2017-2018年山东省枣庄市薛城区高二上学期数学期中试卷及参考答案(文科)

合集下载

2017-2018学年高二(上)期中数学试卷带答案精讲

2017-2018学年高二(上)期中数学试卷带答案精讲

2017-2018学年高二(上)期中数学试卷一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目的要求的.请将答案填涂在答题卡上对应题号后的框内,答在试卷上无效)1.(5分)用“辗转相除法”求得459和357的最大公约数是()A.3 B.9 C.17 D.512.(5分)以下赋值语句书写正确的是()A.2=a B.a=a+1 C.a*b=2 D.a+1=a3.(5分)某学校高中部组织赴美游学活动,其中高一240人,高二260人,高三300人,现需按年级抽样分配参加名额40人,高二参加人数为()A.12 B.13 C.14 D.154.(5分)有下面的程序,运行该程序,要使输出的结果是30,在处应添加的条件是()A.i>12 B.i>10 C.i=14 D.i=105.(5分)在样本方差的计算公式s2=[(x1﹣20)2+(x2﹣20)2+…+(x10﹣20)2]中,数字10和20分别表示样本的()A.样本容量,方差 B.平均数,样本容量C.标准差,平均数 D.样本容量,平均数6.(5分)如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3、4中的任何一个,允许重复,则填入A方格的数字大于B方格的数字的概率为()A.B.C.D.7.(5分)将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个得分的平均分为91,现场做的7个得分的茎叶图(如图)后来有一个数据模糊,无法辨认,在图中用x表示,则x的值为()A.0 B.4 C.5 D.78.(5分)在区间[1,6]上随机取一个实数x,使得2x∈[2,4]的概率为()A.B.C.D.9.(5分)从有2个红球和2个黒球的口袋内任取2个球,互斥而不对立的两个事件是()A.至少有一个黒球与都是黒球B.至少有一个红球与都是红球C.至少有一个黒球与至少有1个红球D.恰有1个黒球与恰有2个黒球10.(5分)下表提供了某厂节能降耗技术改造后在生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据:若根据上表提供的数据用最小二乘法可求得y对x的回归直线方程是=0.7x+0.35,则表中m的值为()A.4 B.4.5 C.3 D.3.511.(5分)学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次是[20,40),[40,60),[60,80),[80,100),若低于60分的人数是15人,则该班的学生人数和平均成绩分别是()A.45,67 B.50,68 C.55,69 D.60,7012.(5分)用秦九韶算法计算多项式f(x)=12+35x﹣8x2+79x3+6x4+5x5+3x6在x=﹣4时的值时,V3的值为()A.﹣845 B.220 C.﹣57 D.34二.填空题(本大题共4小题,每小题5分,共20分,请将答案填在答题卡对应题号的位置上,答错位置、书写不清,模棱两可均不得分)13.(5分)假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你衣次写出最先检测的5袋牛奶的编号(下面摘取了随机数表第7行至第9行).84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54.14.(5分)将二进制数101101(2)化为十进制数,结果为;再将结果化为8进制数,结果为.15.(5分)将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频数之和等于27,则n等于.16.(5分)某篮球队6名主力队员在最近三场比赛中投进的三分球个数如表所示:如图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填,输出的s=.三.解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.请将答案填在答题卡上对应题号的指定区域内)17.(10分)如图,在Rt△ABC中,AB=4,BC=3,点P在边BC上沿B→C运动,求△ABP的面积小于4的概率.18.(12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(Ⅰ)从该班随机选1名同学,求该同学至少参加一个社团的概率;(Ⅱ)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.19.(12分)甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟,过时即可离去.求两人能会面的概率.20.(12分)某种产品特约经销商根据以往当地的需求情况,得出如图该种产品日需求量的频率分布直方图.(Ⅰ)求图中a的值,并估计日需求量的众数;(Ⅱ)某日,经销商购进130件该种产品,根据近期市场行情,当天每售出1件能获利30元,未售出的部分,每件亏损20元.设当天的需求量为x件(100≤x≤150),纯利润为S元.(ⅰ)将S表示为x的函数;(ⅱ)根据直方图估计当天纯利润S不少于3400元的概率.21.(12分)运行如图所示的程序框图,当输入实数x的值为﹣1时,输出的函数值为2;当输入实数x的值为3时,输出的函数值为7.(Ⅰ)求实数a,b的值;并写出函数f(x)的解析式;(Ⅱ)求满足不等式f(x)>1的x的取值范围.22.(12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如表:(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程=x +a ,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?参考公式:b=,a=﹣b .参考答案与试题解析一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目的要求的.请将答案填涂在答题卡上对应题号后的框内,答在试卷上无效)1.(5分)用“辗转相除法”求得459和357的最大公约数是()A.3 B.9 C.17 D.51【分析】用459除以357,得到商是1,余数是102,用357除以102,得到商是3,余数是51,用102除以51得到商是2,没有余数,得到两个数字的最大公约数是51.【解答】解:∵459÷357=1…102,357÷102=3…51,102÷51=2,∴459和357的最大公约数是51,故选D.【点评】本题考查辗转相除计算最大公约数,本题是一个基础题,是在算法案例中出现的一个案例,近几年在新课标中出现,学生掌握的比较好,若出现一定会得分.2.(5分)以下赋值语句书写正确的是()A.2=a B.a=a+1 C.a*b=2 D.a+1=a【分析】根据赋值语句的格式,逐一进行分析,即可得到答案.【解答】解:由赋值语句的格式我们可知,赋值语句的赋值号左边必须是一个变量,而右边的运算符号与平常书写的运算符号有所不同.A中左侧是常数,不是变量,格式不对;B中满足赋值语句的格式与要求,正确;C与D中左侧是运算式,不对;故选:B.【点评】本题考查赋值语句,通过对赋值语句定义和格式的把握直接进行判断即可,属于基础题.3.(5分)某学校高中部组织赴美游学活动,其中高一240人,高二260人,高三300人,现需按年级抽样分配参加名额40人,高二参加人数为()A.12 B.13 C.14 D.15【分析】根据分层抽样的定义,即可得到结论.【解答】解:∵高一240人,高二260人,高三300人,∴按年级抽样分配参加名额40人,高二参加人数为×40=13,故选:B.【点评】本题考查了分层抽样的定义和应用问题,是基础题.4.(5分)有下面的程序,运行该程序,要使输出的结果是30,在处应添加的条件是()A.i>12 B.i>10 C.i=14 D.i=10【分析】先根据输出的结果推出循环体执行的次数,再根据s=2+4+6+…+10=30得到程序中UNTIL后面的“条件”.【解答】解:因为输出的结果是30,即s=2+4+6+…+10,需执行5次,则程序中UNTIL后面的“条件”应为i>10.故选B.【点评】本题主要考查了直到型循环语句,语句的识别问题是一个逆向性思维,一般认为学习是从算法步骤(自然语言)至程序框图,再到算法语言(程序).如果将程序摆在我们的面前时,从识别逐个语句,整体把握,概括程序的功能.5.(5分)在样本方差的计算公式s2=[(x1﹣20)2+(x2﹣20)2+…+(x10﹣20)2]中,数字10和20分别表示样本的()A.样本容量,方差 B.平均数,样本容量C.标准差,平均数 D.样本容量,平均数【分析】方差计算公式:S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],n表示样本容量,为平均数,根据此公式即可得到答案.【解答】解:由于S2=[(x1﹣20)2+(x2﹣20)2+…+(x10﹣20)2],所以样本容量是10,平均数是20.故选:D.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.6.(5分)如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3、4中的任何一个,允许重复,则填入A方格的数字大于B方格的数字的概率为()A.B.C.D.【分析】根据题意,在图中的四个方格中填入数字的方法种数共有43种,对于A、B两个方格,由于其大小有序,则可以在l、2、3、4中的任选2个,大的放进A 方格,小的放进B方格,由组合数公式计算可得其填法数目,对于另外两个方格,每个方格有4种情况,由分步计数原理可得其填法数目,最后由分步计数原理,计算可得填入A方格的数字大于B方格的数字的填法种数,利用古典概型的概率计算公式求概率.【解答】解:根据题意,在图中的四个方格中填入数字的方法种数共有44=256种,对于A、B两个方格,可在l、2、3、4中的任选2个,大的放进A方格,小的放进B方格,有C42=6种情况,对于另外两个方格,每个方格有4种情况,则共有4×4=16种情况,则填入A方格的数字大于B方格的数字的不同的填法共有16×6=96种,则填入A方格的数字大于B方格的数字的概率为p=.故选D.【点评】本题考查古典概型及其概率计算公式,考查排列、组合的运用,注意题意中数字可以重复的条件,这是易错点,此题是基础题,也是易错题.7.(5分)将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个得分的平均分为91,现场做的7个得分的茎叶图(如图)后来有一个数据模糊,无法辨认,在图中用x表示,则x的值为()A.0 B.4 C.5 D.7【分析】根据茎叶图提供的数据,去掉1个最高分和1个最低分后,利用公式求平均数可得x的值.【解答】解:选手的7个得分中去掉1个最高分96,去掉1个最低分86,剩余5个得分为88,93,90,94,(90+x);它们的平均分为=91,∴x=0;故选:A.【点评】本题考查了利用茎叶图求平均数的问题,是基础题.8.(5分)在区间[1,6]上随机取一个实数x,使得2x∈[2,4]的概率为()A.B.C.D.【分析】使2x∈[2,4]的区间为[1,2],由此能求出使得2x∈[2,4]的概率.【解答】解:∵2=2¹,4=22∴使2x∈[2,4]的区间为[1,2],∵x∈[1,6],且[1,6]长为5,[1,2]长为1∴使得2x∈[2,4]的概率p=.故选:B.【点评】本题考查概率的求法,是中档题,解题时要认真审题,注意几何概型的合理运用.9.(5分)从有2个红球和2个黒球的口袋内任取2个球,互斥而不对立的两个事件是()A.至少有一个黒球与都是黒球B.至少有一个红球与都是红球C.至少有一个黒球与至少有1个红球D.恰有1个黒球与恰有2个黒球【分析】利用互斥事件和对立事件的概念求解.【解答】解:在A中,至少有一个黒球与都是黒球能同时发生,两个事件不是互斥事件;在B中,至少有一个红球与都是红球能同时发生,两个事件不是互斥事件;在C中,至少有一个黒球与至少有1个红球能同时发生,两个事件不是互斥事件;在D中,恰有1个黒球与恰有2个黒球不能同时发生,可以同时不发生,两个事件是互斥而不对立事件.故选:D.【点评】本题考查互斥而不对立的两个事件的判断,是基础题,解题时要认真审题,注意互斥事件和对立事件的概念的合理运用.10.(5分)下表提供了某厂节能降耗技术改造后在生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据:若根据上表提供的数据用最小二乘法可求得y对x的回归直线方程是=0.7x+0.35,则表中m的值为()A.4 B.4.5 C.3 D.3.5【分析】先求样本中心点,再代入回归直线方程,即可求得m的值.【解答】解:由题意,,∵y对x的回归直线方程是=0.7x+0.35,∴2.5+0.25m=3.15+0.35,∴m=4.故选A.【点评】本题考查回归直线方程,解题的关键是利用回归直线方程恒过样本中心点,属于基础题.11.(5分)学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次是[20,40),[40,60),[60,80),[80,100),若低于60分的人数是15人,则该班的学生人数和平均成绩分别是()A.45,67 B.50,68 C.55,69 D.60,70【分析】根据频率分布直方图,利用频率、频数与样本容量的关系,求出该班的学生数,再计算平均成绩.【解答】解:根据频率分布直方图,得;低于60分的频率是(0.005+0.01)×20=0.3,所以该班的学生人数为=50,;所以,该班的平均成绩为:30×0.005×20+50×0.01×20+70×0.02×20+90×0.015×20=68.故选:B.【点评】本题考查了频率分布直方图的应用问题,也考查了频率=的应用问题,考查了求平均数的计算问题,是基础题目.12.(5分)用秦九韶算法计算多项式f(x)=12+35x﹣8x2+79x3+6x4+5x5+3x6在x=﹣4时的值时,V3的值为()A.﹣845 B.220 C.﹣57 D.34【分析】由于多项式f(x)=12+35x﹣8x2+79x3+6x4+5x5+3x6=(((((3x+5)x+6)x+79)x﹣8)x+35)x+12,可得当x=﹣4时,v0=3,v1=3×(﹣4)+5=﹣7,v2,v3即可得出.【解答】解:∵多项式f(x)=12+35x﹣8x2+79x3+6x4+5x5+3x6=(((((3x+5)x+6)x+79)x﹣8)x+35)x+12,当x=﹣4时,∴v0=3,v1=3×(﹣4)+5=﹣7,v2=﹣7×(﹣4)+6=34,v3=34×(﹣4)+79=﹣57.故选:C.【点评】本题考查了秦九韶算法计算多项式的值,考查了计算能力,属于基础题.二.填空题(本大题共4小题,每小题5分,共20分,请将答案填在答题卡对应题号的位置上,答错位置、书写不清,模棱两可均不得分)13.(5分)假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你衣次写出最先检测的5袋牛奶的编号785,667,199,507,175(下面摘取了随机数表第7行至第9行).84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54.【分析】找到第8行第7列的数开始向右读,第一个符合条件的是785,第二个数916要舍去,第三个数955也要舍去,第四个数667合题意,这样依次读出结果.【解答】解:找到第8行第7列的数开始向右读,第一个符合条件的是785,第二个数916它大于800要舍去,第三个数955也要舍去,第四个数667合题意,这样依次读出结果.故答案为:785、667、199、507、175【点评】抽样方法,随机数表的使用,考生不要忽略.在随机数表中每个数出现在每个位置的概率是一样的,所以每个数被抽到的概率是一样的.14.(5分)将二进制数101101(2)化为十进制数,结果为45;再将结果化为8进制数,结果为55(8).【分析】根据二进制转化为十进制的方法,分别用每位数字乘以权重,累加后即可得到结果;根据“除8取余法”的方法转化为对应的八进制数即可得到结果.【解答】解:101101(2)=1×20+0×21+1×22+1×23+0×24+1×25=1+4+8+32=45..又45=8×5+5,∴45=55(8)故答案为:45,55.(8)【点评】本题以进位制的转换为背景考查算法的多样性,解题的关键是熟练掌握进位制的转化规则,属于基础题.15.(5分)将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频数之和等于27,则n等于60.【分析】根据比例关系设出各组的频率,在频率分布表中,频数的和等于样本容量,频率的和等于1,求出前三组的频率,再频数和建立等量关系即可.【解答】解:设第一组至第六组数据的频率分别为2x,3x,4x,6x,4x,x,则2x+3x+4x+6x+4x+x=1,解得,所以前三组数据的频率分别是,故前三组数据的频数之和等于=27,解得n=60.故答案为60.【点评】本小题考查频率分布直方图的基础知识,熟练基本公式是解答好本题的关键,属于基础题.16.(5分)某篮球队6名主力队员在最近三场比赛中投进的三分球个数如表所示:如图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填i<7(或i≤6),输出的s=51.【分析】由题意该程序框图实际上是求该6名队员在最近三场比赛中投进三分球总数,故循环次数为6,由于第一次进行循环时,循环变量的初值为1,步长为1,故最后一次进入循环的终值应为6,故不难得到判断框中的条件及输出结果.【解答】解:由题意该程序框图实际上是求该6名队员在最近三场比赛中投进三分球总数,故判断框应填i≤6或i<7,输出s的值为:9+13+11+7+5+6=51.故答案为:i<7(或i≤6),51.【点评】本题主要考查了当型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,属于基础题.三.解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.请将答案填在答题卡上对应题号的指定区域内)17.(10分)如图,在Rt△ABC中,AB=4,BC=3,点P在边BC上沿B→C运动,求△ABP的面积小于4的概率.【分析】利用线段的长度与面积的关系,直接利用几何概型求解即可.【解答】解:点P在BC边上沿B→C运动,落在BC上的任何一点都是等可能的.全部基本事件可用BC表示.…(2分)设事件M 为“△ABC面积小于4”,则事件M包含的基本事件可用长度为2的线段BP 表示,…(4分)由几何概型可知:即所求事件的概率为.…(10分)【点评】本题主要考查了几何概型.几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关解.18.(12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(Ⅰ)从该班随机选1名同学,求该同学至少参加一个社团的概率;(Ⅱ)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.【分析】(Ⅰ)先判断出这是一个古典概型,所以求出基本事件总数,“至少参加一个社团”事件包含的基本事件个数,从而根据古典概型的概率计算公式计算即可;(Ⅱ)先求基本事件总数,即从这5名男同学和3名女同学中各随机选1人,有多少中选法,这个可利用分步计数原理求解,再求出“A1被选中,而B1未被选中”事件包含的基本事件个数,这个容易求解,然后根据古典概型的概率公式计算即可.【解答】解:(Ⅰ)设“至少参加一个社团”为事件A;从45名同学中任选一名有45种选法,∴基本事件数为45;通过列表可知事件A的基本事件数为8+2+5=15;这是一个古典概型,∴P(A)=;(Ⅱ)从5名男同学中任选一个有5种选法,从3名女同学中任选一名有3种选法;∴从这5名男同学和3名女同学中各随机选1人的选法有5×3=15,即基本事件总数为15;设“A1被选中,而B1未被选中”为事件B,显然事件B包含的基本事件数为2;这是一个古典概型,∴.【点评】考查古典概型的概念,以及古典概型的概率的求法,分步计数原理的应用.19.(12分)甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟,过时即可离去.求两人能会面的概率.【分析】由题意知本题是一个几何概型,试验发生包含的所有事件对应的集合是Ω={(x,y)|0<x<60,0<y<60}做出集合对应的面积是边长为60的正方形的面积,写出满足条件的事件A═{(x,y)|0<x<60,0<y<60,|x﹣y|≤15}对应的集合和面积,根据面积之比得到概率.【解答】解:由题意知本题是一个几何概型,∵试验发生包含的所有事件对应的集合是Ω={(x,y)|0<x<60,0<y<60}集合对应的面积是边长为60的正方形的面积SΩ=60×60,而满足条件的事件对应的集合是A={(x,y)|0<x<60,0<y<60,|x﹣y|≤15}得到S A=60×60﹣(60﹣15)×(60﹣15)∴两人能够会面的概率P==,∴两人能够会面的概率是.【点评】本题的难点是把时间分别用x,y坐标来表示,从而把时间长度这样的一维问题转化为平面图形的二维面积问题,转化成面积型的几何概型问题.20.(12分)某种产品特约经销商根据以往当地的需求情况,得出如图该种产品日需求量的频率分布直方图.(Ⅰ)求图中a的值,并估计日需求量的众数;(Ⅱ)某日,经销商购进130件该种产品,根据近期市场行情,当天每售出1件能获利30元,未售出的部分,每件亏损20元.设当天的需求量为x件(100≤x≤150),纯利润为S元.(ⅰ)将S表示为x的函数;(ⅱ)根据直方图估计当天纯利润S不少于3400元的概率.【分析】(I)根据所有小矩形的面积之和为1,求得第四组的频率,再根据小矩形的高=求a的值;(II)利用分段函数写出S关于x的函数;根据S≥3400得x的范围,利用频率分布直方图求数据在范围内的频率及可得概率.【解答】解:(Ⅰ)由直方图可知:(0.013+0.015+0.017+a+0.030)×10=1,∴a=0.025,∵,∴估计日需求量的众数为125件;(Ⅱ)(ⅰ)当100≤x<130时,S=30x﹣20(130﹣x)=50x﹣2600,当130≤x≤150时,S=30×130=3900,∴;(ⅱ)若S≥3400由50x﹣2600≥3400得x≥120,∵100≤x≤150,∴120≤x≤150,∴由直方图可知当120≤x≤150时的频率是(0.030+0.025+0.015)×10=0.7,∴可估计当天纯利润S不少于3400元的概率是0.7.【点评】本题考查了由频率分布直方图求频率与众数,考查了分段函数的值域与定义域,在频率分布直方图中小矩形的高=,所有小矩形的面积之和为1.21.(12分)运行如图所示的程序框图,当输入实数x的值为﹣1时,输出的函数值为2;当输入实数x的值为3时,输出的函数值为7.(Ⅰ)求实数a,b的值;并写出函数f(x)的解析式;(Ⅱ)求满足不等式f(x)>1的x的取值范围.【分析】(I)算法的功能是求f(x)=的值,根据输入实数x 的值为﹣1时,输出的函数值为2;当输入实数x的值为3时,输出的函数值为7求得a 、b ;(II )分别在不同的段上求得函数的值域,再求并集.【解答】解:(Ⅰ)由程序框图知:算法的功能是求f (x )=的值,∵输入x=﹣1<0,输出f (﹣1)=﹣b=2,∴b=﹣2.∵输入x=3>0,输出f (3)=a 3﹣1=7,∴a=2. ∴. (Ⅱ)由(Ⅰ)知:①当x <0时,f (x )=﹣2x >1,∴; ②当x ≥0时,f (x )=2x ﹣1>1,∴x >1.综上满足不等式f (x )>1的x 的取值范围为或x >1}.【点评】本题借助考查选择结构程序框图,考查了分段函数求值域,解题的关键是利用程序框图求得分段函数的解析式.22.(12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如表:(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程=x +a ,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?参考公式:b=,a=﹣b .【分析】(1)利用题目条件直接画出散点图即可.(2)利用条件求解回归直线方程的参数,即可.(3)利用回归直线方程求解推出结果即可.【解答】解:(1)散点图如图所示,…(3分)(2)由表中数据得:=52.5,=3.5,=3.5;=54,∴===0.7,,==3.5﹣0.7×3.5=1.05,∴=0.7x+1.05 …(8分)(3)将x=10代入回归直线方程,得=0.7×10+1.05=8.05(小时)预测加工10个零件需要8.05小时.…(12分)【点评】本题考查回归直线方程的求法,散点图的画法,考查计算能力.。

2017-2018学年高二上学期期中数学试卷(文科) Word版含解析

2017-2018学年高二上学期期中数学试卷(文科) Word版含解析

2017-2018学年高二上学期期中试卷(文科数学)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.数列﹣,,,,…的一个通项公式可能是( )A .B .C .D .2.已知△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,a=,b=,B=60°,那么∠A 等于( )A .135°B .45°C .135°或45°D .60° 3.设a >b ,则下列不等式中恒成立的是( )A .<B .a 3>b 3C .>D .a 2>b 24.若等差数列{a n }的前n 项和为S n ,且S 6=3,a 4=2,则a 5等于( )A .5B .6C .7D .85.已知变量x ,y 满足约束条件,则的取值范围是( )A .[2,5]B .(﹣∞,2]∪[5,+∞)C .(﹣∞,3]∪[5,+∞)D .[3,5]6.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若a 2=b 2+c 2﹣bc ,则角A 是( )A .B .C .D .7.设等比数列{a n }的前n 项和记为S n ,若S 4=2,S 8=6,则S 12等于( )A .8B .10C .12D .148.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若,则△ABC 的形状是( )A .等腰三角形B .钝角三角形C .直角三角形D .等腰三角形或直角三角形9.若两个等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,且,则等于( )A .2B .C .D .10.某企业生产甲、乙两种产品均需用A 、B 两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为( )甲 乙 原料限额 A (吨) 3 2 12 B (吨) 128A .12万元B .16万元C .17万元D .18万元 11.若等差数列{a n }的公差为2,且a 5是a 2与a 6的等比中项,则该数列的前n 项和S n 取最小值时,n 的值等于( ) A .4B .5C .6D .712.定义算式⊗:x ⊗y=x (1﹣y ),若不等式(x ﹣a )⊗(x+a )<1对任意x 都成立,则实数a 的取值范围是( )A .﹣1<a <1B .0<a <2C .D .二、填空题(本大题共4小题,每小题5分,共20分.)13.不等式x 2+x ﹣2>0的解集为 .14.在数列{a n }中,若a 1=1,a n+1=2a n (n ≥1),则该数列的通项a n = .15.已知△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,a=1,c=,∠A=30°,则b 等于 .16.下列命题中:①在△ABC 中,sinA >sinB ,则A >B ;②若a >0,b >0,a+b=4,则的最大值为3;③已知函数f (x )是一次函数,若数列{a n }的通项公式为a n =f (n ),则该数列是等差数列;④数列{b n }的通项公式为b n =q n ,则数列{b n }的前n 项和S n =.正确的命题的序号是 .三、解答题(本大题6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图,平面四边形ABCD 中,AB=,AD=2,CD=,∠CBD=30°,∠BCD=120°.(1)求BD 的长;(2)求∠ADC 的度数.18.已知等差数列{a n }中,a 1+a 4=10,a 3=6. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若,求数列{b n }的前n 项和S n .19.连江一中第49届田径运动会提出了“我运动、我阳光、我健康、我快乐”的口号,某同学要设计一张如图所示的竖向张贴的长方形海报进行宣传,要求版心面积为162dm 2(版心是指图中的长方形阴影部分,dm 为长度单位分米),上、下两边各空2dm ,左、右两边各空1dm .(1)若设版心的高为xdm ,求海报四周空白面积关于x 的函数S (x )的解析式;(2)要使海报四周空白面积最小,版心的高和宽该如何设计?20.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知2ccosA+a=2b .(Ⅰ)求角C 的值;(Ⅱ)若a+b=4,当c 取最小值时,求△ABC 的面积.21.已知f (x )=x 2+ax+b ,a ,b ∈R ,若f (x )>0的解集为{x|x <0或x >2}.(Ⅰ)求a ,b 的值;(Ⅱ)解不等式f (x )<m 2﹣1.22.已知数列{a n }的前n 项和为S n =. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设T n 为数列{b n }的前n 项和,其中b n =,求T n ;(Ⅲ)若存在n ∈N *,使得T n ﹣λa n ≥3λ成立,求出实数λ的取值范围.2017-2018学年高二上学期期中试卷(文科数学)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.数列﹣,,,,…的一个通项公式可能是( )A .B .C .D .【考点】数列的函数特性.【分析】利用符号为(﹣1)n 与绝对值为即可得出.【解答】解:数列﹣,,,,…的一个通项公式可能是a n =(﹣1)n.故选:D .【点评】本题考查了数列的通项公式,参考老头老娘了与计算能力,属于基础题.2.已知△ABC中,a、b、c分别是角A、B、C的对边,a=,b=,B=60°,那么∠A等于()A.135°B.45°C.135°或45°D.60°【考点】正弦定理.【分析】结合已知条件a=,b=,B=60°,由正弦定理可得,可求出sinA,结合大边对大角可求得A【解答】解:a=,b=,B=60°,由正弦定理可得,a<b A<B=60°A=45°故选B【点评】本题考查正弦定理和大边对大角定理解三角形,属于容易题3.设a>b,则下列不等式中恒成立的是()A.<B.a3>b3C.>D.a2>b2【考点】不等式比较大小.【分析】A.取a=2,b=﹣1时不成立;B.利用函数y=x3在R上单调递增即可判断出正误.C.取a=2,b=1时不成立;D.取a=1,b=﹣2时不成立.【解答】解:A.取a=2,b=﹣1时不成立;B.由于函数y=x3在R上单调递增,∵a>b,∴a3>b3,成立.C.取a=2,b=1时不成立;D.取a=1,b=﹣2时不成立.故选:B.【点评】本题考查了函数的单调性、不等式的性质,考查了推理能力与计算能力,属于基础题.4.若等差数列{a n }的前n 项和为S n ,且S 6=3,a 4=2,则a 5等于( )A .5B .6C .7D .8 【考点】等差数列的前n 项和.【分析】利用等差数列的通项公式与求和公式即可得出. 【解答】解:设等差数列{a n }的公差为d ,∵S 6=3,a 4=2,∴6a 1+d=3,a 1+3d=2,解得a 1=﹣7,d=3. 则a 5=﹣7+3×4=5, 故选:A .【点评】本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.5.已知变量x ,y 满足约束条件,则的取值范围是( )A .[2,5]B .(﹣∞,2]∪[5,+∞)C .(﹣∞,3]∪[5,+∞)D .[3,5]【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用的几何意义是区域内的点到原点的斜率,利用数形结合进行求解即可.【解答】解:作出不等式组对应的平面区域如图,则的几何意义是区域内的点到原点的斜率, 由图象知OC 的斜率最小,OA 的斜率最大,由得,即A (1,5),此时OA 的斜率k=5,由得,即C (2,4),此时OC 的斜率k==2,即2≤≤5,则的取值范围是[2,5],故选:A .【点评】本题主要考查线性规划的应用,利用的几何意义是区域内的点到原点的斜率是解决本题的关键.6.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若a 2=b 2+c 2﹣bc ,则角A 是( )A .B .C .D .【考点】余弦定理.【分析】直接利用余弦定理化简求解即可.【解答】解:在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若a 2=b 2+c 2﹣bc ,由余弦定理可得:cosA=,解得A=.故选:A .【点评】本题考查余弦定理的应用,考查计算能力.7.设等比数列{a n }的前n 项和记为S n ,若S 4=2,S 8=6,则S 12等于( )A .8B .10C .12D .14 【考点】等比数列的前n 项和.【分析】直接利用等比数列的性质,化简求解即可.【解答】解:等比数列{a n }的前n 项和记为S n ,若S 4=2,S 8=6,可得S 4,S 8﹣S 4,S 12﹣S 8,也是等比数列,S 12﹣S 8===8.S 12=14. 故选:D .【点评】本题考查等比数列的简单性质的应用,考查计算能力.8.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若,则△ABC 的形状是( )A .等腰三角形B .钝角三角形C .直角三角形D .等腰三角形或直角三角形【考点】三角形的形状判断.【分析】利用正弦定理转化求解三角形的角的关系,判断三角形的形状即可.【解答】解:在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若,可得,可得sin2A=sin2B . 可得2A=2B 或2A+2B=π,即:A=B 或A+B=;故选:D .【点评】本题考查正弦定理的应用,三角形的形状的判断,考查计算能力.9.若两个等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,且,则等于( )A .2B .C .D .【考点】等差数列的性质.【分析】利用===,即可得出结论.【解答】解: =====,故选C.【点评】本题考查等差数列通项的性质,考查等差数列的求和公式,比较基础.10.某企业生产甲、乙两种产品均需用A、B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为()甲乙原料限额A(吨) 3 2 12B(吨) 1 2 8A.12万元B.16万元C.17万元D.18万元【考点】简单线性规划的应用.【分析】设每天生产甲乙两种产品分别为x,y吨,利润为z元,然后根据题目条件建立约束条件,得到目标函数,画出约束条件所表示的区域,然后利用平移法求出z的最大值.【解答】解:设每天生产甲乙两种产品分别为x,y吨,利润为z元,则,目标函数为 z=3x+4y.作出二元一次不等式组所表示的平面区域(阴影部分)即可行域.由z=3x+4y得y=﹣x+,平移直线y=﹣x+由图象可知当直线y=﹣x+经过点B时,直线y=﹣x+的截距最大,此时z最大,解方程组,解得,即B的坐标为x=2,y=3,∴z=3x+4y=6+12=18.max即每天生产甲乙两种产品分别为2,3吨,能够产生最大的利润,最大的利润是18万元,故选:D.【点评】本题主要考查线性规划的应用,建立约束条件和目标函数,利用数形结合是解决本题的关键.11.若等差数列{an }的公差为2,且a5是a2与a6的等比中项,则该数列的前n项和Sn取最小值时,n的值等于()A.4 B.5 C.6 D.7【考点】等差数列与等比数列的综合.【分析】由题意可得,运用等差数列的通项公式和等比数列的中项的性质,解方程可得a1,结合已知公差,代入等差数列的通项可求,判断数列的单调性和正负,即可得到所求和的最小值时n的值.【解答】解:由a5是a2与a6的等比中项,可得a52=a2a6,由等差数列{an}的公差d为2,即(a1+8)2=(a1+2)(a1+10),解得a1=﹣11,a n =a1+(n﹣1)d=﹣11+2(n﹣1)=2n﹣13,由a1<0,a2<0,…,a6<0,a7>0,…可得该数列的前n项和Sn取最小值时,n=6.故选:C.【点评】等差数列与等比数列是高考考查的基本类型,本题考查等差数列的通项公式的运用,同时考查等比数列的中项的性质,以及等差数列的单调性和前n项和的最小值,属于中档题.12.定义算式⊗:x⊗y=x(1﹣y),若不等式(x﹣a)⊗(x+a)<1对任意x都成立,则实数a的取值范围是()A.﹣1<a<1 B.0<a<2 C.D.【考点】二次函数的性质.【分析】由已知中算式⊗:x⊗y=x(1﹣y),我们可得不等式(x﹣a)⊗(x+a)<1对任意x都成立,转化为一个关于x的二次不等式恒成立,进而根据二次不等式恒成立的充要条件,构造一个关于a的不等式,解不等式求出实数a的取值范围.【解答】解:∵x⊗y=x(1﹣y),∴若不等式(x﹣a)⊗(x+a)<1对任意x都成立,则(x﹣a)(1﹣x﹣a)﹣1<0恒成立即﹣x2+x+a2﹣a﹣1<0恒成立则△=1+4(a2﹣a﹣1)=4a2﹣4a﹣3<0恒成立解得故选D【点评】本题考查的知识点是二次函数的性质,其中根据二次不等式ax2+bx+c<0恒成立充要条件是a<0,△<0构造一个关于a的不等式,是解答本题的关键.二、填空题(本大题共4小题,每小题5分,共20分.)13.不等式x2+x﹣2>0的解集为{x|x<﹣2或x>1} .【考点】一元二次不等式的解法.【分析】不等式x2+x﹣2>0化为:(x+2)(x﹣1)>0,解出即可得出.【解答】解:不等式x2+x﹣2>0化为:(x+2)(x﹣1)>0,解得x>1或x<﹣2.∴不等式x2+x﹣2>0的解集为{x|x<﹣2或x>1}.故答案为:{x|x<﹣2或x>1}.【点评】本题考查了一元二次不等式的解法,考查了推理能力与计算能力,属于基础题.14.在数列{an }中,若a1=1,an+1=2an(n≥1),则该数列的通项an= 2n﹣1.【考点】等比数列的通项公式.【分析】由题意可得,该数列是以1为首项,以2为公比的等比数列,由此求得它的通项公式.【解答】解:由于在数列{a n }中,若a 1=1,a n+1=2a n (n ≥1),则该数列是以1为首项,以2为公比的等比数列,故它的通项公式为 a n =1×2n ﹣1=2n ﹣1,故答案为 2n ﹣1.【点评】本题主要考查等比数列的定义和通项公式,属于基础题.15.已知△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,a=1,c=,∠A=30°,则b 等于 1或2 .【考点】正弦定理.【分析】由已知及余弦定理可得b 2﹣3b+2=0,进而可解得b 的值.【解答】解:∵a=1,c=,∠A=30°,∴由余弦定理a 2=b 2+c 2﹣2bccosA ,可得:1=b 2+3﹣2×b ×,整理可得:b 2﹣3b+2=0,∴解得:b=1或2. 故答案为:1或2.【点评】本题主要考查了余弦定理在解三角形中的应用,属于基础题.16.下列命题中:①在△ABC 中,sinA >sinB ,则A >B ;②若a >0,b >0,a+b=4,则的最大值为3;③已知函数f (x )是一次函数,若数列{a n }的通项公式为a n =f (n ),则该数列是等差数列;④数列{b n }的通项公式为b n =q n ,则数列{b n }的前n 项和S n =.正确的命题的序号是 ①②③ .【考点】命题的真假判断与应用;基本不等式;数列的函数特性;正弦定理.【分析】逐项判断.①利用正弦定理易得;②先平方在利用基本不等式即可;③由等差数列的函数特征易得;④易知当q=1时,结论不正确.【解答】解:①由正弦定理,当sinA>sinB时,由 a>b,故有A>B,所以①为真;②≤9+(a+3)+(b+2)=18,所以“=”当且仅当“”成立,故②为真;③由等差数列的通项公式的函数特征知③正确;④易知,当q=1时结论不正确.总上可得①②③正确.故答案为:①②③.【点评】本题考查了正弦定理,基本不等式,等差数列的通项以及等比数列的前n项和问题.其中第2个命题的判断是本题难点.属于中档题.三、解答题(本大题6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图,平面四边形ABCD中,AB=,AD=2,CD=,∠CBD=30°,∠BCD=120°.(1)求BD的长;(2)求∠ADC的度数.【考点】余弦定理;正弦定理.【分析】(1)方法一:在△BCD中,由题意和正弦定理求出BD;方法二:由∠BDC=30°求出BC,利用条件和余弦定理列出方程,求出BD;(2)在△ABD中,利用条件和余弦定理求出cos∠ADB的值,结合图象求出∠ADC的度数.【解答】解:(1)方法一:在△BCD中,由正弦定理得:,即…解得BD=3…方法二:由已知得∠BDC=30°,故…由余弦定理得:BD2=CD2+BC2﹣2CDBCcos∠BCD= …∴BD=3…(2)在△ABD 中,由余弦定理得:…∴∠ADB=45° … 由已知∠BDC=30°…∴∠ADC=∠ADB+∠BDC=45°+30°=75°…【点评】本题考查正弦、余弦定理在解三角形中的应用,考查一题多解,化简、计算能力.18.已知等差数列{a n }中,a 1+a 4=10,a 3=6. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若,求数列{b n }的前n 项和S n .【考点】数列递推式;数列的求和.【分析】(I )利用等差数列的通项公式即可得出. (II )利用“裂项求和”方法即可得出.【解答】解:(Ⅰ)设公差为d ,∵a 1+a 4=10,a 3=6.∴,解得, ∴数列{a n }的通项公式为a n =2n .(Ⅱ)由(Ⅰ)知,从而,∴.【点评】本题考查了等差数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.19.连江一中第49届田径运动会提出了“我运动、我阳光、我健康、我快乐”的口号,某同学要设计一张如图所示的竖向张贴的长方形海报进行宣传,要求版心面积为162dm2(版心是指图中的长方形阴影部分,dm为长度单位分米),上、下两边各空2dm,左、右两边各空1dm.(1)若设版心的高为xdm,求海报四周空白面积关于x的函数S(x)的解析式;(2)要使海报四周空白面积最小,版心的高和宽该如何设计?【考点】函数模型的选择与应用.【分析】(1)由已知版心的高为xdm,则版心的宽为dm,求出海报四周空白面积.(2)利用基本不等式求解即可.【解答】(本小题满分12分)解:(1)由已知版心的高为xdm,则版心的宽为dm…故海报四周空白面积为,…即S(x)=2x++8,x>0…(2)由基本不等式得:…当且仅当时取等号…∴要使海报四周空白面积最小,版心的高应该为18 dm、宽为9 dm…【点评】本题考查实际问题选择函数的模型,基本不等式的应用,考查计算能力.20.在△ABC中,内角A,B,C的对边分别为a,b,c,已知2ccosA+a=2b.(Ⅰ)求角C的值;(Ⅱ)若a+b=4,当c取最小值时,求△ABC的面积.【考点】余弦定理;正弦定理.【分析】方法一:(Ⅰ)利用正弦定理、诱导公式、两角和的正弦公式化简已知的式子,由内角的范围和特殊角的三角函数值求出角C;(Ⅱ)利用余弦定理列出方程,由条件和完全平方公式化简后,利用基本不等式求出c的最小值,由面积公式求出△ABC的面积;方法二:(Ⅰ)利用余弦定理化简已知的式子得到边的关系,由余弦定理求出cosC的值,由内角的范围和特殊角的三角函数值求出角C;(Ⅱ)利用余弦定理列出方程,结合条件消元后,利用一元二次函数的性质求出c的最小值,由面积公式求出△ABC的面积.【解答】解:方法一:(Ⅰ)∵2ccosA+a=2b,∴2sinCcosA+sinA=2sinB,…∵A+B+C=π,∴2sinCcosA+sinA=2sin(A+C),…即 2sinCcosA+sinA=2sinAcosC+2cosAsinC,…∴sinA=2sinAcosC,…∵sinA≠0,∴cosC=,…又∵C是三角形的内角,∴C=.…(Ⅱ)由余弦定理得:c2=a2+b2﹣2abcosC=a2+b2﹣ab,…∵a+b=4,故c2=a2+b2﹣ab=(a+b)2﹣3ab=16﹣3ab,…∴(当且仅当a=b=2时等号成立),…∴c的最小值为2,故.…方法二:(Ⅰ)∵2ccosA+a=2b,∴,…∴b2+c2﹣a2+ab=2b2,即 c2=a2+b2﹣ab,…∴,…又∵C是三角形的内角,∴c=.…(Ⅱ)由已知,a+b=4,即b=4﹣a,由余弦定理得,c 2=a 2+b 2﹣ab=(a+b )2﹣3ab ,…∴c 2=16﹣3a (4﹣a )=3(a ﹣2)2+4,…∴当a=2时,c 的最小值为2,故. …【点评】本题考查正弦、余弦定理,三角恒等变换中的公式,以及求最值的方法:基本不等式、一元二次函数的性质,考查一题多解,化简、变形能力.21.已知f (x )=x 2+ax+b ,a ,b ∈R ,若f (x )>0的解集为{x|x <0或x >2}.(Ⅰ)求a ,b 的值;(Ⅱ)解不等式f (x )<m 2﹣1. 【考点】二次函数的性质.【分析】(Ⅰ)利用方程的根,列出方程组,即可求解a ,b 的值;(Ⅱ)化简不等式为乘积的形式,通过因式的根的大小对m 讨论,求解不等式的解集即可.【解答】(本小题满分12分)解:(Ⅰ)根据题意可知,方程x 2+ax+b=0两根分别为0,2,…将两根代入方程得∴.…(Ⅱ)由(Ⅰ)可知不等式f (x )<m 2﹣1为x 2﹣2x <m 2﹣1, 即[x ﹣(1﹣m )][x ﹣(1+m )]<0,…∴当m=0时,1﹣m=1+m ,不等式的解集为Φ;…当m >0时,1﹣m <1+m ,不等式的解集为{x|1﹣m <x <1+m}; … 当m <0时,1+m <1﹣m ,不等式的解集为{x|1+m <x <1﹣m}.… (如上,没有“综上所述…”,不扣分)【点评】本题考查二次函数的简单性质的应用,考查分类讨论思想以及转化思想的应用,考查计算能力.22.已知数列{a n }的前n 项和为S n =. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设T n 为数列{b n }的前n 项和,其中b n =,求T n ;(Ⅲ)若存在n ∈N *,使得T n ﹣λa n ≥3λ成立,求出实数λ的取值范围.【考点】数列递推式;数列的求和.【分析】(Ⅰ)由已知数列的前n 项和,利用a n =S n ﹣S n ﹣1(n ≥2)求数列的通项公式;(Ⅱ)把b n =变形,利用裂项相消法化简,代入S n =得答案;(Ⅲ)把a n 、T n 代入T n ﹣λa n ≥3λ,分离参数λ,利用不等式求得最值得答案.【解答】解:(Ⅰ)当n ≥2时,a n =S n ﹣S n ﹣1==n ,当n=1时,a 1=S 1=1也符合上式,∴a n =n ;(Ⅱ)∵,∴=;(Ⅲ)∵存在n ∈N *,使得T n ﹣λa n ≥3λ成立,∴存在n ∈N *,使得成立,即有解,∴,而,当n=1或n=2时取等号,∴λ的取值范围为.【点评】本题考查数列递推式,训练了裂项相消法求数列的前n 项和,训练了利用分离参数法求解数列恒成立问题,是中档题.。

高二数学上学期期中试题文9

高二数学上学期期中试题文9

2017—2018学年度高二第一学期期中考试数学(文科)试题(试卷分值:150分 考试时间:120分钟 )注意事项:第Ⅰ卷所有选择题的答案必须用2B 铅笔涂在答题卡中相应的位置,第Ⅱ卷的答案必须用0.5毫米黑色签字笔写在答题卡的相应位置上,否则不予计分。

第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 以一个等边三角形的底边所在的直线为旋转轴旋转一周所得的几何体是A. 一个圆柱B. 一个圆锥C. 两个圆锥D. 一个圆台2. 下列命题正确的是A. 棱柱的侧面都是长方形B. 棱柱的所有面都是四边形C. 棱柱的侧棱不一定相等D. 一个棱柱至少有五个面3. 用斜二测画法画一个水平放置的平面图形的直观图为如图所示的等腰三角形,其中1OA OB ==,则原平面图形的面积为A. 1 32D. 2 4. 某几何体的三视图如图所示,则其表面积为A. 2πB. 3πC. 4πD. 5π5. 下列命题正确的是A. 四边形确定一个平面B. 两两相交且不共点的三条直线确定一个平面C. 经过三点确定一个平面D. 经过一条直线和一个点确定一个平面6. 已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列正确的是A. 若//m α,//n α,则//m nB. 若αγ⊥,βγ⊥,则//αβC. 若//m α,//m β,则//αβD. 若m α⊥,n α⊥,则//m n7. 已知圆锥的表面积为6,且它的侧面展开图是一个半圆,则这个圆锥的底面半径为8. 已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的侧视图可能为A. B. C. D.9. 直线20x y -+=的倾斜角为A. 30︒B. 45︒C. 60︒D. 135︒10. 已知圆C 的圆心(2,3)-,一条直径的两个端点恰好在两坐标轴上,则这个圆的方程为A. 22460x y x y +-+=B. 224680x y x y +-++=C. 22460x y x y +--=D. 224680x y x y +-+-=11. 已知点(1,3)P 与直线l :10x y ++=,则点P 关于直线l 的对称点坐标为A. (3,1)--B. (2,4)C. (4,2)--D. (5,3)--12. 如图,正方体1111ABCD A BC D -中,有以下结论:①//BD 平面11CB D ; ②1AC BD ⊥; ③1AC ⊥平面11CB D ;④直线11B D 与BC 所成的角为45︒.其中正确的结论个数是A. 1B. 2C. 3D. 4第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.)13. 已知圆C :222220x y x y +++-=和直线l :20x y -+=,则圆心C 到直线l 的距离为 .14. 在正方体1111ABCD A BC D -的各条棱中,与直线1AA 异面的棱有 条.15. 直线210x ay +-=与直线(1)10a x ay ---=平行,则a 的值是 .16. 已知正方体1111ABCD A BC D -的一个面1111A B C D A ,B ,C ,D 都在半球面上,则正方体1111ABCD A BC D -的体积为 .三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤. 第17题10分,第18~22题每题12分)17. (本小题满分10分)已知菱形ABCD 中,(4,7)A -,(6,5)C -,BC 边所在的直线经过点(8,1)P -.(1)求AD 边所在的直线方程;(2)求对角线BD 所在的直线方程.18. (本小题满分12分)已知动圆C 经过点(1,2)A -,(1,4)B -.(1)求周长最小的圆的一般方程;(2)求圆心在直线240x y --=上的圆的标准方程.19. (本小题满分12分)四边形ABCD 是正方形,O 是正方形的中心,PO ⊥平面ABCD ,E 是PC 的中点.(1)求证:PA ∥平面BDE ;(2)求证:BD PC ⊥.20. (本小题满分12分)如图,多面体ABCDE 中,//BE CD ,BE BC ⊥,AB AC =,平面BCDE ⊥平面ABC ,M 为BC 的中点.(1)若N 是线段AE 的中点,求证://MN 平面ACD ;(2)若1BE =,2BC =,3CD =,求证:DE ⊥平面AME .21. (本小题满分12分)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥,12AA AC ==,1BC =,E ,F 分别为11AC ,BC 的中点. (1)求证:平面ABE ⊥平面11B BCC ;(2)求证:在棱AC 上存在一点M ,使得平面1//C FM 平面ABE ;(3)求三棱锥E ABC -的体积.22. (本小题满分12分)如图组合体中,三棱柱111ABC A B C -的侧面11ABB A 是圆柱的轴截面(过圆柱的轴,截圆柱所得的截面),C 是圆柱底面圆周上不与A ,B 重合的一个点.(1)求证:无论点C 如何运动,平面1A BC ⊥平面1A AC ;(2)当点C 是弧AB 的中点时,求四棱锥111A BCC B -与圆柱的体积比.数学(文科)参考答案一、选择题(每小题5分,共60分)1. C2. D3. A4. B5. B6. D7. A8. C9. B 10. A 11.C 12.D二、填空题(每小题5分,共20分)12或0 16.三、解答题(第17题10分,第18~22题每题12分)17. (1)直线AD斜率为5(1)268AD BC PCk k k---====-,由点斜式方程,得72(4)y x-=+,即2150x y-+=;(2)对角线互相垂直,1157(5)646BDACkk=-=-=----,线段AC的中点为(1,1),由点斜式方程,得51(1)6y x-=-,即5610x y-+=18. (1)以线段AB为直径的圆的周长最小,AB中点坐标(0,1),AB=圆的标准方程为22(1)10x y+-=,一般方程为22290x y y+--=;(2)线段AB中垂线的斜率为1112431(1)ABkk=-=-=----,中垂线方程为113y x=+,联立方程113240y xx y⎧=+⎪⎨⎪--=⎩,得圆心坐标(3,2),半径r=标准方程为22(3)(2)20x y-+-=19. (1)连接AC,OE,则AC经过正方形中心点O,由O是AC的中点,E是PC的中点,得//OE PA,又OE⊂平面BDE,PA⊄平面BDE,所以//PA平面BDE;(2)由PO⊥平面ABCD,得PO BD⊥,又正方形对角线互相垂直,即BD AC⊥,PO AC O=点,PO⊂平面PAC,所以BD⊥平面PAC,得BD PC⊥.20. (1)取AB的中点H,连接MH,NH,由N是AE的中点,得//NH BE,又//BE CD ,得//NH CD ,NH ⊄平面ACD ,所以//NH 平面ACD ,同理可证,//MH 平面ACD ,而MHNH H =点,所以平面//MNH 平面ACD , 从而//MN 平面ACD ;(2)连接AM ,DM ,EM ,由AB AC =,M 为BC 的中点,得AM BC ⊥,又平面BCDE ⊥平面ABC ,平面BCDE 平面ABC BC =,AM ⊂平面ABC ,所以AM ⊥平面BCDE ,则AM DE ⊥,由勾股定理,在Rt EBM ∆中,1BE =,112BM BC ==,得EM ,在Rt DCM ∆中,3CD =,112CM BC ==,得DM 在直角梯形BCDE 中,由平面几何知识计算得DE ==,所以222E M D E D M +=,即EM DE ⊥,而AM EM M =点,所以DE ⊥平面AME .21. (1)由侧棱垂直于底面,1BB ⊥平面ABC ,得1BB AB ⊥,又AB BC ⊥,1BC BB B =点,所以AB ⊥平面11B BCC ,从而平面ABE ⊥平面11B BCC ;(2)取AC 中点M ,连接1C M ,FM ,由F 为BC 的中点,知//FM AB ,FM ⊄平面ABE ,得//FM 平面ABE ,因为1//AM C E ,1AM C E =,所以四边形1AMC E 为平行四边形,则1//C M AE ,1C M ⊄平面ABE ,得1//C M 平面ABE ,而1CM F M M =点, 平面1//C FM 平面ABE ,即存在AC 中点M ,使得平面1//C FM 平面ABE ;(3)点E 到底面的距离即为侧棱长12AA =,在Rt ABC ∆中,2AC =,1BC =,AB BC ⊥,所以AB =11122ABC S AB BC ∆=⋅==,所以12323E ABC V -=⨯=. 22. (1)由条件,AB 为底面圆的直径,C 是圆柱底面圆周上不与A 、B 重合的一个点,所以AC BC ⊥,又圆柱母线1AA ⊥平面ABC ,则1AA BC ⊥,1A AAC A =点,所以BC ⊥平面1AAC ,从而平面1A BC ⊥平面1A AC ; (2)设圆柱的母线长为h ,底面半径为r ,则圆柱的体积为2r h π,当点C 是弧AB 的中点时,ABC ∆为等腰直角三角形,面积为2r , 三棱锥1A ABC -的体积为221133r h r h ⨯⨯=, 三棱柱111A B C ABC -的体积为2r h ,则四棱锥111A BCC B -的体积为2221233r h r h r h -=, 四棱锥111A BCC B -与圆柱的体积比为23π.。

2017-2018学年第一学期高二级(文科)数学期中考试答案

2017-2018学年第一学期高二级(文科)数学期中考试答案

2017-2018学年度第二学期高二级文科数学期中试题答案一、选择题:CBCA DADC BDCB 二、填空题:13.1; 14.b 21+a 41 ;15,-1;16.26、【命题意图】本试题主要考查了对数、指数的比较大小的运用,采用中间值大小比较方法.【解析】ln ln 1e π>=,51log 2log 2<,1212z e -===,故选答案A.9、【解析】由12n n S a +=可知 ,当1n =时得211122a S == 当2n ≥时,有12n n S a += ① 12n n S a -= ②①-②可得122n n n a a a +=-即132n n a a +=,故该数列是从第二项起以12为首项,以32为公比的等比数列,故数列通项公式为2113()22nn a -⎧⎪=⎨⎪⎩(1)(2)n n =≥, 故当2n ≥时,1113(1())3221()3212n n n S ---=+=- 当1n =时,11131()2S -==,故选答案B本题还有其它方法11.圆222210x x y y -+-+=的圆心为M(1,1),半径为1,从外一点(3,2)P 向这个圆作两条切线,则点P 到圆心M 的距离等于5,每条切线与PM 的夹角的正切值等于21,所以两切线夹角的正切值为1242tan 1314θ⋅==-,该角的余弦值等于35,选B.(不排除其它方法)15、答案:1-(y 的系数是负的);三、解答题 17.解:(1)211cos 22cos 1212cos 2cos 22+-++=++A A A A 2c o s c o s 22A A += ……2分505153212592=⋅+⋅= ……………… 5分 (2),2,4sin 21===b A bc S ABC ∆中,54cos 1sin 2=-=A A ……… 7分代入解得5=c …… 8分 由余弦定理得: 1753522254cos 222=⨯⨯⨯-+=-+=A bc c b a ………10分 17=∴a ………11分18. 【解析】(1)由312S =,530S =得:11331251030a d a d +=⎧⎨+=⎩……2分解得:12,2a d ==……4分 所以2n a n =.……5分 (2)因为11111()(1)(1)(21)(21)22121n n a a n n n n ==--+-+-+……7分所以1111133557(21)(21)n T n n =++++⨯⨯⨯-⋅+111111111[()()()()]21335572121n n =-+-+-++--+……9分 11(1)22121n n n =-=++.……11分 19【解析】(1)由已知得1//2EF AB EF AB =且 取AD 的中点G,连结GH,GF则1GH//2AB AB =且GH//,EF GH EF GH EFGH ∴=∴且即为平行四边形FG//EH ,,平面且平面EH ADF FG ADF ⊄⊂∴E H∥平面EAD …………4分 (2)EH ABCD ⊥平面,且FG//EH,FG ABCD FG ADF ∴⊥⊂平面且平面ADF ABCD ∴⊥平面平面 …………8分(3) 由(1)(2)可得,平行四边形EFGH 为矩形, ∴HG ⊥FG,有∵HG⊥AD,∴HG⊥平面EAD ∴EF⊥平面EAD ,∴EF 为三棱锥E-ADE 的高且EF=GH=1,又因为1=××21=ΔEG AD S EAD ,∴31=1•1•31=AFD E V -. …………12分20(一)直接法(除了原点)的轨迹方程为所以点,设根据垂径定理020)2(),2(),(),2(),,(),(90222=-+∴=--∙=--∙=∙∴--==∴=∠x y x M y x x y x y x y x y x y x M OMC点评:挖掘圆的几何特征:圆是以圆心为对称中心的中心对称图形,一定联想垂径分弦定理,挖掘出CM OA ⊥,再把CM OA ⊥坐标化的方法:(优选方法(1) (1)向量转化法:0CM OA ⋅=;(2)斜率转化法:分类有无斜率利用1CM OA k k ⋅=-;(3)勾股定理:222OM MC OC +=直接法:根据已知条件找到一个等式,只要将有关的点代入等式,等式里除了所求点的坐标为(x,y),其它点的坐标已知,化简此等式就是所求点的轨迹方程(二)定义法(除了原点))的轨迹方程为(所以点),半径中点(圆心为)为直径的圆(除了原点的轨迹为以点,设根据垂径定理11-1||211,0),(9022=+∴==∴=∠y x M OC r OC OC M y x M OMC定义法:根据圆、椭圆、双曲线、抛物线的定义,判断点的轨迹符合每个曲线的性质,在使用待定系数法求出轨迹方程,CM OA ⊥∴点M 在以OC 为直径的圆上(下略)这是:利用圆的性质(直径所对的圆周角是直角的逆定理) (三)相关点代入法(除了原点))即()(((上在曲线(点中点为设11-42)224)24)2),(22220220),(,),(22222020220000000000=+=+-∴=+-∴=+-⎩⎨⎧==∴⎪⎪⎩⎪⎪⎨⎧=+==+=∴y x y x y x y x y x A y y xx y y y x x x OA M y x A y x M相关点代入法:已知某点A 的曲线方程,找出所求点P 坐标与点A 坐标之间的关系,用点P 坐标表示点A 坐标,代入点A 所在的曲线方程并化简。

学年上学期高二期中考试数学试题(附答案)

学年上学期高二期中考试数学试题(附答案)

2017~2018学年度第一学期期中调研测试高二数学试题注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、学校、班级、准考证号写在答题纸上并填涂准考证号.试题的答案写在答题纸上对应题目的答案空格内.考试结束后,交回答题纸. 参考公式:样本数据123,,,...,n x x x x 的方差为2211()n i i S x x n ==-∑,其中11n i i x x n ==∑ 一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请 将答案填写在答题卡相应的位置上.......... 1.已知圆的方程为22220x y x y +--=,则其半径为 ▲ .2.命题“2,10x R x x ∀∈++>”的否定是 ▲ .3.现有A 、B 、C 三种不同型号的产品,产品数量之比依次为1∶2∶3,用分层抽样方法抽出一个容量为12的样本,则B 种型号的产品应抽出 ▲ 件.4.为了了解一片树林的生长情况,随机测量了其中100株树木的底部周长(单位:cm ). 所得数据如图,那么在这100株树木中,底部周长不小于110cm 的有 ▲ 株.5.如图所示的流程图,若输入值2t =,则输出s 的值为 ▲ .6. 已知圆1C :22(1)(1)4x y -++=与圆2C :22(1)(1)2x y ++-=,则两圆公共弦所在的直线方程为 ▲ .7.将一枚骰子先后抛掷2次,观察向上的点数,则“点数之和等于6”的概率为 ▲ .8.“0x <”是 “2x x >”的 ▲ 条件. (在“充分不必要”、“必要不充分”、“充第4题图 0For From 1To 7Step 2+End For Pr int S I S S I S ←←第5题图第10题图要”、“既不充分也不必要”中选择一个填空)9.数据1,2,3,4,5的方差为 ▲ .10.执行如图所示的伪代码,输出的结果为 ▲ .11.如右图,矩形长为5,宽为3,在矩形内随机撒100颗黄豆,数得落在椭圆内的黄豆数为80颗,以此实验数据为依据可以估算椭圆的面积约为 ▲ .12.取一根长度为6米的绳子,拉直后在任意位置剪断,那么剪得的两段都不少于1 米的概率是 ▲ .13.若直线2y x b =+与曲线x =b 的取值范围为 ▲ .14.在平面直角坐标系xOy 中,直线240x y -+=与x 轴y 、轴分别交于A ,B 两点,点M 在圆()225x y a +-=(0)a >上运动.若AM B ∠恒为锐角,则实数a 的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15.(本题满分14分)下图是沭阳县某集团1000名员工2017年10月份的月工资直方图.根据直方图估计:(1)该公司月工资在4000 元到4500 元之间的人数;(2)该公司员工的月平均工资.16.(本题满分14分)一只口袋装有形状、大小都相同的6只球,其中有3只白球、2只红球和1只黄球.从中一次性随机摸出2只球,试求:(1)2只球为“1红1黄”的概率;(2)“恰有1只球是白球”的概率是“2只球都是白球”的概率的多少倍?17.(本题满分14分)已知隧道的截面是半径为4米的半圆,车辆只能在道路中心线的一侧行驶. (建立如图所示的直角坐标系)(1)一辆宽度为3米,高为3.5米的货车能不能驶入这个隧道?(2)如果货车的最大宽度为a 米,那么货车要驶入该隧道,限高为多少米?18.(本题满分16分)设命题:p 22a x a -≤≤+ (0a >); :q 260x x +-≤.(1)若1a =,且p q ∧为假,p q ∨为真,求实数x 的取值范围;(2)若q 是p 的充分不必要条件,求实数a 的取值范围.19.(本题满分16分)已知圆C 过点()5,1A 、()1,3B ,且圆心C 在x 轴上.(1)求圆C 的标准方程;(2)求直线3440x y ++=被圆C 截得的弦长;(3)P 为直线:2l x =-上一点,若存在过点P 的直线交圆C 于点,M N ,且M 恰为线段NP 的中点,求点P 的纵坐标的取值范围.20.(本题满分16分)已知圆22:9,C x y += 点(4,3),A - 直线:20l x y -=.(1)求与圆C 相切,且与直线l 垂直的直线方程;(2)若在直线OA (O 为坐标原点)上存在定点B (不同于点A )满足:对于圆C 上任 意一点P ,都使PB PA为定值,试求出所有满足条件的点B 的坐标.2017~2018学年度第一学期期中调研测试高二数学参考答案一、填空题:本大题共14小题,每小题5分,共计70分.1 2、 2,10x R x x ∃∈++≤ 3、4 4、30 5、46、2210x y -+=7、536 8、充分不必要 9、2 10、1611、12 12、23 13、(1⎤-⎦ 14、 5a > 二、解答题:本大题共6小题,共计90分.15. (本题满分14分)解:(1)根据频率分布直方图知,该公司月工资在4000 元到4500 元频率为:1-()0.2+0.25+0.25+0.15+0.05=0.1 ……………………………5分 所以满足条件的人数为:1 000×0.1=100(人). ……………………………7分(2)该公司员工的月平均收入为:4250×0.1+4750×0.2+5250×0.25+5750×0.25+6250×0.15+6750×0.05=5400元.……………………………14分16. ( 本题满分14分)解:给三只白球编号为:1,2,3,;两只红球编号为:4,5;黄球编号为:6.则从中一次性随机摸出2只球有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15种结果, ………………………2分(1)记 “1红1黄”为事件A ,则A 发生的事件有:(4,6),(5,6)共2种结果, 所以()P A =215. ……………………………6分 (2)记“恰有1只球是白球”为事件B ,则B 发生的事件有:(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)共9种结果,所以()P B =93155=. ……………………………10分 记“2只球都是白球”为事件C ,则C 发生的事件有:(1,2),(1,3),(2,3)共3种结果,所以()P C =15, 故“恰有1只球是白球”的概率是“2只球都是白球”的概率的3倍. ………14分17.(本题满分14分)解:如图所示,半圆的圆心坐标为(0,0),半径为4,故该半圆的方程为:2216(0)x y y +=≥, …………………4分将3x =代入得3 3.5y ==<=<, 即离中心线3米处,隧道的高度低于货车的高度,因此,该货车不能驶入这个隧道. ……………………………8分(2)将x a =代入得y =. ………………14分18. (本题满分16分)解:(1)当1a =时,:p 13,x ≤≤因为p q ∧为假,p q ∨为真,所以,p q 一真一假.……………………2分 p 真q 假时,得13,2332x x x x ≤≤⎧∴<≤⎨<->⎩或……………………4分 p 假q 真时,得13,3132x x x x <>⎧∴-≤<⎨-≤≤⎩或……………………6分 综上,实数x 的取值范围是[)(]3,12,3-……………………8分(2)由260x x +-≤得:3 2.x -≤≤……………………10分 若q 是p 的充分不必要条件,则[][]3,22,2,a a -⊂-+即0,23a a >⎧⎨-≤-⎩……14分 所以 5.a ≥所以,实数a 的取值范围是 5.a ≥……………………16分19. (本题满分16分)解:(1)设圆心(),0C x ,则有,CA CB =即=所以2x =,即圆心C 坐标为()2,0圆C半径r = ≠则圆C 的标准方程为()22210x y -+=. ……………………………5分 (2)圆心C 到直线3440x y ++=的距离2d ==则截得的弦长为== ………………………10分(3)设()2,P y -若存在过点P 的直线交圆C 于点,M N ,且M 恰为线段NP 的中点,则必有3CP r ≤所以y ≤则点P的纵坐标的取值范围为⎡⎣. ……………………………16分20.(本题满分16分)解:(1)设所求的直线方程为20x y c ++=因为直线与圆C3,c =∴=±4分所以所求的直线方程为20x y +±=. ……………………………6分(2)直线OA 方程为34y x =- 设()()22,,4,3,PB P x y B m m PAλ-=(λ为常数) ……………………………8分 因为对于圆C 上任意一点,P 都使PB PA为定值,所以22PB PA λ=恒成立。

2017-2018学年高二(上)期中数学试题及参考答案

2017-2018学年高二(上)期中数学试题及参考答案

2017-2018学年度 高二(上)期中考试数 学 试 题考试时间:100分钟 满分100分一、选择题(每题4分,共40分)1.有一个几何体的三视图如下图所示,这个几何体应是一个 ( )A.棱台B.棱锥C.棱柱D.都不对2.棱长都是1的三棱锥的表面积为 ( )A.B.C.D.3.下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行。

⑵两条直线没有公共点,则这两条直线平行。

⑶两条直线都和第三条直线垂直,则这两条直线平行。

⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。

其中正确的个数为 ( ) A .0 B .1 C .2 D .34.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对5.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的底面对角线的长分别是9和15,则这个棱柱的侧面积是 ( )A .130B .140C .150D .1606.用半径为R 的半圆卷成一个无底圆锥,则这个无底圆锥的体积为 ( )A3R B3R C3R D3R 7.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为 ( ) A .7 B.6 C.5 D.38.正四面体A —BCD 中E 、F 分别是棱BC 和AD 之中点,则EF 和AB 所成的角( )A .45︒B .60︒C .90︒D .30︒主视图 左视图 俯视图9.已知二面角α-AB -β的平面角为θ,α内一点C 到β的距离为3,到棱AB 的距离为4, 则tanθ等于 ( )A .34B .35CD10.直三棱柱111ABC A B C -中,各侧棱和底面的边长均为a ,点D 是1CC 上任意一点, 连接11,,,A B BD A D AD ,则三棱锥1A A BD -的体积为 ( )A .361a B .3123a C .363a D .3121a 二、填空题(每题4分,共20分)11.一个棱柱至少有 _____个面;面数最少的一个棱锥有 ________个顶点;顶点最少的一个棱台有 ________条侧棱。

山东省2017—2018学年高二数学上学期期中考试卷(二)

山东省2017—2018学年高二数学上学期期中考试卷(二)

山东省2017—2018学年高二数学上学期期中考试卷(二)(理科)(考试时间120分钟满分150分)一、单项选择题(本大题包括12小题,每小题5分,共60分)1.直线l:x+y+3=0的倾斜角α为()A.30°B.60°C.120° D.150°2.两条不平行的直线,其平行投影不可能是()A.两条平行直线B.一点和一条直线C.两条相交直线D.两个点3.已知圆C:x2+y2﹣2x+6y=0,则圆心P及半径r分别为()A.圆心P(1,3),半径r=10 B.圆心P(1,3),半径C.圆心P(1,﹣3),半径r=10 D.圆心P(1,﹣3),半径.4.已知a∥α,b⊂α,则直线a与直线b的位置关系是()A.平行B.相交或异面C.异面D.平行或异面5.过点(﹣2,4)且在两坐标轴上截距的绝对值相等的直线有()A.1条 B.2条 C.3条 D.4条6.在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.若AC=BD=a,且AC与BD所成的角为60°,则四边形EFGH的面积为()A.B.C.D.7.已知两条直线l1:x+2ay﹣1=0,l2:x﹣4y=0,且l1∥l2,则满足条件a的值为()A.B.C.﹣2 D.28.设直线过点(0,a),其斜率为1,且与圆x2+y2=2相切,则a的值为()A.±B.±2 C.±2D.±49.一空间几何体的三视图如图所示,则该几何体的体积为()A.2π+2B.4π+2C.2π+ D.4π+10.一束光线从点(﹣1,1)出发,经x轴反射到圆C:(x﹣2)2+(y﹣3)2=1上的最短路径长度是()A.4 B.5 C.3 D.211.点P(2,﹣1)为圆(x﹣1)2+y2=25的弦AB的中点,则直线AB的方程为()A.x+y﹣1=0 B.2x+y﹣3=0 C.x﹣y﹣3=0 D.2x﹣y﹣5=012.四面体P﹣ABC中,若PA=PB=PC,则点P在平面ABC内的射影点O是三角形ABC的()A.内心B.外心C.垂心D.重心二、填空题(本题包括4个小题,每小题5分,共20分)13.已知⊙O1:x2+y2=1与⊙O2:(x﹣3)2+(y+4)2=9,则⊙O1与⊙O2的位置关系为.14.圆柱的侧面展开图是边长分别为2a,a的矩形,则圆柱的体积为.15.若l为一条直线,α,β,γ为三个互不重合的平面,给出下面四个命题:①α⊥γ,β⊥γ,则α⊥β;②α⊥γ,β∥γ,则α⊥β;③l∥α,l⊥β,则α⊥β.④若l ∥α,则l平行于α内的所有直线.其中正确命题的序号是.(把你认为正确命题的序号都填上)16.如图2﹣①,一个圆锥形容器的高为a,内装有一定量的水.如果将容器倒置,这时所形成的圆锥的高恰为(如图2﹣②),则图2﹣①中的水面高度为.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.已知直线l经过直线3x+4y﹣2=0与直线2x+y+2=0的交点P,且垂直于直线x ﹣2y﹣1=0.求:(Ⅰ)直线l的方程;(Ⅱ)直线l与两坐标轴围成的三角形的面积S.18.如果一个几何体的主视图与左视图都是全等的长方形,边长分别是4cm与2cm如图所示,俯视图是一个边长为4cm的正方形.(1)求该几何体的全面积.(2)求该几何体的外接球的体积.19.已知直线l1:mx﹣y=0,l2:x+my﹣m﹣2=0.(1)求证:对m∈R,l1与l2的交点P在一个定圆上;(2)若l1与定圆的另一个交点为P1,l2与定圆的另一个交点为P2,求当m在实数范围内取值时,△PP1P2的面积的最大值及对应的m.20.已知圆C同时满足下列三个条件:①与y轴相切;②在直线y=x上截得弦长为2;③圆心在直线x﹣3y=0上.求圆C的方程.21.已知四棱锥P﹣ABCD,底面ABCD是∠A=60°、边长为a的菱形,又PD⊥底ABCD,且PD=CD,点M、N分别是棱AD、PC的中点.(1)证明:DN∥平面PMB;(2)证明:平面PMB⊥平面PAD;(3)求点A到平面PMB的距离.22.已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y ﹣29=0相切.(Ⅰ)求圆的方程;(Ⅱ)设直线ax﹣y+5=0(a>0)与圆相交于A,B两点,求实数a的取值范围;(Ⅲ)在(Ⅱ)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(﹣2,4),若存在,求出实数a的值;若不存在,请说明理由.参考答案一、单项选择题1.C.2.D.3.D4.D.5.C6.A.7.C.8.B.9.C10.A.11.C12.B.二、填空题13.解:根据题意,得⊙O1的半径为r=1,⊙O2的半径为R=3,O1O2=5,R+r=4,R﹣r=2,则4<5,即R+r<O1O2,∴两圆相离.故答案为:相离.14.解:圆柱的侧面展开图是边长为2a与a的矩形,当母线为a时,圆柱的底面半径是,此时圆柱体积是π×()2×a=;当母线为2a时,圆柱的底面半径是,此时圆柱的体积是π×()2×2a=,综上所求圆柱的体积是:或.故答案为:或;15.解:①中,若α⊥γ,β⊥γ,则α与β可能平行与可能相交,故①错误;②中,若α⊥γ,β∥γ,则α⊥β,故②正确;③中,若l∥α,l⊥β,则α中存在直线a平行l,即a⊥β,由线面垂直的判定定理,得则α⊥β,故③正确;④中,若l∥α,则l与α内的直线平行或异面,故④的错误;故答案:②③16.解:令圆锥倒置时水的体积为V′,圆锥体积为V则=V正置后:V水=V则突出的部分V空=设此时空出部分高为h,则h3:,∴故水的高度为:a﹣故答案为:a﹣三、解答题17.解:(Ⅰ)由解得由于点P的坐标是(﹣2,2).则所求直线l与x﹣2y﹣1=0垂直,可设直线l的方程为2x+y+m=0.把点P的坐标代入得2×(﹣2)+2+m=0,即m=2.所求直线l的方程为2x+y+2=0.(Ⅱ)由直线l的方程知它在x轴.y轴上的截距分别是﹣1.﹣2,所以直线l与两坐标轴围成三角形的面积.18.解:(1)由题意可知,该几何体是长方体,底面是正方形,边长是4,高是2,因此该几何体的全面积是:2×4×4+4×4×2=64cm2几何体的全面积是64cm2.(2)由长方体与球的性质可得,长方体的对角线是球的直径,记长方体的对角线为d,球的半径是r,d=所以球的半径r=3因此球的体积v=,所以外接球的体积是36πcm3.19.解:(1)如图所示:l1:﹣y=0,过定点(0,0),=m;l2:x+my﹣m﹣2=0,m(y﹣1)+x﹣2=0,=﹣令y﹣1=0,x﹣2=0.得y=1,x=2,∴过定点(2,1),∵•=﹣1,∴直线与直线互相垂直,∴直线与直线的交点必在以(0,0),(2,1)为一条直径端点的圆上,且圆心(1,),半径r==,∴圆的方程为(x﹣1)2+(y﹣)2=.即x2+y2﹣2x﹣y=0;(2)由(1)得:(0,0),(2,1).当P点在定圆上移动时,△PP1P2的底边P1P2为定值2r.当三角形的高最大时,△PP1P2的面积最大.故三角形面积最大为•2r•r=又与圆的交点为P(,),且OP与P1P2的夹角是45°.∴|OP|==,即+=,解得:m=3或m=故当m=3或m=时,△PP1P2的面积取得最大值.20.解设所求的圆C与y轴相切,又与直线y=x交于AB,∵圆心C在直线x﹣3y=0上,∴圆心C(3a,a),又圆与y轴相切,∴R=3|a|.又圆心C到直线y﹣x=0的距离.在Rt△CBD中,,∴9a2﹣2a2=7.a2=1,a=±1,3a=±3.∴圆心的坐标C分别为(3,1)和(﹣3,﹣1),故所求圆的方程为(x﹣3)2+(y﹣1)2=9或(x+3)2+(y+1)2=9.21.解:(1)证明:取PB中点Q,连接MQ、NQ,因为M、N分别是棱AD、PC中点,所以QN∥BC∥MD,且QN=MD,于是DN∥MQ.⇒DN∥平面PMB.(2)⇒PD⊥MB又因为底面ABCD是∠A=60°、边长为a的菱形,且M为AD中点,所以MB⊥AD.又AD∩PD=D,所以MB⊥平面PAD.⇒平面PMB⊥平面PAD.(3)因为M是AD中点,所以点A与D到平面PMB等距离.过点D作DH⊥PM于H,由(2)平面PMB⊥平面PAD,所以DH⊥平面PMB.故DH是点D到平面PMB的距离..∴点A到平面PMB的距离为.22.解:(Ⅰ)设圆心为M(m,0)(m∈Z).由于圆与直线4x+3y﹣29=0相切,且半径为5,所以,即|4m﹣29|=25.因为m为整数,故m=1.故所求圆的方程为(x﹣1)2+y2=25.…(Ⅱ)把直线ax﹣y+5=0,即y=ax+5,代入圆的方程,消去y,整理,得(a2+1)x2+2(5a﹣1)x+1=0,由于直线ax﹣y+5=0交圆于A,B两点,故△=4(5a﹣1)2﹣4(a2+1)>0,即12a2﹣5a>0,由于a>0,解得a>,所以实数a的取值范围是().(Ⅲ)设符合条件的实数a存在,则直线l的斜率为,l的方程为,即x+ay+2﹣4a=0由于l垂直平分弦AB,故圆心M(1,0)必在l上,所以1+0+2﹣4a=0,解得.由于,故存在实数使得过点P(﹣2,4)的直线l垂直平分弦AB.…。

2017-2018学年高二(上)期中数学试卷(文科)带答案精讲

2017-2018学年高二(上)期中数学试卷(文科)带答案精讲

2017-2018学年高二(上)期中数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设全集为R,集合A={x||x|≤2},B={x|>0},则A∩B()A.[﹣2,2]B.[﹣2,1)C.(1,2]D.[﹣2,+∞)2.(5分)在空间中,下列命题正确的是()A.三条直线两两相交,则这三条直线确定一个平面B.若平面α⊥β,且α∩β=l,则过α内一点P与l垂直的直线垂直于平面βC.若直线m与平面α内的一条直线平行,则m∥αD.若直线a与直线b平行,且直线l⊥a,则l∥b3.(5分)直线x+y=0被圆x2+y2﹣4y=0所截得的弦长为()A.1 B.2 C.D.24.(5分)在△ABC中,“cosA+sinA=cosB+sinB”是“C=90°”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.非充分非必要条件5.(5分)已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.6.(5分)一个四面体的三视图如图所示,则该四面体的表面积为()A.B.C.D.27.(5分)如图是用模拟方法估计圆周率π值的程序框图,P表示估计结果,则图中空白框内应填入()A.P=B.P=C.P=D.P=8.(5分)在等差数列{a n}中,首项a1=0,公差d≠0,若a k=a1+a2+a3+…+a7,则k=()A.22 B.23 C.24 D.259.(5分)已知直线x+y=a与圆x2+y2=4交于A、B两点,且|+|=|﹣|,其中O为原点,则实数a的值为()A.2 B.﹣2 C.2或﹣2 D.或﹣10.(5分)若f(x)是R上的减函数,且f(0)=3,f(3)=﹣1,设P={x|﹣1<f(x+t)<3},Q={x|f(x)<﹣1},若“x∈P”是”x∈Q”的充分不必要条件,则实数t的范围是()A.t≤0 B.t≥0 C.t≤﹣3 D.t≥﹣3二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)若数据组k1,k2...k8的平均数为3,方差为3,则2(k2+3),2(k2+3) (2)(k8+3)的方差为.12.(5分)甲、乙二人参加普法知识竞答,共有10个不同的题目,其中6个选择题,4个判断题,甲、乙二人依次各抽一题,则甲、乙两人中至少有一人抽到选择题的概率是.13.(5分)=.14.(5分)若正数a,b满足a+b=1,则+的最小值为.15.(5分)等比数列{a n}中,公比q=2,log2a1+log2a2+…+log2a10=35,则a1+a2+…+a10=.16.(5分)给出下列命题:以下命题正确的是(注:把你认为正确的命题的序号都填上)①非零向量、满足||=||=||,则与的夹角为30°;②•>0,是、的夹角为锐角的充要条件;③命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”;④若()=0,则△ABC为等腰三角形.17.(5分)过点(2,3)且与直线l1:y=0和l2:都相切的所有圆的半径之和为.三、解答题:本大题共5小题,共65分,解答应写出文字说明,证明过程或演算步骤.18.(12分)在△ABC中,sin(C﹣A)=1,sinB=.(Ⅰ)求sinA的值;(Ⅱ)设AC=,求△ABC的面积.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.20.(13分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD的中点,AB=2,∠BAD=60°.(1)求证:OM∥平面PAB;(2)求证:平面PBD⊥平面PAC;(3)当四棱锥P﹣ABCD的体积等于时,求PB的长.21.(14分)已知圆心为C的圆,满足下列条件:圆心C位于x轴正半轴上,与直线3x﹣4y+7=0相切,且被y轴截得的弦长为,圆C的面积小于13.(Ⅰ)求圆C的标准方程;(Ⅱ)设过点M(0,3)的直线l与圆C交于不同的两点A,B,以OA,OB为邻边作平行四边形OADB.是否存在这样的直线l,使得直线OD与MC恰好平行?如果存在,求出l的方程;如果不存在,请说明理由.22.(14分)设α,β为函数h(x)=2x2﹣mx﹣2的两个零点,m∈R且α<β,函数f(x)=(1)求的f(α)•f(β)值;(2)判断f(x)在区间[α,β]上的单调性并用函数单调性定义证明;(3)是否存在实数m,使得函数f(x)在[α,β]的最大值与最小值之差最小?若存在,求出m的值,若不存在,请说明理由.参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设全集为R,集合A={x||x|≤2},B={x|>0},则A∩B()A.[﹣2,2]B.[﹣2,1)C.(1,2]D.[﹣2,+∞)【分析】分别求出集合A和集合B中不等式的解集,求出两个解集的公共部分即为两个集合的交集.【解答】解:由集合B可知x﹣1>0即x>1;由集合A可知|x|≤2即﹣2≤x≤2.所以B∩A={x|1<x≤2}故选C.【点评】本题是一道以求不等式的解集为平台,求集合交集的基础题,也是高考中的基本题型.2.(5分)在空间中,下列命题正确的是()A.三条直线两两相交,则这三条直线确定一个平面B.若平面α⊥β,且α∩β=l,则过α内一点P与l垂直的直线垂直于平面βC.若直线m与平面α内的一条直线平行,则m∥αD.若直线a与直线b平行,且直线l⊥a,则l∥b【分析】根据平面的基本性质,可判断A;根据面面垂直的性质定理可判断B;根据线面平行的判定定理可判断C;根据异面直线夹角的定义,可判断D【解答】解:三条直线两两相交,则这三条直线确定一个平面或三个平面,故A 错误;若平面α⊥β,且α∩β=l,由面面垂直的性质定理可得:过α内一点P与l垂直的直线垂直于平面β,故B正确;若直线m与平面α内的一条直线平行,则m∥α或m⊂α,故C错误;若直线a与直线b平行,且直线a⊥l,则l⊥b,故D错误;故选:B【点评】本题考查的知识点是命题的真假判断与应用,平面的基本性质,面面垂直的性质定理,线面平行的判定定理,异面直线夹角的定义,难度不大,属于基础题.3.(5分)直线x+y=0被圆x2+y2﹣4y=0所截得的弦长为()A.1 B.2 C.D.2【分析】首先根据已知题意分析圆心与半径.通过直线与圆相交构造一个直角三角形.直角边分别为半弦长,弦心距.斜边为半径.按照勾股定理求出半弦长,然后就能求出弦长.【解答】解:根据题意,圆为x2+y2﹣4y=0故其圆心为(0,2),半径为:2圆心到直线的距离为:d==由题意,圆的半径,圆心到直线的距离,以及圆的弦长的一半构成直角三角形故由勾股定理可得:l=2=2故选:B.【点评】本题考查直线与圆的方程的应用,首先根据圆分析出圆的要素,然后根据直线与圆相交时构造的直角三角形按照勾股定理求出结果.属于基础题4.(5分)在△ABC中,“cosA+sinA=cosB+sinB”是“C=90°”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.非充分非必要条件【分析】对两个条件,“cosA+sinA=cosB+sinB”与“C=90°”的关系,结合三角函数的定义,对选项进行判断【解答】解:“C=90°”成立时,有A+B=90°,故一定有“cosA+sinA=cosB+sinB”成立又当A=B时cosA+sinA=cosB+sinB”成立,即“cosA+sinA=cosB+sinB”得不出“C=90°”成立所以“cosA+sinA=cosB+sinB”是“C=90°”的必要非充分条件故选B.【点评】本题考查充要条件,解答本题要熟练理解掌握三角函数的定义,充分条件,必要条件的定义,且能灵活运用列举法的技巧对两个命题的关系进行验证,本题考查了推理论证的能力,解题时灵活选择证明问题的方法是解题成功的保证.5.(5分)已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即先确定z的最优解,然后确定a的值即可.【解答】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.即2x+y=1,由,解得,即C(1,﹣1),∵点C也在直线y=a(x﹣3)上,∴﹣1=﹣2a,解得a=.故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.6.(5分)一个四面体的三视图如图所示,则该四面体的表面积为()A.B.C.D.2【分析】由三视图想象出空间几何体,代入数据求值.【解答】解:如图所示,四面体为正四面体.是由边长为1的正方体的面对角线围成.其边长为,则其表面积为4×(××)=2.故选D.【点评】本题考查了学生的空间想象力,属于中档题.7.(5分)如图是用模拟方法估计圆周率π值的程序框图,P表示估计结果,则图中空白框内应填入()A.P=B.P=C.P=D.P=【分析】由题意以及框图的作用,直接推断空白框内应填入的表达式.【解答】解:由题意以及程序框图可知,用模拟方法估计圆周率π的程序框图,M是圆周内的点的次数,当i大于1000时,圆周内的点的次数为4M,总试验次数为1000,所以要求的概率,所以空白框内应填入的表达式是P=.故选:D.【点评】本题考查程序框图的作用,考查模拟方法估计圆周率π的方法,考查计算能力,属于基础题.8.(5分)在等差数列{a n}中,首项a1=0,公差d≠0,若a k=a1+a2+a3+…+a7,则k=()A.22 B.23 C.24 D.25【分析】根据等差数列的性质,我们可将a k=a1+a2+a3+…+a7,转化为a k=7a4,又由首项a1=0,公差d≠0,我们易得a k=7a4=21d,进而求出k值.【解答】解:∵数列{a n}为等差数列且首项a1=0,公差d≠0,又∵a k=(k﹣1)d=a1+a2+a3+…+a7=7a4=21d故k=22故选A【点评】本题考查的知识点是等差数列的性质,其中根据a4是数列前7项的平均项(中间项)将a k=a1+a2+a3+…+a7,化为a k=7a4,是解答本题的关键.9.(5分)已知直线x+y=a与圆x2+y2=4交于A、B两点,且|+|=|﹣|,其中O为原点,则实数a的值为()A.2 B.﹣2 C.2或﹣2 D.或﹣【分析】条件“||=||”是向量模的等式,通过向量的平方可得向量的数量积|2=||2,•=0,可得出垂直关系,接下来,如由直线与圆的方程组成方程组求出A、B两点的坐标,势必计算很繁,故采用设而不求的方法.【解答】解:由||=||得||2=||2,•=0,⊥,三角形AOB为等腰直角三角形,圆心到直线的距离为,即=,a=±2,故选C.【点评】若非零向量,,满足||=||,则.模的处理方法一般进行平方,转化成向量的数量积.向量是既有大小,又有方向的量,它既有代数特征,又有几何特征,通过向量可以实现代数问题与几何问题的互相转化,所以向量是数形结合的桥梁.10.(5分)若f(x)是R上的减函数,且f(0)=3,f(3)=﹣1,设P={x|﹣1<f(x+t)<3},Q={x|f(x)<﹣1},若“x∈P”是”x∈Q”的充分不必要条件,则实数t的范围是()A.t≤0 B.t≥0 C.t≤﹣3 D.t≥﹣3【分析】利用函数f(x)的单调性以及f(0)=3,f(3)=﹣1,求出集合P,Q 的解集,利用充分条件和必要条件的定义进行求解.【解答】解:∵f(x)是R上的减函数,且f(0)=3,f(3)=﹣1,∴不等式﹣1<f(x+t)<3,等价为f(3)<f(x+t)<f(0),即3>x+t>0,解得﹣t<x<3﹣t,即P={x|﹣t<x<3﹣t}.由f(x)<﹣1得f(x)<f(3),即x>3,∴Q={x|x>3},∵“x∈P”是”x∈Q”的充分不必要条件,∴﹣t≥3,即t≤﹣3.故选:C.【点评】本题主要考查函数单调性的应用,考查充分条件和必要条件的应用,利用函数的单调性先求解集合P,Q的等价条件是解决本题的关键.二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)若数据组k1,k2...k8的平均数为3,方差为3,则2(k2+3),2(k2+3) (2)(k8+3)的方差为12.【分析】由方差的性质得2(k2+3),2(k2+3)…2(k8+3)的方差为22×3=12.【解答】解:∵数据组k1,k2…k8的平均数为3,方差为3,∴2(k2+3),2(k2+3)…2(k8+3)的方差为:22×3=12.故答案为:12.【点评】本题考查方差的求法,是中档题,解题时要认真审题,注意方差性质的合理运用.12.(5分)甲、乙二人参加普法知识竞答,共有10个不同的题目,其中6个选择题,4个判断题,甲、乙二人依次各抽一题,则甲、乙两人中至少有一人抽到选择题的概率是.【分析】甲、乙二人中至少有一人抽到选择题的对立事件是甲、乙二人依次都抽到判断题,先做出甲和乙都抽到判断题的概率,根据对立事件的概率公式得到结果.【解答】(2)甲、乙二人中至少有一人抽到选择题的对立事件是甲、乙二人依次都抽到判断题, ∵甲、乙二人依次都抽到判断题的概率为, ∴甲、乙二人中至少有一人抽到选择题的概率为1﹣= 故答案为:. 【点评】本小题主要考查等可能事件的概率计算及分析和解决实际问题的能力,考查对立事件的概率.13.(5分)= .【分析】考查已知条件和要求的表达式,不难得到结果.【解答】解:因为1﹣sin 2x=cos 2x ,所以又=,所以= 故答案为:【点评】本题是基础题,考查同角三角函数的基本关系式的应用,考查计算能力.14.(5分)若正数a ,b 满足a +b=1,则+的最小值为 . 【分析】变形利用基本不等式即可得出.【解答】解:∵正数a ,b 满足a +b=1,∴(3a +2)+(3b +2)=7.∴+===,当且仅当a=b=时取等号. ∴+的最小值为. 故答案为:.【点评】本题考查了基本不等式的性质,属于中档题.15.(5分)等比数列{a n}中,公比q=2,log2a1+log2a2+…+log2a10=35,则a1+a2+…+a10=.【分析】等比数列{a n}中,公比q=2,可得a1a10=a2a9=...=a5a6=.由log2a1+log2a2+...+log2a10=35,利用对数的运算性质可得log2(a1a2 (10)==35,化为=27,可得a1.再利用等比数列的前n项和公式即可得出.【解答】解:∵等比数列{a n}中,公比q=2,∴a1a10=a2a9=…=a5a6=.∵log2a1+log2a2+…+log2a10=35,∴log2(a1a2…a10)==35,∴=27,∴a1=.∴a1+a2+…+a10==.故答案为:.【点评】本题考查了对数的运算性质、等比数列的性质通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.16.(5分)给出下列命题:以下命题正确的是①③④(注:把你认为正确的命题的序号都填上)①非零向量、满足||=||=||,则与的夹角为30°;②•>0,是、的夹角为锐角的充要条件;③命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”;④若()=0,则△ABC为等腰三角形.【分析】根据向量加减法的平行四边形法则及菱形的性质可判断①,根据向量数量积的定义,及充要条件的定义,可判断②;根据否命题的定义,可判断③;根据向量数量积运算法则及向量模的定义,可判断④【解答】解:①非零向量、满足||=||=||,则以,为邻边的平行四边形为菱形,且,的夹角为60°,根据菱形的对角线平分对角,可得与的夹角为30°,故①正确; ②•>0,、的夹角为锐角或0,故•>0,是、的夹角为锐角的必要不充分条件,故②错误;③命题“若m 2+n 2=0,则m=0且n=0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”,故③正确;④若()===0,即,即AB=AC ,则△ABC 为等腰三角形,故④正确.故答案为:①③④【点评】本题以命题的真假判断为载体考查了向量加减法的平行四边形法则及菱形的性质,向量数量积的定义,充要条件的定义,否命题的定义,向量数量积运算法则及向量模的定义,是向量与逻辑的综合应用,难度中档.17.(5分)过点(2,3)且与直线l 1:y=0和l 2:都相切的所有圆的半径之和为 42 .【分析】设出圆的圆心坐标与半径,利用条件列出方程组,求出圆的半径即可.【解答】解:因为所求圆与y=0相切,所以设圆的圆心坐标(a ,r ),半径为r ,l 2:化为3x ﹣4y=0. 所以,解②得a=﹣r ,或a=3r ,由a=﹣r 以及①可得:a 2+14a +13=0,解得a=﹣1或a=﹣13,此时r=3或r=39, 所有半径之和为3+39=42.由a=3r以及①可得:9r2﹣18r+13=0,因为△=﹣144,方程无解;综上得,过点(2,3)且与直线l1:y=0和l2:都相切的所有圆的半径之和为:42.故答案为:42.【点评】本题考查圆的方程的求法,计算准确是解题的关键,考查计算能力.三、解答题:本大题共5小题,共65分,解答应写出文字说明,证明过程或演算步骤.18.(12分)在△ABC中,sin(C﹣A)=1,sinB=.(Ⅰ)求sinA的值;(Ⅱ)设AC=,求△ABC的面积.【分析】(I)利用sin(C﹣A)=1,求出A,C关系,通过三角形内角和结合sinB=,求出sinA的值;(II)通过正弦定理,利用(I)及AC=,求出BC,求出sinC,然后求△ABC 的面积.【解答】解:(Ⅰ)因为sin(C﹣A)=1,所以,且C+A=π﹣B,∴,∴,∴,又sinA>0,∴(Ⅱ)如图,由正弦定理得∴,又sinC=sin(A+B)=sinAcosB+cosAsinB=∴【点评】本小题主要考查三角恒等变换、正弦定理、解三角形等有关知识,考查运算求解能力.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.【分析】(1)由题设条件知b1=a2﹣2a1=3.由S n+1=4a n+2和S n=4a n﹣1+2相减得a n+1=4a n﹣4a n﹣1,即a n+1﹣2a n=2(a n﹣2a n﹣1),所以b n=2b n﹣1,由此可知{b n}是以b1=3为首项、以2为公比的等比数列.(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{a n}的通项公式.【解答】解:(1)由a1=1,及S n+1=4a n+2,得a1+a2=4a1+2,a2=3a1+2=5,所以b1=a2﹣2a1=3.=4a n+2,①由S n+1则当n≥2时,有S n=4a n﹣1+2,②=4a n﹣4a n﹣1,所以a n+1﹣2a n=2(a n﹣2a n﹣1),①﹣②得a n+1又b n=a n+1﹣2a n,所以b n=2b n﹣1,所以{b n}是以b1=3为首项、以2为公比的等比数列.(6分)(2)由(I)可得b n=a n+1﹣2a n=3•2n﹣1,等式两边同时除以2n+1,得.所以数列是首项为,公差为的等差数列.所以,即a n=(3n﹣1)•2n﹣2(n∈N*).(13分)【点评】本题考查数列的性质和应用,解题时要掌握等比数列的证明方法,会求数列的通项公式.20.(13分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD的中点,AB=2,∠BAD=60°.(1)求证:OM∥平面PAB;(2)求证:平面PBD⊥平面PAC;(3)当四棱锥P﹣ABCD的体积等于时,求PB的长.【分析】(1)利用三角形中位线的性质,证明线线平行,从而可得线面平行;(2)先证明BD⊥平面PAC,即可证明平面PBD⊥平面PAC;(3)利用四棱锥P﹣ABCD的体积等于时,求出四棱锥P﹣ABCD的高为PA,利用PA⊥AB,即可求PB的长.【解答】(1)证明:∵在△PBD中,O、M分别是BD、PD的中点,∴OM是△PBD的中位线,∴OM∥PB,…(1分)∵OM⊄平面PAB,PB⊂平面PAB,…(3分)∴OM∥平面PAB.…(4分)(2)证明:∵底面ABCD是菱形,∴BD⊥AC,…(5分)∵PA⊥平面ABCD,BD⊂平面ABCD,∴BD⊥PA.…(6分)∵AC⊂平面PAC,PA⊂平面PAC,AC∩PA=A,∴BD⊥平面PAC,…(8分)∵BD⊂平面PBD,∴平面PBD⊥平面PAC.…(10分)(3)解:∵底面ABCD是菱形,AB=2,∠BAD=60°,∴菱形ABCD的面积为,…(11分)∵四棱锥P﹣ABCD的高为PA,∴,得…(12分)∵PA⊥平面ABCD,AB⊂平面ABCD,∴PA⊥AB.…(13分)在Rt△PAB中,.…(14分)【点评】本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.21.(14分)已知圆心为C的圆,满足下列条件:圆心C位于x轴正半轴上,与直线3x﹣4y+7=0相切,且被y轴截得的弦长为,圆C的面积小于13.(Ⅰ)求圆C的标准方程;(Ⅱ)设过点M(0,3)的直线l与圆C交于不同的两点A,B,以OA,OB为邻边作平行四边形OADB.是否存在这样的直线l,使得直线OD与MC恰好平行?如果存在,求出l的方程;如果不存在,请说明理由.【分析】(Ⅰ)利用点到直线的距离公式,结合勾股定理,建立方程,根据圆C 的面积小于13,即可求圆C的标准方程;(Ⅱ)分类讨论,设出直线方程与圆的方程联立,利用韦达定理,再假设∥,则﹣3(x1+x2)=y1+y2,即可得出结论.【解答】解:(I)设圆C:(x﹣a)2+y2=R2(a>0),由题意知,解得a=1或a=,…(3分)又∵S=πR2<13,∴a=1,∴圆C的标准方程为:(x﹣1)2+y2=4.…(6分)(Ⅱ)当斜率不存在时,直线l为:x=0不满足题意.当斜率存在时,设直线l:y=kx+3,A(x1,y1),B(x2,y2),又∵l与圆C相交于不同的两点,联立,消去y得:(1+k2)x2+(6k﹣2)x+6=0,…(9分)∴△=(6k﹣2)2﹣24(1+k2)=3k2﹣6k﹣5>0,解得或.x 1+x2=,y1+y2=k(x1+x2)+6=,=(x1+x2,y1+y2),,假设∥,则﹣3(x1+x2)=y1+y2,∴,解得,假设不成立.∴不存在这样的直线l.…(13分)【点评】本题考查圆的方程,考查直线与圆的位置关系,考查韦达定理的运用,考查学生分析解决问题的能力,综合性强.22.(14分)设α,β为函数h(x)=2x2﹣mx﹣2的两个零点,m∈R且α<β,函数f(x)=(1)求的f(α)•f(β)值;(2)判断f(x)在区间[α,β]上的单调性并用函数单调性定义证明;(3)是否存在实数m,使得函数f(x)在[α,β]的最大值与最小值之差最小?若存在,求出m的值,若不存在,请说明理由.【分析】(1)结合韦达定理用m把α,β的和、乘积表示出来,代入所求化简即可;(2)利用定义进行证明,在判断结果的符号时,要适当结合第一问m与α,β间的关系,将m用α,β替换,根据α,β与x1,x2的大小关系进行化简判断符号.(3)先假设存在,根据已知构造出取最值时的等式,只要取等号的条件存在,即存在.【解答】解:(1)由题意得,故.(2)∀x1,x2∈[α,β],x1<x2,可得,因为(x1﹣α)(x2﹣β)≤0,(x1﹣β)(x2﹣α)<0,两式相加得2x1x2﹣(α+β)(x1+x2)+2αβ<0;又因为,∴(x2﹣x1)[4x1x2﹣4﹣m(x1+x2)]<0.所以f(x1)﹣f(x2)<0,所以函数f(x)在[α,β]上为增函数.(3)函数在[α,β]上为增函数,所以.当且仅当时,等号成立,此时f(β)=2,即.结合可得m=0.综上可得,存在实数m=0满足题意.【点评】本题综合考查了函数的零点与方程的根之间的关系,即利用函数的观点解决方程的问题,或利用方程思想来解决函数问题.属于综合题,有一定难度.。

2017-2018学年高二上学期期中数学(文科)试卷 Word版含解析

2017-2018学年高二上学期期中数学(文科)试卷 Word版含解析

2017-2018学年高二(上)期中试卷(文科数学)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.△ABC 中,a=1,b=,A=30°,则B 等于( )A .60°B .60°或120°C .30°或150°D .120°2.已知数列…,则2是这个数列的( )A .第6项B .第7项C .第11项D .第19项3.已知{a n }是等比数列,a 2=2,a 5=,则公比q=( )A .B .﹣2C .2D .4.已知等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值是( )A .55B .95C .100D .不确定5.命题“若x >1,则x >0”的否命题是( )A .若x ≤1,则x ≤0B .若x ≤1,则x >0C .若x >1,则x ≤0D .若x <1,则x <06.若变量x ,y 满足约束条件,则z=x ﹣2y 的最大值为( )A .4B .3C .2D .17.若0<a <b ,且a+b=1,则在下列四个选项中,较大的是( )A .B .a 2+b 2C .2abD .b8.△ABC 中,sinA=2sinCcosB ,那么此三角形是( )A .等边三角形B .锐角三角形C .等腰三角形D .直角三角形9.设S n 是等差数列{a n }的前n 项和,若=,则=( )A .B .C .D .10.等差数列{a n }的前三项依次为a ﹣1,a+1,2a+3,则此数列的第n 项a n =( )A .2n ﹣5B .2n ﹣3C .2n ﹣1D .2n+111.设a >0,b >0.若3是3a 与3b 的等比中项,则的最小值为( )A .4B .2C .1D .12.若{a n }是等差数列,首项a 1>0,a 5+a 6>0,a 5a 6<0,则使前n 项和S n >0成立的最大自然数n 的值是() A .6 B .7 C .8 D .10二、填空题(每小题5分,满分20分,将答案填在答题纸上)13.已知等差数列{a n }的公差d=﹣2,a 1+a 4+a 7+…+a 97=50,那么a 3+a 6+a 9+…+a 99的值是 .14.已知点(3,﹣1)和(﹣4,﹣3)在直线3x ﹣2y+a=0的同侧,则a 的取值范围是 .15.不等式2x 2﹣x ﹣1>0的解集是 .16.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若sinA=,b=sinB ,则a= .三、解答题:17.若不等式ax 2+5x ﹣2>0的解集是,求不等式ax 2﹣5x+a 2﹣1>0的解集.18.△ABC 中,BC=7,AB=3,且=. (1)求AC 的长;(2)求∠A 的大小.19.已知{a n }是等差数列,其中a 1=25,a 4=16(1)求{a n }的通项;(2)求a 1+a 3+a 5+…+a 19值.20.已知{a n }是公差不为零的等差数列,a 1=1且a 1,a 3,a 9成等比数列.(1)求数列{a n }的通项;(2)求数列{2a n }的前n 项和S n .21.一缉私艇发现在北偏东45°方向,距离12nmile 的海面上有一走私船正以10nmile/h 的速度沿东偏南15°方向逃窜.缉私艇的速度为14nmile/h ,若要在最短的时间内追上该走私船,缉私艇应沿北偏东45°+α的方向去追,求追击所需的时间和α角的正弦值.22.设数列{a n }的前n 项和为S n ,且满足S n =2﹣a n ,n=1,2,3,….(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,且b n+1=b n +a n ,求数列{b n }的通项公式.2017-2018学年高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.△ABC 中,a=1,b=,A=30°,则B 等于( )A .60°B .60°或120°C .30°或150°D .120°【考点】正弦定理.【分析】由正弦定理可得,求出sinB 的值,根据B 的范围求得B 的大小.【解答】解:由正弦定理可得,∴,∴sinB=.又 0<B <π,∴B= 或,故选B .2.已知数列…,则2是这个数列的( )A .第6项B .第7项C .第11项D .第19项【考点】数列的概念及简单表示法.【分析】本题通过观察可知:原数列每一项的平方组成等差数列,且公差为3,即a n 2﹣a n ﹣12=3从而利用等差数列通项公式a n 2=2+(n ﹣1)×3=3n ﹣1=20,得解,n=7【解答】解:数列…,各项的平方为:2,5,8,11,…则a n 2﹣a n ﹣12=3,又∵a 12=2,∴a n 2=2+(n ﹣1)×3=3n ﹣1,令3n ﹣1=20,则n=7.故选B .3.已知{a n }是等比数列,a 2=2,a 5=,则公比q=( )A .B .﹣2C .2D .【考点】等比数列.【分析】根据等比数列所给的两项,写出两者的关系,第五项等于第二项与公比的三次方的乘积,代入数字,求出公比的三次方,开方即可得到结果.【解答】解:∵{a n }是等比数列,a 2=2,a 5=,设出等比数列的公比是q ,∴a 5=a 2•q 3,∴==,∴q=,故选:D .4.已知等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值是( )A .55B .95C .100D .不确定【考点】等差数列的前n 项和;等差数列的通项公式.【分析】由等差数列的性质,结合a 3+a 17=10求出a 10,代入前19项的和得答案.【解答】解:在等差数列{a n }中,由a 3+a 17=10,得2a 10=10,∴a 10=5.∴.故选:B .5.命题“若x >1,则x >0”的否命题是( )A .若x ≤1,则x ≤0B .若x ≤1,则x >0C .若x >1,则x ≤0D .若x <1,则x <0【考点】四种命题.【分析】根据否命题的定义:“若p 则q”的否命题是:“若¬p ,则¬q”,所以应该选A .【解答】解:根据否命题的定义,x >1的否定是:x ≤1;x >0的否定是:x ≤0,所以命题“若x >1,则x >0”的否命题是:“若x ≤1,则x ≤0”.故选A .6.若变量x ,y 满足约束条件,则z=x ﹣2y 的最大值为( )A .4B .3C .2D .1【考点】简单线性规划的应用.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=x ﹣2y 表示直线在y 轴上的截距,只需求出可行域直线在y 轴上的截距最小值即可.【解答】解:画出可行域(如图),z=x ﹣2y ⇒y=x ﹣z ,由图可知,当直线l 经过点A (1,﹣1)时,z 最大,且最大值为z max =1﹣2×(﹣1)=3.故选:B .7.若0<a<b,且a+b=1,则在下列四个选项中,较大的是()A.B.a2+b2 C.2ab D.b【考点】不等式比较大小.【分析】根据两个数的和是1,和两个数的大小关系,得到b和的大小关系,根据基本不等式得到B,C两个选项的大小关系,再比较B,D的大小.【解答】解:∵a+b=10<a<b所以a<b>所以D答案>A答案;C答案一定不大于B答案;B:a2+b2=(1﹣b)2+b2,D:b,所以B﹣D=(1﹣b)2+b2﹣b=2b2﹣3b+1=(b﹣1)(2b﹣1),又<b<1,∴B﹣D=(b﹣1)(2b﹣1)<0,即B<D;所以D最大故选D.8.△ABC中,sinA=2sinCcosB,那么此三角形是()A.等边三角形B.锐角三角形C.等腰三角形D.直角三角形【考点】三角形的形状判断.【分析】由三角形的内角和及诱导公式得到sinA=sin(B+C),右边利用两角和与差的正弦函数公式化简,再根据已知的等式,合并化简后,再利用两角和与差的正弦函数公式得到sin(B﹣C)=0,由B与C都为三角形的内角,可得B=C,进而得到三角形为等腰三角形.【解答】解:∵A+B+C=π,即A=π﹣(B+C),∴sinA=sin(B+C)=sinBcosC+cosBsinC.又sinA=2cosBsinC,∴sinBcosC+cosBsinC=2cosBsinC.变形得:sinBcosC﹣cosBsinC=0,即sin(B﹣C)=0.又B和C都为三角形内角,∴B=C,则三角形为等腰三角形.故选C.9.设S n 是等差数列{a n }的前n 项和,若=,则=( )A .B .C .D .【考点】等差数列的前n 项和.【分析】根据等差数列的前n 项和公式,用a 1和d 分别表示出s 3与s 6,代入中,整理得a 1=2d ,再代入中化简求值即可.【解答】解:设等差数列{a n }的首项为a 1,公差为d ,由等差数列的求和公式可得且d ≠0,∴,故选A .10.等差数列{a n }的前三项依次为a ﹣1,a+1,2a+3,则此数列的第n 项a n =( )A .2n ﹣5B .2n ﹣3C .2n ﹣1D .2n+1【考点】等差数列的通项公式.【分析】由题意结合等差数列的性质求得a ,则等差数列的首项和公差可求,代入通项公式得答案.【解答】解:∵等差数列{a n }的前三项依次为a ﹣1,a+1,2a+3,∴2(a+1)=(a ﹣1)+(2a+3),解得:a=0.∴等差数列{a n }的前三项依次为﹣1,1,3,则等差数列的首项为﹣1,公差为d=2,∴a n =﹣1+(n ﹣1)×2=2n ﹣3.故选:B .11.设a >0,b >0.若3是3a 与3b 的等比中项,则的最小值为( )A .4B .2C .1D . 【考点】基本不等式.【分析】利用等比中项即可得出a 与b 的关系,再利用“乘1法”和基本不等式的性质即可得出.【解答】解:∵3是3a 与3b 的等比中项,∴32=3a •3b =3a+b ,∴a+b=2.a >0,b >0.∴===2.当且仅当a=b=1时取等号.故选B .12.若{a n }是等差数列,首项a 1>0,a 5+a 6>0,a 5a 6<0,则使前n 项和S n >0成立的最大自然数n 的值是( )A .6B .7C .8D .10【考点】等差数列的性质;数列的求和.【分析】由已知结合等差数列的单调性可得a 5+a 6>0,a 6<0,由求和公式可得S 8<0,S 7>0,可得结论.【解答】解:∵{a n }是等差数列,首项a 1>0,a 5+a 6>0,a 5a 6<0,∴a 5,a 6必定一正一负,结合等差数列的单调性可得a 5>0,a 6<0,∴S 11==11a 6<0,S 10==5(a 5+a 6)>0,∴使前n 项和S n >0成立的最大自然数n 的值为10.故选D .二、填空题(每小题5分,满分20分,将答案填在答题纸上)13.已知等差数列{a n }的公差d=﹣2,a 1+a 4+a 7+…+a 97=50,那么a 3+a 6+a 9+…+a 99的值是 ﹣82 .【考点】等差数列的前n 项和.【分析】由等差数列的性质得a 3+a 6+a 9+…+a 99=(a 1+a 4+a 7+…+a 97)+33×2d ,由此能求出结果.【解答】解:∵等差数列{a n }的公差d=﹣2,a 1+a 4+a 7+…+a 97=50,∴a 3+a 6+a 9+…+a 99=(a 1+a 4+a 7+…+a 97)+33×2d=50+33×2×(﹣2)=﹣82.故答案为:﹣82.14.已知点(3,﹣1)和(﹣4,﹣3)在直线3x ﹣2y+a=0的同侧,则a 的取值范围是 (﹣∞,﹣11)∪(6,+∞) .【考点】二元一次不等式(组)与平面区域.【分析】由已知点(3,﹣1)和(﹣4,﹣3)在直线3x ﹣2y+a=0的同侧,我们将A ,B 两点坐标代入直线方程所得符号相同,则我们可以构造一个关于a 的不等式,解不等式即可得到答案.【解答】解:若(3,﹣1)和(﹣4,﹣3)在直线3x ﹣2y ﹣a=0的同侧则[3×3﹣2×(﹣1)+a]×[3×(﹣4)+2×3+a]>0即(a+11)(a ﹣6)>0解得a ∈(﹣∞,﹣11)∪(6,+∞)故答案为:(﹣∞,﹣11)∪(6,+∞).15.不等式2x 2﹣x ﹣1>0的解集是 .【考点】一元二次不等式的解法.【分析】把不等式的左边分解因式后,根据两数相乘同号得正的取符号法则,得到2x+1与x ﹣1同号,可化为两个不等式组,分别求出两不等式组的解集的并集即可得到原不等式的解集.【解答】解:不等式2x 2﹣x ﹣1>0,因式分解得:(2x+1)(x ﹣1)>0,可化为:或,解得:x >1或x <﹣,则原不等式的解集为.故答案为:16.已知△ABC的内角A,B,C所对的边分别为a,b,c,若sinA=,b=sinB,则a= .【考点】正弦定理.【分析】由已知利用正弦定理即可计算得解.【解答】解:∵sinA=,b=sinB,∴由正弦定理可得:a===.故答案为:.三、解答题:17.若不等式ax2+5x﹣2>0的解集是,求不等式ax2﹣5x+a2﹣1>0的解集.【考点】一元二次不等式的应用.【分析】由不等式的解集与方程的关系,可知,2是相应方程的两个根,利用韦达定理求出a的值,再代入不等式ax2﹣5x+a2﹣1>0易解出其解集.【解答】解:由已知条件可知a<0,且是方程ax2+5x﹣2=0的两个根,…由根与系数的关系得:解得a=﹣2…所以ax2﹣5x+a2﹣1>0化为2x2+5x﹣3<0,…化为:(2x﹣1)(x+3)<0…解得,…所以不等式解集为…18.△ABC中,BC=7,AB=3,且=.(1)求AC的长;(2)求∠A的大小.【考点】正弦定理;余弦定理.【分析】(1)由已知利用正弦定理即可得解AC的值.(2)由已知利用余弦定理可求cosA的值,结合A的范围,根据特殊角的三角函数值即可得解.【解答】解:(1)由正弦定理,可得: =,可得:AC==5.(2)由余弦定理可得:cosA===﹣,由于A ∈(0°,180°),可得:A=120°.19.已知{a n }是等差数列,其中a 1=25,a 4=16(1)求{a n }的通项;(2)求a 1+a 3+a 5+…+a 19值.【考点】等差数列的前n 项和;等差数列的通项公式.【分析】(1)由题意和等差数列的通项公式可得公差,可得通项公式;(2)可得a 1+a 3+a 5+…+a 19是首项为25,且公差为﹣6的等差数列,共有10项,由等差数列的求和公式可得.【解答】解:(1)设等差数列{a n }的公差为d ,则a 4=a 1+3d ,代值可得16=25+3d ,解得d=﹣3,∴a n =25﹣3(n ﹣1)=28﹣3n ;(2)由题意可得a 1+a 3+a 5+…+a 19是首项为25,且公差为﹣6的等差数列,共有10项,∴20.已知{a n }是公差不为零的等差数列,a 1=1且a 1,a 3,a 9成等比数列.(1)求数列{a n }的通项;(2)求数列{2a n }的前n 项和S n .【考点】等差数列与等比数列的综合.【分析】(1)由题意得关于公差d 的方程,求出公差d 的值,即可得到数列{a n }的通项公式.(2)利用等差数列的求和公式,即可得出结论.【解答】解:(1)由题设知公差d ≠0,由a 1=1,a 1,a 3,a 9成等比数列,得,解得d=1,或d=0(舍去),故{a n }的通项a n =1+(n ﹣1)×1=n ;(2)由(1)得:数列{2a n }是以2为首项,以2为公差的等差数列,故S n =2n+=n (n+1).21.一缉私艇发现在北偏东45°方向,距离12nmile 的海面上有一走私船正以10nmile/h 的速度沿东偏南15°方向逃窜.缉私艇的速度为14nmile/h ,若要在最短的时间内追上该走私船,缉私艇应沿北偏东45°+α的方向去追,求追击所需的时间和α角的正弦值.【考点】解三角形的实际应用;余弦定理.【分析】由图A ,C 分别表示缉私艇,走私船的位置,设经过 x 小时后在B 处追上,则有 AB=14x ,BC=10x ,∠ACB=120°从而在△ABC 中利用余弦定理可求追击所需的时间,进一步可求α角的正弦值.【解答】解:设A ,C 分别表示缉私艇,走私船的位置,设经过 x 小时后在B 处追上,…则有 AB=14x ,BC=10x ,∠ACB=120°.∴(14x )2=122+(10x )2﹣240xcos120°…∴x=2,AB=28,BC=20,…∴.所以所需时间2小时,.…22.设数列{a n }的前n 项和为S n ,且满足S n =2﹣a n ,n=1,2,3,….(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,且b n+1=b n +a n ,求数列{b n }的通项公式.【考点】数列递推式;数列的应用.【分析】(1)由S n =2﹣a n ,知S 1=2﹣a 1,a n =S n ﹣S n ﹣1=(2﹣a n )﹣(2﹣a n ﹣1),得,由此能求出数列{a n }的通项公式.(2)由b n+1=b n +a n ,且,知b n ﹣1﹣b n =()n ﹣1,由此利用叠加法能求出. 【解答】解:(1)∵S n =2﹣a n ,∴当n=1时,S 1=2﹣a 1,∴a 1=1,当n ≥2时,S n ﹣1=2﹣a n ﹣1,∴a n =S n ﹣S n ﹣1=(2﹣a n )﹣(2﹣a n ﹣1),得,∴数列{a n }是以a 1=1为首项,为公比的等比数列,∴数列{a n }的通项公式是.(2)由b n+1=b n +a n ,且,∴b n ﹣1﹣b n =()n ﹣1,则,,,…,b n ﹣b n ﹣1=()n ﹣2, 以上n 个等式叠加得:==2[1﹣()n﹣1]=2﹣,=1,∴.∵b1。

高二数学上学期期中试题文

高二数学上学期期中试题文

2017-2018学年度第一学期半期考试试题高二数学(文科)(满分150分,考试时间120分钟)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1。

设全集为R,集合,则=( )A、B、C、 D、12、在x轴上的截距为2且倾斜角为135°的直线方程为、A、B、C、 D、3、某程序框图如图所示,该程序运行后输出的的值是( )A、4B、5C、6D、74。

的一条对称轴方程是( )A、ﻩB、ﻩ C、ﻩ D、5、公差不为零的等差数列中,成等比数列,则其公比为A、1B、2C、3D、46、设P是△ABC所在平面外一点,若PA,PB,PC两两垂直,则P在平面内的射影是△ABC 的( )A、内心B、外心 C。

重心ﻩD。

垂心ﻩ7、已知向量,满足则等于( )、A、B、2 C、3 D、58、一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为( )A、 B、C、D、9、设变量满足约束条件,则目标函数=2-的最大值为A。

10 B。

8ﻩﻩC、3 ﻩD、210。

已知圆内一点P(2,1),则过P点最短弦所在的直线方程是 ( )A、 B、 C、 D、11、在2012年3月15日,某市物价部门对本市的5家商场的某种商品的一天销售量及其价格进行调查,5家商场的售价元和销售量件之间的一组数据如下表所示:由散点图可知,销售量与价格之间有较好的线性相关关系,其线性回归方程是: ,则( ) A。

B、 C、D、12。

已知f(x)是R上的奇函数,对x∈R都有f(x+4)=f(x)+f(2)成立,若f(﹣1)=﹣2,则f(2013)等于( )A、2 B、﹣2 C、﹣1 D、2013第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分。

把答案填在题中横线上、13。

已知函数是偶函数,且,则的值为、14。

若直线平行,则。

2017-2018学年山东省高二上学期期中数学试题(文科)(解析版)17

2017-2018学年山东省高二上学期期中数学试题(文科)(解析版)17

高二(上)期中数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知a>b,c>d,那么一定正确的是()A.ad>bc B.ac>bd C.a﹣c>b﹣d D.a﹣d>b﹣c2.(5分)设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5 B.7 C.9 D.113.(5分)若△ABC的三个内角满足sinA:sinB:sinC=5:11:13,则△ABC()A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形4.(5分)设{a n}是等比数列,下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列5.(5分)若关于x的不等式﹣x2+2x>mx的解集为(0,2),则实数m的值是()A.1 B.2 C.3 D.46.(5分)《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给五个人,使每人所得成等差数列,且使较大的三份之和的是较小的两份之和,问最小一份为()A.B.C.D.7.(5分)若x,y满足约束条件,则z=2x+y的最大值是()A.2 B.3 C.4 D.58.(5分)设{a n}是等差数列,下列结论中正确的是()A.若a 1+a3<0,则a1+a2<0 B.若0<a1<a2,则a2>C.若a1+a3>0,则a1+a2>0 D.若a1<0,则(a2﹣a1)(a2﹣a3)>09.(5分)在等腰△ABC中,内角A,B,C所对应的边分别为a,b,c,a=2,∠A=120°,则此三角形的外接圆半径和内切圆半径分别是()A.4和2 B.4和2C.2和2﹣3 D.2和2+310.(5分)若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,﹣2,b这三个数依次成等比数列,﹣2,b,a这三个数依次成等差数列,则pq=()A.4 B.5 C.9 D.2011.(5分)设f(x)=lnx,0<a<b,若,,r=,则下列关系式中正确的是()A.p=r<q B.q=r>p C.p=r>q D.q=r<p12.(5分)已知两个等差数列{a n}和{b n}的前n项和分别为S n,T n,且(n+1)S n=(7n+23)T n,则使得为整数的正整数n的个数是()A.2 B.3 C.4 D.5二、填空题(共4小题,每小题5分,满分20分)13.(5分)函数y=x+(x>3)的最小值为.14.(5分)已知数列{a n}是递减等比数列,且a4=27,a6=3,则数列{a n}的通项公式a n=.15.(5分)已知△ABC中,满足B=60°,c=2的三角形有两解,则边长b的取值范围为.16.(5分)寒假期间,某校家长委员会准备租赁A,B两种型号的客车安排900名学生到重点高校进行研学旅行,A,B两种客车的载客量分别为36人和60人,租金分别为1200元/辆和1800/辆,家长委员会为节约成本,要求租车总数不超过21辆,且B型车不多于A型车7辆,则租金最少为元.三、解答题(共6小题,满分70分)17.(10分)解下列关于x的不等式(1)≥3 (2)x2﹣ax﹣2a2≤0(a∈R)18.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,且满足cos(A ﹣B)=2sinAsinB.(Ⅰ)判断△ABC的形状;(Ⅱ)若a=3,c=6,CD为角C的平分线,求△BCD的面积.19.(12分)设S n是等差数列{a n}的前n项和,已知a1+a3=﹣2,S15=75(n∈N*).(Ⅰ)求S9;(Ⅱ)若数列b n=,求数列{b n}的前n项和T n.20.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,且2cosB(acosC+ccosA)=b.(Ⅰ)求B;(Ⅱ)若a+c=1,求b的取值范围.21.(12分)潍坊文化艺术中心的观光塔是潍坊市的标志性建筑,某班同学准备测量观光塔AE的高度H(单位:米),如图所示,垂直放置的标杆BC的高度h=4米,已知∠ABE=α,∠ADE=β(1)该班同学测得α,β一组数据:tanα=1.35,tanβ=1.31,请据此算出H的值(2)该班同学分析若干测得的数据后,发现适当调整标杆到观光塔的距离d(单位:米),使α与β的差距较大,可以提高测量准确度,若观光塔高度为136米,问d为多大是tan(α﹣β)的值最大?22.(12分)已知数列{a n}的前n项和为S n,S n=n2+2n.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=,设数列{b n}的前n项和为T n,求T n;(Ⅲ)令c n=a n a n+1cos(n+1)π,若c1+c2+…+c n≥tn2对n∈N*恒成立,求实数t 的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知a>b,c>d,那么一定正确的是()A.ad>bc B.ac>bd C.a﹣c>b﹣d D.a﹣d>b﹣c【分析】根据不等式的性质,推出a﹣d>c﹣b,判定命题D正确,举例说明A、B、C不正确.【解答】解:∵a>b,c>d,由不等式的性质得﹣c<﹣d,即﹣d>﹣c,∴a﹣d>c﹣b,D正确;不妨令a=2、b=1、c=﹣1、d=﹣2,显然,ad=﹣4,bc=﹣1,A不正确;ac=bd=﹣2,B不正确;a﹣c=b﹣d=3,C不正确.故选:D.【点评】本题考查了不等式的基本性质与不等关系的应用问题,是基础题目.2.(5分)设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5 B.7 C.9 D.11【分析】由等差数列{a n}的性质,及a1+a3+a5=3,可得3a3=3,再利用等差数列的前n项和公式即可得出.【解答】解:由等差数列{a n}的性质,及a1+a3+a5=3,∴3a3=3,∴a3=1,∴S5==5a3=5.故选:A.【点评】本题考查了等差数列的性质及其前n项和公式,考查了推理能力与计算能力,属于中档题.3.(5分)若△ABC的三个内角满足sinA:sinB:sinC=5:11:13,则△ABC()A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形【分析】先根据正弦定理及题设,推断a:b:c=5:11:13,再通过余弦定理求得cosC的值小于零,推断C为钝角.【解答】解:∵根据正弦定理,又sinA:sinB:sinC=5:11:13∴a:b:c=5:11:13,设a=5t,b=11t,c=13t(t≠0)∵c2=a2+b2﹣2abcosC∴cosC===﹣<0∴角C为钝角.故选C【点评】本题主要考查余弦定理的应用.注意与正弦定理的巧妙结合.4.(5分)设{a n}是等比数列,下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列【分析】根据题意,由等比数列的性质分析选项,综合即可得答案.【解答】解:根据题意,{a n}是等比数列,依次分析选项:对于A、1+9≠2×3,则(a3)2≠a1×a9,则a1,a3,a9不成等比数列,A错误;对于B、2+6≠2×3,则(a3)2≠a2×a6,则a2,a3,a6不成等比数列,B错误;对于C、2+8≠2×4,则(a4)2≠a2×a8,则a2,a4,a8不成等比数列,C错误;对于D、3+9=2×6,则(a6)2=a3×a9,则a2,a3,a6成等比数列,D正确;故选:D.【点评】本题考查等比数列的性质,涉及等比数列的判定,注意利用等比中项进行分析.5.(5分)若关于x的不等式﹣x2+2x>mx的解集为(0,2),则实数m的值是()A.1 B.2 C.3 D.4【分析】利用不等式的解集得到二次不等式所对应方程的根,利用根与系数的关系求出m的值.【解答】解:关于x的不等式﹣x2+2x>mx的解集为(0,2),则0,2是方程﹣x2+2x=mx的根;即为x2+2(m﹣2)x=0的根,∴0+2=2(2﹣m),解得m=1,∴实数m的值是1.故选:A.【点评】本题考查了一元二次不等式的解法与应用问题,解题时利用“三个二次”的关系,是基础题.6.(5分)《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给五个人,使每人所得成等差数列,且使较大的三份之和的是较小的两份之和,问最小一份为()A.B.C.D.【分析】设五个人所分得的面包为a﹣2d,a﹣d,a,a+d,a+2d,(d>0);则由五个人的面包和为100,得a的值;由较大的三份之和的是较小的两份之和,得d的值;从而得最小的1分a﹣2d的值.【解答】解:设五个人所分得的面包为a﹣2d,a﹣d,a,a+d,a+2d,(其中d >0);则,(a﹣2d)+(a﹣d)+a+(a+d)+(a+2d)=5a=100,∴a=20;由(a+a+d+a+2d)=a﹣2d+a﹣d,得3a+3d=7(2a﹣3d);∴24d=11a,∴d=55/6;所以,最小的1分为a﹣2d=20﹣=.故选A.【点评】本题考查了等差数列模型的实际应用,解题时应巧设数列的中间项,从而容易得出结果.7.(5分)若x,y满足约束条件,则z=2x+y的最大值是()A.2 B.3 C.4 D.5【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=2x+y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.【解答】解:先根据约束条件画出可行域,当直线z=2x+y过点A(2,﹣1)时,z最大是3,故选B.【点评】本小题主要考查线性规划问题,以及利用几何意义求最值,属于基础题.8.(5分)设{a n}是等差数列,下列结论中正确的是()A.若a 1+a3<0,则a1+a2<0 B.若0<a1<a2,则a2>C.若a1+a3>0,则a1+a2>0 D.若a1<0,则(a2﹣a1)(a2﹣a3)>0【分析】根据{a n}是等差数列,结合等差数列的定义及基本不等式等,逐一分析四个答案的正误,可得答案.【解答】解:若a1+a3>0,d<0,则a1+a2<0不一定成立,故A错误;若0<a<a2,则a2=>,故B正确;若a1+a3>0,d>0,则a1+a2>0不一定成立,故C错误;若a1<0,则(a2﹣a1)(a2﹣a3)=﹣d2≤0,故D错误;故选:B.【点评】本题以命题的真假判断与应用为载体,考查了等差数列,基本不等式,难度中档.9.(5分)在等腰△ABC中,内角A,B,C所对应的边分别为a,b,c,a=2,∠A=120°,则此三角形的外接圆半径和内切圆半径分别是()A.4和2 B.4和2C.2和2﹣3 D.2和2+3【分析】利用正弦定理计算外接圆半径,计算三角形的三边,根据切线的性质和勾股定理列方程计算内切圆半径.【解答】解:设外接圆半径为R,内切圆半径为r,则2R===4,∴R=2,设BC的中点为D,连接AD,内切圆圆心为O,与AB的切点为M,则OM⊥AM,∵△ABC是等腰三角形,A=120°,a=2,∴AB=2,AD=1,BM=BD=,∴AO=1﹣r,OM=r,AM=2﹣,∴(1﹣r)2=r2+(2﹣)2,解得r=2﹣3.故选C.【点评】本题考查了正弦定理,三角形的几何计算,属于中档题.10.(5分)若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,﹣2,b这三个数依次成等比数列,﹣2,b,a这三个数依次成等差数列,则pq=()A.4 B.5 C.9 D.20【分析】由一元二次方程根与系数的关系得到a+b=p,ab=q,再由a,﹣2,b 这三个数依次成等比数列,﹣2,b,a这三个数依次成等差数列,列关于a,b 的方程组,求得a,b后得答案【解答】解:由题意可得:a+b=p,ab=q=4,a﹣2=2b∵p>0,q>0,解得:a=4,b=1,∴p=a+b=5,q=1×4=4,则pq=20.故选:D.【点评】本题考查了一元二次方程根与系数的关系,考查了等差数列和等比数列的性质,是基础题11.(5分)设f(x)=lnx,0<a<b,若,,r=,则下列关系式中正确的是()A.p=r<q B.q=r>p C.p=r>q D.q=r<p【分析】根据对数函数的定义与性质,化简p、q、r,利用基本不等式,即可判断它们的大小关系.【解答】解:由题意得,p=f()=ln()=ln(ab)=(lna+lnb),q=f()=ln()≥ln()=p,r===(lna+lnb)=p,∴p=r<q.故选:A.【点评】本题考查了不等式与不等关系的应用问题,也考查了基本不等式和对数的应用问题,是基础题目.12.(5分)已知两个等差数列{a n}和{b n}的前n项和分别为S n,T n,且(n+1)S n=(7n+23)T n,则使得为整数的正整数n的个数是()A.2 B.3 C.4 D.5【分析】推民出===,从而为整数的正整数n的可能取值为1,2,4,8,共4个.【解答】解:∵两个等差数列{a n}和{b n}的前n项和分别为S n,T n,且(n+1)S n=(7n+23)T n,∴=,∴=======,∴为整数的正整数n的可能取值为1,2,4,8,共4个.故选:C.【点评】本题考查使得两等差数列的第n项的比值为整数的正整数n的个数的求法,考查等差数列的通项公式、前n项和公式等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)函数y=x+(x>3)的最小值为5.【分析】根据基本不等式即可求出.【解答】解:∵x>3,∴y=x+=x﹣3++3≥2+3=2+3=5,当且仅当x﹣3=1时,即x=4时取等号,故答案为:5.【点评】本题考查了基本不等式的应用,属于基础题.14.(5分)已知数列{a n}是递减等比数列,且a4=27,a6=3,则数列{a n}的通项公式a n=37﹣n,n∈N*.【分析】数列{a n}是递减等比数列,且公比设为q,运用等比数列的通项公式,解方程可得首项和公比,即可得到所求通项公式.【解答】解:数列{a n}是递减等比数列,且公比设为q,a4=27,a6=3,即为a1q3=27,a1q5=3,解得a1=36,q=,或a1=﹣36,q=﹣(舍去),则数列{a n}的通项公式a n=36•()n﹣1=37﹣n,n∈N*.故答案为:37﹣n,n∈N*.【点评】本题考查等比数列的通项公式的应用,考查方程思想和运算能力,属于基础题.15.(5分)已知△ABC中,满足B=60°,c=2的三角形有两解,则边长b的取值范围为(,2).【分析】若满足条件的三角形恰有两个,由已知条件,根据正弦定理用b表示出sinC,由∠B的度数及正弦函数的图象可知满足题意△ABC有两个C的范围,然后根据C的范围,利用特殊角的三角函数值即可求出sinC的范围,进而求出b的取值范围.【解答】解:在△ABC中,∵B=60°,c=2,若满足条件的三角形恰有两个,由正弦定理得:,即,变形得:sinC=,由题意得:当C∈(90°,120°)时,满足条件的△ABC有两个,所以:<<1,解得:<b<2,则b的取值范围是(,2).故答案为:(,2).【点评】此题考查了正弦定理及特殊角的三角函数值在解三角形中的应用,要求学生掌握正弦函数的图象与性质,牢记特殊角的三角函数值以及灵活运用三角形的内角和定理这个隐含条件,属于中档题.16.(5分)寒假期间,某校家长委员会准备租赁A,B两种型号的客车安排900名学生到重点高校进行研学旅行,A,B两种客车的载客量分别为36人和60人,租金分别为1200元/辆和1800/辆,家长委员会为节约成本,要求租车总数不超过21辆,且B型车不多于A型车7辆,则租金最少为27600元.【分析】设分别租用A、B两种型号的客车x辆、y辆,总租金为z元.可得目标函数z=1200x+1800y,结合题意建立关于x、y的不等式组,作出不等式组对应的平面区域,利用线性规划的知识进行求解即可.【解答】解:设分别租用A、B两种型号的客车x辆、y辆,所用的总租金为z 元,则z=1200x+1800y,其中x、y满足不等式组,,即,由z=1200x+1800y得y=﹣x+,作出不等式组对应的平面区域平移y=﹣x+,由图象知当直线y=﹣x+经过点A时,直线的截距最小,此时z最小,由得,即当x=5、y=12时,此时的总租金z=1200×5+1800×12=27600元,达到最小值.27600.故答案为:27600.【点评】本题主要考查线性规划的应用问题,根据条件建立目标函数和线性约束条件,并求目标函数的最小值,着重考查了简单的线性规划的应用的知识.三、解答题(共6小题,满分70分)17.(10分)解下列关于x的不等式(1)≥3(2)x2﹣ax﹣2a2≤0(a∈R)【分析】(1)将原不等式化为,即(2x﹣7)(x﹣2)≤0(x≠2),解得答案;(2)对a进行分类讨论,可得不同情况下,不等式的解集;【解答】(本小题满分10分)解:(1)将原不等式化为,…(2分)即(2x﹣7)(x﹣2)≤0(x≠2),∴,…(4分)所以原不等式的解集为.…(5分)(2)当a=0时,不等式的解集为{0};…(6分)当a≠0时,原不等式等价于(x+a)(x﹣2a)≤0,因此当a>0时,﹣a<2a,∴﹣a≤x≤2a,当a<0时,﹣a>2a,∴2a≤x≤﹣a,…(9分)综上所述,当a=0时,不等式的解集为{0},当a>0时,不等式的解集为,{x|﹣a≤x≤2a},当a<0时,不等式的解集{x|2a≤x≤﹣a}.…(10分)【点评】本题考查的知识点是分式不等式的解法,二次不等式的解法,难度中档.18.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,且满足cos(A ﹣B)=2sinAsinB.(Ⅰ)判断△ABC的形状;(Ⅱ)若a=3,c=6,CD为角C的平分线,求△BCD的面积.【分析】(Ⅰ)直接利用正弦定理和三角函数关系式的恒等变换,判断出三角形为直角三角形.(Ⅱ)利用(Ⅰ)的结论和正弦定理求出相应的边长,最后利用三角形的面积公式求出结果.【解答】解:(Ⅰ)cos(A﹣B)=2sinAsinB,cosAcosB+sinAsinB=2sinAsinB,所以:cosAcosB﹣sinAsinB=0,即:cos(A+B)=0,解得:C=90°,故△ABC为直角三角形.(Ⅱ)由(Ⅰ)知:C=90°,又a=3,c=6,所以:b=,则:A=30°,∠ADC=105°,由正弦定理得:,所以:CD=,=.【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦定理的应用,三角形形状的判定及相关的运算问题.19.(12分)设S n是等差数列{a n}的前n项和,已知a1+a3=﹣2,S15=75(n∈N*).(Ⅰ)求S9;(Ⅱ)若数列b n=,求数列{b n}的前n项和T n.【分析】(Ⅰ)设等差数列{a n}的公差为d,由题意列关于首项和公差的方程组,求出首项和公差,则S9可求;(Ⅱ)由(Ⅰ)求出等差数列{a n}的通项,代入b n=,利用裂项相消法求数列{b n}的前n项和T n.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,则由a1+a3=﹣2,S15=75,得,解得.∴;(Ⅱ)由(Ⅰ)知,a n=﹣2+1×(n﹣1)=n﹣3,∴b n==,∴T n=b1+b2+b3+…+b n==.【点评】本题考查等差数列的通项公式,考查了利用裂项相消法求数列的前n 项和,是中档题.20.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,且2cosB(acosC+ccosA)=b.(Ⅰ)求B;(Ⅱ)若a+c=1,求b的取值范围.【分析】(Ⅰ)利用正弦定理化简可得求B.(Ⅱ)利用余弦定理建立关系,根据a的范围求解即可求b的取值范围.【解答】解:(Ⅰ)由2cosB(acosC+ccosA)=b.根据正弦定理:2cosB(sinAcosC+sinCcosA)=sinB即2cosBsinB=sinB,∵0<B<π,sinB≠0,可得cosB=∴B=;(Ⅱ)∵a+c=1,则c=1﹣a,∴0<a<1.cosB=.由余弦定理:b2=a2+c2﹣2accosB∴b2=(a+c)2﹣3ac=1﹣3a(1﹣a)=3(a﹣)2+.∵0<a<1.∴≤b2<1.则b的取值范围是[,1).【点评】本题考查了正余弦定理的运用和计算能力.转化思想,利用二次函数问题求解范围.属于中档题.21.(12分)潍坊文化艺术中心的观光塔是潍坊市的标志性建筑,某班同学准备测量观光塔AE的高度H(单位:米),如图所示,垂直放置的标杆BC的高度h=4米,已知∠ABE=α,∠ADE=β(1)该班同学测得α,β一组数据:tanα=1.35,tanβ=1.31,请据此算出H的值(2)该班同学分析若干测得的数据后,发现适当调整标杆到观光塔的距离d(单位:米),使α与β的差距较大,可以提高测量准确度,若观光塔高度为136米,问d为多大是tan(α﹣β)的值最大?【分析】(1)在Rt△ABE中可得AD=,在Rt△ADE中可得AB=,BD=,再根据AD﹣AB=DB即可得到H.(2)先用d分别表示出tanα和tanβ,再根据两角和公式,求得tan(α﹣β),整理成基本不等式的形式,再根据基本不等式可求得tan(α﹣β)有最大值即α﹣β有最大值,得到答案.【解答】解:(1)由,,,及AB+BD=AD,得,解得,因此算出观光塔的高度H是135m.(2)由题设知d=AB,得,由得,所以.当且仅当,即d===4m,上式取等号,所以当时tan(α﹣β)最大.【点评】本题主要考查解三角形的知识、两角差的正切及不等式的应用.当涉及最值问题时,可考虑用不等式的性质来解决.22.(12分)已知数列{a n}的前n项和为S n,S n=n2+2n.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=,设数列{b n}的前n项和为T n,求T n;(Ⅲ)令c n=a n a n+1cos(n+1)π,若c1+c2+…+c n≥tn2对n∈N*恒成立,求实数t 的取值范围.【分析】(Ⅰ)由S n=n2+2n,得a1=S1=3,当n≥2时,利用a n=S n﹣S n﹣1求得数列通项公式,验证首项后得答案;(Ⅱ)把数列{a n}的通项公式代入b n=,然后利用错位相减法求数列{b n}的前n项和为T n;(Ⅲ)c n=a n a n+1cos(n+1)π=(2n+1)(2n+3)cos(n+1)π.分n为奇数和n为偶数利用等差数列求和得到c1+c2+…+c n,结合c1+c2+…+c n≥tn2对n∈N*恒成立求实数t的取值范围.【解答】解:(Ⅰ)由S n=n2+2n,得a1=S1=3,当n≥2时,,a1=3适合上式,∴a n=2n+1;(Ⅱ)b n==,则,①,②①﹣②得:=,∴;(Ⅲ)c n=a n a n+1cos(n+1)π=(2n+1)(2n+3)cos(n+1)π.当n为奇数时,cos(n+1)π=1,c1+c2+…+c n=3×5﹣5×7+7×9﹣9×11+…+(2n+1)(2n+3)=3×5+4×[7+11+…+(2n+1)]=15+4×=2n2+6n+7.∵,∴2n2+6n+7≥tn2,∴t≤,∴t≤2.当n为偶数时,cos(n+1)π=﹣1,c1+c2+…+c n=3×5﹣5×7+7×9﹣9×11+…﹣(2n+1)(2n+3)=﹣4×[5+9+13+…+(2n+1)]=﹣2n2﹣6n.∵,∴﹣2n2﹣6n≥tn2,∴t,则t≤﹣5.综上所述,t≤﹣5.【点评】本题考查数列递推式,训练了错位相减法求数列的前n项和,考查数列的函数特性,训练了恒成立问题的求解方法,是中档题.。

2017-2018学年高二上学期期中数学试卷 Word版含解析

2017-2018学年高二上学期期中数学试卷 Word版含解析

2017-2018学年高二上学期期中数学试卷一.选择题(每小题5分,共40分)1.(5分)已知两条相交直线a,b,a∥平面α,则b与α的位置关系是()A.b⊂平面αB.b⊥平面αC.b∥平面αD.b与平面α相交,或b∥平面α2.(5分)已知过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,则m的值为()A.0 B.﹣8 C.2 D.103.(5分)过点M(﹣1,5)作圆(x﹣1)2+(y﹣2)2=4的切线,则切线方程为()A.x=﹣1 B.5x+12y﹣55=0C.x=﹣1或5x+12y﹣55=0 D.x=﹣1或12x+5y﹣55=04.(5分)设m,n表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是()A.m⊥α,m⊥β,则α∥βB.m∥n,m⊥α,则n⊥αC.m⊥α,n⊥α,则m∥n D.m∥α,α∩β=n,则m∥n5.(5分)点P(4,﹣2)与圆x2+y2=4上任一点连线的中点轨迹方程是()A.(x﹣2)2+(y+1)2=1 B.(x﹣2)2+(y+1)2=4 C.(x+4)2+(y﹣2)2=1 D.(x+2)2+(y﹣1)2=16.(5分)在△ABC中,AB=4,BC=3,∠ABC=90°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是()A.36πB.28πC.20πD.16π7.(5分)某正三棱柱的三视图如图所示,其中正(主)视图是边长为2的正方形,该正三棱柱的表面积是()A.B.C.D.8.(5分)已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为()A.4 B.3 C.2 D.1二.填空题(每小题5分,共30分)9.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为.10.(5分)棱锥的高为16cm,底面积为512cm2,平行于底面的截面积为50cm2,则截面与底面的距离为.11.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则球O的表面积为.12.(5分)如图,若边长为4和3与边长为4和2的两个矩形所在平面互相垂直,则cosα:cosβ=.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣2)2+(y﹣2)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=.14.(5分)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.三.解答题(公3小题,共30分)15.(10分)在平面直角坐标系xOy内有三个定点A(2,2).B(1,3),C(1,1),记△ABC的外接圆为E.(I)求圆E的方程;(Ⅱ)若过原点O的直线l与圆E相交所得弦的长为,求直线l的方程.16.(10分)如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(Ⅰ)求证:DE∥面PBC;(Ⅱ)求证:AB⊥PE;(Ⅲ)求三棱锥B﹣PEC的体积.17.(10分)在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1与B1D1交点,已知AA1=AB=1,∠BAD=60°.(Ⅰ)求证:A1C1⊥平面B1BDD1;(Ⅱ)求证:AO∥平面BC1D;(Ⅲ)设点M在△BC1D内(含边界),且OM⊥B1D1,说明满足条件的点M的轨迹,并求OM的最小值.四.填空题(每小题4分,共20分)18.(4分)已知(ax+1)5的展开式中x3的系数是10,则实数a的值是.19.(4分)已知正三棱锥P﹣ABC的每个侧面是顶角为30°,腰长为4的三角形,E,F分别是PB,PC上的点,则△AEF的周长的最小值为.20.(4分)空间四边形ABCD中,若AB=BC=CD=DA=BD=1,则AC的取值范围是.21.(4分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.(4分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB| 22.的最大值是.五.解答题(共3题,共30分)23.(10分)如图,在三棱柱ABC﹣A1B1C中,AA1⊥底面ABC,AB⊥AC,AC=AA1,E、F分别是棱BC、CC1的中点.(Ⅰ)求证:AB⊥平面AA1 C1C;(Ⅱ)若线段AC上的点D满足平面DEF∥平面ABC1,试确定点D的位置,并说明理由;(Ⅲ)证明:EF⊥A1C.24.(10分)已知点P(2,0)及圆C:x2+y2﹣6x+4y+4=0.(Ⅰ)若直线l过点P且与圆心C的距离为1,求直线l的方程;(Ⅱ)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆的方程;(Ⅲ)设直线ax﹣y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.25.(10分)设圆C1的方程为(x﹣2)2+(y﹣3m)2=4m2,直线l的方程为y=x+m﹣1.(Ⅰ)求C1关于l对称的圆C2的方程;(Ⅱ)当m变化且m≠0时,求证:C2的圆心在一条定直线上,并求C2所表示的一系列圆的公切线方程.2017-2018学年高二上学期期中数学试卷参考答案与试题解析一.选择题(每小题5分,共40分)1.(5分)已知两条相交直线a,b,a∥平面α,则b与α的位置关系是()A.b⊂平面αB.b⊥平面αC.b∥平面αD.b与平面α相交,或b∥平面α考点:空间中直线与平面之间的位置关系.专题:阅读型.分析:根据空间中直线与平面的位置关系可得答案.解答:解:根据空间中直线与平面的位置关系可得:b可能与平面α相交,也可能b与平面相交α,故选D.点评:解决此类问题的关键是熟练掌握空间中点、直线以及平面之间的位置关系.2.(5分)已知过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,则m的值为()A.0 B.﹣8 C.2 D.10考点:斜率的计算公式.专题:计算题.分析:因为过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,所以,两直线的斜率相等.解答:解:∵直线2x+y﹣1=0的斜率等于﹣2,∴过点A(﹣2, m)和B(m,4)的直线的斜率K也是﹣2,∴=﹣2,解得,故选 B.点评:本题考查两斜率存在的直线平行的条件是斜率相等,以及斜率公式的应用.3.(5分)过点M(﹣1,5)作圆(x﹣1)2+(y﹣2)2=4的切线,则切线方程为()A.x=﹣1 B.5x+12y﹣55=0C.x=﹣1或5x+12y﹣55=0 D.x=﹣1或12x+5y﹣55=0考点:圆的切线方程.专题:直线与圆.分析:首先讨论斜率不存在的情况,直线方程为x=﹣1满足条件.当斜率存在时,设直线方程为:y﹣5=k (x+1).利用圆心到直线的距离等于半径解得k的值,从而确定圆的切线方程.解答:解:①斜率不存在时,过点M(﹣1,5)的直线方程为x=﹣1.此时,圆心(1,2)到直线x=﹣1的距离d=2=r.∴x=﹣1是圆的切线方程.②斜率存在时,设直线斜率为k,则直线方程为:y﹣5=k(x+1).即kx﹣y+k+5=0.∵直线与圆相切,∴圆心到直线的距离.解得,.∴直线方程为5x+12y﹣55=0.∴过点M(﹣1,5)且与圆相切的直线方程为x=﹣1或5x+12y﹣55=0.故选:C.点评:本题考查直线与圆相切的性质,点到直线的距离公式等知识的运用.做题时容易忽略斜率不存在的情况.属于中档题.4.(5分)设m,n表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是()A.m⊥α,m⊥β,则α∥βB.m∥n,m⊥α,则n⊥αC.m⊥α,n⊥α,则m∥n D.m∥α,α∩β=n,则m∥n考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:充分利用线面平行和线面垂直的性质和判定定理对四个选项逐一解答.A选项用垂直于同一条直线的两个平面平行判断即可;B选项用两个平行线中的一条垂直于一个平面,则另一条也垂直于这个平面;C选项用线面垂直的性质定理判断即可;D选项由线面平行的性质定理判断即可.解答:解:A选项中命题是真命题,m⊥α,m⊥β,可以推出α∥β;B选项中命题是真命题,m∥n,m⊥α可得出n⊥α;C选项中命题是真命题,m⊥α,n⊥α,利用线面垂直的性质得到n∥m;D选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行.故选D.点评:本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理.5.(5分)点P(4,﹣2)与圆x2+y2=4上任一点连线的中点轨迹方程是()A.(x﹣2)2+(y+1)2=1 B.(x﹣2)2+(y+1)2=4 C.(x+4)2+(y﹣2)2=1 D.(x+2)2+(y﹣1)2=1考点:轨迹方程.专题:直线与圆.分析:设圆上任意一点为(x1,y1),中点为(x,y),则,由此能够轨迹方程.解答:解:设圆上任意一点为(x1,y1),中点为(x,y),则代入x2+y2=4得(2x﹣4)2+(2y+2)2=4,化简得(x﹣2)2+(y+1)2=1.故选A.点评:本题考查点的轨迹方程,解题时要仔细审题,注意公式的灵活运用.6.(5分)在△ABC中,AB=4,BC=3,∠ABC=90°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是()A.36πB.28πC.20πD.16π考点:旋转体(圆柱、圆锥、圆台).专题:空间位置关系与距离.分析:使△ABC绕直线BC旋转一周,则所形成的几何体是一个底面半径为4,高为3的一个圆锥,代入圆锥体积公式,可得答案.解答:解:将△ABC绕直线BC旋转一周,得到一个底面半径为4,高为3的一个圆锥,故所形成的几何体的体积V=×π×42×3=16π,故选:D点评:本题考查的知识点是旋转体,其中分析出旋转得到的几何体形状及底面半径,高等几何量是解答的关键.7.(5分)某正三棱柱的三视图如图所示,其中正(主)视图是边长为2的正方形,该正三棱柱的表面积是()A.B.C.D.考点:由三视图求面积、体积.专题:计算题.分析:利用三视图的数据,直接求解三棱柱的表面积.解答:解:因为正三棱柱的三视图,其中正(主)视图是边长为2的正方形,棱柱的侧棱长为2,底面三角形的边长为2,所以表面积为:2×+2×3×2=12+2.故选C.点评:本题考查几何体的三视图的应用,几何体的表面积的求法,考查计算能力.8.(5分)已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为()A.4 B.3 C.2 D.1考点:抛物线的应用.专题:函数的性质及应用.分析:本题可以设出点C的坐标(a,a2),求出C到直线AB的距离,得出三角形面积表达式,进而得到关于参数a的方程,转化为求解方程根的个数(不必解出这个跟),从而得到点C的个数.解答:解:设C(a,a2),由已知得直线AB的方程为,即:x+y﹣2=0点C到直线AB的距离为:d=,有三角形ABC的面积为2可得:=|a+a2﹣2|=2得:a2+a=0或a2+a﹣4=0,显然方程共有四个根,可知函数y=x2的图象上存在四个点(如上面图中四个点C1,C2,C3,C4)使得△ABC的面积为2(即图中的三角形△ABC1,△ABC2,△ABC3,△ABC4).故应选:A点评:本题考查了截距式直线方程,点到直线的距离公式,三角形的面积的求法,就参数的值或范围,考查了数形结合的思想二.填空题(每小题5分,共30分)9.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为x2+(y﹣1)2=1.考点:圆的标准方程.专题:直线与圆.分析:利用点(a,b)关于直线y=x±k的对称点为(b,a),求出圆心,再根据半径求得圆的方程.解答:解:圆心与点(1,0)关于直线y=x对称,可得圆心为(0,1),再根据半径等于1,可得所求的圆的方程为x2+(y﹣1)2=1,故答案为:x2+(y﹣1)2=1.点评:本题主要考查求圆的标准方程,利用了点(a,b)关于直线y=x±k的对称点为(b,a),属于基础题.10.(5分)棱锥的高为16cm,底面积为512cm2,平行于底面的截面积为50cm2,则截面与底面的距离为11cm.考点:棱柱、棱锥、棱台的体积.专题:计算题.分析:利用面积之比是相似比的平方,求出截取棱锥的高,然后求出截面与底面的距离.解答:解:设截取棱锥的高为:h,则,∴h=5,所以截面与底面的距离:16﹣5=11cm故答案为:11cm点评:本题是基础题,考查面积之比是选上比的平方,考查计算能力,空间想象能力.11.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则球O的表面积为12π.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:利用平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,求出球的半径,然后求解球O的表面积.解答:解:因为平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,所以球的半径为:=.所以球O的表面积为4π×3=12π.故答案为:12π.点评:本题考查球的表面积的求法,考查空间想象能力、计算能力.12.(5分)如图,若边长为4和3与边长为4和2的两个矩形所在平面互相垂直,则cosα:cosβ=.考点:平面与平面垂直的性质.专题:计算题;空间位置关系与距离.分析:由题意,两个矩形的对角线长分别为5,=2,利用余弦函数,即可求出cosα:cosβ.解答:解:由题意,两个矩形的对角线长分别为5,=2,∴cosα==,cosβ=,∴cosα:cosβ=,故答案为:.点评:本题考查平面与平面垂直的性质,考查学生的计算能力,比较基础.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣2)2+(y﹣2)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=±.考点:直线与圆相交的性质.专题:计算题;直线与圆.分析:根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论.解答:解:圆心C(2,2),半径r=2,∵△ABC为等边三角形,∴圆心C到直线AB的距离d=,即d==,解得a=±,故答案为:±.点评:本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.14.(5分)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆C的方程为(x﹣4)2+y2=1,由题意可知,只需(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.设圆心C(4,0)到直线y=kx﹣2的距离为d,则d=≤2,即3k2﹣4k≤0,∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系,将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.三.解答题(公3小题,共30分)15.(10分)在平面直角坐标系xOy内有三个定点A(2,2).B(1,3),C(1,1),记△ABC的外接圆为E.(I)求圆E的方程;(Ⅱ)若过原点O的直线l与圆E相交所得弦的长为,求直线l的方程.考点:圆的标准方程;直线与圆的位置关系.专题:计算题;直线与圆.分析:(I)设圆E的方程为x2+y2+Dx+Ey+F=0,将A、B、C的坐标代入,建立关于D、E、F的方程组,解之即可得到△ABC的外接圆E的方程;(II)化圆E为标准方程,得圆心为E(1,2),半径r=1.设直线l方程为y=kx,由点到直线的距离公式和垂径定理建立关于k的方程,解之得到k=1或7,由此即可得到直线l的方程.解答:解:(I)设圆E的方程为x2+y2+Dx+Ey+F=0∵A(2,2)、B(1,3)、C(1,1)都在圆E上∴,解之得因此,圆E的方程为x2+y2﹣2x﹣4y+4=0;(II)将圆E化成标准方程,可得(x﹣1)2+(y﹣2)2=1∴圆心为E(1,2),半径r=1设直线l方程为y=kx,则圆心E到直线l的距离为d=∵直线l与圆E相交所得弦的长为,∴由垂径定理,得d2+()2=r2=1可得d2=,即=,解之得k=1或7∴直线l的方程是y=x或y=7x.点评:本题给出三角形ABC三个顶点,求它的外接圆E的方程,并求截圆所得弦长为的直线方程.着重考查了直线的方程、圆的方程和直线与圆的位置关系等知识,属于中档题.16.(10分)如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(Ⅰ)求证:DE∥面PBC;(Ⅱ)求证:AB⊥PE;(Ⅲ)求三棱锥B﹣PEC的体积.考点:直线与平面垂直的性质;直线与平面平行的判定.专题:计算题;证明题;空间位置关系与距离.分析:(I)根据三角形中位线定理,证出DE∥BC,再由线面平行判定定理即可证出DE∥面PBC;(II)连结PD,由等腰三角形“三线合一”,证出PD⊥AB,结合DE⊥AB证出AB⊥平面PDE,由此可得AB ⊥PE;(III)由面面垂直性质定理,证出PD⊥平面ABC,得PD是三棱锥P﹣BEC的高.结合题中数据算出PD=且S△BEC=,利用锥体体积公式求出三棱锥P﹣BEC的体积,即得三棱锥B﹣PEC的体积.解答:解:(I)∵△ABC中,D、E分别为AB、AC中点,∴DE∥BC∵DE⊄面PBC且BC⊂面PBC,∴DE∥面PBC;(II)连结PD∵PA=PB,D为AB中点,∴PD⊥AB∵DE∥BC,BC⊥AB,∴DE⊥AB,又∵PD、DE是平面PDE内的相交直线,∴AB⊥平面PDE∵PE⊂平面PDE,∴AB⊥PE;(III)∵PD⊥AB,平面PAB⊥平面ABC,平面PAB∩平面ABC=AB∴PD⊥平面ABC,可得PD是三棱锥P﹣BEC的高又∵PD=,S△BEC=S△ABC=∴三棱锥B﹣PEC的体积V=V P﹣BEC=S△BEC×PD=点评:本题在三棱锥中求证线面平行、线线垂直,并求锥体的体积.着重考查了线面平行、线面垂直的判定与性质和锥体体积公式等知识,属于中档题.17.(10分)在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1与B1D1交点,已知AA1=AB=1,∠BAD=60°.(Ⅰ)求证:A1C1⊥平面B1BDD1;(Ⅱ)求证:AO∥平面BC1D;(Ⅲ)设点M在△BC1D内(含边界),且OM⊥B1D1,说明满足条件的点M的轨迹,并求OM的最小值.考点:直线与平面平行的判定;直线与平面垂直的判定;直线与平面垂直的性质.专题:空间位置关系与距离.分析:(Ⅰ)先根据线面垂直的性质证明出BB1⊥A1C1.进而根据菱形的性质证明出A1C1⊥B1D1.最后根据线面垂直的判定定理证明出A1C1⊥平面B1BDD1.(Ⅱ)连接AC,交BD于点E,连接C1E.先证明OC1∥AE和OC1=AE,推断出AOC1E为平行四边形,进而推断AO∥C1E,最后利用线面平行的判定定理证明出AO∥平面BC1D.(Ⅲ)先由E为BD中点,推断出BD⊥C1E,进而根据C1D=C1B,推断出ME⊥BD,进而根据OM⊥BD,推断出BD∥B1D1.直角三角形OC1E中利用射影定理求得OM.解答:解:(Ⅰ)依题意,因为四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,所以BB1⊥底面A1B1C1D1.又A1C1⊂底面A1B1C1D1,所以BB1⊥A1C1.因为A1B1C1D1为菱形,所以A1C1⊥B1D1.而BB1∩B1D1=B1,所以A1C1⊥平面B1BDD1.(Ⅱ)连接AC,交BD于点E,连接C1E.依题意,AA1∥CC1,且AA1=CC1,AA1⊥AC,所以A1ACC1为矩形.所以OC1∥AE.又,,A1C1=AC,所以OC1=AE,所以AOC1E为平行四边形,则AO∥C1E.又AO⊄平面BC1D,C1E⊂平面BC1D,所以AO∥平面BC1D.(Ⅲ)在△BC1D内,满足OM⊥B1D1的点M的轨迹是线段C1E,包括端点.分析如下:连接OE,则BD⊥OE.由于BD∥B1D1,故欲使OM⊥B1D1,只需OM⊥BD,从而需ME⊥BD.又在△BC1D中,C1D=C1B,又E为BD中点,所以BD⊥C1E.故M点一定在线段C1E上.当OM⊥C1E时,OM取最小值.在直角三角形OC1E中,OE=1,,,所以.点评:本题主要考查了线面平行和线面垂直的判定定理的应用.考查了学生基础知识的综合运用.四.填空题(每小题4分,共20分)18.(4分)已知(ax+1)5的展开式中x3的系数是10,则实数a的值是1.考点:二项式系数的性质.专题:计算题;二项式定理.分析:在展开式的通项公式,令x的指数为3,利用(ax+1)5的展开式中x3的系数是10,即可实数a的值.解答:解:(ax+1)5的展开式的通项公式为T r+1=,则∵(ax+1)5的展开式中x3的系数是10,∴=10,∴a=1.故答案为:1.点评:二项展开式的通项公式解决二项展开式的特定项问题的重要方法.19.(4分)已知正三棱锥P﹣ABC的每个侧面是顶角为30°,腰长为4的三角形,E,F分别是PB,PC上的点,则△AEF的周长的最小值为4.考点:棱锥的结构特征.专题:空间位置关系与距离.分析:根据侧面展开图求解得出,再利用直角三角形求解.解答:解:∵正三棱锥P﹣ABC的每个侧面是顶角为30°,腰长为4的三角形,∴侧面展开为下图连接AA得:RT△中,长度为4,∴△AEF的周长的最小值为4,故答案为:4,点评:本题考查了空间几何体中的最小距离问题,属于中档题.20.(4分)空间四边形ABCD中,若AB=BC=CD=DA=BD=1,则AC的取值范围是(0,].考点:棱锥的结构特征.专题:空间位置关系与距离.分析:运用图形得||=||,再根据向量求解.解答:解:0为BD中点,∵AB=BC=CD=DA=BD=1,∴|OA|=|OB|=,||=||==,θ∈(0°,180°]∴AC的取值范围是(0,]故答案为:(0,]点评:本题考查了向量的运用求解距离,属于中档题.21.(4分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1].考点:直线与圆的位置关系.专题:直线与圆.分析:根据直线和圆的位置关系,利用数形结合即可得到结论.解答:解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN=1,∴x0的取值范围是[﹣1,1].故选:A.点评:本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.(4分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB| 22.的最大值是5.考点:点到直线的距离公式.专题:直线与圆.分析:先计算出两条动直线经过的定点,即A和B,注意到两条动直线相互垂直的特点,则有PA⊥PB;再利用基本不等式放缩即可得出|PA|•|PB|的最大值.解答:解:有题意可知,动直线x+my=0经过定点A(0,0),动直线mx﹣y﹣m+3=0即 m(x﹣1)﹣y+3=0,经过点定点B(1,3),注意到动直线x+my=0和动直线mx﹣y﹣m+3=0始终垂直,P又是两条直线的交点,则有PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.故|PA|•|PB|≤=5(当且仅当时取“=”)故答案为:5点评:本题是直线和不等式的综合考查,特别是“两条直线相互垂直”这一特征是本题解答的突破口,从而有|PA|2+|PB|2是个定值,再由基本不等式求解得出.直线位置关系和不等式相结合,不容易想到,是个灵活的好题.五.解答题(共3题,共30分)23.(10分)如图,在三棱柱ABC﹣A1B1C中,AA1⊥底面ABC,AB⊥AC,AC=AA1,E、F分别是棱BC、CC1的中点.(Ⅰ)求证:AB⊥平面AA1 C1C;(Ⅱ)若线段AC上的点D满足平面DEF∥平面ABC1,试确定点D的位置,并说明理由;(Ⅲ)证明:EF⊥A1C.考点:直线与平面垂直的判定.专题:空间位置关系与距离.分析:(I)由线面垂直得A1A⊥AB,再由AB⊥AC,能证明AB⊥面A1CC1.(II)由AB∥DE,在△ABC中,E是棱BC的中点,推导出D是线段AC的中点.(III)由已知条件推导出A1C⊥AC1,AB⊥A1C,从而得到A1C⊥面ABC1,由此能证明EF⊥AC1.解答:(I)证明:∵AA1⊥底面ABC,∴A1A⊥AB,(2分)∵AB⊥AC,A1A∩AC=A,∴AB⊥面A1CC1.(4分)(II)解:∵面DEF∥面ABC1,面ABC∩面DEF=DE,面ABC∩面ABC1=AB,∴AB∥DE,(7分)∵在△ABC中,E是棱BC的中点,∴D是线段AC的中点.(8分)(III)证明:∵三棱柱ABC﹣A1B1C1中,A1A=AC,∴侧面A1ACC1是菱形,∴A1C⊥AC1,(9分)由(Ⅰ)得AB⊥A1C,∵AB∩AC1=A,∴A1C⊥面ABC1,(11分)∴A1C⊥BC1.(12分)又∵E,F分别为棱BC,CC1的中点,∴EF∥BC1,(13分)∴EF⊥AC1.(14分)点评:本题考查直线与平面垂直的证明,考查点的位置的确定,考查异面直线垂直的证明,解题时要认真审题,注意空间思维能力的培养.24.(10分)已知点P(2,0)及圆C:x2+y2﹣6x+4y+4=0.(Ⅰ)若直线l过点P且与圆心C的距离为1,求直线l的方程;(Ⅱ)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆的方程;(Ⅲ)设直线ax﹣y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.考点:直线与圆的位置关系.专题:综合题.分析:(Ⅰ)分两种情况:当直线l的斜率存在时,设出直线l的斜率为k,由P的坐标和设出的k写出直线l的方程,利用点到直线的距离公式表示出P到直线l的距离d,让d等于1列出关于k的方程,求出方程的解即可得到k的值,利用求出的k和P写出直线l的方程即可;当直线l的斜率不存在时,得到在线l的方程,经过验证符合题意;(Ⅱ)由利用两点间的距离公式求出圆心C到P的距离,再根据弦长|MN|的一半及半径,利用勾股定理求出弦心距d,发现|CP|与d相等,所以得到P为MN的中点,所以以MN为直径的圆的圆心坐标即为P的坐标,半径为|MN|的一半,根据圆心和半径写出圆的方程即可;(Ⅲ)把已知直线的方程代入到圆的方程中消去y得到关于x的一元二次方程,因为直线与圆有两个交点,所以得到△>0,列出关于a的不等式,求出不等式的解集即可得到a的取值范围,利用反证法证明:假设符合条件的a存在,由直线l2垂直平分弦AB得到圆心必在直线l2上,根据P与C的坐标即可求出l2的斜率,然后根据两直线垂直时斜率的乘积为﹣1,即可求出直线ax﹣y+1=0的斜率,进而求出a的值,经过判断求出a的值不在求出的范围中,所以假设错误,故这样的a不存在.解答:解:(Ⅰ)设直线l的斜率为k(k存在)则方程为y﹣0=k(x﹣2).又圆C的圆心为(3,﹣2),半径r=3,由,解得.所以直线方程为,即3x+4y﹣6=0;当l的斜率不存在时,l的方程为x=2,经验证x=2也满足条件;(Ⅱ)由于,而弦心距,所以d=,所以P为MN的中点,所以所求圆的圆心坐标为(2,0),半径为|MN|=2,故以MN为直径的圆Q的方程为(x﹣2)2+y2=4;(Ⅲ)把直线ax﹣y+1=0即y=ax+1.代入圆C的方程,消去y,整理得(a2+1)x2+6(a﹣1)x+9=0.由于直线ax﹣y+1=0交圆C于A,B两点,故△=36(a﹣1)2﹣36(a2+1)>0,即﹣2a>0,解得a<0.则实数a的取值范围是(﹣∞,0).设符合条件的实数a存在,由于l2垂直平分弦AB,故圆心C(3,﹣2)必在l2上.所以l2的斜率k PC=﹣2,而,所以.由于,故不存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB.点评:此题考查学生掌握直线与圆的位置关系,灵活运用点到直线的距离公式及两点间的距离公式化简求值,考查了分类讨论的数学思想,以及会利用反证法进行证明,是一道综合题.25.(10分)设圆C1的方程为(x﹣2)2+(y﹣3m)2=4m2,直线l的方程为y=x+m﹣1.(Ⅰ)求C1关于l对称的圆C2的方程;(Ⅱ)当m变化且m≠0时,求证:C2的圆心在一条定直线上,并求C2所表示的一系列圆的公切线方程.考点:直线与圆相交的性质.专题:直线与圆.分析:(Ⅰ)由圆的方程找出圆心坐标,设出圆心关于直线l的对称点的坐标,由直线l的斜率,根据两直线垂直时斜率的乘积为﹣1求出直线C1C2的斜率,由圆心及对称点的坐标表示出斜率,等于求出的斜率列出一个关系式,然后利用中点坐标公式,求出两圆心的中点坐标,代入直线l的方程,得到另一个关系式,两关系式联立即可用m表示出a与b,把表示出的a与b代入圆C2的方程即可;(Ⅱ)由表示出的a与b消去m,得到a与b的关系式,进而得到圆C2的圆心在定直线上;分公切线的斜率不存在和存在两种情况考虑,当公切线斜率不存在时,容易得到公切线方程为x=0;当公切线斜率存在时,设直线y=kx+b与圆系中的所有圆都相切,根据点到直线的距离公式表示出圆心(a,b)到直线y=kx+b的距离d,当d等于圆的半径2|m|,化简后根据多项式为0时各项的系数为0,即可求出k与b的值,从而确定出C2所表示的一系列圆的公切线方程,这样得到所有C2所表示的一系列圆的公切线方程.解答:解:(Ⅰ)∵圆C1的方程为(x﹣2)2+(y﹣3m)2=4m2,∴圆心为(2,3m),设它关于直线l:y=x+m﹣1的对称点为(a,b),则,解得a=2m+1,b=m+1,∴圆C2的圆心为(2m+1,m+1),∴圆C2的方程为:(x﹣2m﹣1)2+(y﹣m﹣1)2=4m2,∴C1关于l对称的圆C2的方程:(x﹣2m﹣1)2+(y﹣m﹣1)2=4m2.(Ⅱ)根据(Ⅰ)得圆C2的圆心为(2m+1,m+1),令,消去m得x﹣2y+1=0,它表示一条直线,故C2的圆心在一条定直线上,①当公切线的斜率不存在时,易求公切线的方程为x=0;②当公切线的斜率存在时,设直线y=kx+b与圆系中的所有圆都相切,∴=2|m|,即:(1﹣4k)m2+2(2k﹣1)(k+b﹣1)m+(k+b﹣1)2=0∵直线y=kx+b与圆系中的所有圆都相切,所以上述方程对所有的m值都成立,∴所以有:,解得,∴C2所表示的一系列圆的公切线方程为:y=,∴故所求圆的公切线为x=0或y=.点评:此题考查了直线与圆的位置关系,以及关于点与直线对称的圆的方程.此题的综合性比较强,要求学生审清题意,综合运用方程与函数的关系,掌握直线与圆相切时圆心到直线的距离等于半径,在作(Ⅱ)时先用消去参数的方法求定直线的方程,然后采用分类讨论的数学思想分别求出C2所表示的一系列圆的公切线方程.。

山东省枣庄市高二上学期期中数学试卷

山东省枣庄市高二上学期期中数学试卷

山东省枣庄市高二上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、填空题 (共14题;共15分)1. (2分)(2020·济宁模拟) 已知首项与公比相等的等比数列中,若,满足,则的最小值为________,等号成立时满足的等量关系是________.2. (1分) (2017高三上·烟台期中) 已知 =(1,﹣1), =(t,1),若( + )∥(﹣),则实数t=________.3. (1分) (2016高二上·上海期中) 已知A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则A∩B=________.4. (1分) (2016高二上·上海期中) 已知全集U=R,集合P={x|x2﹣5x﹣6≥0},那么∁UP=________5. (1分) (2016高一上·铜仁期中) 已知集合A={1,3,2m+3},集合B={3,m2}.若B⊆A,则实数m=________.6. (1分) (2016高二上·上海期中) 设全集U=M∪N={1,2,3,4,5},M∩∁UN={2,4},则N=________7. (1分) (2016高二上·上海期中) 满足{1,2}⊊M⊆{1,2,3,4,5,6}的集合M的个数是________.8. (1分) (2016高二上·上海期中) 已知x∈R,命题“若2<x<5,则x2﹣7x+10<0”的否命题是________.9. (1分) (2016高二上·上海期中) 设x>0,则的最小值为________.10. (1分) (2016高二上·上海期中) 若关于x的不等式ax2+bx+c>0的解集为{x|﹣1<x<2},则关于x 的不等式cx2+bx+a>0的解集是________.11. (1分) (2016高二上·上海期中) 在R上定义运算⊗:x⊗y=x(1﹣y),若不等式(x﹣a)⊗(x+a)<1对任意的实数x成立,则a的取值范围是________.12. (1分) (2016高二上·上海期中) 不等式x2﹣2x+3≤a2﹣2a﹣1在R上的解集是∅,则实数a的取值范围是________13. (1分) (2016高二上·上海期中) 设实数a,b满足a+ab+2b=30,且a>0,b>0,那么的最小值为________.14. (1分) (2016高二上·上海期中) 定义满足不等式|x﹣A|<B(A∈R,B>0)的实数x的集合叫做A的B邻域.若a+b﹣t(t为正常数)的a+b邻域是一个关于原点对称的区间,则a2+b2的最小值为________.二、选择题 (共4题;共8分)15. (2分) (2016高二下·漯河期末) 已知复数z= (i为虚数单位),则|z|=()A .B . 1C .D . 216. (2分)下列命题正确的是()A . ac>bc⇒a>bB . a2>b2⇒a>bC . >⇒a<bD . <⇒a<b17. (2分) (2016高二上·上海期中) 条件“0<x<5”是条件“|x﹣2|<3”的()A . 充分但非必要条件B . 必要但非充分条件C . 充要条件D . 既非充分又非必要条件18. (2分) (2016高二上·上海期中) 对于使﹣x2+2x≤M成立的所有常数M中,我们把M的最小值1叫做﹣x2+2x的上确界,若a,b∈R+ ,且a+b=1,则的上确界为()A .B .C .D . ﹣4三、解答题 (共6题;共85分)19. (15分) (2017高三上·西湖开学考) 已知:数列{an}中, =n,a2=6,n∈N+ .(1)求a1 , a3 , a4;(2)猜想an的表达式并给出证明;(3)记:Sn= + +…+ ,证明:Sn<.20. (10分) (2019高三上·牡丹江月考) 已知函数在与时都取得极值.(1)求的值与函数的单调区间;(2)若对 ,不等式恒成立,求的取值范围.21. (15分) (2016高二下·永川期中) 已知函数f(x)对任意实数x,y恒有f(x)=f(y)+f(x﹣y),当x>0时,f(x)<0,且f(2)=﹣3.(1)求f(0),并判断函数f(x)的奇偶性;(2)证明:函数f(x)在R上的单调递减;(3)若不等式f(2x﹣3)﹣f(﹣22x)<f(k•2x)+6在区间(﹣2,2)内恒成立,求实数k的取值范围.22. (10分) (2019高二上·四川期中) 命题方程表示焦点在轴上的双曲线;命题若存在,使得成立.(1)如果命题是真命题,求实数的取值范围;(2)如果“ ”为假命题,“ ”为真命题,求实数的取值范围.23. (15分)用列举法表示下列集合:(1)方程组的解集;(2)不大于的非负奇数集;(3).24. (20分) (2016高二上·上海期中) 已知一元二次函数f(x)=ax2+bx+c(a>0,c>0)的图象与x轴有两个不同的公共点,其中一个公共点的坐标为(c,0),且当0<x<c时,恒有f(x)>0.(1)当a=1,时,求出不等式f(x)<0的解;(2)求出不等式f(x)<0的解(用a,c表示);(3)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,求a的取值范围;(4)若不等式m2﹣2km+1+b+ac≥0对所有k∈[﹣1,1]恒成立,求实数m的取值范围.四、附加题 (共5题;共5分)25. (1分)(2019·新疆模拟) 设,函数,若时,函数有零点,则的取值个数有________.26. (1分)(2017·成都模拟) 已知向量 =(x﹣z,1), =(2,y+z),且,若变量x,y满足约束条件,则z的最大值为________.27. (1分) (2019高一上·惠来月考) 已知函数对于任意实数满足条件,若,则 f(7) ________.28. (1分)对于非空集合,定义运算:A⊕B={x|x∈A∪B,且x∉A∩B},已知M={x|a<x<b},N={x|c<x<d},其中a,b,c,d满足a+b=c+d,ab<cd<0,则M⊕N=________.29. (1分) (2020高一下·宜宾月考) 函数的最小值为________.参考答案一、填空题 (共14题;共15分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、选择题 (共4题;共8分)15-1、16-1、17-1、18-1、三、解答题 (共6题;共85分)19-1、19-2、19-3、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、24-4、四、附加题 (共5题;共5分) 25-1、26-1、27-1、28-1、29-1、。

2017_2018学年高二数学上学期期中试题文(42)

2017_2018学年高二数学上学期期中试题文(42)
A.1盏B.3盏C.5盏D.9盏
6.不等式 的解集为
A. B. C. D.
7.一海轮从 处出发,以每小时40海里的速度沿南偏东 的方向直线航行,30分钟后到达 处,在 处有一座灯塔,海伦在 处观察灯塔,其方向是南偏东 ,在 处观察灯塔,其方向是北偏东 ,那么 两点间的距离是
A. 海里B. 海里C. 海里D. 海里
山东省枣庄市薛城区2017-2018学年高二数学上学期期中试题文
第I卷(选择题共60分)
注意事项:
1.答第 卷前,考生务必将自己的姓名、考号、考试科目、试卷类型用2B铅笔涂写在答题卡上.
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试卷上.
(2)如果DE是灌溉水管,为节约成本,希望它最短,DE的位置应在哪里?
21.(本小题满分12分)
在 中,角 的对边分别为 ,已知 .
(1)求 ;
(2)若 ,点 在 边上且 ,求 .
22.(本小题满分1数列 满足 .
(1)求数列 的通项公式;
(2)设 ,求数列 的前项 和 .
因此q=2,所以{an}的通项为an=2·2n-1=2n(n∈N+).…………………………………6分
(2)Sn= +n·1+ ·2=2n+1+n2-2.…………………………………12分
19.解:(1)由题意知, 是方程 的两个实根,
∴ ,解得 ,∴ , .………………………………………4分
(2)由(1)知,不等式 可化为 ,
3.考试结束后,监考人员将答题卡和第 卷的答题纸一并收回.
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

『精选』2020年山东省枣庄市薛城区高二上学期期中数学试卷和解析(文科)

『精选』2020年山东省枣庄市薛城区高二上学期期中数学试卷和解析(文科)

2018学年山东省枣庄市薛城区高二(上)期中数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)不等式x2<4的解集为()A.{x|x<2 }B.{x|x>﹣2}C.{x|﹣2<x<2}D.{x|x<﹣2或x>2}2.(5分)若a>b,则下列不等式中正确的是()A.B.C.D.2a>2b3.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1 B.2 C.4 D.84.(5分)在△ABC中,A=60°,,则∠B等于()A.45°或135°B.135°C.45°D.30°5.(5分)我国古代数学名著《算法统宗》中有如下问题:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏 B.3盏 C.5盏 D.9盏6.(5分)不等式≤0的解集为()A.(﹣∞,1]∪(3,+∞) B.[1,3) C.[1,3]D.(﹣∞,1]∪[3,+∞)7.(5分)一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是()海里.A.10B.20C.10D.208.(5分)已知x,y满足约束条件,则z=x+2y的最大值是()A.0 B.2 C.5 D.69.(5分)在△ABC中,若三边a,b,c的倒数成等差数列,则边b所对的角为()A.锐角B.直角C.钝角D.不能确定10.(5分)已知a>0,b>0,a+b=2,则y=+的最小值是()A.B.C.5 D.411.(5分)如图,在△ABC上,D是BC上的点,且AC=CD,2AC=AD,AB=2AD,则sinB等于()A.B.C.D.12.(5分)定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f(a n)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(﹣∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)=;④f(x)=ln|x|.则其中是“保等比数列函数”的f(x)的序号为()A.①②B.③④C.①③D.②④二、填空题(本大题共4个小题,每小题5分,共20分.)13.(5分)已知a>3,求a+的最小值.14.(5分)等比数列{a n}的前n项和S n=3n+a,则a等于.15.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为.16.(5分)如图,四边形ABCD中,∠ABC=∠C=120°,AB=4,BC=CD=2,则该四边形的面积是.三、解答题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(10分)△ABC中,BC=7,AB=3,且=.(1)求AC的长;(2)求∠A的大小.18.(12分)设{a n}是公比为正数的等比数列,a1=2,a3=a2+4.(1)求{a n}的通项公式;(2)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n.19.(12分)已知关于x的不等式x2﹣ax﹣2>0的解集为{x|x<﹣1或x>b}(b>﹣1).(1)求a,b的值;(2)当m>﹣时,解关于x的不等式(mx+a)(x﹣b)>0.20.(12分)如图所示,公园有一块边长为2的等边三角形ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,点D在AB上,点E在AC上.(1)设AD=x(x≥0),ED=y,求用x表示y的函数关系式;(2)如果DE是灌溉水管,为节约成本,希望它最短,DE的位置应在哪里?如果DE是参观线路,则希望它最长,DE的位置又在哪里?21.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知(2a+c)cosB+bcosC=0.(Ⅰ)求B;(Ⅱ)若a=3,点D在AC边上且,求c.22.(12分)设等比数列{a n}的前项n和S n,a2=,且S1+,S2,S3成等差数列,数列{b n}满足b n=2n.(1)求数列{a n}的通项公式;(2)设c n=a n b n,求数列{c n}的前项n和T n.2018学年山东省枣庄市薛城区高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)不等式x2<4的解集为()A.{x|x<2 }B.{x|x>﹣2}C.{x|﹣2<x<2}D.{x|x<﹣2或x>2}【解答】解:不等式x2<4化为(x﹣2)(x+2)<0,解得﹣2<x<2,∴不等式的解集为{x|﹣2<x<2}.故选:C.2.(5分)若a>b,则下列不等式中正确的是()A.B.C.D.2a>2b【解答】解:取a=2,b=﹣1时,A.B.C不成立;对于D.由指数函数y=2x在R上单调递增,a>b,可得2a>2b.故选:D.3.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1 B.2 C.4 D.8【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.4.(5分)在△ABC中,A=60°,,则∠B等于()A.45°或135°B.135°C.45°D.30°【解答】解:∵A=60°,由正弦定理可得,∴∵a>b∴A>B∴B=45°故选:C.5.(5分)我国古代数学名著《算法统宗》中有如下问题:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏 B.3盏 C.5盏 D.9盏【解答】解:设塔顶的a1盏灯,由题意{a n}是公比为2的等比数列,∴S7==381,解得a1=3.故选:B.6.(5分)不等式≤0的解集为()A.(﹣∞,1]∪(3,+∞) B.[1,3) C.[1,3]D.(﹣∞,1]∪[3,+∞)【解答】解:原不等式等价于(x﹣1)(x﹣3)≤0且x﹣3≠0,所以不等式的解集为[1,3);故选:B.7.(5分)一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是()海里.A.10B.20C.10D.20【解答】解:如图,由已知可得,∠BAC=30°,∠ABC=105°,AB=20,从而∠ACB=45°.在△ABC中,由正弦定理可得BC=×sin30°=10.故选:A.8.(5分)已知x,y满足约束条件,则z=x+2y的最大值是()A.0 B.2 C.5 D.6【解答】解:画出约束条件表示的平面区域,如图所示;由解得A(﹣3,4),此时直线y=﹣x+z在y轴上的截距最大,所以目标函数z=x+2y的最大值为z max=﹣3+2×4=5.故选:C.9.(5分)在△ABC中,若三边a,b,c的倒数成等差数列,则边b所对的角为()A.锐角B.直角C.钝角D.不能确定【解答】解:方法一:由题意可得.∴,∵=.即cosB=>0故法2:反证法:假设则有b>a>0,b>c>0.则可得与已知矛盾,假设不成立,原命题正确.(法三)∵△ABC的三边a,b,c的倒数成等差数列,∴=,故b边不是最大边,也不是最小边.若B≥,则最大边所对的角大于,这与三角形内角和相矛盾,故.10.(5分)已知a>0,b>0,a+b=2,则y=+的最小值是()A.B.C.5 D.4【解答】解:∵a>0,b>0,a+b=2,∴y=+=(+)(a+b)=(1+4++)≥(5+2)=,当且仅当b=2a时等号成立,故选:A.11.(5分)如图,在△ABC上,D是BC上的点,且AC=CD,2AC=AD,AB=2AD,则sinB等于()A.B.C.D.【解答】解:由题意设AD=2x,则AC=CD=x,AB=4x,在△ADC中由余弦定理可得cos∠ADC==,∴sin∠ADB=sin∠ADC==,∴在△ADB中由正弦定理可得sinB===,故选:C.12.(5分)定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f(a n)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(﹣∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)=;④f(x)=ln|x|.则其中是“保等比数列函数”的f(x)的序号为()A.①②B.③④C.①③D.②④【解答】解:由等比数列性质知,),故正确;①=f2(a n+1),故不正确;②≠=f2(a n+1③==f2(a n+1),故正确;④f(a n)f(a n+2)=ln|a n|ln|a n+2|≠=f2(a n+1),故不正确;故选:C.二、填空题(本大题共4个小题,每小题5分,共20分.)13.(5分)已知a>3,求a+的最小值5.【解答】解:∵a>3,a+=a﹣3++3+3=5,当且仅当a﹣3=即a=4时取等号,∴a+的最小值是5,故答案为:5.14.(5分)等比数列{a n}的前n项和S n=3n+a,则a等于﹣1.【解答】解:S n=3n+a,S(n﹣1)=3(n﹣1)+a,∴a n=S n﹣S(n﹣1)=2•3(n﹣1),a1=S1=3+a,由通项a2=6,公比为3,∴a1=2,∴a=﹣115.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为﹣5.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.16.(5分)如图,四边形ABCD 中,∠ABC=∠C=120°,AB=4,BC=CD=2,则该四边形的面积是.【解答】解:∵∠ABC=∠C=120°,AB=4,BC=CD=2, ∴在△BCD 中,BD===2,∴S △ABD =AB•BD•sin (120°﹣30°)==4,S △BCD ===, ∴四边形的面积S=S △ABD +S △BCD =4=5. 故答案为:.三、解答题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(10分)△ABC 中,BC=7,AB=3,且=.(1)求AC 的长;(2)求∠A的大小.【解答】解:(1)在△ABC中,BC=a=7,AB=c=3,AC=b,根据正弦定理以及=,可得b=c=5,即AC=5,(2)根据余弦定理可得cosA===﹣,∵0°<A<180°,∴A=120°.18.(12分)设{a n}是公比为正数的等比数列,a1=2,a3=a2+4.(1)求{a n}的通项公式;(2)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n.【解答】解:(1)设q为等比数列{a n}的公比,则由a1=2,a3=a2+4得2q2=2q+4,即q2﹣q﹣2=0,解得q=2或q=﹣1(舍去),因此q=2,∴{a n}的通项为;(2)由已知可得b n=1+2(n﹣1)=2n﹣1,∴a n+b n=2n+(2n﹣1),∴S n=+=2n+1+n2﹣2.19.(12分)已知关于x的不等式x2﹣ax﹣2>0的解集为{x|x<﹣1或x>b}(b>﹣1).(1)求a,b的值;(2)当m>﹣时,解关于x的不等式(mx+a)(x﹣b)>0.【解答】解:(1)关于x的不等式x2﹣ax﹣2>0的解集为{x|x<﹣1或x>b}(b>﹣1),∴﹣1,b是方程x2﹣ax﹣2=0的两实数根,∴,解得a=1,b=2;(2)由(1)知,不等式可化为(mx+1)(x﹣2)>0,又m>﹣,当m=0时,不等式化为x﹣2>0,解得x>2;当m>0时,不等式化为(x+)(x﹣2)>0,解得x<﹣,或x>2;当﹣<m<0时,﹣>2,不等式化为(x+)(x﹣2)<0,解得2<x<﹣;综上,m>0时,不等式的解集为{x|x<﹣,或x>2},m=0时,不等式的解集为{x|x>2},﹣<m<0时,不等式的解集为{x|2<x<﹣}.20.(12分)如图所示,公园有一块边长为2的等边三角形ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,点D在AB上,点E在AC上.(1)设AD=x(x≥0),ED=y,求用x表示y的函数关系式;(2)如果DE是灌溉水管,为节约成本,希望它最短,DE的位置应在哪里?如果DE是参观线路,则希望它最长,DE的位置又在哪里?=×4=,∴S△ADE=•x•AE•sin 60°=,∴AE=≤2,∴x≥1.【解答】解:(1)S△ABC在△ADE中,y2=x2+﹣2•x••cos 60°=x2+﹣2,∴y=(1≤x≤2).(2)令t=x2,则1≤t≤4,∴y=,(1≤t≤4).且当t=2,即x=,AD=,AE=时,DE最短为;由函数在[1,4]上的单调性可知,当t=1或4,即AD=2,AE=1或AD=1,AE=2时,DE最长为.21.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知(2a+c)cosB+bcosC=0.(Ⅰ)求B;(Ⅱ)若a=3,点D在AC边上且,求c.【解答】(Ⅰ)由(2a+c)cosB+bcosC=0及正弦定理,可得2sinAcosB+sinCcosB+sinBcosC=0,即2sinAcosB+sin(B+C)=0,由A+B+C=π可得sin(B+C)=sinA,所以sinA(2cosB+1)=0,因为0<A<π,sinA≠0,所以.(Ⅱ)由得b2=a2+c2+ac=c2+3c+9,又因为BD⊥AC,所以△ABC的面积,把,带入得,所以,解得c=5.22.(12分)设等比数列{a n}的前项n和S n,a2=,且S1+,S2,S3成等差数列,数列{b n}满足b n=2n.(1)求数列{a n}的通项公式;(2)设c n=a n b n,求数列{c n}的前项n和T n.【解答】解:(1)设数列{a n}的公比为q,∵成等差数列,∴,∴,∵,∴,∴,∴.(2)设数列{c n}的前项n和为T n,则T n=c1+c2+c3+…+c n,又,∴,,两式相减得,∴,赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。

山东省枣庄市薛城区2017-2018学年高二上学期期中考试数学(文)试题含答案

山东省枣庄市薛城区2017-2018学年高二上学期期中考试数学(文)试题含答案

秘密★启用前 试卷类型:A2017 ~ 2018学年度第一学期模块检测高二数学(文科)2017。

11第I 卷(选择题 共60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、考号、考试科目、试卷类型用2B 铅笔涂写在答题卡上。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试卷上。

3. 考试结束后,监考人员将答题卡和第II 卷的答题纸一并收回。

一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的. 1.不等式x 2〈4的解集为A .{x |x <2 }B .{x |x 〉-2}C . {x |-2〈x 〈2}D .{x |x 〈-2或x >2}2.若b a >,则下列不等式中正确的是A .b a 11<B .1>b aC .ab b a 2>+ D .b a22>3.记nS 为等差数列{}na 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8 4.在△ABC 中,A =60°,a =4错误!,b =4错误!,则B 等于A .45°或135°B .135°C .45°D .30°5.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A .1盏B .3盏C .5盏D .9盏6.不等式031≤--x x 的解集为A .),3(]1,(+∞-∞B .)3,1[C .]3,1[D .),3[]1,(+∞-∞ 7.一海轮从A 处出发,以每小时40海里的速度沿南偏东40的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海伦在A 处观察灯塔,其方向是南偏东70,在B 处观察灯塔,其方向是北偏东65,那么,B C 两点间的距离是A.海里 B. C. D.海里8.已知x ,y满足3035030x y x y x -+≤⎧⎪++≤⎨⎪+≥⎩,则2z x y =+的最大值是A 。

山东省枣庄市薛城区高二数学上学期期中试题 理

山东省枣庄市薛城区高二数学上学期期中试题 理

山东省枣庄市薛城区2017-2018学年高二数学上学期期中试题 理第I 卷(选择题 共60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、考号、考试科目、试卷类型用2B 铅笔涂写在答题卡上.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试卷上.3. 考试结束后,监考人员将答题卡和第II 卷的答题纸一并收回.一、选择题:本大题共12个小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N 等于A .{x |x <-2}B .{x |x >3}C .{x |-1<x <2}D .{x |2<x <3} 2.若b a >,则下列不等式中正确的是A .b a 11<B .1>ba C .ab b a 2>+ D .b a 22> 3.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .84.在△ABC 中,A =60°,a =43,b =42,则B 等于A .45°或135°B .135°C .45°D .30°5.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A .1盏B .3盏C .5盏D .9盏6.不等式031≤--x x 的解集为 A .),3(]1,(+∞-∞ B .)3,1[ C .]3,1[ D .),3[]1,(+∞-∞7.一海轮从A 处出发,以每小时40海里的速度沿南偏东40的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海伦在A 处观察灯塔,其方向是南偏东70,在B 处观察灯塔,其方向是北偏东65,那么,B C 两点间的距离是A. B. C. D.8.已知x,y 满足3035030x y x y x -+≤⎧⎪++≤⎨⎪+≥⎩,则2z x y =+的最大值是A . 0 B. 2 C. 5 D. 69.在△ABC 中,若三边a ,b ,c 的倒数成等差数列,则边b 所对的角为A .锐角B .直角C .钝角D .不能确定10.设x ,y ∈R +,且xy -(x +y )=1,下列结论中正确的是A .x +y ≥22+2B .xy ≤2+1C .x +y ≤(2+1)2D .xy ≥22+211.如图,ABC ∆中,D 是边BC 上的点,且AC =CD,2,2AC AB AD ==,则sin B 等于12.定义在(,0)(0,)-∞+∞上的函数()f x ,如果对于任意给定的等比数列{}n a , {()}n f a 仍是等比数列,则称()f x 为“保等比数列函数”. 现有定义在(,0)(0,)-∞+∞上的如下函数:①2()f x x =; ②()2x f x =; ③()f x =; ④()ln ||f x x =.则其中是“保等比数列函数”的()f x 的序号为A .① ②B .③ ④C .① ③D .② ④高二数学(理科)第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分.)13.若3a >,则13a a +-的最小值是 .14.已知数列{}n a 的前n 项和为n S ,且满足12a =,121n n a S +=+,则数列{}n a 的通项公式为 .15.当实数 x y ,满足不等式组:0022x y x y ≥⎧⎪≥⎨⎪+≤⎩时,恒有3ax y +≤成立,则实数a 的取值范围是 .16.如图,四边形ABCD 中,B =C =120°,AB =4,BC =CD =2,则该四边形的面积等于________.三、解答题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17. (本小题满分10分)在△ABC 中,BC =7,AB =3,且sin C sin B =35.(1)求AC ; (2)求角A .18. (本小题满分12分)设{a n}是公比为正数的等比数列,a1=2,a3=a2+4.(1)求{a n}的通项公式;(2)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n.19. (本小题满分12分)设2()(1)1f x ax a x =-++.(1)解关于x 的不等式()0f x >;(2)若对任意的[1,1]a ∈-,不等式()0f x >恒成立,求x 的取值范围.20. (本小题满分12分)如图所示,公园有一块边长为2的等边三角形ABC 的边角地,现修成草坪,图中DE 把草坪分成面积相等的两部分,点D 在AB 上,点E 在AC 上.(1)设AD =x (x ≥0),ED =y ,求用x 表示y 的函数关系式;(2)如果DE 是灌溉水管,为节约成本,希望它最短,DE 的位置应在哪里?如果DE 是参观线路,则希望它最长,DE 的位置又在哪里?21. (本小题满分12分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知()2cos cos 0a c B b C ++=.(1)求B ;(2)若3a =,点D 在AC边上且,BD AC BD ⊥=,求c .22. (本小题满分12分)已知数列{}n a , {}n b , n S 为数列{}n a 的前n 项和, 214a b =, 22n n S a =-, ()211n n nb n b n n +-+=+(*n N ∈)(1)求数列{}n a 的通项公式;(2)证明n b⎧⎫⎨⎬为等差数列; (3)若数列{}n c n T 为{}n c 的前n 项的和,求2n T .2017~ 2018学年度第一学期模块检测高二理科数学参考答案及评分标准 2017.11一、选择题:本大题共12个小题,每小题5分,共60分.CDCCB BACBA CC二、填空题:本大题共4小题,每小题5分,共20分.13. 5 14. 22, 153, 2n n n a n -=⎧=⎨⋅≥⎩ 15. (,3]-∞ 16. 53 三、解答题共6个小题,共70分.17.解:(1)由正弦定理,得AC sin B =ABsin C . 所以AB AC =sin C sin B =35. 所以AC =AB ·sin B sin C =5×33=5. …………………………………………………5分 (2)由余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC =9+25-492×3×5=-12. 又0°<A <180°,所以A =120°. ……………………10分18.解:(1)设q 为等比数列{a n }的公比,则由a 1=2,a 3=a 2+4得2q 2=2q +4,即q 2-q -2=0,解得q =2或q =-1(舍去),……………………………………………4分 因此q =2,所以{a n }的通项为a n =2·2n -1=2n (n ∈N +).…………………………………6分 (2)S n =2(1-2n )1-2+n ·1+n (n -1)2·2=2n +1+n 2-2. …………………………………12分 19. 解:(1)0<a 时,不等式的解集为}11|{<<x ax ; 0=a 时,不等式的解集为}1|{<x x ;10<<a 时,不等式的解集为11{|}x x a><或x ; 1=a 时,不等式的解集为}1|{≠x x ;1>a 时,不等式的解集为}1x 1|{ax x <>或. …………………………………………6分 (2)令()2()1g a x x a x =--+,因为对任意的]1,1[-∈a ,不等式()0f x >恒成立,也即()0g a >恒成立.所以只需(1)0(1)0g g ->⎧⎨>⎩,即2221010x x x ⎧-+>⎪⎨->⎪⎩,解得11x -<<, 所以,x 的取值范围是1,1x ∈-().………………………………………………………12分20. 解:S △ABC =34×4=3,所以S △ADE =12·x ·AE ·sin 60°=32, 所以x ·AE =2,所以AE =2x≤2,所以x ≥1. (1)在△ADE 中,y 2=x 2+22x ⎛⎫ ⎪⎝⎭-2·x ·2x ·cos 60°=x 2+4x 2-2, 所以y =x 2+4x 2-2(1≤x ≤2).………………………………………………………………6分 (2)令t =x 2,则1≤t ≤4,所以y =t +4t -2(1≤t≤4).= 且当t =2,即x =2, AD =2,AE =2时,DE 最短为2;…………………………10分由函数4T t t=+在[1,4]上的单调性可知, 当t =1或4,即AD =2,AE =1或AD =1,AE =2时,DE 最长为3…………………12分21. 解:(1)由()2cos cos 0a c B b C ++=及正弦定理,可得2sin cos sin cos sin cos 0A B C B B C ++=,即()2sin cos sin 0A B B C ++=,由A B C π++=可得()sin sin B C A +=,所以()sin 2cos 10A B +=,因为0,sin 0A A π<<≠,所以1cos 2B =-, 因为()0,B π∈,所以23B π=.……………………………………………………………6分 (2)由23B π=得222239b a c ac c c =++=++, 又因为BD AC ⊥,所以ABC ∆的面积1sin 2S ac B b BD ==⋅,把23,,3a B BD π===,带入得75b c =, 所以227395c c c ⎛⎫=++ ⎪⎝⎭,解得5c =.…………………………………………………12分 22.解:(1)当1n >时, 111122{ 22222n n n n n n n n n S a a a a a S a a ----=-⇒=-⇒=- 当1n =时, 111222S a a =-⇒=,综上, {}n a 是公比为2,首项为2的等比数列, 2n n a =.……………………………3分 (2)∵214a b =,∴11b =,- 11 - ∵ ()211n n nb n b n n +-+=+,∴111n n b b n n+-=+.…………………………………………5分 综上, n b n ⎧⎫⎨⎬⎩⎭是公差为1,首项为1的等差数列, 211n n b n b n n=+-⇒=.…………………………………………………………………6分 (3)令212n n n p c c -=+()()()()2221222121?22?241?241?424n nn n n n n n ----=-+=-=-……………………8分()()()0122123123474114414{ 43474114454414n n n n n T n T n n +=⨯+⨯+⨯++-⨯=⨯+⨯+⨯++-⨯+-⨯ ①② ① -②,得()0121233?44?44?44?441?4n n n T n --=++++--()2164?43341?414nn n T n --=+---……………………………………………………11分 27127•499n n n T -=+………………………………………………………………………12分。

山东省枣庄市薛城区2017-2018学年高二上学期期中考试数学(文)试题Word版含答案

山东省枣庄市薛城区2017-2018学年高二上学期期中考试数学(文)试题Word版含答案

秘密★启用前 试卷类型:A2017 ~ 2018学年度第一学期模块检测高二数学(文科)2017.11第I 卷(选择题 共60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、考号、考试科目、试卷类型用2B 铅笔涂写在答题卡上.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试卷上.3. 考试结束后,监考人员将答题卡和第II 卷的答题纸一并收回.一、选择题:本大题共12个小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.不等式x 2<4的解集为A .{x |x <2 }B .{x |x >-2}C . {x |-2<x <2}D .{x |x <-2或x >2}2.若b a >,则下列不等式中正确的是A .b a 11<B .1>ba C .ab b a 2>+ D .b a 22> 3.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .84.在△ABC 中,A =60°,a =43,b =42,则B 等于A .45°或135°B .135°C .45°D .30°5.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A .1盏B .3盏C .5盏D .9盏6.不等式031≤--x x 的解集为 A .),3(]1,(+∞-∞ B .)3,1[ C .]3,1[ D .),3[]1,(+∞-∞7.一海轮从A 处出发,以每小时40海里的速度沿南偏东40的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海伦在A 处观察灯塔,其方向是南偏东70,在B 处观察灯塔,其方向是北偏东65,那么,B C 两点间的距离是A.海里 B. C. D.8.已知x,y 满足3035030x y x y x -+≤⎧⎪++≤⎨⎪+≥⎩,则2z x y =+的最大值是A . 0 B. 2 C. 5 D. 69.在△ABC 中,若三边a ,b ,c 的倒数成等差数列,则边b 所对的角为A .锐角B .直角C .钝角D .不能确定10.已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是A. 92 B .72 C. 5 D .411.如图,ABC ∆中,D 是边BC 上的点,且AC =CD,2,2AC AB AD ==,则sin B 等于A. 3B. 3C. 6D. 612.定义在(,0)(0,)-∞+∞上的函数()f x ,如果对于任意给定的等比数列{}n a , {()}n f a 仍是等比数列,则称()f x 为“保等比数列函数”. 现有定义在(,0)(0,)-∞+∞上的如下函数:①2()f x x =; ②()2x f x =;③()f x =; ④()ln ||f x x =.则其中是“保等比数列函数”的()f x 的序号为A .① ②B .③ ④C .① ③D .② ④高二数学(文科)第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分.)13.若3a >,则13a a +-的最小值是 . 14.若等比数列{}n a 的前n 项和3n n S a =+,则a 的值为__________.15.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y =-的最小值为 .16.如图,四边形ABCD 中,B =C =120°,AB=4,BC =CD =2,则该四边形的面积等于________.三、解答题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17. (本小题满分10分)在△ABC 中,BC =7,AB =3,且sin C sin B =35. (1)求AC ; (2)求角A .18.(本小题满分12分)设{a n}是公比为正数的等比数列,a1=2,a3=a2+4.(1)求{a n}的通项公式;(2)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n.19. (本小题满分12分)已知关于x 的不等式022>--ax x 的解集为1|{-<x x 或}b x >)1(->b .(1)求实数b a ,的值;(2)当21->m 时,解关于x 的不等式0))((>-+b x a mx .20. (本小题满分12分)如图所示,公园有一块边长为2的等边三角形ABC 的边角地,现修成草坪,图中DE 把草坪分成面积相等的两部分,点D 在AB 上,点E 在AC 上.(1)设AD =x (x ≥0),ED =y ,求用x 表示y 的函数关系式;(2)如果DE 是灌溉水管,为节约成本,希望它最短,DE 的位置应在哪里?21. (本小题满分12分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知()2cos cos 0a c B b C ++=.(1)求B ;(2)若3a =,点D 在AC边上且,BD AC BD ⊥=,求c .22. (本小题满分12分)设等比数列}{n a 的前项n 和n S ,812=a ,且321,,161S S S +成等差数列,数列}{n b 满足n b n 2=.(1)求数列}{n a 的通项公式;(2)设n n n b a c =,求数列}{n c 的前项n 和n T .2017~ 2018学年度第一学期模块检测高二文科数学参考答案及评分标准 2017.11一、选择题:本大题共12个小题,每小题5分,共60分.CDCCB BACBA CC二、填空题:本大题共4小题,每小题5分,共20分.13. 1- 14. 22, 153, 2n n n a n -=⎧=⎨⋅≥⎩ 15. 5- 16. 53 三、解答题共6个小题,共70分.17.解:(1)由正弦定理,得AC sin B =AB sin C. 所以AB AC =sin C sin B =35. 所以AC =AB ·sin B sin C =5×33=5. …………………………………………………5分 (2)由余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC =9+25-492×3×5=-12. 又0°<A <180°,所以A =120°. ………………………………………………………………………………10分18.解:(1)设q 为等比数列{a n }的公比,则由a 1=2,a 3=a 2+4得2q 2=2q +4,即q 2-q -2=0,解得q =2或q =-1(舍去),……………………………………………4分 因此q =2,所以{a n }的通项为a n =2·2n -1=2n (n ∈N +).…………………………………6分 (2)S n =2(1-2n )1-2+n ·1+n (n -1)2·2=2n +1+n 2-2. …………………………………12分 19. 解:(1)由题意知,b ,1-是方程022=--ax x 的两个实根,∴⎩⎨⎧-=⋅-=+-2)1(1b a b ,解得⎩⎨⎧==21b a ,∴1=a ,2=b .………………………………………4分 (2)由(1)知,不等式0))((>-+b x a mx 可化为0)2)(1(>-+x mx ,①当0=m 时,有20x ->,解得: 2x >;…………………………………………6分 ②当0>m 时,有120()()x x m +->,解得1x m<-或2x >;……………………8分 ③当021<<-m 时,有120()()x x m +-<,解得:12x m <<-.…………………10分 综上,当0=m 时,不等式的解集为}2|{>x x ;当0>m 时,不等式的解集为m x x 1|{-<或}2>x ; 当021<<-m 时,不等式的解集为}12|{m x x -<<.…………………………………12分 20. 解:S △ABC =34×4=3,所以S △ADE =12·x ·AE ·sin 60°=32, 所以x ·AE =2,所以AE =2x ≤2,所以x ≥1. (1)在△ADE 中,y 2=x 2+22x ⎛⎫ ⎪⎝⎭-2·x ·2x ·cos 60°=x 2+4x 2-2, 所以y =x 2+4x2-2(1≤x ≤2).………………………………………………………………6分 (2)令t =x 2,则1≤t ≤4,所以y =t +4t -2(1≤t ≤4).= 且当t =2,即x =2, AD =2,AE =2时,DE 最短为2;…………………………12分21. 解:(1)由()2cos cos 0a c B b C ++=及正弦定理,可得2sin cos sin cos sin cos 0A B C B B C ++=,即()2sin cos sin 0A B B C ++=,由A B C π++=可得()sin sin B C A +=,所以()sin 2cos 10A B +=,因为0,sin 0A A π<<≠,所以1cos 2B =-, 因为()0,B π∈,所以23B π=.……………………………………………………………6分 (2)由23B π=得222239b a c ac c c =++=++, 又因为BD AC ⊥,所以ABC ∆的面积1sin 2S ac B b BD ==⋅,把23,,3a B BD π===,带入得75b c =, 所以227395c c c ⎛⎫=++ ⎪⎝⎭,解得5c =.…………………………………………………12分 22.解:(1)设数列}{n a 的公比为q , ∵321,,161S S S +成等差数列,∴3121612S S S ++=,∴16132+=a a , ∵812=a ,∴1613=a ,∴2123==a a q , ∴1222)21()21(81+--=⋅==n n n n q a a . …………………………………………………4分 (2)设数列}{n c 的前项n 和为n T ,则n n c c c c T ++++= 321, 又nn n n n n n b a c 2)21(21=⋅==+,…………………………………………………………6分 ∴n n n T 223222132++++= , 1432223222121+++++=n n n T ,…………………………………………………………8分两式相减得111132*********11)211(2122121212121+++++-=--=---=-++++=n n n n n n n n n n n n T , ∴n n n T 222+-=.…………………………………………………………………………12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


【解答】解:取 a=2,b=﹣1 时,A.B.C 不成立; 对于 D.由指数函数 y=2x 在 R 上单调递增,a>b,可得 2a>2b. 故选:D.
第 1 页(共 19 页)
A.10
B.20
C.10
D.20 ,则 z=x+2y 的最大值是( )
8. (5 分)已知 x,y 满足约束条件 A.0 B.2 C.5 D.6
9. (5 分)在△ABC 中,若三边 a,b,c 的倒数成等差数列,则边 b 所对的角为 ( ) B.直角 C.钝角 D.不能确定 )
5. (5 分)我国古代数学名著《算法统宗》中有如下问题:“远看巍巍塔七层, 红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座 7 层塔共 挂了 381 盏灯, 且相邻两层中的下一层灯数是上一层灯数的 2 倍, 则塔的顶层共 有灯( )
A.1 盏 B.3 盏 C.5 盏 D.9 盏 6. (5 分)不等式 ≤0 的解集为( )
2017-2018 学年山东省枣庄市薛城区高二 (上) 期中数学试卷 (文 科)
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个 选项中,只有一项是符合题目要求的. 1. (5 分)不等式 x2<4 的解集为( A.{x|x<2 } )
B.{x|x>﹣2} C.{x|﹣2<x<2} D.{x|x<﹣2 或 x>2} )
B.{x|x>﹣2} C.{x|﹣2<x<2} D.{x|x<﹣2 或 x>2}
【解答】解:不等式 x2<4 化为 (x﹣2) (x+2)<0, 解得﹣2<x<2, ∴不等式的解集为{x|﹣2<x<2}. 故选:C.
2. (5 分)若 a>b,则下列不等式中正确的是( A. B. C. D.2a>2b

16. (5 分)如图,四边形 ABCD 中,∠ABC=∠C=120°,AB=4,BC=CD=2,则该四 边形的面积是 .
三、解答题共 6 个小题,共 70 分.解答应写出必要的文字说明、证明过程或演算 步骤. 17. (10 分)△ABC 中,BC=7,AB=3,且 (1)求 AC 的长; (2)求∠A 的大小. 18. (12 分)设{an}是公比为正数的等比数列,a1=2,a3=a2+4. (1)求{an}的通项公式; (2)设{bn}是首项为 1,公差为 2 的等差数列,求数列{an+bn}的前 n 项和 Sn. 19. (12 分)已知关于 x 的不等式 x2﹣ax﹣2>0 的解集为{x|x<﹣1 或 x>b}(b >﹣1) . (1)求 a,b 的值; (2)当 m>﹣ 时,解关于 x 的不等式(mx+a) (x﹣b)>0. 20. (12 分)如图所示,公园有一块边长为 2 的等边三角形 ABC 的边角地,现修 成草坪,图中 DE 把草坪分成面积相等的两部分,点 D 在 AB 上,点 E 在 AC 上. (1)设 AD=x(x≥0) ,ED=y,求用 x 表示 y 的函数关系式; (2)如果 DE 是灌溉水管,为节约成本,希望它最短,DE 的位置应在哪里?如 果 DE 是参观线路,则希望它最长,DE 的位置又在哪里? = .
第 4 页(共 19 页)
2017-2018 学年山东省枣庄市薛城区高二(上)期中数学 试卷(文科)
参考答案与试题解析
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个 选项中,只有一项是符合题目要求的. 1. (5 分)不等式 x2<4 的解集为( A.{x|x<2 } )
第 3 页(共 19 页)
21. (12 分) 在△ABC 中, 角 A, B, C 的对边分别为 a, b, c, 已知 (2a+c) cosB+bcosC=0. (Ⅰ)求 B; (Ⅱ)若 a=3,点 D 在 AC 边上且 ,求 c. ,S2,S3 成等差数
22. (12 分)设等比数列{an}的前项 n 和 Sn,a2= ,且 S1+ 列,数列{bn}满足 bn=2n. (1)求数列{an}的通项公式; (2)设 cn=anbn,求数列{cn}的前项 n 和 Tn.
A.①②
二、填空题(本大题共 4 个小题,每小题 5 分,共 20 分.) 13. (5 分)已知 a>3,求 a+ 的最小值
第 2 页(共 19 页)

14. (5 分)等比数列{an}的前 n 项和 Sn=3n+a,则 a 等于 15. (5 分)设 x,y 满足约束条件

,则 z=3x﹣2y 的最小值为
A. (﹣∞,1]∪(3,+∞) B.[1,3) C.[1,3] D. (﹣∞,1]∪[3,+∞) 7. (5 分)一艘海轮从 A 处出发,以每小时 40 海里的速度沿南偏东 40°的方向直 线航行,30 分钟后到达 B 处,在 C 处有一座灯塔,海轮在 A 处观察灯塔,其方 向是南偏东 70°,在 B 处观察灯塔,其方向是北偏东 65°,那么 B,C 两点间的距 离是( )海里.
2. (5 分)若 a>b,则下列不等式中正确的是( A. B. C. D.2a>2b
3. (5 分)记 Sn 为等差数列{an}的前 n 项和.若 a4+a5=24,S6=48,则{an}的公差 为( A.1 ) B.2 C.4 D.8 ,则∠B 等于( )
4. (5 分)在△ABC 中,A=60°, A.45°或 135° B.135°C.45° D.30°
A.锐角
10. (5 分)已知 a>0,b>0,a+b=2,则 y= + 的最小值是( A. B. C 上的点,且 AC=CD, 2AC= 则 sinB 等于( )
AD, AB=2AD,
A.
B.
C.
D.
12. (5 分)定义在(﹣∞,0)∪(0,+∞)上的函数 f(x) ,如果对于任意给 定的等比数列{an},{f(an)}仍是等比数列,则称 f(x)为“保等比数列函数”.现 有定义在(﹣∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x; ③f(x)= ( ) B.③④ C.①③ D.②④ ;④f(x)=ln|x|.则其中是“保等比数列函数”的 f(x)的序号为
相关文档
最新文档