工作..28、太阳跟踪控制器sun – tracking controller指使太阳电池方阵或测试设备按规定要求对准太阳的一种装置.. 29、充电控制器—charge controller指按预定方式给某电池组充电;并根据蓄电池的荷电程度及时改变充电速率;防止过充电的控制装置..30、方阵联结开关系统—array switching system指能将方阵内部的串、并联方式加以改变的开关系统..31、系统测试设备—systems test facility STF指能对太阳光伏发电系统的性能进行测试和评价的设备..32、功率调节器—power conditioning指在太阳光伏能源系统中用于把电功率转换为适于后续负载使用的电器设备..33、直流/直流电压变换器— D.C/D.C converter指把直流电压升高或降低的设备..34、直流/交流电压变换器逆变器— D.C/A..C converterinverter指把直流电变换成交流电的设备..35、变换效率—converter efficiency指变换器的有用输出功率对输入功率的比值..36、逆变效率—inverter efficiency指逆变器的有用输出功率对输入功率的比值37、主控和监控—master control and monitoring指对光伏系统内部或和它相联的子系统作最高级的控制和监视.. 38、最大功率跟踪法—maximum power tracking指一种使太阳电池始终运行在或接近于最大功率点的控制方案.. 39、完全匹配—perfect matching指光伏发电系统的工作点和最大功率点重合的工作状态..40、准完全匹配—near perfect matching指光伏发电系统的工作点接近于最大功率点时的工作状态..41、电站—utilityelectric指用公用电力系统及其安装、运行及维护的机构..42、太阳电池方阵库—solar array banket指在双卷筒式光伏发电站停止运行时;它所携带的方阵卷起来贮藏的场所..43、太阳能电力卫星—solar power satellite SPS指一种运行在地球同步轨道上的人造卫星;卫星上的光伏发电系统能24小时连续发电;并以微波形式向地球输送电能..44、双卷筒式光伏发电站—double roll out solar-generator指太阳电池空间发电站它所携带的太阳电池方阵可以卷成二个卷筒;在使用时展开..45、超轻级伸展式光伏发电站—ultra light fold out solar-generator指太阳电池空间发电站的一种;它所携带的太阳电池方阵可以折叠起来;在使用时向两侧伸展..46、主动式冷却—active cooling指用流动的水或其它介质将聚光方阵工作时产生的热量带走;达到冷却太阳电池的目的;这种散热方式称为主动式冷却..47、被动式冷却—passive cooling指太阳电池方阵产生的热量通过散热器直接散放到大气中;这种散热方式叫被动式冷却..48、电压窗口—voltage window指方阵、功率调节器或蓄电池组所工作的电压范围49、电压闪变—flicker指短期的电压波动;通常用额定电压的百分比来表示..50、组合损失—assembling loss指在单体太阳电池组装后;转换效率下降的百分数称为组合损失..51、太阳电池底板—solar cell basic plate指布贴太阳电池片的底板..52、平面底板—flat plate指部贴太阳电池的底板为平面板..53、刚性底板—rigid plate指具有很大的刚度的太阳电池底板....54、柔性底板—flexible plate指具有很好的柔性的太阳电池底板..55、标准工作条件—stand operating conditions指用标准太阳电池测量的辐照度为1000W/m2并具有标准的太阳光谱辐照度分布;太阳电池温度为组件的电池额定工作温度NOCT..56、额定电压—rated voltage指在规定的工作条件下;依据同一类型光伏发电器的特性选择确定其输出电压;使这一类光伏发电器的输出功率都接近最大功率;此电压称额定电压..57、额定功率—rated power指在规定的工作条件下;光伏发电器在额定电压下所规定的输出功率..58、额定电流— rated current指在规定的工作条件下;光伏发电器在额定电压下所规定的电流.. 59、峰瓦—watts peak指太阳电池组件方阵;在标准测试条件下的额定最大输出功率..四、标定和测试术语1、标定—calibrating指获得标准太阳电池的方法或手段..2、标定值—calibration value指在标准测试条件下标准太阳电池的短路电流与辐照度之比..3、直接辐射标定法准直标定法—direct irradiation calibratingmethodsnormal incidence calibrating method指利用太阳的直射辐射对太阳电池所进行的标定方法..4、总辐射标定法—global calibrating method指利用太阳直射辐射和散射辐射对太阳电池所进行的标定方法..5、太阳常数——solar constant指在地球的大气层外;太阳在单位时间内投射到距太阳平均日地距离处垂直于射线方向的单位面积上的全部辐射能..6、大气质量AM—Air Mass指太阳光束穿过大气层的光学路径;以该光学路径与太阳在天顶时其光束到达海平面所通过的光学路径的比值来表示;大气质量的值可以近似的由下述公式算出:P 1大气质量= ——— X ————Po sinθ其中;P—当地的大气压力;以Pa表示..Po=1.013×105 Pa..θ—太阳高度角..在地球的大气层外P=0;大气质量定义为零;记为AM0;在海平面处P=1.013×105 Pa;在太阳当顶时sinθ=1大气质量定义为1;记为AM1..7、AMO条件—AMO condition指标定和测试空间用AM=0太阳电池所规定的辐照度和光谱分布..8、AM1条件—AM1 condition指标定和测试空间用AM=1太阳电池所规定的辐照度和光谱分布..9、AM1.5条件—AM1.5 condition指标定和测试空间用AM=1.5太阳电池所规定的辐照度和光谱分布..10、太阳高度角—solar elevation angle指太阳光线与观测点处水平面的夹角;称为该观测点的太阳高度角..11、沉积的水蒸气含量—precipitable water vapor content指在一平方厘米的截面积上;整个大气柱内沉积的水蒸气的总含量..12、混浊度—turbidity指用来描述悬浮在大气中的固体或液体微粒除云层以外;对太阳辐射的吸收和散射作用使大气透明度降低的程度..13、臭氧含量—ozone content指在规定温度和压力下;截面积为一平方厘米的气柱中所含臭氧的数量..14、辐照度—irradiance指照射到面元上的辐射通量与该面元面积之比W/m2..15、散射辐照散射太阳辐照量—diffuse irradiancediffuse insolation指在一段规定的时间内;除去直射太阳辐照外;照射到单位面积上来自天空的辐射能量..16、直射辐照直射太阳辐照量—direct irradiancedirectinsolation指在一段规定的时间内;照射到单位面积上的来自天空太阳圆盘及其周围对照射点所张的半圆锥半顶角为8o的辐射能量..17、总辐照总的太阳辐照量—global irradiation globalinsolation指在规定的一段时间内根据具体情况而定为每小时;每天、每周、每月、每年照射到水平表面的单位面积上的太阳辐射能量..18、倾斜面总辐照倾斜面太阳总辐照量—total irradiation total insolation指在规定的一段时间内根据具体情况而定为每小时;每天、每周、每月、每年照射到某个倾斜表面的单位面积上的太阳辐照..19、总辐照度太阳辐照度—global irradiancesolar global irradiance指入射于水平表面单位面积上的全部的太阳辐射通量W/m 2..20、倾斜面总辐照度倾斜面太阳总辐照度—total irradiancesolar total irradiance指入射于倾斜表面单位面积上的全部的太阳辐射通量W/m2..21、直射辐照度—direct irradiance指照射到单位面积上的;来自天空太阳圆盘及其周围对照射点所张的半圆锥角为8o的辐射通量..22、散射辐照度—diffuse irradiance。

Solar Cells 太阳能电池及光伏基本技术

Solar Cells 太阳能电池及光伏基本技术

单晶硅 33%
多晶硅 56%
(Adapted from Sun screen: Investment Opportunities in Solar Power,July 2004; CLSA Asia-Pacific Mk ts)
AP Internal Presentation
硅片线工艺流程
装料
铸锭
AP Internal Presentation
薄膜太阳能电池: ii) Copper-Indium-Gallium-Diselenide (CIGS)
• 玻璃基板 –钼的背接触电极在薄膜化 学屏障SIO2 层上的扩散– 在嵌入式系 统中的两步电池溅射
• CIGS 用共蒸发的技术制作 • CdS 层由化学水浴法制作 (和CIGS
有机太阳电池
塑料
透明导体
有源层
0.010 英寸
反电极
塑料或金属箔
Adapted from Konarka Tech Inc. presentation @ 2003 National Nanotechnology Coordinating Office (NNCO) Interagency Research Meeting/Workshop – Nanotechnology and the Environment: Applications and Implications /ncer/publications/nano/ppt/EPA-Gaudiani.ppt
焊带、汇 流带
TPT/EVA
铝合金
下料
单片焊接
串焊接
测试
表面清洁
电性能测 试
外观检验

装筐 包装
层压 入库
敷设

太阳能电池的特性测量仿真实验教案

太阳能电池的特性测量仿真实验教案

太阳能电池的特性测量一、实验简介太阳电池(Solar Cells),也称为光伏电池,是将太阳光辐射能直接转换为电能的器件。

由这种器件封装成太阳电池组件,再按需要将一块以上的组件组合成一定功率的太阳电池方阵,经与储能装置、测量控制装置及直流-交流变换装置等相配套,即构成太阳电池发电系统,也称为之光伏发电系统。

它具有不消耗常规能源、寿命长、维护简单、使用方便、功率大小可任意组合、无噪音、无污染等优点。

世界上第一块实用型半导体太阳电池是美国贝尔实验室于1954 年研制的。

经过人们40多年的努力,太阳电池的研究、开发与产业化已取得巨大进步。

目前,太阳电池已成为空间卫星的基本电源和地面无电、少电地区及某些特殊领域(通信设备、气象台站、航标灯等)的重要电源,如图1。

随着太阳电池制造成本的不断降低,太阳能光伏发电将逐步地部分替代常规发电。

近年来,在美国和日本等发达国家,太阳能光伏发电已进入城市电网。

从地球上化石燃料资源的渐趋耗竭和大量使用化石燃料必将使人类生态环境污染日趋严重的战略观点出发,世界各国特别是发达国家对于太阳能光伏发电技术十分重视,将其摆在可再生能源开发利用的首位。

太阳能光伏发电有望成为21世纪的重要新能源。

有专家预言,在21世纪中叶,太阳能光伏发电将占世界总发电量的15% ~ 20%,成为人类的基础能源之一,在世界能源构成中占有一定地位。

二、实验原理当光照射在距太阳能电池表面很近的PN结时,只要入射光子的能量大于半导体材料的禁带宽度E g,则在p区、n区和结区光子被吸收会产生电子-空穴对(如图1)。

那些在PN结附近n区中产生的少数载流子由于存在浓度梯度而要扩散。

只要少数载流子离PN结的距离小于它的扩散长度,总有一定几率的载流子扩散到结界面处。

在p区与n区交界面的两侧即结区,存在空间电荷区,也称为耗尽区。

在耗尽区中,正负电荷间形成电场,电场方向由n区指向p区,这个电场称为内建电场。

这些扩散到结界面处的少数载流子(空穴)在内电场的作用下被拉向p区。

光伏行业英文词汇

光伏行业英文词汇

光伏行业英文词汇光伏行业英文词汇Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】太阳电池solar cell通常是指将太阳光能直接转换成电能的一种器件。

硅太阳电池silicon solar cell硅太阳电池是以硅为基体材料的太阳电池。

单晶硅太阳电池single crystalline silicon solar cell单晶硅太阳电池是以单晶硅为基体材料的太阳电池。

非晶硅太阳电池(a—si太阳电池)amorphous silicon solar cell用非晶硅材料及其合金制造的太阳电池称为非晶硅太阳电池,亦称无定形硅太阳电池,简称a—si太阳电池。

多晶硅太阳电池polycrystalline silicon solar cell多晶硅太阳电池是以多晶硅为基体材料的太阳电池。

聚光太阳电池组件photovoltaic concentrator module系指组成聚光太阳电池,方阵的中间组合体,由聚光器、太阳电池、散热器、互连引线和壳体等组成。

电池温度cell temperature系指太阳电池中P-n结的温度。

太阳电池组件表面温度solar cell module surface temperature系指太阳电池组件背表面的温度。

大气质量(AM)Air Mass (AM)直射阳光光束透过大气层所通过的路程,以直射太阳光束从天顶到达海平面所通过的路程的倍数来表示。

太阳高度角solar太阳高度角solar elevation angle太阳光线与观测点处水平面的夹角,称为该观测点的太阳高度角。

辐照度irradiance系指照射到单位表面积上的辐射功率(W/m2)。

总辐照(总的太阳辐照)total irradiation (total insolation)在一段规定的时间内,(根据具体情况而定为每小时,每天、每周、每月、每年)照射到某个倾斜表面的单位面积上的太阳辐照。

光伏电池的五个参数

光伏电池的五个参数

光伏电池的五个参数英文回答:Five Key Parameters of a Photovoltaic Cell.Photovoltaic (PV) cells, also known as solar cells, are devices that convert light energy into electrical energy. They are the basic building blocks of solar panels and are used in a wide range of applications, from smallelectronics to large-scale solar power plants.The performance of a PV cell is characterized by a number of parameters, including:1. Open-circuit voltage (Voc): The voltage across the cell when it is not connected to a load.2. Short-circuit current (Isc): The current flowing through the cell when it is short-circuited.3. Maximum power point (MPP): The point at which thecell produces its maximum power output. This is typically characterized by the voltage (Vmp) and current (Imp) at which the MPP occurs.4. Fill factor (FF): A measure of the cell's efficiency, which is calculated as the ratio of the actual power output to the theoretical maximum power output.5. Cell efficiency: The ratio of the electrical power output of the cell to the light power input.These parameters are important for understanding the performance of a PV cell and for designing and optimizing solar panels.中文回答:光伏电池的五个参数。

太阳能专业术语的英文翻译

太阳能专业术语的英文翻译

太阳电池 solar cell通常是指将太阳光能直接转换成电能的一种器件。

硅太阳电池silicon solar cell硅太阳电池是以硅为基体材料的太阳电池。

单晶硅太阳电池single crystalline silicon solar cell单晶硅太阳电池是以单晶硅为基体材料的太阳电池。

非晶硅太阳电池(a—si太阳电池)amorphous silicon solar cell用非晶硅材料及其合金制造的太阳电池称为非晶硅太阳电池,亦称无定形硅太阳电池,简称a—si太阳电池。

多晶硅太阳电池polycrystalline silicon solar cell多晶硅太阳电池是以多晶硅为基体材料的太阳电池。

聚光太阳电池组件photovoltaic concentrator module系指组成聚光太阳电池,方阵的中间组合体,由聚光器、太阳电池、散热器、互连引线和壳体等组成。

电池温度cell temperature系指太阳电池中P-n结的温度。

太阳电池组件表面温度solar cell module surface temperature系指太阳电池组件背表面的温度。

大气质量(AM)Air Mass (AM)直射阳光光束透过大气层所通过的路程,以直射太阳光束从天顶到达海平面所通过的路程的倍数来表示。

太阳高度角 solar 太阳高度角 solar elevation angle太阳光线与观测点处水平面的夹角,称为该观测点的太阳高度角。

辐照度 irradiance系指照射到单位表面积上的辐射功率(W/m2)。

总辐照(总的太阳辐照)total irradiation (total insolation)在一段规定的时间内,(根据具体情况而定为每小时,每天、每周、每月、每年)照射到某个倾斜表面的单位面积上的太阳辐照。

直射辐照度direct irradiance照射到单位面积上的,来自太阳圆盘及其周围对照射点所张的圆锥半顶角为8o的天空辐射功率。

太阳能电池 (Solar cell)

太阳能电池 (Solar cell)
solarcell同质结电池homojunctioncell异质结电池heterojunctioncell肖特基结电池schottkysolarcell光电化学电池photoelectrochemicalcellphotogaluaniccellsemiconductorelectrolytesolarcellwetsolarcelldyesensitizedphotoelectrochemicalcellplasticsolarcellphotogaluaniccellphotogaluaniccellsemiconductorelectrolytecellsemiconductorelectrolytecellsemiconductorelectrolytecelldyesensitizedsolarcelldyesensitizednanocrystallinesolarcelldyesensitizednanocrystallinesolarcellplasticsolarcellplasticsolarcell
同质结电池
同质结电池
异质结电池
异质结电池
肖特基结电池
肖特基结电池
光电化学电池
Photogaluanic cell
光电化学电池
Photogaluanic cell
Voc = 0.175 V η = 0.03%
光电化学电池
Semiconductor/electrolyte cell
光电化学电池
太阳能电池 (Solar cell)
主要种类
同质结电池 (homojunction cell) 异质结电池 (heterojunction cell) 肖特基结电池 (Schottky solar cell) 光电化学电池 (photoelectrochemical cell)

Solar Cell

Solar Cell

①Solar cell is also known as "solar cells" or "cell", is a kind of electricity generation by using sunlight directly photoelectric semiconductor wafer.In physics called solar photovoltaic, or pv.太阳能电池也被称为“太阳能电池”或“细胞”,是一种直接利用阳光发电的光电半导体薄片。

在物理学中称为太阳能光伏或pv。

②At the instant of the backlight irradiate, solar cells can produce voltage and current in the case of a loop.The solar cell is the device that through the photoelectric effect or photochemical effect transformed the light energy into electricity directly.Till now, working in the photoelectric effect of film type solar cell is the mainstream.即时的背光照射、太阳能电池能产生电压和电流的循环。

太阳能电池的设备是通过光电效应或者光化学效应直接把光能转化成电能。

直到现在,在光电效应工作的薄膜式太阳能电池为主流。

③The sun light on semiconductor p-n junction, to form a new hole - electron pair, the p-n junction built in under the action of electric field, light born cavitation flow p area, light electrons n area, after processing circuit will generate an electric current.This is how the photoelectric effect solar cell works.太阳光线在半导体pn结,形成新的洞——电子对的pn结内建电场的作用下,光生空穴流p区,光电子n 区域,经过处理电路将产生电流。

光伏行业常用英文单词

光伏行业常用英文单词

光伏行业常用英文单词在光伏行业中,英语单词是必备的工具,具备一定的英文词汇能力对于从事光伏行业的人士来说至关重要。

本文将介绍光伏行业中常用的英文单词以及它们的中文意义,希望能帮助读者更好地理解和运用这些术语。

1. Solar energy - 太阳能Solar energy refers to the energy derived from the sun's radiation. It is the primary source of power in the solar industry, driving the generation of electricity through solar panels.2. Photovoltaic (PV) - 光伏的Photovoltaic, often abbreviated as PV, is the technology used to convert sunlight directly into electricity. It involves the use of solar cells or modules to capture and convert solar energy.3. Solar panel - 太阳能电池板A solar panel is a device that consists of multiple solar cells connected together. It converts sunlight into electricity through the photovoltaic effect.4. Solar cell - 太阳能电池A solar cell, also known as a photovoltaic cell, is the basic building block of a solar panel. It converts sunlight into electricity by absorbing photons and releasing electrons.5. Solar module - 太阳能模块A solar module, also referred to as a solar panel module, is a packaged assembly of interconnected solar cells. It provides a larger surface area for capturing sunlight and generating electricity.6. Solar farm - 太阳能发电场A solar farm is a large-scale installation of solar panels or modules. It is designed to generate significant amounts of electricity for commercial or utility-scale applications.7. Inverter - 逆变器An inverter is a device used in photovoltaic systems to convert the direct current (DC) produced by solar panels into alternating current (AC) for use in electrical grids or appliances.8. Net metering - 净计量Net metering is a billing arrangement that allows solar energy system owners to receive credit for the excess electricity they generate and feed back into the grid. It promotes the integration of solar power into existing electrical grids.9. Feed-in tariff - 上网电价A feed-in tariff is a policy mechanism that promotes renewable energy generation by providing financial incentives for the production of electricity from renewable sources, such as solar power.10. Solar irradiance - 太阳辐照度Solar irradiance refers to the power per unit area received from the sun in the form of electromagnetic radiation. It is a key parameter in evaluating the potential energy output of solar panels.11. Off-grid - 脱网Off-grid refers to systems or applications that are not connected to the main electrical grid. Off-grid solar systems often rely on batteries to store excess energy for use during periods of low or no sunlight.12. Grid-connected - 并网Grid-connected systems are connected to the main electrical grid and feed excess electricity back into the grid. They allow for both the consumption of solar-generated power and the use of grid power when necessary.13. Photovoltaic efficiency - 光伏效率Photovoltaic efficiency measures how effectively a solar cell or module converts sunlight into electricity. Higher efficiency means a greater conversion rate and more power output.14. Solar thermal - 太阳能热利用Solar thermal refers to the use of solar energy to generate heat. It often involves the use of solar collectors to absorb sunlight and transfer the heat to a fluid, which can then be used for heating or generating electricity.15. Renewable energy - 可再生能源Renewable energy refers to energy sources that can be replenished naturally or essentially indefinitely. Solar energy is considered a renewable energy source, as it relies on the continuous availability of sunlight.以上是光伏行业中常见的英文单词及其中文意义。

光伏行业英文词汇

光伏行业英文词汇

光伏行业英文词汇太阳电池 solar cell通常是指将太阳光能直接转换成电能的一种器件。

硅太阳电池silicon solar cell硅太阳电池是以硅为基体材料的太阳电池。

单晶硅太阳电池single crystalline silicon solar cell单晶硅太阳电池是以单晶硅为基体材料的太阳电池。

非晶硅太阳电池(a—si太阳电池)amorphous silicon solar cell用非晶硅材料及其合金制造的太阳电池称为非晶硅太阳电池,亦称无定形硅太阳电池,简称a—si 太阳电池。

多晶硅太阳电池polycrystalline silicon solar cell多晶硅太阳电池是以多晶硅为基体材料的太阳电池。

聚光太阳电池组件photovoltaic concentrator module系指组成聚光太阳电池,方阵的中间组合体,由聚光器、太阳电池、散热器、互连引线和壳体等组成。

电池温度cell temperature系指太阳电池中P-n结的温度。

太阳电池组件表面温度solar cell module surface temperature系指太阳电池组件背表面的温度。

大气质量(AM)Air Mass (AM)直射阳光光束透过大气层所通过的路程,以直射太阳光束从天顶到达海平面所通过的路程的倍数来表示。

太阳高度角solar 太阳高度角solar elevation angle太阳光线与观测点处水平面的夹角,称为该观测点的太阳高度角。

辐照度irradiance系指照射到单位表面积上的辐射功率(W/m2)。

总辐照(总的太阳辐照)total irradiation (total insolation)在一段规定的时间内,(根据具体情况而定为每小时,每天、每周、每月、每年)照射到某个倾斜表面的单位面积上的太阳辐照。

直射辐照度direct irradiance照射到单位面积上的,来自太阳圆盘及其周围对照射点所张的圆锥半顶角为8o的天空辐射功率。

Solar cell efficiency tables (version15) 太阳能电池效率总结

Solar cell efficiency tables (version15)  太阳能电池效率总结

Solar Cell E ciency Tables (Version 15)Martin A.Green,1*Keith Emery,2David L.King 3and Sanekazu Igari 41Photovoltaics Special Research Centre,University of New South Wales,Sydney,NSW 2052,Australia2National Renewable Energy Laboratory,1617Cole Boulevard,Golden,CO 80401,USA3Division 6224,Sandia National Laboratories,1515Eubank Street,Albuquerque,NM 87185,USA 4Japan Quality Assurance Organization,Solar Techno Center,Solar Cell Test Research Division,HIC Bldg.2F,4598Murakushi-Cho,Hamamatsu-shi,Shizuoka-ken,431-1207,JapanConsolidated tables showing an extensive listing of the highest independently con-®rmed e ciencies for solar cells and modules are presented.Guidelines for inclusion of results into these tables are outlined and new entries since July 1999are brie¯y described.Progress since Version 1of these Tables,published in January 1993,is also brie¯y summarized.Copyright #2000John Wiley &Sons,Ltd.INTRODUCTIONSince January 1993,Progress in Photovoltaics has published six-monthly listings of the highest con®rmed e ciencies for a range of photovoltaic cell and module technologies.1±14By providing guidelines for the inclusion of results into these tables,this not only provides an authoritative summary of the current state of the art,but also encourages researchers to seek independent con®rmation of results and to report results on a standardized basis.In the present article,guidelines for inclusion of results into these tables will be summarized,new results over recent months reported,and progress with the di erent technologies since January 1993brie¯y reviewed.GUIDELINESThe most important criterion for inclusion of results into the tables is that they must have been measured by a recognized test centre listed in the Appendix (this list will be updated periodically).Round-robin testing between these designated test centres suggests that measurements at di erent centres agree to within a two standard deviation of about 2%(relative),for crystalline and multi-crystalline silicon cells,increasing to about 5%for amorphous silicon cells.15Increased di erences were noted for modules.15The measurement uncertainty of tandem cell e ciency is larger because,even if the short-circuit current can accurately be determined,the ®ll factor and e ciency are a function of the relative spectral irradiance of the light source.The majority of the designated centres are capable of non-concentrator cell measurements with respect to the standard set of terrestrial reporting conditions de®ned by a tabular spectral irradiance distribution (IEC 904-3or ASTM E892-87),total irradiance distribution 1000Wm À2,and a temperature of 258C.6±24Some are equipped for concentrator measure-ments under the direct normal reference spectrum (ASTM standard E891-87)17or for space cells testing under the Air Mass 0spectrum (WMO/WRC).PROGRESS IN PHOTOVOLTAICS:RESEARCH AND APPLICATIONSProg.Photovolt.Res.Appl.8,187±195(2000)*Correspondence to:Martin A.Green,Photovoltaics Special Research Centre,University of New South Wales,Sydney,NSW 2052,Australia.188M.A.GREEN ET AL.The area of the cell or module is an important parameter in determining e ciency.25It is also important that this area be measured by the test centre to an accuracy of better than0.5%.The areas used should conform to one of the three following provisional classi®cations:(i)Total area.This is the preferred area for reporting of results and equals the total projected area of thecell or module(the area that would be measured by taking a photograph of the device from a distance against a white background and measuring the area of the background shaded by the device).For the case of a cell attached to glass,the total area would be the area of the glass sheet.(ii)Aperture area.In this measurement,the device under test is masked so that the illuminated area is smaller than the total cell or module area,but all essential components of the device such as busbars,®ngers and interconnects lie within the masked area.(iii)Designated illumination area.In this case,the cell or module is masked to an area smaller than the total device area,but major cell or module components lie outside the masked area.For example,fora concentrator cell,the cell busbars would lie outside of the area designed for illumination and thisarea classi®cation would be the most appropriate.Results will be reported for cells and modules made from di erent semiconductors and for sub-categories within each semiconductor grouping(e.g.,crystalline,polycrystalline and thin®lm).Cell area must be at least1cm2for non-concentrating cells,although results for areas as low as0.25cm2will be eligible for concentrator cells.Given that cell and module e ciency normally decreases with increasing area,additional sub-categories will be included depending upon area.Although some¯exibility is desirable in this area,subcategory boundaries will be roughly at1cm2,10cm2and100cm2for non-concentrator cells,800cm2and3000cm2for modules,and0.25cm2,2cm2and20cm2for concentrator cells.NEW RESULTSHighest con®rmed cell results are reported in Tables I±III.Any changes in the tables from those previously published14are set in bold type.Table I summarizes the best measurements for cells and sub-modules,Table II shows the best results for modules and Table III shows the best results for concentrator cells and concentrator modules.Table IV contains what might be described as`notable exceptions'.While not conforming to the requirements to be recognized as a class record,the cells and modules in Table IV have notable characteristics that will be of interest to sections of the photovoltaic community.Two new results are reported in the present issue,both stemming from recent improvements in III±V monolithic tandem cells.Triple junction versions of these devices based on the GaInP/GaAs/Ge system are now in commercial production for space use.An e ciency of28.7%was demonstrated by a moderate area29.9cm2device fabricated by Spectrolab and measured by the National Renewable Energy Laboratory(Table I).This is the highest independently con®rmed e ciency for a one sun cell over4cm2 in area.A smaller triple junction cell(0.1cm2area)demonstrated32.3%e ciency at47suns concentra-tion(Table III),close to the highest ever for any photovoltaic device,and again the highest for a device of this size.Other results in the silicon and microcrystalline silicon areas are awaiting con®rmation and will be reported in the next issue of these tables.SUMMARY OF PROGRESSSince Version1of these tables was prepared almost exactly seven years ago,1there have been marked improvements in the best con®rmed results with several technologies.Some of the highlights are summarized below.In the bulk crystalline silicon area,the largest improvement has been in the module performance,driven by the demand for high performance modules for solar car racing.Con®rmed module performance has increased from18.2%to22.7%,representing25%relative improvement.Signi®cant but smallerimprovements also are documented for multicrystalline and supported ®lm devices,with even the basic 4cm 2silicon cell showing 7%relative improvement.In the III±V crystalline cell area,the major improvements have occurred in the monolithic tandem cell devices,with 2-junction devices surpassing 30%e ciency in 1996,and large area 3-junction devices now approaching similar e ciencies in commercial production.Table II.Con®rmed terrestrial module e ciencies measured under the global AM1.5spectrum (1000W/m 2)at a celltemperature of 258CClassi®cation a E c.b Area c V oc I sc FF d Test centre Description(%)(cm 2)(V)(A)(%)(and date)Si (crystalline)22.7+0.6778(da) 5.60 3.9380.3Sandia (9/96)UNSW/Gochermann 40Si (multicrystalline)15.3+0.41017(ap)14.6 1.3678.6Sandia (10/94)Sandia/HEM 41CIGSS 12.1+0.63651(ap)23.42 2.8367.9NREL (3/99)Siemens Solar 42CdTe10.5+0.21376(ap)34.910.65363.2JQA (2/99)Matsushita a-Si/a-SiGe/a-SiGe (tandem)e10.4+0.5905.1(ap)4.3533.28566.0NREL (10/98)USSC 43(a-Si/a-Si/a-Si :Ge)aCIGSS CuInGaSSe;a-Si amorphous silicon/hydrogen alloy;a-SiGe amorphous silicon/germanium/hydrogen alloy.bE c. e ciency.c (ap) aperture area;(da) designated illumination area.dFF ®ll factor.eLight soaked at NREL for 1000h at 508C,nominally 1-sun illumination.Table III.Terrestrial concentrator cell and module e ciencies measured under the direct beam AM1.5spectrum at acell temperature of 258CClassi®cationE c.a Area b Concentration c Test centres Description(%)(cm 2)(suns)(and date)Single cells GaAs 27.6+1.00.126(da)255Sandia (5/91)Spire 44GaInAsP 27.5+1.40.075(da)171NREL (2/91)NREL,Entech cover InP 24.3+1.20.075(da)99NREL (2/91)NREL,Entech cover 45Si26.8+0.8 1.60(da)96FhG-ISE (10/95)SunPower back-contact 46Si (large)21.6+0.720.0(da)11Sandia d (9/90)UNSW laser grooved 47GaAs (Si substrate)21.3+0.80.126(da)237Sandia (5/91)Spire 44InP (GaAs substrate)21.0+1.10.075(ap)88NREL (2/91)NREL,Entech cover 48Multijunction cells GaAs/GaSb 32.6+1.70.053(da)100Sandia d (10/89)Boeing,mechanical stack 49GaInP/GaAs/Ge 32.362.00.104(da)47NREL(9/99)Spectrolab,monolithicInP/GaInAs 31.8+1.60.063(da)50NREL (8/90)NREL,monolithic 3terminal 50GaAs/GaInAsP 30.2+1.50.053(da)40NREL (10/90)NREL,stacked 4terminal 50GaInP/GaAs 30.2+1.40.103(da)180Sandia (3/94)NREL,monolithic 2terminal 51GaAs/Si 29.6+1.50.317(da)350Sandia d (9/88)Varian/Stanford/Sandia,mech.stack 52Submodules GaAs/GaSb 25.1+1.441.4(ap)57Sandia (3/93)Boeing,3mech.stack units 53Modules Si20.3+0.81875(ap)80Sandia (4/89)Sandia/UNSW/ENTECH (12cells)54a E c. e ciency.b(da) designated illumination area;(ap) aperture area.cOne sun corresponds to an intensity of 1000Wm À2.d Measurements corrected from originally measured values due to Sandia recalibration in January 1991.190M.A.GREEN ET AL .192M.A.GREEN ET AL. In the compound semiconductor polycrystalline thin®lm area,the largest improvements have been obtained in the case of copper indium gallium selenide(CIGS)and related cells.The con®rmed perform-ance of1cm2devices has increased from13.7%to18.2%,a massive33%relative increase.Improvement at the module level has been9%relative.Almost the opposite has been the case for CdTe devices,where module performance has improved a massive30%relative,while the best con®rmed cell performance has not improved signi®cantly over this period.Similarly,in the amorphous silicon area,there has been little performance improvement con®rmed for 1cm2cells,although con®rmed small area tandem cell performance has improved by9%and stabilized module performance by17%.Some new categories have appeared since the®rst version of the tables representing emerging cell technologies.Two of note are nanocrystalline dye cells and thin®lm microcrystalline silicon cells on glass, where e ciencies of6.5%and10.1%,respectively,have been demonstrated for cells1±2cm2in area.DISCLAIMERWhile the information provided in the tables is provided in good faith,the authors,editors and publishers cannot accept direct responsibility for any errors or omissions.APPENDIXList of designated test centresEuropean Solar Test Installation(ESTI),CEC Joint Research Centre,21020Ispra(Varese),Italy. Contact:Dr Heinz Ossenbrink;Telephone:(39)332-789-196;Facsimile:(39)332-789-268;E-mail: jennifer.rundle@jrc.it/heinz.ossenbrink@(Terrestrial cells and modules)Fraunhofer-Institut fu r Solare Energiesysteme(Fraunhofer ISE),Oltmannsstrasse5,D-79100Freiburg, Germany.Contact:Dr Wilhelm Warta/Siegried Kunzelmann(cells);Georg Bopp(modules);Telephone:(49)761-4588-146;Facsimile:(49)761-4588-100;E-mail:wilhelm.warta@ise.fhg.de(Terrestrial and space cells and modules)Japan Quality Assurance Organization(JQA),Solar Techno Center,Solar Cell Test Research Division, HIC Bldg.2F,4598Murakushi-cho,Hanamatsu-shi,Shizuoka-ken,431-1207,Japan.Contact:Sanekazu Igari;Telephone:(81)53-484-4101;Facsimile:(81)53-484-4102;E-mail:sanekazu@carrot.ocn.ne.jp(Terrestrial cells and modules)NASA Lewis Research Center,MS302-1,21000Brookpark Road,Cleveland,OH44135,USA. Contact:Dr David Brinker,Senior Research Engineer;Telephone:(1)216-433-2236;Facsimile:(1)216-433-6106;E-mail:dbrinker@(AM0cell measurements)National Renewable Energy Laboratory,1617Cole Blvd.,Golden,CO80401,USA.Contact:Mr Keith Emery;Telephone:(1)303-384-6632;Facsimile:(1)303-384-6604;E-mail:keith_emery@(Terrestrial and concentrator cells and modules)Physikalisch-Technische Bundesanstalt,Bundesallee100,D-38116Braunschweig,Germany. Contact:Dr Ju rgen Metzdorf/Thomas Wittchen;Telephone:(49)531-592-4100/4181;Facsimile: (49)531-592-4105;E-mail:Juergen.Metzdoef@ptb.de(Terrestrial and AM0cells)SOLAR CELL EFFICIENCY TABLES193 Royal Aircraft Establishment,Defence Evaluation and Research Agency,Space Power Laboratory,X107 Building,Farnborough,Hampshire GU140LX,United Kingdom.Contact:C.Goodbody;Telephone:(44)1252-394-003;Facsimile:(44)1252-252-392-664;E-mail: cgoodbody@(Primarily AM0calibrations)Sandia National Laboratories,1515Eubank SE,Albuquerque,NM87123,USA.Contact:Mr David King;Dept.6219,MS-0752;Telephone:(1)505-844-8220;Facsimile: (1)505-844-6541;E-mail:dlking@(Terrestrial and concentrator cells and modules)REFERENCES1.M.A.Green and K.Emery,`Solar cell e ciency tables',Progr.Photovolt.,1,25±29(1993).2.M.A.Green and K.Emery,`Solar cell e ciency tables(version2)',Progr.Photovolt.,1,225±228(1993).3.M.A.Green and K.Emery,`Solar cell e ciency tables(version3)',Progr.Photovolt.,2,27±34(1994).4.M.A.Green and K.Emery,`Solar cell e ciency tables(version4)',Progr.Photovolt.,2,231±234(1994).5.M.A.Green,K.Emery,K.Bu cher and D.L.King,`Solar cell e ciency tables(version5)',Progr.Photovolt.,3,51±55(1995).6.M.A.Green,K.Emery,K.Bu cher and D.L.King,`Solar cell e ciency tables(version6)',Progr.Photovolt.,3,229±233(1995).7.M.A.Green,K.Emery,K.Bu cher and D.L.King,`Solar cell e ciency tables(version7)',Progr.Photovolt.,4,59±62(1996).8.M.A.Green,K.Emery,K.Bu cher,D.L.King and S.Igari,`Solar cell e ciency tables(version8)',Progr.Photovolt.,4,321±325(1996).9.M.A.Green,K.Emery,K.Bu cher,D.L.King and S.Igari,`Solar cell e ciency tables(version9)',Progr.Photovolt.,5,51±54(1997).10.M.A.Green,K.Emery,K.Bu cher,D.L.King and S.Igari,`Solar cell e ciency tables(version10)',Progr.Photovolt.,5,265±268(1997).11.M.A.Green,K.Emery,K.Bu cher,D.L.King and S.Igari,`Solar cell e ciency tables(version11)',Progr.Photovolt.,6,35±42(1998).12.M.A.Green,K.Emery,K.Bu cher,D.L.King and S.Igari,`Solar cell e ciency tables(version12)',Progr.Photovolt.,6,265±270(1998).13.M.A.Green,K.Emery,K.Bu cher,D.L.King and S.Igari,`Solar cell e ciency tables(version13)',Progr.Photovolt.,7,31±38(1999).14.M.A.Green,K.Emery,K.Bu cher,D.L.King and S.Igari,`Solar cell e ciency tables(version14)',Progr.Photovolt.,7,321±326(1999).15.J.Metzdorf,T.Wittchen,K.Heidler,K.Dehne,R.Shimokawa,F.Nagamine,H.Ossenbrink,L.Fornarini,C.Goodbody,M.Davies,K.Emery and R.DeBlasio,Objectives and results of the PEP'87round-robin calibration of reference solar cells and modules,in Conf.Record,21st IEEE Photovoltaic Specialists Conf.,Kissimimee,May, 1990,pp.952±959.16.Standard for Terrestrial Solar Spectral Irradiance Tables at Air Mass1.5for a378Tilted Surface,ASTMStandard E892,Vol.12.02,Philadelphia,PA.17.Standard for Terrestrial Direct Normal Solar spectral Irradiance Tables for Air Mass1.5,ASTM StandardE891,Vol.12.02,Philadelphia,PA.18.Measurement Principles for Terrestrial PV Solar Devices with Reference Spectral Irradiance Data,InternationalElectrochemical Commission Standard904-3,1989.19.Photovoltaic Devices Part1Measurement of Photovoltaic Current±Voltage Characteristics,InternationalElectrochemical Commission Standard904-1,1989.20.Standard Methods of Testing Electrical Performance of Non-Concentrator Terrestrial Photovoltaic Modulesand Arrays Using Reference Cells,ASTM Standard E1036,Philadelphia,PA.21.Standard Methods of Testing Electrical Performance of1Photovoltaic Cells Using Reference Cells,ASTMStandard E948,Vol.12.02,Philadelphia,PA.194M.A.GREEN ET AL.22.Standard Procedures for Terrestrial Photovoltaic Measurements,Commission of The European Community,CEC101,Issue2,EUR7078,EN,1981.23.K.A.Emery,C.R.Osterwald and C.V.Wells,Uncertainty analysis of photovoltaic e ciency measurements,Proc.19th IEEE Photovoltaic Specialists Conf.,New Orleans,LA,4±8May,1987,pp.153±159.24.K.Heidler and J.Beier,Uncertainty analysis of PV e ciency measurements with a solar simulator:spectralmismatch,non-uniformity and other sources of error,Proc.8th European Solar Energy Conf.,Florence,Italy, 9±12May,1988,pp.554±559.25.K.Emery and C.Osterwald,`E ciency measurements and other performance-rating methods',in CurrentTopics in Photovoltaics,Chap.4,Eds.T.Coutts and J.Meakin,Vol.3,pp.301±350,Academic Press,New York, 1988.26.J.Zhao,A.Wang,M.Green and F.Ferrazza,`Novel19.8%e cient`honeycomb'textured multicrystalline and24.4%monocrystalline silicon solar cell',Appl.Phys.Lett.,73,1991±1993(1998).27.Y.Bai,D.H.Ford,J.Rand and A.Barnett,16.6%e cient silicon-®lm2polycrystalline silicon solar cell,inConf.Record,26th IEEE Photovoltaic Specialists Conf.,Anaheim,September/October,1997,pp.35±38. 28.R.P.Gale,R.W.McClelland,D.B.Dingle,J.V.Gormley,R.M.Burgess,N.P.Kim,R.A.Mickelsen and B.J.Stanbery,High-e ciency GaAs/CuInSe2and AlGaAs/CuInSe2thin-®lm tandem solar cells,in Conf.Record, 21st IEEE Photovoltaic Specialists Conf.,Kissimimee,May,1990,pp.53±57.29.R.Venkatasubramanian,B.C.O'Quinn,J.S.Hills,P.R.Sharps,M.L.Timmons,J.A.Hutchby,H.Field,A.Ahrenkiel and B.Keyes,18.2%(AM1.5)e cient GaAs solar cell on optical-grade polycrystalline Ge substrate, in Conf.Record,25th IEEE Photovoltaic Specialists Conf.,Washington,May,1997,pp.31±36.30.C.J.Keavney,V.E.Haven and S.M.Vernon,Emitter structures in MOCVD InP solar cells,in Conf.Record,21st IEEE PHotovoltaic Specialists Conf.,Kissimimee,May,1990,pp.141±144.31.H.Ohyama,T.Aramoto,S.Kumazawa,H.Higuchi,T.Arita,S.Shibutani,T.Nishio,J.Nakajima,M.Tsuji,A.Hanafusa,T.Hibino,K.Omura and M.Murozono,16.0%e cient thin-®lm CdS/CdTe solar cells,in Conf.Record,26th IEEE Photovoltaic Specialists Conf.,Anaheim,September/October,1997,pp.343±346.32.D.Bonnet,H.Richter and K.Ja ger,The CTS thin®lm solar moduleÐcloser to production,in Conf.Record,13th European Photovoltaic Solar Energy Conf.,Nice,October,1995,pp.1456±1461.33.M.A.Contreras,B.Egaas,K.Ramanathan,J.Hiltner,A.Swartzlander,F.Hasoon and R.Nou®,`Progresstoward20%e ciency in Cu(In,Ga)Se polycrystalline thin-®lm solar cell',Progr.Photovolt.,7(this issue). 34.N.F.Cooray,K.Kushiya,A.Fujimaki,I.Sugimaya,T.Miura,D.Okumura,M.Sato,M.Ooshita and O.Yamase,Large area ZnO®lms optimized for graded band-gap Cu(InGa)Se2-based thin-®lm mini-modules,in Tech.Digest,Init.PVSEC-9,Miyasaki,November,1996,pp.597±598.35.S.Okamoto,T.Takahama,Y.Hishikawa,S.Tsuge,M.Nishikune,N.Nakamura,S.Tsuda,H.Nishiwaki,S.Nakano and Y.Kuwano,Improvement in a-Si:H and a-SiC:H for high-e ciency solar cells using hydrogen plasma treatment,in Conf.Record,11th European Photovoltaic Solar Energy Conf.,Montreux,October,1992, pp.537±540.36.Y.Hishikawa,M.Isomura,S.Okamoto,H.Hashimoto and S.Tsuda,E ects of the i-layer properties andimpurity on the performance of a-Si solar cells,in Tech.Digest,Int.PVSEC-7,Nagoya,November,1993, pp.29±32.37.M.Ohmori,T.Takamoto,E.Ikeda and H.Kurita,High e ciency InGaP/GaAs tandem solar cells,in Tech.Digest,Int.PVSEC-9,Miyazaki,Japan,November,1996,pp.525±528.38.K.Mitchell,C.Eberspacher,J.Ermer and D.Pier,Single and tandem junction CuInSe2cell and moduletechnology,in Conf.Record,20th IEEE Photovoltaic Specialists Conf.,Las Vegas,September,1988, pp.1384±1389.39.J.Yang,A.Banerjee,S.Sugiyama and S.Guha,Recent progress in amorphous silicon alloy leading to13%stable cell e ciency,in Conf.Record,26th IEEE Photovoltaic Specialists Conf.,Anaheim,September/October, 1997,pp.563±568.40.J.H.Zhao,A.Wang,F.Yun,G.Zhang,D.M.Roche,S.R.Wenham and M.A.Green,`20,000PERL siliconcells for the`1996World Solar Challenge'solar car race',Progr.Photovolt.,5,269±276(1997).41.D.L.King,W.K.Schubert and T.D.Hund,World's®rst15%e ciency multicrystalline silicon modules,Conf.Record,1st World Conf.on Photovoltaic Energy Conversion,Hawaii,December,1994,pp.1660±1662.42.R.R.Gay,Status and prospects for CIS-based photovoltaics,in Tech.Digest,Int.PVSEC-9,Miyazaki,1996,pp.149±152.43.J.Yang,A.Banerjee,T.Glatfelter,K.Ho man,X.Xu and S.Guha,Progress in triple-junction amorphoussilicon-based alloy solar cells and modules using hydrogen dilution,in Conf.Record,1st World Conf.Photovoltaic Energy Conversion,Hawaii,December,1994,pp.380±385.SOLAR CELL EFFICIENCY TABLES195 44.S.M.Vernon,S.P.Tobin,V.E.Haven,L.M.Geo roy and M.M.Sanfacon,High-e ciency concentratorcells from GaAs on Si,in Conf.Record,22nd IEEE Photovoltaic Specialists Conf.,Las Vegas,October,1991, pp.353±357.45.J.S.Ward,M.W.Wanlass,T.J.Coutts,K.A.Emery and C.R.Osterwald,InP concentrator solar cells,in Conf.Record,22nd IEEE Photovoltaic Specialists Conf.,Las Vegas,October,1991,pp.365±370.46.P.J.Verlinden,R.M.Swanson,R.A.Crane,K.Wickham and J.Perkins,A26.8%e cient concentrator point-contact solar cell,in Conf.Record,13th European Photovoltaic Solar Energy Conf.,Nice,October,1995, pp.1582±1585.47.F.Zhang,S.R.Wenham and M.A.Green,`Large area,concentrator buried contact solar cells',IEEE Trans.onElect.Devs.,42,144±149(1995).48.M.W.Wanlass,T.J.Coutts,J.S.Ward and K.A.Emery,High-e ciency heteroepitaxial InP solar cells,inConf.Record,21st IEEE Photovoltaic Specialists Conf.,Kissimimee,May,1990,pp.159±165.49.L.M.Frass,J.E.Avery,V.S.Sundaram,V.T.Kinh,T.M.Davenport,J.W.Yerkes,J.M.Gee and K.A.Emery,Over35%e cient GaAs/GaSb stacked concentrator cell assemblies for terrestrial applications,in Conf.Record,21st IEEE Photovoltaic Specialists Conf.,Kissimimee,May,1990,pp.190±195.50.M.W.Wanlass,T.J.Coutts,J.S.Ward,K.A.Emery,T.A.Gessert and C.R.Osterwald,Advanced high-e ciency concentrator tandem solar cells,in Conf.Record,21st IEEE Photovoltaic Specialists Conf.,Kissimimee,May,1990,pp.38±45.51.D.J.Friedman,S.R.Kurtz,K.A.Bertness,A.E.Kibbler,C.Kramer,J.M.Olson,D.L.King,B.R.Hansenand J.K.Snyder,`30.2%e cient GaInP/GaAs monolithic two-terminal tandem concentrator cells',Progr.Photovolt.,3,47±50(1995).52.J.M.Gee and G.F.Virshup,A30%-e cient GaAs/Silicon mechanically stacked,multijunction concentratorsolar cell,in Conf.Record,20th IEEE Photovoltaic Specialists Conf.,Las Vegas,September,1988,pp.754±758.53.M.F.Piszczor,D.J.Brinker,D.J.Flood,J.E.Avery,L.M.Fraas,E.S.Fairbanks,J.W.Yerkes and M.J.O'Neill,A high-performance photovoltaic concentrator array:the mini-dome Fresnel lens concentrator with 30%e cient GaAs/GaSb tandem cells,in Conf.Record,22nd IEEE Photovoltaic Specialists Conf.,Las Vegas,October,1991,pp.1485±1489.54.C.J.Chiang and E.H.Richards,A20%e cient photovoltaic concentrator module,in Conf.Record,21st IEEEPhotovoltaic Specialists Conf.,Kissimimee,May,1990,pp.861±863.55.J.Knobloch,S.W.Glunz,D.Biro,W.Warta,E.Scha er and W.Wettling,Solar cells with e ciencies above21%processed from Czochralski grown silicon,in Conf.Record,25th IEEE Photovoltaic Specialists Conf., Washington,May,1996,pp.405±408.56.A.Wang,J.Zhao,S.R.Wenham and M.A.Green,`21.5%e cient thin silicon solar cell',Progr.Photovolt.,4,55±58(1996).57.C.Hebling,S.W.Glunz,J.O.Schumacher and J.Knobloch,High-e ciency(19.2%)silicon thin-®lm solar cellswith interdigitated emitter and base-front-contact,in Conf.Record,14th European Photovoltaic Solar Energy Conf.,Barcelona,July,1997,pp.2318±2323.utenschlager,F.Lutz,C.Schetter,U.Schubert and R.Schindler,MC-silicon solar cells with417%e ciency,in Conf.Record,26th IEEE Photovoltaic Specialists Conf.,Anaheim,September,1997,pp.7±12.59.H.Nakaya,M.Nishida,Y.Takeda,S.Moriuchi,T.Tonegawa,T.Machida and T.Nunoi,`Polycrystallinesilicon solar cells with v-grooved surface',Solar Energy Mat.Solar Cells,34,219±225(1994).60.C.Hebling,S.Reber,K.Schmidt,R.Lu dermann and F.Lutz,Oriented recrystallization of silicon layers ofsilicon thin-®lm solar cells,in Conf.Record,26th IEEE Photovoltaic Specialists Conf.,Anaheim,September, 1997,pp.623±626.61.K.Yamamoto,M.Yoshimi,T.Suzuki,Y.Tawada,T.Okamoto and A.Nakajima,Thin®lm poly-si solar cell onglass substrate fabricated at low temperature,presented at MRS Spring Meeting,San Francisco,April,1998.62.Y.C.M.Yeh,C.Chang,F.Ho and H.Yoo,Large scale,high e ciency GaAs/Ge cell production,in Conf.Record,21st IEEE Photovoltaic Specialists Conf.,Kissimimee,May,1990,pp.79±83.63.R.R.Schmit,J.S.Reynolds,J.K.Arch and G.D.Stevens,The e ect of silicon purity on spheral Solar2cellprocessing and performance,in Conf.Record,24th IEEE Photovoltaic Specialists Conf.,Hawaii,December, 1994,pp.1603±1606.64.H.S.Ullal,K.Zweibel and B.G.von Roedern,Current status of polycrystalline thin-®lm technologies,in Conf.Record,26th IEEE Photovoltaic Specialists Conf.,Anaheim,September,1997,pp.301±305.。

光伏行业英文词汇

光伏行业英文词汇

太阳电池solar cell通常是指将太阳光能直接转换成电能的一种器件。

硅太阳电池silicon solar cell硅太阳电池是以硅为基体材料的太阳电池。

单晶硅太阳电池single crystalline silicon solar cell单晶硅太阳电池是以单晶硅为基体材料的太阳电池。

非晶硅太阳电池(a—si太阳电池)amorphous silicon solar cell用非晶硅材料及其合金制造的太阳电池称为非晶硅太阳电池,亦称无定形硅太阳电池,简称a—si太阳电池。

多晶硅太阳电池polycrystalline silicon solar cell多晶硅太阳电池是以多晶硅为基体材料的太阳电池。

聚光太阳电池组件photovoltaic concentrator module系指组成聚光太阳电池,方阵的中间组合体,由聚光器、太阳电池、散热器、互连引线和壳体等组成。

电池温度cell temperature系指太阳电池中P-n结的温度。

太阳电池组件表面温度solar cell module surface temperature系指太阳电池组件背表面的温度。

大气质量(AM)Air Mass (AM)直射阳光光束透过大气层所通过的路程,以直射太阳光束从天顶到达海平面所通过的路程的倍数来表示。

太阳高度角solar 太阳高度角solar elevation angle太阳光线与观测点处水平面的夹角,称为该观测点的太阳高度角。

辐照度irradiance系指照射到单位表面积上的辐射功率(W/m2)。

总辐照(总的太阳辐照)total irradiation (total insolation)在一段规定的时间内,(根据具体情况而定为每小时,每天、每周、每月、每年)照射到某个倾斜表面的单位面积上的太阳辐照。

直射辐照度direct irradiance照射到单位面积上的,来自太阳圆盘及其周围对照射点所张的圆锥半顶角为8o的天空辐射功率。

光伏行业英文词汇

光伏行业英文词汇

太阳电池 solar cell通常是指将太阳光能直接转换成电能的一种器件。

硅太阳电池silicon solar cell硅太阳电池是以硅为基体材料的太阳电池。

单晶硅太阳电池single crystalline silicon solar cell单晶硅太阳电池是以单晶硅为基体材料的太阳电池。

非晶硅太阳电池〔a—si太阳电池〕amorphous silicon solar cell用非晶硅材料及其合金制造的太阳电池称为非晶硅太阳电池,亦称无定形硅太阳电池,简称a—si太阳电池。

多晶硅太阳电池polycrystalline silicon solar cell多晶硅太阳电池是以多晶硅为基体材料的太阳电池。

聚光太阳电池组件photovoltaic concentrator module系指组成聚光太阳电池,方阵的中间组合体,由聚光器、太阳电池、散热器、互连引线和壳体等组成。

电池温度cell temperature系指太阳电池中P-n结的温度。

太阳电池组件外表温度solar cell module surface temperature系指太阳电池组件背外表的温度。

大气质量〔AM〕Air Mass (AM)直射阳光光束透过大气层所通过的路程,以直射太阳光束从天顶到达海平面所通过的路程的倍数来表示。

太阳高度角solar太阳高度角solar elevation angle太阳光线与观测点处水平面的夹角,称为该观测点的太阳高度角。

辐照度irradiance系指照射到单位外表积上的辐射功率〔W/m2〕。

总辐照〔总的太阳辐照〕total irradiation (total insolation)在一段规定的时间内,〔根据具体情况而定为每小时,每天、每周、每月、每年〕照射到某个倾斜外表的单位面积上的太阳辐照。

直射辐照度direct irradiance照射到单位面积上的,来自太阳圆盘及其周围对照射点所张的圆锥半顶角为8o的天空辐射功率。

Solarcell太阳能电池

Solarcell太阳能电池

Solarcell太阳能电池Solarcell太阳能电池是一种利用太阳辐射能转化为电能的设备。

它是一种光电转换器件,利用半导体材料的光电效应,将太阳能转化为电能,可应用于太阳能发电、太阳能热水器、太阳能灯等领域。

太阳能是一种清洁、无污染、无噪音的能源。

而太阳能电池的使用和发展,正是为了利用这种资源的便捷性和可再生性。

太阳能电池采用的主要是半导体材料,是一种通过光的作用而转化成电能的器件。

太阳能电池的原理是不同于普通电池的化学反应能转换。

它是利用光照射到半导体材料上,使得材料内部的电子与空穴受到能带结构的影响,电子从价带跃迁到导带,从而在电极上产生电流,这便是光电效应。

而且,太阳能电池的转换效率可以达到20%以上,是一种相对高效的设备。

太阳能电池的主要构成成分是硅材料。

硅材料有两种,分别是单晶硅和多晶硅。

其中,单晶硅是通过高纯度硅制成,在制作过程中需要高温加热,成本相对较高,但效率较高。

而多晶硅则是经过重新熔化的硅材料复合而成,成本相对低廉,效率相对较低。

太阳能电池有不同的构造,主要包括单晶硅、多晶硅、薄膜太阳能电池等等。

其中,单晶硅太阳能电池造型比较规整,效率高,适用于商业应用。

多晶硅太阳能电池造型不规则,效率较低,可以应用于家庭太阳能发电。

薄膜太阳能电池则适用于户外应用,体积小,可以储存能量。

太阳能电池是一种非常环保的能源转换设备。

与化石能源相比,太阳能电池产生的废物少,没有污染,绿色环保。

而且,太阳能电池适用范围广,能够满足家庭发电、城市电力供应、无线电信等多种需要。

此外,太阳能电池的使用成本也逐渐降低,成为了越来越多人青睐的“新能源”。

随着太阳能电池的发展,其广泛应用创造的就业机会也在不断增加。

在制造、安装、维护等方面,都需要大量的技术工人从事。

可以说,太阳能电池的发展不仅提高了全社会对新能源的认知度,还带动了相应行业的长远发展。

总之,太阳能电池的发展,正是在满足人们对清洁能源的需求之下,通过技术进步而实现的。

太阳能电池(Solar Cell)

太阳能电池(Solar Cell)

太陽能電池(Solar Cell)太陽能電池又稱為「太陽能晶片」或光電池,是一種將太陽光轉成電能的裝置。

近年來,由於地球暖化及全球能源危機的問題,各國皆投入研究低耗能、低污染的各種半導體元件,而其中又以無耗損及無污染的綠能產業太陽能電池,最為熱門。

而太陽能電池又以提升轉換效率為主要研究方向。

型式:可分作基板式薄膜式,基板式在材料上又可分單晶式、或相溶後冷卻而成的多晶式基板;薄膜式則可和建築物有較佳的結合性,它具有曲度,有可撓、可折疊等特性,材料上較常用非晶矽。

除前二者外,另有有機或奈米材料製作之太陽能電池,目前仍處研發階段。

以發展時間區分為四世代:第一代:基板矽晶 (Silicon Based)發展最長久,技術也最成熟。

種類可分為單晶矽(Monocrystalline Silicon)、多晶矽(Polycrystalline Silicon)、非晶矽(Amorphous Silicon)。

以應用來說是以前兩者單晶矽與多晶矽為大宗,也因應不同設計的需求需要用到不同材料(例:對光波長的吸收、成本、面積......等等)。

第二代:薄膜 (Thin Film)以薄膜製程來製造電池。

種類可分為碲化鎘(Cadmium Telluride CdTe)、銅銦硒化物(Copper Indium Selenide CIS)、銅銦鎵硒化物(Copper Indium Gallium Selenide CIGS)、砷化鎵(Gallium arsenide GaAs)第三代:新觀念研發 (New Concept)第三代電池與前代電池最大的不同是製程中導入有機物和奈米科技。

種類有光化學太陽能電池、染料光敏化太陽能電池、高分子太陽能電池、奈米結晶太陽能電池。

第四代:複合薄膜材料針對電池吸收光的薄膜做出多層結構。

※註:某種電池製造技術,並非僅能製造一種類型的電池,例如在多晶矽製程,既可製造出矽晶版類型,也可以製造薄膜類型。

材料種類:非晶矽(amorphous silicon)、多晶矽(poly crystalline)、單晶矽(a-silicon)、GaAs(砷化鎵)、CdTe薄膜電池、CIGS薄膜電池(CuInxGa(1-x)Se2)等半導體、或三五族的元素鍵結材料,這些材料皆為光轉為電之光電元件。

太阳能电池的结构

太阳能电池的结构

太阳能电池的结构太阳能电池(Solar Cell)是一种将太阳能转化为电能的装置。

它是一种半导体器件,将光能直接转化为电能。

太阳能电池的结构相对简单,主要由多个不同层次的材料构成。

本文将介绍太阳能电池的结构及其工作原理。

1. 太阳能电池的基本构成太阳能电池的基本构成包括以下几个主要部分:1.1 表面玻璃罩层表面玻璃罩层起到保护太阳能电池的作用,可以防止灰尘、水分、气体等物质进入电池内部,同时还能保护电池不受机械损伤。

1.2 透明导电层透明导电层位于表面玻璃罩层下方,主要由氧化锌等材料构成。

透明导电层在太阳光的作用下,可以将光能转化为电能,并且对光的透过率较高。

1.3 光吸收层光吸收层是太阳能电池的核心部分,通过吸收太阳光中的能量来产生电流。

常见的光吸收层材料有单晶硅、多晶硅、非晶硅等。

在光吸收层中,太阳光的能量会激发材料中的电子,使其进入激发态,然后通过电场分离出电子和空穴。

1.4 正(负)极金属电极正(负)极金属电极分别位于光吸收层的上下方,负责导出电子和空穴,形成电流。

通常使用的正(负)极材料有铝、银等。

金属电极具有良好的导电性能,能够有效地将产生的电流输送出来。

1.5 背面导电层背面导电层位于光吸收层下方,主要起到导电和防反射的作用。

背面导电层可以提高太阳能电池对太阳光的吸收率,同时也能够将光能转化为电能。

2. 太阳能电池的工作原理太阳能电池的工作原理是基于光生电效应和荷尔-维斯滕效应的。

当太阳光照射到太阳能电池的表面玻璃罩层时,经过透明导电层的导引,光能会通过光吸收层吸收,并激发光吸收层中的电子。

光吸收层中的电子在吸收光能后,会变成激发态,并丧失自由电子的稳定性。

在太阳能电池内部存在一个电场,这个电场会分离光吸收层中的电子和正电空穴,并引导它们到正(负)极金属电极上。

正(负)极金属电极会导出电子和空穴,形成电流。

背面导电层的作用是增加太阳能电池对太阳光的吸收率,同时还能够将光能转化为电能。

太阳能电池(solar cells)

太阳能电池(solar cells)
In 1973 the application of solar cell transfered to the general purpose of the people's livelihood.
4.Materials for solar cell
History of solar cells
敏化纳米晶太阳能电池 5.1Basic structure of a solar cell
· top or front layer t can be The · oppositely doped identical Aproperly doped an semiconductor base b semi-conductor(homo-junction cell), a chemicallyp-type) is (either n- or different semiconductor with a larger the(hetero-junction cell), or a starting material. gap · the interface At thin metal film, typically 50-100 A thick (Schottky barrier). In between b and t a space the latter it has turned out to be charge region will build beneficial to introduce a thin up which leads to a insulating barrier between the semiconductor and the metal to rectifier characteristic improve the open circuit voltage and therefore the efficiency.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.Introduction of solar cell and its superiority
Application
2. Working principle
quantum dot sensitized Solar cells
The process of electron-transfer:
(1) QD+hν→QD* (2) QD*→QD++e-(CB)
3)The rate of conversion is low currently
1.Introduction of solar cell and its superiority
wind energy coal
Contrast with other energy
solar energy aqua energy
Photo anode
Electrolyte
Counter-electrode
(3) e-(CB)→e-(BC) (4) I3-+2e- (CB)→3I(5)QD++e-(CB) →QD (6)I3-+2e-(CE) →3I(7) 3I-+2QD+→I3-+QD QD: quantum dot CB: conductor band BC: back contact
Ningbo university of technology
Solar cells
Reporter: wanglianbo 2013.09.27
Main content
1
Introduction of solar cells
2
3 4
composition of solar cells and working principle
4.Perovskite sensitized solar cells
Solid-state sensitized solar cell? Organic-inorganic hybrid solar cell? or p-i-n structure?
Dye, quantum dot Organic-inorganic Perovskite
3.Photo anode
Michael Gratzel et al,Laboratory for Photonics and Interfaces, Swiss Federal Institute of Technology, CH-1015
Poulomi Roy, Steffen Berger, and Patrik Schmuki(2010), TiO2 Nanotubes: Synthesis and Applications,Reviews DOI: 10.1002/anie.201001374
The perovskite (CH3NH3)PbI3 QD-sensitized 5.5 μm thick TiO2 films depending on concentration of the equimolar mixture of CH3NH3 and PbI2 (1)was obtained by deposition of 10.05wt% (2)was obtained by deposition of 20.13wt
Figure 1. The composition of QD sensitized solar cells
2. Working principle
Figure 2. The composition of dye sensitized solar cells
3.Photo anode
QD
Photo anode
Figure 3. Progress in solid-state DSSCs.
Perovskite/Al2O3/TiO2
P = 15.4%
P = 12.3%
Lee, M. M., J. Teuscher, et al. (2012). "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites." Science 338(6107): 643-647.
3) The production process is Complex
4) High costs
2)The cost is lower than Silicon -based solar cells
3)The rate of conversion is low
2)These offer the prospective of very low cost fabrication
(3)was obtained by deposition of 30.18wt
(4)was obtained by deposition of 40.26wt
J. H., C. R. Lee, et al. (2011). "6.5% efficient perovskite quantum-dot-sensitized solar cell." Nanoscale 3(10): 4088-4093.
Photosensitized solar cells
Time
1.Introduction of solar cell and its superiority
Silicon-based solar cells
1) Production process has been very adept
2) mass production and high rate of conversion
Thin-film solar cells
Photosensitization solar cells
1)The progress of production Is more complex than Silicon -based solar cells
1)The progress of production is sample
Photo anode
Perovskite sensitized solar cells
5
My plan
1.Introduction of solar cell and its superiority
Classification
Silicon-based solar cells
Thin-film solar cells
• 2. Experimental apparatus and to optimize process to synthesize TiO2 nanotubes
TiO2 nanorods/perovskite
Easily pore filling of the HTM
Burschka, J., N. Pellet, et al. (2013). "Sequential deposition as a route to high-performance perovskite-sensitized solar cells." Nature 499(7458): 316-319.
P型有机空穴导体(hole transport) i吸收光(perovskite)
N型TiO2 (电子传输)
Perovskite—(钙钛矿) CH3NH3PbX3
Brown—CH3NH3 Red—Pb Blue--I
Layer structure
Quantum well 1. Light extinction coefficiency 10 times higher than Dyes 2. Stability 3. Bandgap controllable
3.Photo anode
3.Photo anode
CBD
Titanium substrate
Anodic oxidation process
Sol-gel
Photo anБайду номын сангаасde
Factors:
Deposition time
Solution composition Basis material
Electrolytic deposition
The next big thing in photovoltaics
1. Light trapping 2. Bandgap control 3. Multiple absorbance layer
4. Quantum effect
5. Deposition method
My plan
• 1. Read more literature( perovskite sensitized ) about solar cells
FTO
Semiconductor oxide
Figure 3. Schematic representation of QDSCs based on a) mesoporous wide-band semiconductor film b) nanorod and c) inorganic nanotube
相关文档
最新文档