2020-2021高二数学上期中试题带答案

合集下载

2020-2021学年江苏省南通中学高二(上)期中数学试卷

2020-2021学年江苏省南通中学高二(上)期中数学试卷

2020-2021学年江苏省南通中学高二(上)期中数学试卷试题数:22,总分:1501.(单选题,5分)一个等比数列的首项为2,公比为3,则该数列的第3项为()A.8B.16C.18D.272.(单选题,5分)设a∈R,则“a>1”是“a2>a”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(单选题,5分)不等式x+12x−1≤0的解集为()A.[-1,12)B.[-1,12]C.(-∞,-1]∪(12,+∞)D.(-∞,-1]∪[ 12,+∞)4.(单选题,5分)已知椭圆的准线方程为x=±4,离心率为12,则椭圆的标准方程为()A. x22+y2=1B.x2+ y22=1C. x24+y23=1D. x23+y24=15.(单选题,5分)数列{a n}中,a1=2,a n+1=2a n-1,则a10=()A.511B.513C.1025D.10246.(单选题,5分)《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,问最小一份为()A. 53B. 103C. 56D. 1167.(单选题,5分)椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1和F2,P为椭圆C上的动点,若a= √2 b,满足∠F1PF2=90°的点P有()个A.2个B.4个C.0个D.1个8.(单选题,5分)正数a,b满足9a+b=ab,若不等式a+b≥-x2+2x+18-m对任意实数x恒成立,则实数m的取值范围是()A.[3,+∞)B.(-∞,3]C.(-∞,6]D.[6,+∞)9.(多选题,5分)若实数a>0,b>0,a•b=1,若下列选项的不等式中,正确的是()A.a+b≥2B. √a+√b≥2C.a2+b2≥2D. 1a +1b≤210.(多选题,5分)对任意实数a,b,c,下列命题为真命题的是()A.“a=b”是“ac=bc”的充要条件B.“a>b”是“a2>b2”的充分条件C.“a<5”是“a<3”的必要条件D.“a+5是无理数”是“a是无理数”的充要条件11.(多选题,5分)设椭圆x29+y23=1的右焦点为F,直线y=m(0<m<√3)与椭圆交于A,B两点,则下述结论正确的是()A.AF+BF为定值B.△ABF的周长的取值范围是[6,12]C.当m= √2时,△ABF 为直角三角形D.当m=1时,△ABF 的面积为√612.(多选题,5分)已知数列{a n},{b n}均为递增数列,{a n}的前n项和为S n,{b n}的前n项和为T n.且满足a n+a n+1=2n,b n•b n+1=2n(n∈N*),则下列说法正确的有()A.0<a1<1B.1<b1<√2C.S2n<T2nD.S2n≥T2n13.(填空题,5分)命题“∀x∈R,ax+b≤0”的否定是___ .14.(填空题,5分)不等式x2-kx+1>0对任意实数x都成立,则实数k的取值范围是___ .15.(填空题,5分)椭圆x25+y2m=1的离心率为√105,则实数m的值为___ .16.(填空题,5分)对于数列{a n},定义A n= a1+2a2+⋯+2n−1a nn为数列{a n}的“好数”,已知某数列{a n}的“好数”A n=2n+1,记数列{a n-kn}的前n项和为S n,若S n≤S7对任意的n∈N*恒成立,则实数k的取值范围是___ .17.(问答题,10分)求适合下列条件的椭圆标准方程:(1)与椭圆x 22 +y2=1有相同的焦点,且经过点(1,32);(2)经过A(2,- √22),B(- √2,- √32)两点.18.(问答题,12分)已知等比数列{a n}中,a1=1,且a2是a1和a3-1的等差中项.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=2n+a n(n∈N*),求数列{b n}的前n项和S n.19.(问答题,12分)已知函数f(x)=ax2+bx-a+2.(1)若关于x的不等式f(x)>0的解集是(-1,3),求实数a,b的值;(2)若b=2,a>0,解关于x的不等式f(x)>0.20.(问答题,12分)某工厂年初用98万元购买一台新设备,第一年设备维修及燃料、动力消耗(称为设备的低劣化)的总费用12万元,以后每年都增加4万元,新设备每年可给工厂收益50万元.(Ⅰ)工厂第几年开始获利?(Ⅱ)若干年后,该工厂有两种处理该设备的方案:① 年平均获利最大时,以26万元出售该设备;② 总纯收入获利最大时,以8万元出售该设备,问哪种方案对工厂合算?21.(问答题,12分)已知椭圆C:x2a2+y2b2=1(a>b>0)的长轴长为4,且短轴的两个端点与右焦点是一个等边三角形的三个顶点,O为坐标原点.(1)求椭圆C的方程;(2)过椭圆的右焦点F作直线l,与椭圆相交于A,B两点,求△OAB面积的最大值,并求此时直线l的方程.22.(问答题,12分)已知各项均为正数的两个数列{a n},{b n}满足a n+12-1=a n2+2a n,2a n=log2b n+log2b n+1+1,且a1=b1=1.(1)求证:数列{a n}为等差数列;(2)求数列{b n}的通项公式;(3)设数列{a n},{b n}的前n项和分别为S n,T n,求使得等式2S m+a m-36=T i成立的有序数对(m,i)(m,i∈N*).2020-2021学年江苏省南通中学高二(上)期中数学试卷参考答案与试题解析试题数:22,总分:1501.(单选题,5分)一个等比数列的首项为2,公比为3,则该数列的第3项为()A.8B.16C.18D.27【正确答案】:C【解析】:由已知利用等比数列的通项公式即可求解.【解答】:解:若等比数列{a n}的首项为a1,公比为q,则它的通项a n=a1•q n-1,由已知可得:a1=2,q=3,则它的通项a3=a1•q2=2×32=18.故选:C.【点评】:本题主要考查了等比数列的通项公式的应用,若等比数列{a n}的首项为a1,公比为q,则它的通项a n=a1•q n-1,属于基础题.2.(单选题,5分)设a∈R,则“a>1”是“a2>a”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【正确答案】:A【解析】:解得a的范围,即可判断出结论.【解答】:解:由a2>a,解得a<0或a>1,故a>1”是“a2>a”的充分不必要条件,故选:A.【点评】:本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.3.(单选题,5分)不等式x+12x−1≤0的解集为()A.[-1,12)B.[-1,12]C.(-∞,-1]∪(12,+∞)D.(-∞,-1]∪[ 12,+∞)【正确答案】:A【解析】:根据题意,分析可得原不等式等价于(x+1)(2x-1)≤0且(2x-1)≠0,解可得x的取值范围,即可得答案.【解答】:解:根据题意,原不等式等价于(x+1)(2x-1)≤0且(2x-1)≠0,解可得:-1≤x<12,及原不等式的解集为[-1,12);故选:A.【点评】:本题考查分式不等式的解法,关键是将分式不等式变形为整式不等式.4.(单选题,5分)已知椭圆的准线方程为x=±4,离心率为12,则椭圆的标准方程为()A. x22+y2=1B.x2+ y22=1C. x24+y23=1D. x23+y24=1【正确答案】:C【解析】:由椭圆的准线方程可知椭圆的焦点在x轴上,再由已知列关于a,b,c的方程组,求得a2与b2的值,则椭圆标准方程可求.【解答】:解:由椭圆的准线方程为x=±4,可知椭圆的焦点在x轴上,设椭圆方程为x 2a2+y2b2=1(a>b>0),由 { a 2c =4c a =12a 2=b 2+c 2 ,解得a 2=4,b 2=3,c 2=1.∴椭圆的标准方程为 x 24+y 23 =1. 故选:C .【点评】:本题考查椭圆的几何性质,考查椭圆标准方程的求法,是基础题.5.(单选题,5分)数列{a n }中,a 1=2,a n+1=2a n -1,则a 10=( )A.511B.513C.1025D.1024【正确答案】:B【解析】:直接利用构造法的应用,整理出数列{a n -1}是等比数列,进一步求出数列的通项公式,最后求出结果.【解答】:解:数列{a n }中,a 1=2,a n+1=2a n -1,所以a n+1-1=2(a n -1),所以 a n+1−1a n −1=2 (常数),所以数列{a n -1}是以a 1-1=1为首项,2为公比的等比数列.所以 a n −1=2n−1 ,所以 a n =2n−1+1 .所以 a 10=29+1=513 .故选:B .【点评】:本题考查的知识要点:数列的递推关系式,构造法,主要考查学生的运算能力和转换能力及思维能力,属于基础题.6.(单选题,5分)《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的 17 是较小的两份之和,问最小一份为( )A. 53B. 103C. 56D. 116【正确答案】:A【解析】:设五个人所分得的面包为a-2d ,a-d ,a ,a+d ,a+2d ,(d >0);则由五个人的面包和为100,得a 的值;由较大的三份之和的 17 是较小的两份之和,得d 的值;从而得最小的一份a-2d 的值.【解答】:解:设五个人所分得的面包为a-2d ,a-d ,a ,a+d ,a+2d ,(其中d >0); 则,(a-2d )+(a-d )+a+(a+d )+(a+2d )=5a=100,∴a=20;由 17 (a+a+d+a+2d )=a-2d+a-d ,得3a+3d=7(2a-3d );∴24d=11a ,∴d=55/6; 所以,最小的1分为a-2d=20-1106 = 53 . 故选:A .【点评】:本题考查了等差数列模型的实际应用,解题时应巧设数列的中间项,从而容易得出结果.7.(单选题,5分)椭圆C : x 2a 2+y 2b 2 =1(a >b >0)的左、右焦点分别为F 1和F 2,P 为椭圆C 上的动点,若a= √2 b ,满足∠F 1PF 2=90°的点P 有( )个A.2个B.4个C.0个D.1个【正确答案】:A【解析】:由题意画出图形,由a= √2 b ,结合隐含条件可得b=c ,再由∠F 1PF 2=90°,可得P 为短轴的两个端点,则答案可求.【解答】:解:设椭圆的半焦距为c ,当a= √2 b 时,则 c =√a 2−b 2=√b 2=b ,如图,连接PO ,若∠F 1PF 2=90°,则|PO|=|OF 1|=b ,此时P 点在短轴的上下端点,即符合条件的P 有2个.故选:A .【点评】:本题考查椭圆的几何性质,考查数形结合的解题思想方法,是中档题.8.(单选题,5分)正数a,b满足9a+b=ab,若不等式a+b≥-x2+2x+18-m对任意实数x恒成立,则实数m的取值范围是()A.[3,+∞)B.(-∞,3]C.(-∞,6]D.[6,+∞)【正确答案】:A【解析】:求出a+b=(a+b)(1a + 9b)=10+ ba+ 9ab≥10+6=16(当且仅当b=3a时取等号),问题转化为m≥-x2+2x+2对任意实数x恒成立,运用二次函数的最值求法和恒成立思想,即可求出实数m的取值范围.【解答】:解:∵正数a,b满足1a + 9b=1,∴a+b=(a+b)(1a + 9b)=10+ ba+ 9ab≥10+2 √ba•9ab=10+6=16(当且仅当b=3a时取等号).由不等式a+b≥-x2+2x+18-m对任意实数x恒成立,可得-x2+2x+18-m≤16对任意实数x恒成立,即m≥-x2+2x+2对任意实数x恒成立,即m≥-(x-1)2+3对任意实数x恒成立,∵-(x-1)2+3的最大值为3,∴m≥3,故选:A.【点评】:本题考查不等式恒成立问题解法,注意运用基本不等式和二次函数的最值求法,考查化简运算能力,属于中档题.9.(多选题,5分)若实数a>0,b>0,a•b=1,若下列选项的不等式中,正确的是()A.a+b≥2B. √a+√b≥2C.a2+b2≥2D. 1a +1b≤2【正确答案】:ABC【解析】:直接利用不等式的性质和均值不等式的应用判定A、B、C、D的结论.【解答】:解:实数a>0,b>0,a•b=1,则对于A:a+b≥2√ab=2,成立,故A正确;对于B:√a+√b≥2√√a•√b=2成立,故B正确;对于C:a2+b2≥2ab=2成立,故C正确;对于D:1a +1b≥2√1ab=2成立,故D不正确.故选:ABC.【点评】:本题考查的知识要点:不等式的性质和均值不等式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.10.(多选题,5分)对任意实数a,b,c,下列命题为真命题的是()A.“a=b”是“ac=bc”的充要条件B.“a>b”是“a2>b2”的充分条件C.“a<5”是“a<3”的必要条件D.“a+5是无理数”是“a是无理数”的充要条件【正确答案】:CD【解析】:由题意逐一考查所给的命题是否成立即可.【解答】:解:逐一考查所给的选项:取a=2,b=3,c=0,满足ac=bc,但是不满足a=b,选项A错误,取a=2,b=-3,满足a>b,但是不满足a2>b2,选项B错误,“a<5”是“a<3”的必要条件,选项C正确,“a+5是无理数”,则“a是无理数”,选项D正确,故选:CD.【点评】:本题主要考查不等式的性质,等式的性质,命题真假的判定等知识,属于中等题.11.(多选题,5分)设椭圆x29+y23=1的右焦点为F,直线y=m(0<m<√3)与椭圆交于A,B两点,则下述结论正确的是()A.AF+BF为定值B.△ABF的周长的取值范围是[6,12]C.当m= √2时,△ABF 为直角三角形D.当m=1时,△ABF 的面积为√6【正确答案】:AD【解析】:利用椭圆的性质以及定义,直线与椭圆的位置关系,三角形的面积公式,逐一分析四个选项得答案.【解答】:解:设椭圆的左焦点为F',则AF'=BF,可得AF+BF=AF+AF'为定值6,故A正确;△ABF的周长为AB+AF+BF,∵|AF+BF为定值6,可知AB的范围是(0,6),∴△ABF的周长的范围是(6,12),故B错误;将y= √2与椭圆方程联立,可解得A(−√3,√2),B(√3,√2),又知F(√6,0),如图,由图可知∠ABF为钝角,则△ABF为钝角三角形,故C错误;将y=1与椭圆方程联立,解得A(−√6,1),B(√6,1),∴ S△ABF=12×2√6×1=√6,故D正确.故选:AD.【点评】:本题考查椭圆的性质,椭圆与直线的位置关系.考查分析问题解决问题的能力,是中档题.12.(多选题,5分)已知数列{a n},{b n}均为递增数列,{a n}的前n项和为S n,{b n}的前n项和为T n.且满足a n+a n+1=2n,b n•b n+1=2n(n∈N*),则下列说法正确的有()A.0<a1<1B.1<b1<√2C.S2n<T2nD.S 2n ≥T 2n【正确答案】:ABC【解析】:利用代入法求出前几项的关系即可判断出a 1,b 1的取值范围,在求出其前2n 项和的表达式即可判断大小;【解答】:解:∵数列{a n }为递增数列;∴a 1<a 2<a 3;∵a n +a n+1=2n ,∴ {a 1+a 2=2a 2+a 3=4; ∴ {a 1+a 2>2a 1a 2+a 3>2a 2=4−4a 1∴0<a 1<1;故A 正确.∴S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n-1+a 2n )=2+6+10+…+2(2n-1)=2n 2;∵数列{b n }为递增数列;∴b 1<b 2<b 3;∵b n •b n+1=2n∴ {b 1b 2=2b 2b 3=4; ∴ {b 2>b 1b 3>b 2; ∴1<b 1< √2 ,故B 正确.∵T 2n =b 1+b 2+…+b 2n=(b 1+b 3+b 5+…+b 2n-1)+(b 2+b 4+…+b 2n )= b 1•(1−2n )2+b 2(1−2n )2=(b 1+b 2)(2n −1)≥2√b 1b 2(2n −1)=2√2(2n −1) ;∴对于任意的n∈N*,S 2n <T 2n ;故C 正确,D 错误.故选:ABC .【点评】:本题考查了数列的综合运用,考查学生的分析能力与计算能力.属于中档题.13.(填空题,5分)命题“∀x∈R ,ax+b≤0”的否定是___ .【正确答案】:[1]∃x 0∈R ,ax 0+b >0【解析】:根据含有量词的命题的否定即可得到结论.【解答】:解:命题为全称命题,则命题“∀x∈R ,ax+b≤0”的否定是∃x 0∈R ,ax 0+b >0, 故答案为:∃x 0∈R ,ax 0+b >0.【点评】:本题主要考查含有量词的命题的否定,比较基础.14.(填空题,5分)不等式x 2-kx+1>0对任意实数x 都成立,则实数k 的取值范围是___ .【正确答案】:[1](-2,2)【解析】:设y=x 2-kx+1,将不等式恒成立的问题转化为函数y=x 2-kx+1图象始终在x 轴上方,进而根据判别式处理即可.【解答】:解:依题意,设y=x 2-kx+1,因为不等式x 2-kx+1>0对任意实数x 都成立,所以△=k 2-4<0,解得k∈(-2,2),故答案为:(-2,2).【点评】:本题考查了二次函数的性质,二次函数与二次不等式的关系,考查分析解决问题的能力,属于基础题.15.(填空题,5分)椭圆 x 25+y 2m =1 的离心率为 √105 ,则实数m 的值为___ . 【正确答案】:[1] 253或3【解析】:分当m >5和m <5时两种情况,根据e= c a 求得m .【解答】:解:当m >5时,√m−5√m = √105 ,解得m= 253 , 当m <5√5−m √5 = √105 解得m=3符合题意, 故答案为: 253或3【点评】:本题主要考查了椭圆的简单性质.要利用好椭圆标准方程中a ,b ,c 的关系.16.(填空题,5分)对于数列{a n },定义A n = a 1+2a 2+⋯+2n−1a n n为数列{a n }的“好数”,已知某数列{a n }的“好数”A n =2n+1,记数列{a n -kn}的前n 项和为S n ,若S n ≤S 7对任意的n∈N *恒成立,则实数k 的取值范围是___ .【正确答案】:[1] [94,167] 【解析】:先根据数列的递推式求出a n =2n+2,所以a n -kn=(2-k )n+2,显然{a n -kn}是等差数列,所以{S n }中S 7最大,则数列{a n -kn}的第7项大于等于0,第八项小于等于0,列出不等式组,即可解得实数k 的取值范围.【解答】:解:由题意可知, a 1+2a 2+⋯…+2n−1a n =n •2n+1 ,则n≥2时, a 1+2a 2+⋯…+2n−2a n−1=(n −1)•2n ,两式相减得: 2n−1a n =n •2n+1−(n −1)•2n ,∴a n =2n+2,又∵A 1= a 11 =4,∴a 1=4,满足a n =2n+2,故a n =2n+2,∴a n -kn=(2-k )n+2,显然{a n -kn}是等差数列,∵S n ≤S 7对任意的n∈N *恒成立,∴{S n }中S 7最大,则 {a 7−7k =7(2−k )+2≥0a 8−8k =8(2−k )+2≤0,解得: 94≤k ≤167 , 故实数k 的取值范围是:[ 94 , 167 ].【点评】:本题主要考查了数列的递推式,以及等差数列的性质,是中档题.17.(问答题,10分)求适合下列条件的椭圆标准方程:(1)与椭圆 x 22 +y 2=1有相同的焦点,且经过点(1, 32 );(2)经过A (2,- √22 ),B (- √2 ,- √32 )两点.【正确答案】:【解析】:(1)先求出已知椭圆的焦点坐标(±1,0),则可设出所求椭圆方程,代入已知点即可求解,(2)待定系数法设出椭圆方程,代入已知点即可求解.【解答】:解:(1)由已知椭圆方程可得焦点坐标为(±1,0),则可设所求的椭圆方程为: x 2m +y 2m−1=1(m >1) ,代入点(1, 32 ),解得m=4或 14 (舍),所以所求椭圆方程为: x 24+y 23=1 ,(2)设所求的椭圆方程为: x 2m +y 2n =1(m >0,n >0,m ≠n) ,代入已知两点可得:{4m +12n=12 m +34n=1,解得m=8,n=1,故所求的椭圆方程为:x 28+y2=1.【点评】:本题考查了椭圆的标准方程以及焦点相同和不确定的问题的椭圆方程的设法,属于基础题.18.(问答题,12分)已知等比数列{a n}中,a1=1,且a2是a1和a3-1的等差中项.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=2n+a n(n∈N*),求数列{b n}的前n项和S n.【正确答案】:【解析】:(1)根据等差中项可得q=2,即可求出通项公式;(2)利用分组求和即可求出.【解答】:解:(1)设等比数列{a n}公比为q,则q≠0,∵a1=1,且a2是a1和a3-1的等差中项,∴2a2=a1+a3-1,即2q=1+q2-1,解得q=2,∴a n=2n-1;(2)b n=2n+a n=2n+2n-1;∴S n=2(1+2+3+…+n)+(20+21+22+…+2n-1)=n(n+1)+2n-1=n2+n+2n-1.【点评】:本题考查等比数列的通项公式和等差数列的性质,以及等差数列和等比数列的求和公式,考查了运算求解能力,属于基础题.19.(问答题,12分)已知函数f(x)=ax2+bx-a+2.(1)若关于x的不等式f(x)>0的解集是(-1,3),求实数a,b的值;(2)若b=2,a>0,解关于x的不等式f(x)>0.【正确答案】:【解析】:(1)根据题意并结合一元二次不等式与一元二方程的关系,可得方程ax2+bx-a+2=0的两根分别为-1和3,由此建立关于a、b的方程组并解之,即可得到实数a、b的值;(2)不等式可化成(x+1)(ax-a+2)>0,由此讨论-1与a−2a的大小关系,分3种情形加以讨论,即可得到所求不等式的解集.【解答】:解:(1)∵不等式f(x)>0的解集是(-1,3)∴-1,3是方程ax2+bx-a+2=0的两根,∴可得{a−b−a+2=09a+3b−a+2=0,解之得{a=−1b=2------------(5分)(2)当b=2时,f(x)=ax2+2x-a+2=(x+1)(ax-a+2),∵a>0,∴ (x+1)(ax−a+2)>0⇔(x+1)(x−a−2a)>0① 若−1=a−2a,即a=1,解集为{x|x≠-1}.② 若−1>a−2a ,即0<a<1,解集为{x|x<a−2a或x>−1}.③ 若−1<a−2a ,即a>1,解集为{x|x<−1或x>a−2a}.------------(14分)【点评】:本题给出二次函数,讨论不等式不等式f(x)>0的解集并求参数的值,着重考查了一元二次不等式的应用、一元二次不等式与一元二方程的关系等知识国,属于中档题.20.(问答题,12分)某工厂年初用98万元购买一台新设备,第一年设备维修及燃料、动力消耗(称为设备的低劣化)的总费用12万元,以后每年都增加4万元,新设备每年可给工厂收益50万元.(Ⅰ)工厂第几年开始获利?(Ⅱ)若干年后,该工厂有两种处理该设备的方案:① 年平均获利最大时,以26万元出售该设备;② 总纯收入获利最大时,以8万元出售该设备,问哪种方案对工厂合算?【正确答案】:【解析】:(Ⅰ)每年费用是以12为首项,4为公差的等差数列,第n年时累计的纯收入f (n)=50n-[12+16+…+(4n+8)]-98,获利为f(n)>0,解得n的值,可得第几年开始获利;(Ⅱ)计算方案① 年平均获利最大时及总收益;方案② 总纯收入获利最大时及总收益;比较两种方案,总收益相等,第一种方案需7年,第二种方案需10年,应选择第一种方案.【解答】:解:(Ⅰ)由题设每年费用是以12为首项,4为公差的等差数列,设第n年时累计的纯收入为f(n),则f(n)=50n-[12+16+…+(4n+8)]-98=40n-2n2-98,获利为:f(n)>0,∴4n-2n2-98>0,即n2-20n+49<0,∴10- √51<n<10+ √51;又n∈N,∴n=3,4,5, (17)∴当n=3时,即第3年开始获利.(Ⅱ)① 年平均收入为:f(n)n =40−2(n+49n)≤40−4√n•49n=12(万元)即年平均收益最大时,总收益为:12×7+26=110(万元),此时n=7;② f(n)=-2(n-10)2+102,∴当n=10时,f(n)max=102;总收益为110万元,此时n=10;比较两种方案,总收益均为110万元,但第一种方案需7年,第二种方案需10年,故选择第一种方案.【点评】:本题考查了数列与函数的综合应用问题,也是方案设计的问题;解题时应细心分析,认真解答,以免出错.21.(问答题,12分)已知椭圆C:x2a2+y2b2=1(a>b>0)的长轴长为4,且短轴的两个端点与右焦点是一个等边三角形的三个顶点,O为坐标原点.(1)求椭圆C的方程;(2)过椭圆的右焦点F作直线l,与椭圆相交于A,B两点,求△OAB面积的最大值,并求此时直线l的方程.【正确答案】:【解析】:(1)由长轴长即等边三角形可得a ,b 的值,进而求出椭圆的方程;(2)设直线l 的方程,与椭圆联立求出两根之和及两根之积,代入面积公式,由均值不等式的性质可得面积的最大值,及直线l 的方程.【解答】:解:(1)由题意可得2a=4,2b= √b 2+c 2 =a ,所以a=2,b=1,所以椭圆的方程为: x 24 +y 2=1;(2)由(1)可得右焦点F 2( √3 ,0),显然直线l 的斜率不为0,设直线l 的方程为x=my+ √3 ,A (x 1,y 1),B (x 2,y 2),联立直线l 与椭圆的方程 {x =my +√3x 24+y 2=1 ,整理可得:(4+m 2)y 2+2 √3 my-1=0, 可得y 1+y 2= −2√3m 4+m 2 ,y 1y 2= −14+m 2 ,所以S △AOB = 12 |OF 2||y 1-y 2|= 12×√3 × √(y 1+y 2)2−4y 1y 2= √32 •√12m 2(4+m 2)2+44+m 2= √32 •4√1+m 24+m 2=2 √3 •√1+m 24+m 2 =2 √3 •√1+m 2+3√2 √3 • 2√1+m 2•3√2 =1, 当且仅当 √1+m 2 = √1+m 2 m= ±√2 ,时三角形的面积最大为1,所以面积的最大值为1,这时直线l 的方程为x= ±√2 y+ √3 .【点评】:本题考查求椭圆的方程及直线与椭圆的综合,属于中档题.22.(问答题,12分)已知各项均为正数的两个数列{a n },{b n }满足a n+12-1=a n 2+2a n ,2a n =log 2b n +log 2b n+1+1,且a 1=b 1=1.(1)求证:数列{a n }为等差数列;(2)求数列{b n }的通项公式;(3)设数列{a n },{b n }的前n 项和分别为S n ,T n ,求使得等式2S m +a m -36=T i 成立的有序数对(m ,i )(m ,i∈N*).【正确答案】:【解析】:(1)根据递推关系可得a n+12=(a n+1)2,从而得到数列{a n}为等差数列;(2)根据2a n=log2b n+log2b n+1+1,可知数列{b n}的奇数项和偶数项,进而整合即可得{b n}的通项公式.(3)分别求S n,T n,带入2S m+a m-36=T i成立,则存在s,t∈N*,使得2s=m+7,即2t=m-5,从而2s-2t=12,在证明s≥5不成立,从而得到s=4,m=9,i=6.【解答】:证明(1):由a n+12-1=a n2+2a n,可得a n+12=a n2+2a n+1即a n+12=(a n+1)2,∵各项均为正数的两个数列{a n},{b n},可得a n+1=a n+1,即数列{a n}是首项为1,公差d=1的等差数列.解(2):由(1)可得a n=n,∵2a n=log2b n+log2b n+1+1,可得b n b n+1=22n-1…… ①∴b n+1b n+2=22n+1…… ②将②①可得:b n+2b n=4.所以{b n}是奇数项和偶数项都成公比q=4的等比数列,由b1=1,b2=2,可得b2k-1=4k-1,b2k=2×4k-1,k∈N*,∴b n=2n-1.故得数列{b n}的通项公式为b n=2n-1.(3)由(1)和(2)可得S n= n(n+1)2,T n=2n-1;由2S m+a m-36=m(m+1)+m-36=2i-1,即(m-5)(m+7)=2i.则存在s,t∈N*,使得2s=m+7,即2t=m-5,从而2s-2t=12,若s≥5,则2s-2t-12≥20,∴t≥5,又∵s>t,那么2s-2t≥2t+1-2t=2t≥32,可知与2s-2t=12相矛盾,可得s≤4,根据2s-2t=12,s,t∈N*,可得s=4,t=2,此时可得m=9,i=6.【点评】:本题考查了等差、等比数列的通项公式与前n项和公式的综合应用,考查了推理能力与计算能力,属于压轴题.。

天津市河西区2020至2021学年高二上学期期中数学试题及答案解析

天津市河西区2020至2021学年高二上学期期中数学试题及答案解析
………○…………外…………○…………装…………○…………订…………○…………线…………○…………
则 PF PO 2 r 1 r 1 FO 4,
根据双曲线得定义可得圆心 P 在双曲线的一支上,
故选:B.
10.
6 7
【分析】
根据经过两点的直线的斜率公式,代入 A、B 两点的坐标加以计算,可得直线 l 的斜率.
17.在长方体 ABCD A1 B1C1 D1 中,点 E,F 分别在 BB1 ,DD1 上,且 AE A1B ,AF A1D .
(1)求证: A1C 平面 AEF;
(2)当 AD 3 ,AB 4 ,AA1 5时,求平面 AEF 与平面 D1B1BD 所成二面角的余弦值.
18.已知椭圆 C :
()
A. x2 y2 1 4 12
C. x2 y2 1 48 16
B. x2 y2 1 12 4
D. x2 y2 1 16 48
6.已知直线 l1 : x 2ay 1 0 与直线 l2 : (3a 1)x ay 1 0 平行,则 a ( )
A. 0
B. 0 或 1 6
C. 1 6
x2 a2
y2 b2
1(a
b 0 )的焦距为 2 ,离心率为
2. 2
(1)求椭圆 C 的标准方程;
(2)经过椭圆的左焦点 F1 作倾斜角为 60 的直线 l ,直线 l 与椭圆相交于 A , B 两点,
求线段 AB 的长.
试卷第 3页,共 3页
………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________

2020-2021学年山东省实验中学高二(上)期中数学试卷 (解析版)

2020-2021学年山东省实验中学高二(上)期中数学试卷 (解析版)

2020-2021学年山东省实验中学高二(上)期中数学试卷一、选择题(共8小题).1.直线3x+2y﹣1=0的一个方向向量是()A.(2,﹣3)B.(2,3)C.(﹣3,2)D.(3,2)2.椭圆+=1的离心率是()A.B.C.D.3.两条平行直线2x﹣y+3=0和ax﹣3y+4=0间的距离为d,则a,d分别为()A.a=6,B.a=﹣6=﹣6,C.a=﹣6,D.a=6,4.如图,四棱锥P﹣OABC的底面是矩形,设,,,E是PC的中点,则()A.B.C.D.5.空间直角坐标系O﹣xyz中,经过点P(x0,y0,z0)且法向量为的平面方程为A(x﹣x0)+B(y﹣y0)+C(z﹣z0)=0,经过点P(x0,y0,z0)且一个方向向量为的直线l的方程为,阅读上面的材料并解决下面问题:现给出平面α的方程为3x﹣5y+z﹣7=0,经过(0,0,0)直线l 的方程为,则直线1与平面α所成角的正弦值为()A.B.C.D.6.已知圆x2+y2﹣6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.47.已知l,m是异面直线,A,B∈l,C,D∈m,AC⊥m,BD⊥m,AB=2,CD=1,则异面直线l,m所成的角等于()A.30°B.45°C.60°D.90°8.已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P 在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.二.多选题(共4小题).9.过点P(2,3),并且在两轴上的截距相等的直线方程为()A.x+y﹣5=0B.2x+y﹣4=0C.3x﹣2y=0D.4x﹣2y+5=0 10.已知曲线C:mx2+ny2=1.()A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m>n>0,则C是椭圆,其焦点在x轴上C.若m=n>0,则C是圆,其半径为D.若m=0,n>0,则C是两条直线11.已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0)若圆C 上存在点P,使得∠APB=90°,则m的可能取值为()A.7B.6C.5D.812.已知F1,F2是椭圆的左、右焦点,动点在椭圆上,∠F1PF2的平分线与x轴交于点M(m,0),则m的可能取值为()A.1B.2C.0D.﹣1三、填空题(共4小题,每小题5分,共20分)13.已知平面α的一个法向量,平面β的一个法向量,若α⊥β,则y﹣x=.14.在棱长为1的正方体ABCD﹣A1B1C1D1中,E是线段DD1的中点,F是线段BB1的中点,则直线FC1到平面AB1E的距离为.15.已知F1,F2是椭圆的左、右焦点,弦AB过点F1,若△ABF2的内切圆的周长为2π,A,B两点的坐标是(x1,y1)(x2,y2),则|y1﹣y2|=.16.2020年是中国传统的农历“鼠年”,有人用3个圆构成“卡通鼠”的形象,如图:Q (0,﹣3)是圆Q的圆心,圆Q过坐标原点O;点L、S均在x轴上,圆L与圆S的半径都等于2,圆S、圆L均与圆Q外切.已知直线l过点O.(1)若直线l与圆L、圆S均相切,则l截圆Q所得弦长为;(2)若直线l截圆L、圆S、圆Q所得弦长均等于d,则d=.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知平行四边形ABCD的三个顶点的坐标为A(﹣1,4),B(﹣2,﹣1),C(2,3).(Ⅰ)在△ABC中,求边AC中线所在直线方程;(Ⅱ)求平行四边形ABCD的顶点D的坐标及边BC的长度;(Ⅲ)求△ABC的面积.18.(12分)已知△ABC的边AB边所在直线的方程为x﹣3y﹣6=0,M(2,0)满足,点T(﹣1,1)在AC边所在直线上且满足.(1)求AC边所在直线的方程;(2)求△ABC外接圆的方程;(3)若动圆P过点N(﹣2,0),且与△ABC的外接圆外切,求动圆P的圆心的轨迹方程.19.(12分)在如图所示的试验装置中,两个正方形框架ABCD,ABEF的边长都是1,且它们所在的平面互相垂直,活动弹子M,N分别在正方形对角线AC和BF上移动,且CM和BN的长度保持相等,记CM=BN=a(0<a<).(Ⅰ)求MN的长;(Ⅱ)a为何值时,MN的长最小并求出最小值;(Ⅲ)当MN的长最小时,求平面MNA与平面MNB夹角的余弦值.20.(12分)椭圆C1:的长轴长等于圆C2:x2+y2=4的直径,且C1的离心率等于,已知直线l:x﹣y﹣1=0交C1于A、B两点.(Ⅰ)求C1的标准方程;(Ⅱ)求弦AB的长.21.(12分)如图所示,在三棱柱ABC﹣A1B1C1中,四边形ABB1A1为菱形,∠AA1B1=,平面ABB1A1⊥平面ABC,AB=BC,AC=,E为AC的中点.(Ⅰ)求证:B1C1⊥平面ABB1A1;(Ⅱ)求平面EB1C1与平面BB1C1C所成角的大小.22.(12分)已知点A(1,0),点P是圆C:(x+1)2+y2=8上的任意一点,线段PA的垂直平分线与直线CP交于点E.(Ⅰ)求点E的轨迹方程;(Ⅱ)过点A的直线l与轨迹E交于不同的两点M,N,则△CMN的面积是否存在最大值?若存在,求出这个最大值及直线l的方程;若不存在,请说明理由.参考答案一、单选题(共8小题).1.直线3x+2y﹣1=0的一个方向向量是()A.(2,﹣3)B.(2,3)C.(﹣3,2)D.(3,2)解:依题意,(3,2)为直线的一个法向量,∴则直线的一个方向向量为(2,﹣3),故选:A.2.椭圆+=1的离心率是()A.B.C.D.解:椭圆+=1,可得a=3,b=2,则c==,所以椭圆的离心率为:=.故选:B.3.两条平行直线2x﹣y+3=0和ax﹣3y+4=0间的距离为d,则a,d分别为()A.a=6,B.a=﹣6=﹣6,C.a=﹣6,D.a=6,解:根据两条平行直线2x﹣y+3=0和ax﹣3y+4=0,可得=≠,可得a=6,可得两条平行直线即6x﹣3y+9=0和6x﹣3y+4=0,故它们间的距离为d==,故选:D.4.如图,四棱锥P﹣OABC的底面是矩形,设,,,E是PC的中点,则()A.B.C.D.解:∵四棱锥P﹣OABC的底面是矩形,,,,E是PC的中点,∴=+=﹣+=﹣+(+)=﹣+(﹣+)=﹣﹣+,故选:B.5.空间直角坐标系O﹣xyz中,经过点P(x0,y0,z0)且法向量为的平面方程为A(x﹣x0)+B(y﹣y0)+C(z﹣z0)=0,经过点P(x0,y0,z0)且一个方向向量为的直线l的方程为,阅读上面的材料并解决下面问题:现给出平面α的方程为3x﹣5y+z﹣7=0,经过(0,0,0)直线l 的方程为,则直线1与平面α所成角的正弦值为()A.B.C.D.解:∵平面α的方程为3x﹣5y+z﹣7=0,∴平面α的一个法向量为=(3,﹣5,1),∵经过(0,0,0)直线l的方程为,∴直线l的一个方向向量为=(3,2,﹣1),设直线1与平面α所成角为θ,则sinθ=|cos<,>|=||=||=,∴直线1与平面α所成角的正弦值为.故选:B.6.已知圆x2+y2﹣6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.4解:由圆的方程可得圆心坐标C(3,0),半径r=3;设圆心到直线的距离为d,则过D(1,2)的直线与圆的相交弦长|AB|=2,当d最大时弦长|AB|最小,当直线与CD所在的直线垂直时d最大,这时d=|CD|==2,所以最小的弦长|AB|=2=2,故选:B.7.已知l,m是异面直线,A,B∈l,C,D∈m,AC⊥m,BD⊥m,AB=2,CD=1,则异面直线l,m所成的角等于()A.30°B.45°C.60°D.90°解:由AC⊥m,BD⊥m,可得AC⊥CD,BD⊥CD,故可得=0,=0,∴=()•=+||2+=0+12+0=1,∴cos<,>==,∵与夹角的取值范围为[0,π],故向量的夹角为60°,∴异面直线l,m所成的角等于60°.故选:C.8.已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P 在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.解:由题意可知:A(﹣a,0),F1(﹣c,0),F2(c,0),直线AP的方程为:y=(x+a),由∠F1F2P=120°,|PF2|=|F1F2|=2c,则P(2c,c),代入直线AP:c=(2c+a),整理得:a=4c,∴题意的离心率e==.故选:D.二.多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.)9.过点P(2,3),并且在两轴上的截距相等的直线方程为()A.x+y﹣5=0B.2x+y﹣4=0C.3x﹣2y=0D.4x﹣2y+5=0解:当直线经过原点时,直线的斜率为k=,所以直线的方程为y=x,即3x﹣2y=0;当直线不过原点时,设直线的方程为x+y=a,代入点P(2,3)可得a=5,所以所求直线方程为x+y=5,即x+y﹣5=0.综上可得,所求直线方程为:x+y﹣5=0或3x﹣2y=0.故选:AC.10.已知曲线C:mx2+ny2=1.()A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m>n>0,则C是椭圆,其焦点在x轴上C.若m=n>0,则C是圆,其半径为D.若m=0,n>0,则C是两条直线解:曲线C:mx2+ny2=1.若m>n>0,方程化为,得>0,则C是椭圆,其焦点在y轴上,故A 正确;B错误;若m=n>0,方程化为,则C是圆,其半径为,故C错误;若m=0,n>0,方程化为,即y=,则C是两条直线,故D正确.故选:AD.11.已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0)若圆C 上存在点P,使得∠APB=90°,则m的可能取值为()A.7B.6C.5D.8解:圆C:(x﹣3)2+(y﹣4)2=1的圆心C(3,4),半径为1,∵圆心C到O(0,0)的距离为5,∴圆C上的点到点O的距离的最大值为6,最小值为4,再由∠APB=90°,可得以AB为直径的圆和圆C有交点,得PO=|AB|=m,即4≤m≤6,结合选项可得,m的值可能取6和5.故选:BC.12.已知F1,F2是椭圆的左、右焦点,动点在椭圆上,∠F1PF2的平分线与x轴交于点M(m,0),则m的可能取值为()A.1B.2C.0D.﹣1解:由椭圆方程可得F1(,0),F2(),由y1>,可得<x1<,则直线PF1的方程为,即,直线PF2的方程为,即.∵M(m,0)在∠F1PF2的平分线,∴,①∵=,=,﹣<m<,∴①式转化为,即m=,又<x1<,∴<m<.结合选项可得m的可能取值为1,0,﹣1,故选:ACD.三、填空题(本题共4小题,每小题5分,共20分)13.已知平面α的一个法向量,平面β的一个法向量,若α⊥β,则y﹣x=1.解:∵平面α的一个法向量,平面β的一个法向量,α⊥β,∴=﹣x+y﹣1=0,解得y﹣x=1.故答案为:1.14.在棱长为1的正方体ABCD﹣A1B1C1D1中,E是线段DD1的中点,F是线段BB1的中点,则直线FC1到平面AB1E的距离为.解:如图,取C1C的中点G,连接BG,可得BF∥C1G,BF=C1G,则四边形BGC1F为平行四边形,∴C1F∥BG.连接EG,得EG∥CD∥AB,EG=CD=AB,则四边形ABGE为平行四边形,得BG∥AE,则FC1∥AE,∵AE⊂平面AB1E,FC1⊄平面AB1E,∴FC1∥平面AB1E,∴直线FC1到平面AB1E的距离等于F到平面AB1E的距离,∵正方体ABCD﹣A1B1C1D1中的棱长为1,∴,AE=,,则cos∠EAB1=,∴sin,则=.设F到平面AB1E的距离为h,由,得,即h=.∴直线FC1到平面AB1E的距离为.故答案为:.15.已知F1,F2是椭圆的左、右焦点,弦AB过点F1,若△ABF2的内切圆的周长为2π,A,B两点的坐标是(x1,y1)(x2,y2),则|y1﹣y2|=.解:由椭圆,得a2=25,b2=16,∴a=5,b=4,c==3,∴椭圆的焦点分别为F1(﹣3,0)、F2(3,0),设△ABF2的内切圆半径为r,∵△ABF2的内切圆周长为2π,∴r=1,根据椭圆的定义,得|AB|+|AF2|+|BF2|=(|AF1|+|AF2|)+(|BF1|+|BF2|)=4a=20.∴△ABF2的面积S=(|AB|+|AF2|+|BF2|)×r=×20×1=10,又∵△ABF2的面积S=+=×|y1|×|F1F2|+×|y2|×|F1F2|=×(|y1|+|y2|)×|F1F2|=3|y2﹣y1|(A、B在x轴的两侧),∴3|y1﹣y2|=10,解得|y1﹣y2|=.故答案为:.16.2020年是中国传统的农历“鼠年”,有人用3个圆构成“卡通鼠”的形象,如图:Q (0,﹣3)是圆Q的圆心,圆Q过坐标原点O;点L、S均在x轴上,圆L与圆S的半径都等于2,圆S、圆L均与圆Q外切.已知直线l过点O.(1)若直线l与圆L、圆S均相切,则l截圆Q所得弦长为3;(2)若直线l截圆L、圆S、圆Q所得弦长均等于d,则d=.解:(1)根据条件得到两圆的圆心坐标分别为(﹣4,0),(4,0),设公切线方程为y=kx+m(k≠0)且k存在,则,解得k=±,m=0,故公切线方程为y=±x,则Q到直线l的距离d=,故l截圆Q的弦长=2=3;(2)设方程为y=kx+m(k≠0)且k存在,则三个圆心到该直线的距离分别为:d1=,d2=,d3=,则d2=4(4﹣d12)=4(4﹣d22)=4(9﹣d32),即有()2=()2,①4﹣()2=9﹣()2,②解①得m=0,代入②得k2=,则d2=4(4﹣)=,即d=,故答案为:3;.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知平行四边形ABCD的三个顶点的坐标为A(﹣1,4),B(﹣2,﹣1),C(2,3).(Ⅰ)在△ABC中,求边AC中线所在直线方程;(Ⅱ)求平行四边形ABCD的顶点D的坐标及边BC的长度;(Ⅲ)求△ABC的面积.解:(1)设AC边的中点为M,则M(,),∴直线BM斜率k==,∴直线BM的方程为y+1=(x+2),化为一般式可得9x﹣5y+13=0,∴AC边中线所在直线的方程为:9x﹣5y+13=0(2)设点D坐标为(x,y),由已知得M为线段BD中点,∴有,解得,∴D(3,8),∵B(﹣2,﹣1),C(2,3)∴;(3)由B(﹣2,﹣1),C(2,3)可得直线BC的方程为x﹣y+1=0,∴点A到直线BC的距离d==2,∴△ABC的面积S=×4×2=8.18.(12分)已知△ABC的边AB边所在直线的方程为x﹣3y﹣6=0,M(2,0)满足,点T(﹣1,1)在AC边所在直线上且满足.(1)求AC边所在直线的方程;(2)求△ABC外接圆的方程;(3)若动圆P过点N(﹣2,0),且与△ABC的外接圆外切,求动圆P的圆心的轨迹方程.解:(1)∵∴AT⊥AB,又T在AC上∴AC⊥AB,△ABC为Rt△ABC,又AB边所在直线的方程为x﹣3y﹣6=0,所以直线AC的斜率为﹣3.又因为点T(﹣1,1)在直线AC上,所以AC边所在直线的方程为y﹣1=﹣3(x+1).即3x+y+2=0.(2)AC与AB的交点为A,所以由解得点A的坐标为(0,﹣2),∵∴M(2,0)为Rt△ABC的外接圆的圆心又r=.从△ABC外接圆的方程为:(x﹣2)2+y2=8.(3)因为动圆P过点N,所以|PN|是该圆的半径,又因为动圆P与圆M外切,所以,即.故点P的轨迹是以M,N为焦点,实轴长为的双曲线的左支.因为实半轴长,半焦距c=2.所以虚半轴长.从而动圆P的圆心的轨迹方程为.19.(12分)在如图所示的试验装置中,两个正方形框架ABCD,ABEF的边长都是1,且它们所在的平面互相垂直,活动弹子M,N分别在正方形对角线AC和BF上移动,且CM和BN的长度保持相等,记CM=BN=a(0<a<).(Ⅰ)求MN的长;(Ⅱ)a为何值时,MN的长最小并求出最小值;(Ⅲ)当MN的长最小时,求平面MNA与平面MNB夹角的余弦值.解:如图建立空间直角坐标系,A(1,0,0),C(0,0,1),F(1,1,0),E(0,1,0),∵CM=BN=a,∴M(,0,1﹣),N(,,0).(Ⅰ)=;(Ⅱ)=,当a=时,|MN|最小,最小值为;(Ⅲ)由(Ⅱ)可知,当M,N为中点时,MN最短,则M(,0,),N(,,0),取MN的中点G,连接AG,BG,则G(,,),∵AM=AN,BM=BN,∴AG⊥MN,BG⊥MN,∴∠AGB是平面MNA与平面MNB的夹角或其补角.∵,,∴cos<>==.∴平面MNA与平面MNB夹角的余弦值是.20.(12分)椭圆C1:的长轴长等于圆C2:x2+y2=4的直径,且C1的离心率等于,已知直线l:x﹣y﹣1=0交C1于A、B两点.(Ⅰ)求C1的标准方程;(Ⅱ)求弦AB的长.解:(Ⅰ)由题意可得2a=4,∴a=2,∵,∴c=1,∴b=,∴椭圆C1的标准方程为:.(Ⅱ)联立直线l与椭圆方程,消去y得:7x2﹣8x﹣8=0,设A(x1,y1),B(x2,y2),则,,∴|AB|===.21.(12分)如图所示,在三棱柱ABC﹣A1B1C1中,四边形ABB1A1为菱形,∠AA1B1=,平面ABB1A1⊥平面ABC,AB=BC,AC=,E为AC的中点.(Ⅰ)求证:B1C1⊥平面ABB1A1;(Ⅱ)求平面EB1C1与平面BB1C1C所成角的大小.【解答】(Ⅰ)证明:∵四边形ABB1A1为菱形,AB=BC,AC=,∴AC2=AB2+BC2,得AB⊥BC,又平面ABB1A1⊥平面ABC,平面ABB1A1∩平面ABC=AB,∴BC⊥平面ABB1A1,又B1C1∥BC,∴B1C1⊥平面ABB1A1;(Ⅱ)取A1B1的中点O,A1C1的中点N,连接OA,ON,∵B1C1⊥平面ABB1A1,∴ON⊥平面ABB1A1,得ON⊥OA1,ON⊥OA,又四边形ABB1A1为菱形,,O是A1B1的中点,∴OA⊥A1B1,故OA1,ON,OA两两互相垂直.以O为坐标原点,分别以OA1、ON、OA所在直线为x、y、z轴建立空间直角坐标系,∴B1(﹣1,0,0),C1(﹣1,2,0),E1(﹣1,1,),B(﹣2,0,),由图可知,平面EB1C1的一个法向量为,设平面BB1C1C的一个法向量为,则,取z=1,得.设平面EB1C1与平面BB1C1C所成角的大小为θ,则cosθ=|cos<>|=||=,又∵θ∈(0,],∴,故平面EB1C1与平面BB1C1C所成角的大小为.22.(12分)已知点A(1,0),点P是圆C:(x+1)2+y2=8上的任意一点,线段PA的垂直平分线与直线CP交于点E.(Ⅰ)求点E的轨迹方程;(Ⅱ)过点A的直线l与轨迹E交于不同的两点M,N,则△CMN的面积是否存在最大值?若存在,求出这个最大值及直线l的方程;若不存在,请说明理由.解:(Ⅰ)由题意可知:|EP|=|EA|,|CE|+|EP|=2,∴|CE|+|EA|=2>|CA|=2,∴点E的轨迹是以C,A为焦点的椭圆,且2a=2,c=1,∴其轨迹方程为.(Ⅱ)设M(x1,y1),N(x2,y2),不妨设y1>0,y2<0,由题意可知,直线l的斜率不为零,可设直线l的方程为x=my+1,联立方程,消去x得:(m2+2)y2+2my﹣1=0,则,,∴=,∴===,当且仅当即m=0时,△CMN的面积取得最大值,此时直线l的方程为x=1.。

内蒙古包头市第一中学2020-2021学年高二第一学期期中考试数学(理)试卷 Word版含答案

内蒙古包头市第一中学2020-2021学年高二第一学期期中考试数学(理)试卷 Word版含答案

包头一中2020-2021学年度第一学期期中考试高二年级数学试题(理科)一、选择题(每小题5分,共60分,每题只有一个正确选项) 1、双曲线x 23-y 2=1的焦点坐标是( ) A .(-2,0),(2,0) B .(-2,0),(2,0) C .(0,-2),(0,2)D .(0,-2),(0,2)2、已知命题0:0p a ∃∈+∞(,),200230a a ->-,那么命题p 的否定是( )A .()20000230a a a ∃∈+∞≤--,,B .()20000230a a a ∃∈-∞≤--,, C .()20230a a a ∈∞-∀+-≤,,D . ()20230a a a ∈≤-∀-∞-,, 3、已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴长为6,且两焦点恰好将长轴三等分,则此椭圆的标准方程为( )A.x 236+y 232=1B.x 29+y 28=1C.x 29+y 25=1D.x 216+y 212=14、圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是( ) A .相交 B .外切 C .相离D .内切5、下列有关命题的说法正确的是( )A. 命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”B. “1x =-”是“2560x x --=”必要不充分条件C. 命题“x R ∃∈,使210x x +-<”的否定是:“x R ∀∈均有210x x +->”D. 命题“若x y =,则sin sin x y =”的逆否命题为真命题6、过原点且倾斜角为60︒的直线被圆2240x y y +-=所截得的弦长为( ) A. 3 B .2 C. 6 D .237、过点A (1,-1),B (-1,1)且圆心在直线x +y -2=0上的圆的方程是( )A .(x -3)2+(y +1)2=4B .(x +3)2+(y -1)2=4C .(x -1)2+(y -1)2=4D .(x +1)2+(y +1)2=48、椭圆x 225+y 29=1上一点M 到焦点F 1的距离为2,N 是MF 1的中点,则|ON |等于( )A .2B .4C .8 D.329、直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( )A .相交B .相切C .相离D .不确定10、若圆x 2+y 2+2x -6y +6=0上有且仅有三个点到直线x +ay +1=0的距离为1,则实数a 的值为( )A .±1B .±24C .±2D .±3211、如图,椭圆x 2a 2+y 24=1(a >2)的左、右焦点分别为F 1,F 2,点P 是椭圆上的一点,若∠F 1PF 2=60°,那么△PF 1F 2的面积为( )A.233 B.332 C.334D.43312、已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A.23B.12C.13D.14 二、填空题(每小题5分,共20分)13、已知椭圆()222104x y a a +=>与双曲线22193x y -=有相同的焦点,则a 的值为__________.14、圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得的弦长为23,则圆C 的标准方程为____________________.15、已知M ,N 是圆A :x 2+y 2-2x =0与圆B :x 2+y 2+2x -4y =0的公共点,则线段MN 的长度为________.16、椭圆22142x y +=的左、右焦点分别为12,F F ,过焦点1F 的直线交椭圆于,A B 两点,则2ABF △的周长为__________;若,A B 两点的坐标分别为()11,x y 和()22,x y ,且212y y -=,则2ABF △的内切圆半径为____________.三、解答题(17题10分,18-22题每题12分,要求有必要的计算过程或文字说明)17、求下列曲线的标准方程(1)求焦点在x 轴上,焦距为2,过点)23,1(的椭圆的标准方程;(2)求与双曲线2212x y -=有公共焦点,且过点的双曲线标准方程.18、已知命题:p 方程22113x y m m+=+-表示焦点在y 轴上的椭圆,命题:q 关于x 的不等式03222>+++m mx x 恒成立;(1)若命题q 是真命题,求实数m 的取值范围(2)若“p q ∧”为假命题,“p q ∨”为真命题.求实数m 的取值范围19、已知圆C 经过点(0,1)且圆心为C (1,2). (1)写出圆C 的标准方程;(2)过点P (2,-1)作圆C 的切线,求该切线的方程及切线长.20、已知点P 在圆C :x 2+y 2-4x -2y +4=0上运动,A 点坐标为(-2,0) (1)求线段AP 中点的轨迹方程(2)若直线l :x -2y -5=0与坐标轴交于MN 两点,求PMN ∆面积的取值范围21、已知点()0,2A -,椭圆2222:1(0)x y E a b a b +=>>的离心率为2F 是椭圆E 的右焦点,直线AF 的斜率为2,O 为坐标原点.(1)求E 的方程;(2)设过点(0P 且斜率为k 的直线l 与椭圆E 交于不同的两M N 、,且||MN =k 的值. 22、已知椭圆2222:1(0)x y C a b a b +=>>的两个焦点是12(1,0),(1,0)F F -,且离心率1e 2=.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)过点()0,t 作椭圆C 的一条切线l 交圆22:4O x y +=于,M N 两点,求OMN △面积的最大值.参考答案一选择题、BCBAD;DCBAB;DD 二、填空题 13、4;14、4)1()2(22=-+-y x ; 15、2;16、8,22 三解答题17(1)由题意知c =1,2a =⎝ ⎛⎭⎪⎫322+ ⎝ ⎛⎭⎪⎫322+22=4,解得a =2, 故椭圆C 的方程为x 24+y 23=1.(2)双曲线2212x y -=双曲线的焦点为(), 设双曲线的方程为22221),(0x y a b a b -=>,可得223a b +=,将点代入双曲线方程可得, 22221a b -=,解得1,a b ==,即有所求双曲线的方程为:2212y x -=.18(1)关于x 的不等式03222>+++m mx x 恒成立; 则判别式244(23)0m m ∆=-+<,即2230m m --<,得13m -<< (2)∵方程22113x y m m+=+-表示焦点在轴上的椭圆.∴013m m <+<-,解得: 11m -<<,∴若命题p 为真命题,求实数m 的取值范围是(1,1)-;若关于x 的不等式03222>+++m mx x 恒成立,则判别式244(23)0m m ∆=-+<,即2230m m --<,得13m -<<,若“p q ∧”为假命题,“p q ∨”为真命题,则,p q 为一个真命题,一个假命题,若p 真q 假,则11{3,1m m m -<<≥≤-,此时无解,若p 假q 真,则13{1,1m m m -<<≥≤-,得13m ≤<.综上,实数m 的取值范围是[)1,3. 19解:(1)由题意知,圆C 的半径r =(1-0)2+(2-1)2=2,所以圆C 的标准方程为(x -1)2+(y -2)2=2.(2)由题意知切线斜率存在,故设过点P (2,-1)的切线方程为y +1=k (x -2),即kx -y -2k -1=0,则|-k -3|1+k2=2, 所以k 2-6k -7=0,解得k =7或k =-1,故所求切线的方程为7x -y -15=0或x +y -1=0.由圆的性质易得所求切线长为PC 2-r 2=(2-1)2+(-1-2)2-2=2 2.20、(1)已知点P 在圆C :x 2+y 2-4x -2y +4=0上运动,A 点坐标为(-2,0)设AP 的中点为M (x ,y ),),(0y x P o ,由中点坐标公式可知,⎪⎪⎩⎪⎪⎨⎧=-=22200y y x x所以⎩⎨⎧=+=y y x x 22200带入圆C :x 2+y 2-4x -2y +4=0中,故线段AP 中点的轨迹方程为022=-+y y x(2)圆C :x 2+y 2-4x -2y +4=0化为(x -2)2+(y -1)2=1,圆心C (2,1),半径为1,圆心到直线l 的距离为|2-2-5|12+22=5,则圆上一动点P 到直线l 的距离的最小值是5-1,最大值是5+1 ,又255=MN ,所以面积]455425,455425[+-∈S21、(1)由离心率c e a ==,则a =,直线AF 的斜率()022k c --==-,则1c =, a =2221b a c =﹣=,∴椭圆E 的方程为2212x y +=;(2)设直线:l y kx =()()1122,M x y N x y ,,,则2212y kx x y ⎧=-⎪⎨+=⎪⎩,整理得: ()221240k x ++=-,()22()44120k =--⨯⨯+>△,即21k >,∴12x x +=, 122412x x k =+,∴1212MN x k =-==+,即421732570k k --=,解得:23k =或1917-(舍去)∴k = 22、(1)由已知11,e 2c ca ===,所以2,a b =所以椭圆C 的标准方程22143x y +=.(2)由已知切线l 的斜率存在,设其方程为y kx t =+, 联立方程22143y kx t x y =+⎧⎪⎨+=⎪⎩,消去y 得222(34)84120k x ktx t +++-=,由相切得 222(8)4(34)(412)0kt k t =-+-=△,化简得 2234t k =+,又圆心O 到切线l 的距离d =,所以 ||MN =所以1||2OMNS MN d ===△把 2234t k =+ 代入得OMNS =△,记 21u k =+,则11,01u u ≥<≤,所以OMN S ==△所以,11u=时,OMN △。

2020-2021学年山西省太原市高二上学期期中数学试卷(解析版)

2020-2021学年山西省太原市高二上学期期中数学试卷(解析版)

2020-2021学年山西省太原市高二(上)期中数学试卷一、选择题(共12小题).1.(3分)直线x﹣2y+6=0的斜率为()A.2B.﹣2C.D.﹣2.(3分)长方体的长、宽、高分别为,,1,且其顶点都在同一球面上,则该球的表面积为()A.3πB.6πC.12πD.24π3.(3分)已知A(0,0),B(1,1),直线l过点(2,0)且和直线AB平行,则直线l的方程为()A.x﹣y﹣2=0B.x+y﹣2=0C.2x﹣y﹣4=0D.2x+y﹣4=0 4.(3分)圆(x﹣1)2+(y+2)2=1的一条切线方程是()A.x﹣y=0B.x+y=0C.x=0D.y=05.(3分)已知直线a,b,c满足a⊥b,a⊥c,且a⊂α,b,c⊂β,有下列说法:①a⊥β;②α⊥β;③b∥c.则正确的说法有()A.3个B.2个C.1个D.0个6.(3分)直线x﹣2y+2=0关于直线x=1对称的直线方程是()A.x+2y﹣4=0B.2x+y﹣1=0C.2x+y﹣3=0D.2x+y﹣4=0 7.(3分)在三棱锥A﹣BCD中,E,F分别为AC,AD的中点,设三棱锥A﹣BCD的体积为V1,四棱锥B﹣CDFE的体积为V2,则V1:V2=()A.4:3B.2:1C.3:2D.3:18.(3分)设x,y满足约束条件,则z=x+2y的最大值为()A.8B.7C.2D.19.(3分)如图,在三棱锥P﹣ABC中,不能证明AP⊥BC的条件是()A.BC⊥平面APCB.BC⊥PC,AP⊥PCC.AP⊥PB,AP⊥PCD.AP⊥PC,平面APC⊥平面BPC10.(3分)已知半径为1的圆经过直线x+2y﹣11=0和直线2x﹣y﹣2=0的交点,那么其圆心到原点的距离的最大值为()A.4B.5C.6D.711.(3分)如图,正方体ABCD﹣A1B1C1D1中,DD1的中点为N,则异面直线AB1与CN 所成角的余弦值是()A.B.C.D.012.(3分)在同一平面直角坐标系中,直线y=k(x﹣1)+2和圆x2+y2﹣4x﹣2ay+4a﹣1=0的位置关系不可能是()A.①③B.①④C.②④D.②③二、填空题(共4小题).13.(4分)空间直角坐标系中,已知点A(4,1,2),B(2,3,4),则|AB|=.14.(4分)已知一个几何体的三视图如图所示,则该几何体的侧面积为.15.(4分)已知圆C:x2+y2﹣2mx﹣4y+m2=0(m>0)被直线l:x﹣y+3=0截得的弦长为2,则m=.16.(4分)已知四棱锥的底面是边长为2的正方形,侧棱长均为,若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.三、解答题(本大题共3小题,共48分,解答应写出文字说明,证明过程或演算步骤)17.(8分)已知直线l1经过点M(2,1),在两坐标轴上的截距相等且不为0.(1)求直线l1的方程;(2)若直线l2⊥l1,且过点M,求直线l2的方程.18.(10分)如图,P为圆锥的顶点,O是圆锥底面的圆心,AC,BD为圆锥底面的两条直径,M为母线PD上一点,连接MA,MO,MC.(1)若M为PD的中点,证明:PB∥平面MAC;(2)若PB∥平面MAC,证明:M为PD的中点.19.(10分)已知圆C经过点A(0,1),B(2,1),M(3,4).(1)求圆C的方程;(2)设点P为直线l:x﹣2y﹣1=0上一点,过点P作圆C的两条切线,切点分别为E,F.若∠EPF=60°,求点P的坐标.四.(本小题满分10分)说明:请同学们在(20)、(21)两个小题中任选一题作答。

2020-2021学年山东省烟台市高二(上)期中数学试卷+答案解析(附后)

2020-2021学年山东省烟台市高二(上)期中数学试卷+答案解析(附后)

2020-2021学年山东省烟台市高二(上)期中数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列说法正确的是( )A. 任何三个不共线的向量可构成空间向量的一个基底B. 空间的基底有且仅有一个C. 两两垂直的三个非零向量可构成空间的一个基底D. 直线的方向向量有且仅有一个2.直线的倾斜角是( )A. B. C.D.3.已知,,,若P ,A ,B ,C 四点共面,则( )A. 9B.C. D. 34.已知实数x ,y 满足,那么的最小值为( )A. B.C. 2D. 45.直线的一个方向向量是( )A.B.C.D.6.正四面体ABCD 中,M ,N 分别是BC ,AD 的中点,则直线AM 和CN 夹角的余弦值为( )A.B.C. D.7.棱长为1的正方体中,O 是面的中心,则O 到平面的距离是( )A.B.C. D.8.已知圆C 的方程为,过直线l :上任意一点作圆C 的切线,若切线长的最小值为,则直线l 的斜率为( )A. 4B.C.D.二、多选题:本题共4小题,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.下列叙述正确的有( )A. 平面直角坐标系中的任意一条直线都有斜率B. 平面直角坐标系中的任意一条直线都有倾斜角C. 若,则D. 任意两个空间向量共面10.古希腊数学家阿波罗尼奥斯著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数且的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知,,圆C:上有且仅有一个点P满足,则r的取值可以为( )A. 2B. 4C. 6D. 811.如图,棱长为1的正方体中,E,F分别为,的中点,则( )A. 直线与底面ABCD所成的角为B. 平面与底面ABCD夹角的余弦值为C.直线与直线AE的距离为D. 直线与平面的距离为12.设有一组圆:,下列说法正确的是( )A. 这组圆的半径均为1B.直线平分所有的圆C.直线被圆截得的弦长相等D. 存在一个圆与x轴和y轴均相切三、填空题:本题共4小题,每小题5分,共20分。

2020-2021学年辽宁省沈阳市郊联体高二(上)期中数学试卷+答案解析(附后)

2020-2021学年辽宁省沈阳市郊联体高二(上)期中数学试卷+答案解析(附后)

2020-2021学年辽宁省沈阳市郊联体高二(上)期中数学试卷一、单选题(本大题共8小题,共40分。

在每小题列出的选项中,选出符合题目的一项)1.已知复数,则的虚部为( )A. 1B.C. iD.2.设向量是空间一个基底,则一定可以与向量构成空间的另一个基底的向量是( )A. B.C. D.或3.已知圆:与圆:的位置关系是( )A. 外离B. 外切C. 相交D. 内切4.已知空间A 、B 、C 、D 四点共面,但任意三点不共线,若P 为该平面外一点且,则实数x 的值为( )A. B.C. D.5.已知直线和以,为端点的线段相交,则实数k 的取值范围为( )A.B. C.D.或6.已知三棱锥中,,且,则直线PA 与底面ABC 所成角的正弦值为( )A.B.C. D.7.在平面直角坐标系xOy 中,已知的顶点,,顶点B 在椭圆上,则( )A. B.C.D.8.设,过定点A 的动直线和过定点B 的动直线交于点,则的最大值是( )A. 4B. 10C. 5D.二、多选题(本大题共4小题,共20分。

在每小题有多项符合题目要求)9.已知方程表示双曲线,则此时( )A. 双曲线的离心率为B. 双曲线的渐近线方程为C. 双曲线的一个焦点坐标为D. 双曲线的焦点到渐近线的距离为110.设几何体是棱长为a的正方体,与相交于点O,则( )A. B.C. D.11.下列说法错误的是( )A. “”是“直线与直线互相垂直”的充要条件B. 直线的倾斜角的取值范围是C. 过,两点的所有直线的方程为D. 经过点且在x轴和y轴上截距都相等的直线方程为12.已知圆上到直线l:的距离等于1的点至少有2个,则实数a的值可以为( )A. B. C. 0 D. 2三、填空题(本大题共4小题,共20分)13.设复数z满足,z在复平面内对应的点为,则x,y满足的关系式为______.14.已知M,N分别是四面体OABC的棱OA,BC的中点,点P在线段MN上,且,设向量,,,则______用表示15.已知点F是双曲线的左焦点,点E是该双曲线的右顶点,过F且垂直于x轴的直线与双曲线交于A,B两点.若是锐角三角形,则该双曲线的离心率e的取值范围是________.16.若直线与曲线没有公共点,则实数m的取值范围是__________.四、解答题(本大题共6小题,共70分。

海南中学2020-2021学年高二上学期期中考试 数学试题(含答案)

海南中学2020-2021学年高二上学期期中考试 数学试题(含答案)

海南中学2020-2021学年高二上学期期中考试化学试题(本试卷总分150分,总时量120分钟)一、单项选择题:本题共8小题,每小题5分,共40分. 1. 椭圆22:416C x y +=的焦点坐标为( )A .(±B .(±C .(0,±D .(0,±2. 已知向量(2,4,5)a =,(3,,)b x y =分别是直线12,l l 的方向向量,若12l l ∥,则( )A .6,15x y ==B .3,15x y ==C .810,33x y ==D .156,2x y ==3. 设0,0a b k >>>且1k ≠,则椭圆22122:1x y C a b +=和椭圆22222:x y C k a b+=具有相同的( )A .顶点B .焦点C .离心率D .长轴和短轴4. 已知直线1l 的方向向量(2,4,)a x =,直线2l 的方向向量(2,,2)b y =,若||6a =,且a b ⊥,则x y +的值是( ) A .1-或3B .1或3-C .3-D .15. 若直线0x y k --=与圆22(1)2x y -+=有两个不同的交点,则( )A .03k <<B .13k -≤≤C .1k <-或3k >D .13k -<<6. 已知平行六面体''''ABCD A B C D -中,4AB =,3AD =,'5AA =,90BAD ∠=,''60BAA DAA ∠=∠=.则'AC 的长为( )A B . C .12 D .7. 光线从(3,4)A -点射出,到x 轴上的B 点后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射线恰好过点(1,6)D -,则BC 所在直线的方程是( ) A .5270x y -+= B .310x y +-= C .3240x y -+= D .230x y --=8. 四棱锥-P ABCD 中,底面ABCD 是一个平行四边形,PA ⊥底面ABCD ,(2,1,4)AB =--,(4,2,0)AD =,(1,2,1)AP =--.则四棱锥-P ABCD 的体积为( )A .8B .16C .32D .48二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9. 若,,a b c 是空间任意三个向量,R λ∈,下列关系中,不成立...的是( ) A .||||a b b a +=-B .()()a b c a b c +⋅=⋅+C .()a b a b λλλ+=+D .b a λ=10. 已知直线:10l y -+=,则下列结论正确的是( )A .直线l 的倾斜角是6πB .若直线:10m x -+=,则l m ⊥C .点0)到直线l 的距离是2D .过2)与直线l 40y --=11. 已知平面上一点(5,0)M ,若直线上存在点P ,使||4PM =,则称该直线为“点M 相关直线”,下列直线中是“点M 相关直线”的是( ) A .1y x =+B .2y =C .430x y -=D .210x y -+=12. 设椭圆22193x y +=的右焦点为F ,直线(0y m m =<<与椭圆交于,A B 两点,则( )A .||||AF BF +为定值B .ABF 的周长的取值范围是[6,12]C .当m =时,ABF 为直角三角形D .当1m =时,ABF三、填空题:本题共4小题,每小题5分,共20分.13. 若椭圆221(4)4x y m m+=<的离心率为12,则m = .14. 已知A ,B ,C 三点不共线,O 是平面ABC 外任一点,若1253OP OA OB OC λ=++,且P ∈平面ABC ,则λ= .15. 已知空间向量(3,0,4),(3,2,1)a b ==-,则向量b 在向量a 上的投影向量是 .16. 过点()3,0P -做直线()()21340m x m y m +-+--=的垂线,垂足为M ,已知点()2,3N ,则MN 的取值范围是 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17. (10分)已知三角形的三个顶点是(4,0)A ,(6,7)B -,(0,3)C -.(1)求BC 边上的中线所在直线的方程; (2)求BC 边上的高所在直线的方程.18. (12分)已知(1,0)A -,(2,0)B ,动点M 满足||1||2MA MB =,设动点M 的轨迹为C , (1)求动点M 的轨迹方程; (2)点(,)P x y 在轨迹C 上,求2yx -的最小值.19. (12分)如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ∥,22AD PD EA ===,,,F G H 分别为,,PB EB PC 的中点. (1)求证:FG ∥平面PED ;(2)求平面FGH 与平面PBC 夹角的大小.20. (12分)已知关于x ,y 的方程22:240C x y x y m +--+=.(1)若圆C 与圆22812360x y x y +--+=外切,求m 的值; (2)若圆C 与直线:240l x y +-=相交于M ,N 两点,且45||MN =,求m 的值.21. (12分)四棱锥P ABCD -中,底面ABCD 为矩形,=90PAB ∠,2PA PD AD ===,(1)求证:平面PAD⊥平面ABCD.(2)在下列①②③三个条件中任选一个,补充在下面问题处,若问题中的四棱锥存在,求AB的长度;若问题中的四棱锥不存在,说明理由.①CF与平面PCD所成角的正弦值等于15;②DA与平面PDF所成角的正弦值等于34;③P A与平面PDF所成角的正弦值等于3.问题:若点F是AB的中点,是否存在这样的四棱锥,满足?(注:如果选择多个条件分别解答,按第一个解答计分.)22.(12分)已知椭圆2222:1(0)x yM a ba b+=>>的离心率为223,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+42.(1)求椭圆M的方程;(2)设直线:l x ky m=+与椭圆M交于A,B两点,若以AB为直径的圆经过椭圆的右顶点C,求m的值.参考答案一、单项选择题:本题共8小题,每小题5分,共40分. 23. 椭圆22:416C x y +=的焦点坐标为( )CA .(±B .(±C .(0,±D .(0,±24. 已知向量(2,4,5)a =,(3,,)b x y =分别是直线12,l l 的方向向量,若12l l ∥,则( )DA .6,15x y ==B .3,15x y ==C .810,33x y ==D .156,2x y ==25. 设0,0a b k >>>且1k ≠,则椭圆22122:1x y C a b +=和椭圆22222:x y C k a b+=具有相同的( )CA .顶点B .焦点C .离心率D .长轴和短轴26. 已知直线1l 的方向向量(2,4,)a x =,直线2l 的方向向量(2,,2)b y =,若||6a =,且a b ⊥,则x y +的值是( )B A .1-或3B .1或3-C .3-D .127. 若直线0x y k --=与圆22(1)2x y -+=有两个不同的交点,则( )DA .03k <<B .13k -≤≤C .1k <-或3k >D .13k -<<28. 已知平行六面体''''ABCD A B C D -中,4AB =,3AD =,'5AA =,90BAD ∠=,''60BAA DAA ∠=∠=.则'AC 的长为( )AA B . C .12 D .29. 光线从(3,4)A -点射出,到x 轴上的B 点后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射线恰好过点(1,6)D -,则BC 所在直线的方程是( )A A .5270x y -+= B .310x y +-= C .3240x y -+= D .230x y --=30. 四棱锥-P ABCD 中,底面ABCD 是一个平行四边形,PA ⊥底面ABCD ,(2,1,4)AB =--,(4,2,0)AD =,(1,2,1)AP =--.则四棱锥-P ABCD 的体积为( )BA .8B .16C .32D .48二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 31. 若,,a b c 是空间任意三个向量,R λ∈,下列关系中,不成立...的是( )ABD A .||||a b b a +=-B .()()a b c a b c +⋅=⋅+C .()a b a b λλλ+=+D .b a λ=32. 已知直线:10l y -+=,则下列结论正确的是( )CDA .直线l 的倾斜角是6πB .若直线:10m x -+=,则l m ⊥C .点0)到直线l 的距离是2D .过点2)且与直线l 40y --=33. 已知平面上一点(5,0)M ,若直线上存在点P ,使||4PM =,则称该直线为“点M 相关直线”,下列直线中是“点M 相关直线”的是( )BC A .1y x =+B .2y =C .430x y -=D .210x y -+=34. 设椭圆22193x y +=的右焦点为F ,直线(0y m m =<<与椭圆交于,A B 两点,则( )ACDA .||||AF BF +为定值B .ABF 的周长的取值范围是[6,12]C .当2m =时,ABF 为直角三角形D .当1m =时,ABF【解析】设椭圆的左焦点为F ',则||||AF BF '=,所以||||||||AF BF AF AF '+=+为定值6,A 正确;ABF ∆的周长为||||||AB AF BF ++,因为||||AF BF +为定值6,易知||AB 的范围是(0,6),所以ABF ∆的周长的范围是(6,12),B 错误;将y 与椭圆方程联立,可解得(A ,B ,又易知F ,所以2(60AF BF =+=,所以ABF ∆为直角三角形,C 正确;将1y =与椭圆方程联立,解得(A ,B ,所以112ABF S ∆=⨯=D 正确.三、填空题:本题共4小题,每小题5分,共20分.35. 若椭圆221(4)4x y m m+=<的离心率为12,则m = .336. 已知A ,B ,C 三点不共线,O 是平面ABC 外任一点,若1253OP OA OB OC λ=++,且P ∈平面ABC ,则λ= .21537. 已知空间向量(3,0,4),(3,2,1)a b ==-,则向量b 在向量a 上的投影向量是 .34(,0,)55--38. 过点()3,0P -做直线()()21340m x m y m +-+--=的垂线,垂足为M ,已知点()2,3N ,则MN 的取值范围是 .【解析】直线()()21340m x m y m +-+--=化为 (3)240m x y x y --+--=,令30{ 240x y x y --=--=,解得1{2x y -=.=∴直线()()21340m x m y m +-+--=过定点12Q -(,). ∴点M 在以PQ 为直径的圆上,圆心为线段PQ 的中点11C --(,)线段MN 长度的最大值5CN r =+==线段MN 长度的最大值5CN r =-==故答案为5⎡+⎣.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 39. (10分)已知三角形的三个顶点是(4,0)A ,(6,7)B -,(0,3)C -.(1)求BC 边上的中线所在直线的方程; (2)求BC 边上的高所在直线的方程. 解:(1)设线段BC 的中点为D . 因为B(6,−7),C(0,−3), 所以BC 的中点D(3,−5),所以BC 边上的中线所在直线的方程为y−0−5−0=x−43−4, 即5x −y −20=0.(2)因为B(6,−7),C(0,−3), 所以BC 边所在直线的斜率k BC =−3−(−7)0−6=−23,所以BC 边上的高所在直线的斜率为32,所以BC 边上的高所在直线的方程为y =32(x −4), 即3x −2y −12=0.40. (12分)已知(1,0)A -,(2,0)B ,动点M 满足||1||2MA MB =,设动点M 的轨迹为C , (1)求动点M 的轨迹方程; (2)求2yx -的最小值. 解:(1)设动点M(x,y), 根据题意得,√(x+1)2+y 2√(x−2)2+y 2=12,化简得,(x +2)2+y 2=4,所以动点M 的轨迹方程为(x +2)2+y 2=4. (2)设过点(2,0)的直线方程为y =k(x −2), 圆心到直线的距离d =√k 2+1≤2,解得−√33≤k ≤√33, 所以yx−2的最小值为−√33.41. (12分)如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ∥,22AD PD EA ===,,,F G H 分别为,,PB EB PC 的中点. (1)求证:FG ∥平面PED ;(2)求平面FGH 与平面PBC 夹角的大小. (1)证明:∵F,G 分别为PB,EB 中点,∴FG PE ∥,,FG PED PE PED ⊄⊂平面平面,FG PED ∴平面∥. (2)解:EA ABCD EA PD ⊥平面,∥,PD ABCD ∴⊥平面. 又ABCD 四边形为矩形,,,DA DC DP ∴两两垂直.故以D 为坐标原点,DA,DC,DP 所在直线分别为x,y,z 轴建立空间直角坐标系,、则1(0,0,2),(2,2,0),(0,2,0),(2,0,1),(1,1,1),(2,1,),(0,1,1)2P B C E F G H ,(0,2,2),(2,0,0)PC CB =-=设平面PBC 的法向量为(,,)n x y z =,则0n PC n CB ⎧⋅=⎪⎨⋅=⎪⎩,即22020y z x -=⎧⎨=⎩,所以可取(0,1,1)n =,同理可取平面FGH 的法向量为(0,1,0)m =,设平面FGH 与平面PBC 的夹角为θ, 则||2cos ||||m n m n θ⋅==⋅,又[0,]2πθ∈,∴平面FGH 与平面PBC 夹角为4π.42. (12分)已知关于x ,y 的方程22:240C x y x y m +--+=.(1)若圆C 与圆22812360x y x y +--+=外切,求m 的值; (2)若圆C 与直线:240l x y +-=相交于M ,N 两点,且||MN =,求m 的值. 解:(1)把圆x 2+y 2−8x −12y +36=0, 化为标准方程得(x −4)2+(y −6)2=16, 所以圆心坐标为(4,6),半径为R =4,则两圆心间的距离d =√(42+(6−2)2=5, 因为两圆的位置关系是外切,所以d =R +r ,即4+√5−m =5,解得m =4, 故m 的值为4;(2)因为圆心C 的坐标为(1,2), 所以圆心C 到直线l 的距离d =√5=√55, 所以(√5−m)2=(12|MN|)2+d 2=(2√55)2+(√55)2,即5−m =1,解得m =4, 故m 的值为4.43. (12分)四棱锥P ABCD -中,底面ABCD 为矩形,=90PAB ∠,2PA PD AD ===,(1)求证:平面PAD ⊥平面ABCD .(2)在下列①②③三个条件中任选一个,补充在下面问题 处,若问题中的四棱锥存在,求AB 的长度;若问题中的四棱锥不存在,说明理由.①CF 与平面PCD 所成角的正弦值等于15; ②DA 与平面PDF 所成角的正弦值等于34; ③P A 与平面PDF 所成角的正弦值等于3. 问题:若点F 是AB 的中点,是否存在这样的四棱锥,满足 ? (注:如果选择多个条件分别解答,按第一个解答计分.) (1)证明:=90PAB ∠,AB PA ∴⊥, ∵底面ABCD 为矩形,∴AB AD ⊥, 又,PA AD PAD ⊂平面,且PAAD A =,AB PAD ∴⊥平面,又AB ABCD ⊂平面,故平面PAD ⊥平面ABCD.(2)解:取AD 中点为O ,∵4PA PD AD ===,∴OA ⊥OP ,以O 为原点,OA,OP 所在直线分别为x,z 轴建立空间直角坐标系,设2(0)AB a a =>, 则(1,0,0),(1,0,0),(0,0,3),(1,2,0),(1,2,0),(1,,0)A D P B a C a F a --, 选①:(2,,0),(0,2,0),(1,0,3)CF a DC a DP =-==,设平面PCD 的法向量为(,,)n x y z =,则00n DC n DP ⎧⋅=⎪⎨⋅=⎪⎩,即2030ay x z =⎧⎪⎨+=⎪⎩,∴可取(3,0,1)n =-,设CF 与平面PCD 所成角为θ,则2||315sin 5||||4CF n CF n aθ⋅===⋅+,解得1a =, ∴符合题意的四棱锥存在,此时22AB a ==. 选②:(2,0,0),(1,0,3)(2,,0)DA DP DF a ===,,设平面PDF 的法向量为(,,)n x y z =,则00n DP n DF ⎧⋅=⎪⎨⋅=⎪⎩,即3020x z x ay ⎧+=⎪⎨+=⎪⎩,∴可取(3,)n a a =--,设DA 与平面PDF 所成角为θ, 则||3sin 4||||2DA n DA n θ⋅===⋅,解得3a =, ∴符合题意的四棱锥存在,此时26AB a ==. 选③:易知P A 与平面PDF 所成角小于APD ∠,设P A 与平面PDF 所成角为θ,则sin sin sin32APD πθ<∠==,故不存在符合题意的四棱锥.44. (12分)已知椭圆2222:1(0)x y M a b a b +=>>的离心率为3,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为(1)求椭圆M 的方程;(2)设直线:l x ky m =+与椭圆M 交于A ,B 两点,若以AB 为直径的圆经过椭圆的 右顶点C ,求m 的值.解:(Ⅰ)因为椭圆M 上一点和它的两个焦点构成的三角形周长为6+4√2, 所以2a +2c =6+4√2,又椭圆的离心率为2√23, 即c a =2√23, 所以c =2√23a , 所以a =3,c =2√2.所以b =1, 椭圆M 的方程为x 29+y 2=1;(Ⅱ)由{x =ky +m x 29+y 2=1消去x 得(k 2+9)y 2+2kmy +m 2−9=0,设A(x 1,y 1),B(x 2,y 2),则有y 1+y 2=−2km k +9,y 1y 2=m 2−9k +9.①因为以AB 为直径的圆过点C ,所以CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =0.由CA ⃗⃗⃗⃗⃗ =(x 1−3,y 1),CB ⃗⃗⃗⃗⃗ =(x 2−3,y 2), 得(x 1−3)(x 2−3)+y 1y 2=0. 将x 1=ky 1+m ,x 2=ky 2+m 代入上式, 得(k 2+1)y 1y 2+k(m −3)(y 1+y 2)+(m −3)2=0. 将①代入上式,解得m =125或m =3.。

上海市宝山区行知中学2020-2021高二上学期期中考试数学(含答案)

上海市宝山区行知中学2020-2021高二上学期期中考试数学(含答案)

上海市行知中学2020学年第一学期期中高二年级数学学科试卷11.12考试时间:120分钟 满分:150分一、填空题(本题满分54分,1-6每题4分,7-12每题5分) 1. 1和3的等比中项等于_________.2.行列式123456789中,6的代数余子式的值是_________.3.已知向量(1,0)AB =,(0,2)BC =,则与向量AC 相等的位置向量的坐标为_________.4.过点(4,3)A -,且与向量(1,2)n =垂直的直线方程是_________.(用一般式表示)5.关于x 、y 的二元线性方程组2532x my nx y +=⎧⎨-=⎩的增广矩阵经过变换,最后得到的矩阵为103011⎛⎫⎪⎝⎭,则m n +=_________. 6.已知变量x 、y 满足约束条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y =+的最小值为_________.7.已知直线:l y =,过点(0,3)A 的直线m 与直线l 夹角为6π,则直线m 的直线方程是_________.8.不等式2x y +≤表示的平面区域面积是_________.9.已知点(2,3)A -,点(3,1)B ,直线:10ax y ++=与线段AB 有一个公共点,则实数a 的取值范围是_________.10.已知点(3,1)A -,点M 、N 分别是x 轴和直线250x y +-=上的两个动点,则AM MN +的最小值等于_________.11.如图,等边ABC ∆是半径为2的圆O 的内接三角形,M 是边BC 的中点,P 是圆外一点,且4OP =,当ABC ∆绕圆心O 旋转时,则OB PM ⋅的取值范围为_________. 12.设数列{}n a 的前n 项和为n S ,11a =,2a a =(1a >),211n n n n a a a a d+++-=-+(0d >,*n ∈N ).且{}2n a 、{}21n a -均为等差数列,则2n S =_________.二、选择题(本题满分20分,共4小题,每小题5分) 13.用数学归纳法证明:*111113(2,)12324n n N n n n n n ++++>≥∈++++的过程,从“k 到1k +”左端需增加的代数式为………………………( ) A.121k + B. 122k + C. 112122k k +++ D. 112122k k -++14.已知3,4,()(3)33a b a b a b ==+⋅+=,则a 与b 的夹角为( )A.6π B. 3πC. 23πD. 56π15.已知n S 是实数等比数列{}n a 前n 项和,则在数列{}n S 中( )A. 必有一项为零B. 可能有无穷多项为零C. 至多一项为零D. 任何一项均不为零 16. 如图,四边形ABCD 是正方形,延长CD 至E ,使得DE CD =.若动点P 从点A 出发,沿正方形的边按逆时针方向运动一周回到A 点,其中A P A B A E λμ=+,下列判断正确..的是……………………………………………( ) (A )满足λμ+2=的点P 必为BC 的中点. (B )满足1λμ+=的点P 有且只有一个. (C )λμ+的最大值为3. (D )λμ+的最小值不存在.三、解答题(本大题满分76分,共有5题,解答下列各题必须在答题纸相应的编号的规定区域内写出必要的步骤.)17. (本题满分14分,第(1)小题6分,第(2)小题8分)已知(2,1)a =,(1,1)b =-,(5,6)c =,且满足()//a kb c +. (1)求实数k 的值;P (第16题图)(2)求与a垂直的单位向量的坐标.18. (本题满分14分,第(1)小题6分,第(2)小题8分)已知直线2l a a x ay-+--=.:(24)30A,试写出直线l的一个方向向量;(1)若直线l过点(1,0)a≠,求直线的倾斜角α的取值范围.(2)若实数019. (本题满分14分,第(1)小题6分,第(2)小题8分)2019年某公司投资8千万元启动休闲旅游项目.规划从2020年起,在今后的若千年内,每年继续投资2千万元用于此项目.2019 年该项目的净收入为5百万元,并预测在相当长的年份里,每年的净收入均在上一年的基础上增长50%,记2019年为第1年,a为第1年至n此后第n(n N*∈)年的累计利润(注:含第n年,累计利润=累计净收入-累计投入,单位:千万元),且当a为正值时,认为该项目赢利.n(1)试求a;n(2)根据预测,该项目将从哪年开始并持续赢利?请说明理由,20. (本题满分16分,第(1)小题4分,第(2)小题6分,第(3)小题6分)数列{}n a ,*111,21,n n a a a n N +==+∈,数列{}n b 前n 项和为. n S ,9n b n =-.(1)求数列{}n a 的通项公式;(2)若n bn t a =(a 为非零实数),求121lim2nn n t t t t →∞+++++;(3)若对任意的n N *∈,都存在m N *∈,使得32nn m a S t -+-≥成立,求实数t 的最大值.21. (本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)设q 为不等于1的正常数,{}n a 各项均为正,首项为1,且{}n a 前n 项和为n S ,已知对任意的正整数,n m ,当时n m >,mn m n m S S q S --=恒成立.(1)求数列{}n a 的通项公式;(2)若数列{}n t 是首项为1,公差为3的等差数列,存在一列数12,,,,n k k k :恰好使得1212,,,,n k k k n t a t a t a ===且121,2k k ==,求数列{}n k 的通项公式;(3)当3q =时,设n nnb a =,问数列{}n b 中是否存在不同的三项恰好成等差数列?若存在,求出所有这样的三项,若不存在,请说明理由上海市行知中学2020学年第一学期期中高二年级数学学科试卷11.12考试时间:120分钟 满分:150分一、填空题(本题满分54分,1-6每题4分,7-12每题5分) 1. 1和3的等比中项等于_________.【答案】2.行列式123456789中,6的代数余子式的值是_________. 【解析】6的代数余子式为23(1)(1827)6+-⨯-⨯=.3.已知向量(1,0)AB =,(0,2)BC =,则与向量AC 相等的位置向量的坐标为_________. 【答案】(1,2)4.过点(4,3)A -,且与向量(1,2)n =垂直的直线方程是_________.(用一般式表示) 【解析】所求直线方程为(1)2(3)0x y -++=,即250x y ++=.5.关于x 、y 的二元线性方程组2532x my nx y +=⎧⎨-=⎩的增广矩阵经过变换,最后得到的矩阵为103011⎛⎫⎪⎝⎭,则m n +=_________. 【答案】236.已知变量x 、y 满足约束条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y =+_________.【解析】作出可行域,如图,最优解为(1,2)A -, max 1223z =-+⨯=.7.已知直线:l y =,过点(0,3)A 的直线m 与直线l 夹角为6π,则直线m 的直线方程是_________.【答案】0x =或3y =+. 8.不等式2x y +≤表示的平面区域面积是_________.【解析】不等式||||2x y +≤表示的平面区域为图中的菱形区域, 14482S =⨯⨯=.9.已知点(2,3)A -,点(3,1)B ,直线:10ax y ++=与线段AB 有一个公共点,则实数a 的取值范围是_________.【解析】(2,1),(3,1)A B -代入得(231(311)0a a -++⋅++≤)即23a ≤-或2a ≥ 10.已知点(3,1)A -,点M 、N 分别是x 轴和直线250x y +-=上的两个动点,则AM MN +的最小值等于_________.【解析】作点(3,1)A -关于x 轴的对称点(3,1)A '--, 则||||||||AM MN A M MN '+=+,最小值即为(3,1)A '--到直线250x y +-=的距离,d ==,所以||||AM MN +的最小值为5.11.如图,等边ABC ∆是半径为2的圆O 的内接三角形,M 是边BC 的中点,P 是圆外一点,且4OP =,当ABC ∆绕圆心O 旋转时,则OB PM ⋅的取值范围为_________.【解析】法一:不妨以O 为原点,OA 方向为y 轴正方形建系, 因为2OA OB OC ===,所以(0,1),1)M B --, 因为4OP =,设(4cos ,4sin )P θθ,所以•(3,1)(4cos ,14sin )OB PM θθ=----[]8s 4i si n(n )17,931πθθθ=-+∈-=-+.法二:向量分解,观察到60,1BOM OM ∠==,()1OB PM OB OM OP OB OM OB OP OB OP ⋅=⋅-=⋅+⋅=+⋅,又因为[]8,8OB OP ⋅∈-,所以[]7,9.OB PM ⋅∈-12.设数列{}n a 的前n 项和为n S ,11a =,2a a =(1a >),211n n n n a a a a d+++-=-+(0d >,*n ∈N ).且{}2n a 、{}21n a -均为等差数列,则2n S =_________.【解析】因为211n n n n a a a a d +++-=-+,2111a a a a -=-=-,所以11(1)n n a a a n d +-=-+-①,因为{}{}221,n n a a -分别构成等差数列, 所以221[1(22)](2)n n a a a n d n --=±-+-≥①, 212[1(21)](1)n n a a a n d n +-=±-+-≥①, 2221[12](1)n n a a a nd n ++-=±-+≥①,由①+①,得2121[1(21)][1(22)]n n a a a n d a n d +--=±-+-±-+-, 而{}21n a -是等差数列,所以2121n n a a +--必为常数,所以2121[1(21)][1(22)](2)n n a a a n d a n d d n +--=-+---+-=≥, 或2121[1(21)][1(22)](2)n n a a a n d a n d d n +--=--+-+-+-=-≥, 由①得321a a a d -=-+,即32(1)a a a d -=±-+, 因为2a a =,所以3(1)a a d a =±-++, 因为11a =,所以311(1)a a a a d -=-±-+, 即31a a d -=-或312(1)a a a d-=-+(舍去),PC所以2121n n a a d +--=-,所以211(1)n a n d -=--,同理,由①+①得,222[12][1(21)](1)n n a a a nd a n d n +-=±-+±-+-≥, 所以222n n a a d +-=或222n n a a d +-=-,因为321a a a d -=-+-,而43(12)a a a d -=±-+, 所以421(12)a a a d a d -=-+-±-+, 即42a a d -=或42223a a a d -=-+-(舍去),所以222n n a a d +-=,所以2(1)n a a n d =+-,所以21221221k k k k a a a a a -+++=+=+,所以2122(1)(1)(1)n n S a a a a a n a =+++=++++=+.二、选择题(本题满分20分,共4小题,每小题5分) 13.用数学归纳法证明:*111113(2,)12324n n N n n n n n ++++>≥∈++++的过程,从“k 到1k +”左端需增加的代数式为………………………( D ) A.121k + B. 122k + C. 112122k k +++ D. 112122k k -++【解析】增加的代数式是11111212212122k k k k k +-=-+++++,故选D. 14.已知3,4,()(3)33a b a b a b ==+⋅+=,则a 与b 的夹角为( C )A.6π B. 3πC. 23πD. 56π【答案】C15.已知n S 是实数等比数列{}n a 前n 项和,则在数列{}n S 中( B )A. 必有一项为零B. 可能有无穷多项为零C. 至多一项为零D. 任何一项均不为零 【解析】当公比1q =-时,20n S =,即存在无穷多项为0,故选B.16. 如图,四边形ABCD 是正方形,延长CD 至E ,使得DE CD =.若动点P 从点A 出发,沿正方形的边按逆时针方向运动一周回到A 点,其中A P A B A E λμ=+,下列判断正确..的是……………………………………………( C ) (A )满足λμ+2=的点P 必为BC 的中点. (B )满足1λμ+=的点P 有且只有一个. (C )λμ+的最大值为3. (D )λμ+的最小值不存在.【解析】如图建系,设正方形的边长为1,则(1,0),(1,1),(1,0),(1,1)B E AB AE -==-, 所以(,)AP λAB μAE λμμ=+=-,当1λμ==时,(0,1)AP =,此时点P 和D 重合,不是BC 的中点,故A 错误; 当1,0λμ==时,(1,0)AP =,此时点P 和B 重合,满足1λμ+=, 当11,22λμ==时,10,2AP ⎛⎫= ⎪⎝⎭,此时点P 为AD 中点,满足1λμ+=,故点P 不 唯一,故B 错误;当P AB ∈时,01,0λμμ≤-≤=,所以01λμ≤+≤, 当P BC ∈时,1,01λμμ-=≤≤,所以13λμ≤+≤, 当P CD ∈时,01,1λμμ≤-≤=,所以23λμ≤+≤, 当P AD ∈时,0,01λμμ-=≤≤,所以02λμ≤+≤, 综上,03λμ≤+≤,故C 正确,D 错误,故选C.三、解答题(本大题满分76分,共有5题,解答下列各题必须在答题纸相应的编号的规定区域内写出必要的步骤.)17. (本题满分14分,第(1)小题6分,第(2)小题8分)已知(2,1)a =,(1,1)b =-,(5,6)c =,且满足()//a kb c +. (1)求实数k 的值;(2)求与a 垂直的单位向量的坐标. 【解析】(1)(2,1)a kb k k +=-+,(5,6)c =,因为()a kbc +∥,所以6(2)5(1)k k -=+,解得711k =; (2)与a 垂直的向量为(1,2)-和(1,2)-,故所求单位向量为55⎛-⎝⎭和55⎛ ⎝⎭. 18. (本题满分14分,第(1)小题6分,第(2)小题8分)已知直线2:(24)30l a a x ay -+--=.(1)若直线l 过点(1,0)A ,试写出直线l 的一个方向向量; (2)若实数0a ≠,求直线的倾斜角α的取值范围.【解析】(1)把(1,0)A 代入直线l 的方程,得2210a a -+=,解得1a =, 此时直线l 的方程为330x y --=, 故直线l 的一个方向向量为(1,3);(2)因为0a ≠,所以直线l 的斜率22442(,6][ 2,)a a a k a a-+=+--=∈-∞+∞所以倾斜角arctan 2,,arctan 622ππαπ⎡⎫⎛⎤∈-⎪⎢⎥⎣⎭⎝⎦. 19. (本题满分14分,第(1)小题6分,第(2)小题8分)2019年某公司投资8千万元启动休闲旅游项目.规划从2020年起,在今后的若千年内,每年继续投资2千万元用于此项目.2019 年该项目的净收入为5百万元,并预测在相当长的年份里,每年的净收入均在上一年的基础上增长50%,记2019年为第1年,n a 为第1年至此后第n (n N *∈)年的累计利润(注:含第n 年,累计利润=累计净收入-累计投入,单位:千万元),且当n a 为正值时,认为该项目赢利. (1)试求n a ;(2)根据预测,该项目将从哪年开始并持续赢利?请说明理由,【解析】(1)由题意得第1年至此后第n 年的累计投入为82(1)26n n +-=+(千万元),第1年至此后第n 年的累计净收入为2111313133122222222n n-⎛⎫⎛⎫⎛⎫⎛⎫+⨯+⨯++⨯=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(千万元), 所以331(26)2722nnn a n n ⎛⎫⎛⎫=--+=-- ⎪ ⎪⎝⎭⎝⎭(千万元);(2)令113()422nn n f n a a +⎡⎤⎛⎫=-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当*3,n n ≤∈N 时,()0f n <,所以4n ≤时,n a 单调递减, 当*4,n n ≥∈N 时,()0g n >,所以4n ≥时,n a 单调递增,又7817815330,210,230222a a a ⎛⎫⎛⎫=-<=-<=-> ⎪ ⎪⎝⎭⎝⎭,所以该项目从第8年起开始并持续盈利.20. (本题满分16分,第(1)小题4分,第(2)小题6分,第(3)小题6分)数列{}n a ,*111,21,n n a a a n N +==+∈,数列{}n b 前n 项和为. n S ,9n b n =-.(1)求数列{}n a 的通项公式;(2)若n bn t a =(a 为非零实数),求121lim2nn n t t t t →∞+++++;(3)若对任意的n N *∈,都存在m N *∈,使得32nn m a S t -+-≥成立,求实数t 的最大值.【解析】(1)因为121n n a a +=+,所以12(1)1n n a a +=++,又112a +=,所以{}1n a +是首项为2,公比为2的等比数列,所以12nn a +=,所以21n n a =-;(2)9n n b n t a a -==,记1212nn n t t t T t ++++=+,当1a =时,3n nT =,此时lim n n T →∞不存在,当1a ≠时,()()88888112(1)2n n n n n a a a a a T a a a --------==+-+, 当(1,0)(0,1)a ∈-时,82(1)lim n n a T a -→∞=-,当(,1)(1,)a ∈-∞-+∞时,888111211(1)1lim lim n n n n n a a a a a a T ---→∞→∞--==--⎛⎫-+ ⎪⎝⎭=, 当1a =-时,lim n n T →∞不存在;(3)由题意得3221nn m t S -+--≥对*m N ∈有解,因为9n b n =-,所以当9n ≤时,0n b ≤,当9n ≥时,0n b ≥, 所以()89min (80)9362m S S S -+⨯====-, 所以322613n n t -+---≥对*n N ∈恒成立, 即25832n n t ≤++对*n N ∈恒成立, 因为*n N ∈,所以min2628n n ⎛⎫+= ⎪⎝⎭,所以63541t ≤+=, 所以实数t 的最大值是41.21. (本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)设q 为不等于1的正常数,{}n a 各项均为正,首项为1,且{}n a 前n 项和为n S ,已知对任意的正整数,n m ,当时n m >,mn m n m S S q S --=恒成立.(1)求数列{}n a 的通项公式;(2)若数列{}n t 是首项为1,公差为3的等差数列,存在一列数12,,,,n k k k :恰好使得1212,,,,n k k k n t a t a t a ===且121,2k k ==,求数列{}n k 的通项公式;(3)当3q =时,设n nnb a =,问数列{}n b 中是否存在不同的三项恰好成等差数列?若存在,求出所有这样的三项,若不存在,请说明理由【解析】(1)因为当n m >时,mn m n m S S q S --=⋅恒成立,所以当2n ≥时,令1m n =-, 得1111n n n n S S q S q ----==,即1n n a q -=, 又11a =,适合,所以1n n a q -=;(2)因为数列{}n t 是首项为1,公差为3的等差数列,所以13(1)32n t n n =+-=-,所以132n n k n t k q-=⋅-=,所以123n n q k -+=,因为22k =,所以223q +=,解得4q =,所以1423n n k -+=;(3)当3q =时,13n n n n n b a -==,因为11203n n n nb b +--=<, 所以数列{}n b 是递减数列,假设数列{}n b 中存在三项,,p q r b b b 成等差数列,其中p q r <<, 则2p r p b b b +=,即1112333p q r p r q---+=⋅, 当2n ≥时,132(1)333n n n n n n -+=≥, 若2p ≥,则112(1)2333pp q p p q--+≥≥(数列{}n b 是递减数列),矛盾, 所以1p =,所以112133r q r q --+=, 因为数列{}n b 是递减数列,232111,3232b b ==><,而1121133q r q r--=+>, 故只能1233q q -=,解得2q =,此时3r =,故存在123,,b b b 成等差数列. 【注】填空12选自2020届闵行一模21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)已知数列{}n a 满足11a =,2a a =(1a >),211n n n n a a a a d +++-=-+(0d >)*n ∈N .(1)当2d a ==时,写出4a 所有可能的值;(2)当1d =时,若221n n a a ->且221n n a a +>对任意*n ∈N 恒成立,求数列{}n a 的通项公式;(3)记数列{}n a 的前n 项和为n S ,若{}2n a 、{}21n a -分别构成等差数列,求2n S .【解析】(1)当2d a ==时,2112n n n n a a a a +++-=-+,即{}1n n a a +-是以1为首项、2为公差的等差数列, 所以1=21n n a a n +--……2分可得:32=3a a -±,43=5a a -±,所以3=5,1a -,43=5a a ±,所以410a =或40a =或4=4a 或4=6a -. ……………………………4分 (2)当1d =时,2111n n n n a a a a +++-=-+,即{}1n n a a +-是首项为1a -、公差为1的等差数列. 所以1||=112n n a a a n a n +--+-=-+,所以212||22n n a a a n +-=-+,221||32n n a a a n --=-+, 因为221n n a a ->且221n n a a +>,所以22122n n a a a n +-=-+,22132n n a a a n --=-+ …………………6分 所以21211n n a a +--=-,所以212n a n -=-,22132+1n n a a n a a n -=-+=-+………8分所以3,2=1,2n nn a n a n -⎧⎪⎪⎨⎪+-⎪⎩为奇数为偶数. ………10分 (3)由已知得1||=1(1)n n a a a n d +--+-()*n ∈N…………………………………①若{}2n a 、{}21n a -分别构成等差数列, 则[]221=1(22)n n a a a n d--±-+-()2n ≥…①[]212=1(21)n n a a a n d +-±-+-()1n ≥, ……………………………①2221=(12)n n a a a nd ++-±-+()1n ≥, ……………………………①由①+①得:[][]2121=1(21)1(22)n n a a a n d a n d +--±-+-±-+-()2n ≥因为{}21n a -是等差数列,2121n n a a +--必为定值所以[][]2121=1(21)1(22)n n a a a n d a n d +---+---+-或[][]2121=1(21)+1(22)n n a a a n d a n d +----+--+-即2121n n a a d +--=()2n ≥或2121n n a a d +--=-()2n ≥ ………………12分 而由①知321a a a d -=-+,即()321a a a d -=±-+,所以()3111a a a a d -=-±-+,即31a a d -=-或()3121a a a d -=-+(舍) 故2121()n n a a d n *+--=-∈N …………………………………………14分⎪⎪⎭⎫ ⎝⎛⎩⎨⎧=-+-=-=k n a k k n k a n 2,112,2或写成所以()*211(1)n a n d n -=--∈N . 同理,由①+①得:[][]222=121(21)n n a a a nd a n d +-±-+±-+-()1n ≥,所以222=n n a a d +-或222n n a a d +-=-,由上面的分析知321a a a d -=-+-, 而()4312a a a d -=±-+,故()42112a a a d a d -=-+-±-+, 即42a a d -=或42222a a a d -=-+-(舍) 所以222=n n a a d +- ………………16分所以2(1)n a a n d =+-, 从而21221221k k k k a a a a a -+++=+=+(*k ∈N )所以21221(1)(1)(1)(1)n n n aS a a a a a a n a +=+++=++++⋅⋅⋅++=+个…18分。

北京市昌平区第一中学2020_2021学年高二数学上学期期中试题含解析

北京市昌平区第一中学2020_2021学年高二数学上学期期中试题含解析
【解析】
【分析】
把直线方程化成斜截式,根据斜率等于倾斜角的正切求解.
【详解】直线 化成斜截式为 ,
因为 ,所以 .
故选B.
【点睛】本题考查直线的斜截式方程和基本性质,属于基础题.
3.已知 , ,则 的值为()
A. 4B. C. 5D.
【答案】B
【解析】
【分析】
先求得 ,再利用空间向量模的公式计算.
【详解】∵ , , , ,
【答案】(1)见解析;(2) ;(3)见解析.
【解析】
【分析】
(1)建立如图所示的空间直角坐标系,求出 以及平面 的法向量后可证明 平面 .
(2)求出平面 的法向量后可求二面角 的余弦值.
(3)可证明 始终不为零,从而可证 与 都不垂直.
【详解】因为 底面 ,而 底面 , 底面 ,
故 , ,
又底面 是矩形,故 .
依题意满足条件的最小正方形是各边以 为中点,边长为2的正方形,故不存在一个以原点为中心、边长为 的正方形,使得曲线 在此正方形区域内(含边界),故③不正确.
故答案为:①②
【点睛】本题考查了由曲线方程研究曲线的对称性,考查了不等式知识,考查了求曲线交点坐标,属于中档题.
三、解答题共5题,共70分.解答应写出文字说明,演算步骤或证明过程.
A. B. C. D.
【答案】D
【解析】
【分析】
根据圆心到直线的距离等于半径求解.
【详解】解:直线 的一般方程为 ,
圆 的圆心为 ,半径为 .
直线与圆相切, , .
故选:D.
6.圆 和圆 的位置关系是()
A.相交B.内切C.外切D.相离
【答案】C
【解析】
【分析】
分别求出两圆的圆心和半径,求得圆心距与半径和或差的关系,即可判断位置关系

浙江省9 1高中联盟2020-2021学年高二上学期期中考试数学试题 Word版含答案

浙江省9 1高中联盟2020-2021学年高二上学期期中考试数学试题 Word版含答案

2020学年第一学期9+1高中联盟期中考试高二年级数学学科试题第Ⅰ卷(选择题 共40分)一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线3y =+的倾斜角为( )A . 30°B . 60°C . 120°D .150°2. 已知直线1:10l mx y +-=,()2:2310l m x my ++-=,m R ∈,则“2m =-”是“12l l ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.椭圆2241x y +=的离心率为 ( )A .34 B C . 23D .4. 在空间直角坐标系中,已知()()1,0,2,3,2,4M N --,则MN 的中点Q 关于平面xOy 的对称点坐标是( )A .()1,1,1-B .()1,1,1--C . ()1,1,1--D .()1,1,1 5. 已知m 为空间的一条直线,,αβ为两个不同的平面,则下列说法正确的是( ) A .若//,//m ααβ,则//m β B .若,m αβα⊥⊥,则//m β C . 若//,m ααβ⊥,则m β⊥ D .若,//m ααβ⊥,则m β⊥6. 方程2x =所表示的曲线大致形状为( )A .B .C .D .7. 已知点F 为椭圆221:+184x y C =的右焦点,点P 为椭圆1C 与圆()222:218C x y ++=的一个交点,则PF =( )A . 1BC . 2D .8. 设有一组圆()()()224*:1k C x y k k k N -+-=∈,给出下列四个命题:①存在k ,使圆与x 轴相切 ②存在一条直线与所有的圆均相交 ③存在一条直线与所有的圆均不相交 ④所有的圆均不经过原点 其中正确的命题序号是( )A .①②③B .②③④C .①②④D .①③④9. 若三棱锥P ABC -满足,,,PA BC PB AC PC AB ===,则该三棱锥可能是( ) A .2,3,4AB BC CA === B .3,4,5AB BC CA === C . 4,5,6AB BC CA === D .以上选项都不可能10. 如图,在棱长为1的正方体中1111ABCD A B C D -,若点,M N 分别为线段1BD ,1CB 上的动点,点P 为底面ABCD 上的动点,则MN MP +的最小值为( )A .23B .CD .1第Ⅱ卷(非选择题 共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.已知直线():10l mx y m m R ++-=∈过定点P ,则点P 的坐标是___________,点P 关于直线20x y +-=的对称点Q 的坐标是__________.12.某几何体的三视图如图所示,其中俯视图中的圆弧为14圆周,则该几何体的体积为__________,表面积为___________.13.已知(),P m n 是椭圆2214x y +=上的动点,则23m n +的最大值是 ,点P 到直线:20l x y -+=的最小距离是___________.14.如图,在三棱锥P ABC -中,点B 在以AC 为直径的圆上运动,PA ⊥平面ABC ,AD PB ⊥,垂足为D ,DE PC ⊥,垂足为E ,若2PA AC ==,则PEEC= ,三棱锥P ADE -体积的最大值是__________.15.经过点()2,1M -作圆22:5O x y +=的切线,则切线的方程为 .16.已知正三棱柱111ABC A B C -的棱长均为2,则异面直线AB 与1A C 所成角的余弦值为 .17.已知O 为坐标原点,12,F F 分别是椭圆()2222:10x y C a b a b+=>>的左右焦点,A 为椭圆的右顶点,P为C 上一点,且2PF x ⊥轴,过点A 的直线l 与线段2PF 交于点M ,与y 轴交于点N ,若直线1F M 与y 轴交于点Q ,且3ON OQ =,则C 的离心率为___________.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18. 已知m R ∈,命题:p 方程22119x y m m+=+-表示焦点在y 轴上的椭圆;命题:q 函数()2f x x x m =-+在[]2,2-上有零点.(1)若命题p 是真命题,求实数的取值范围;(2)若命题,p q 中有且只有一个真命题,求实数m 的取值范围. 19. 如图,三棱柱111ABC A B C -的棱长均相等,113CC B π∠=,平面ABC ⊥平面11BCC B ,,E F 分别为棱11A B 、BC 的中点.(1)求证://BE 平面11A FC ; (2)求二面角111F AC B --的大小.20. 如图,已知三棱锥A BCD -中,点M 在BD 上,2BAD BDC π∠=∠=,BM MD DC ==,且ACD∆为正三角形.(1)证明:CM AD ⊥;(2)求直线CM 与平面ACD 所成角的正弦值.21.如图,已知圆()()221:112C x y -++=,圆()()222:215C x y +++=,过原点O 的直线l 与圆1C ,2C 的交点依次是,,P O Q .(1)若2OQ OP =,求直线l 的方程;(2)若线段PQ 的中点为M ,求点M 的轨迹方程.22.如图,已知椭圆22:143x y Γ+=,斜率为k 的直线l 与椭圆Γ交于,A B 两点,过线段AB 的中点M 作AB 的垂线交y 轴于点C .(1)设直线,OA OB 的斜率分别为12,k k ,若1k =,直线l 经过椭圆Γ的左焦点,求1211k k +的值; (2)若AB =23,14k ⎡⎤∈⎢⎥⎣⎦,求OMC ∆面积的取值范围.试卷答案一、选择题1-5:CABDD 6-10:DBCCA 二、填空题11. ()()1,1,1,3- 12. 26π+,)144π+13. 5,5 14. 3,3415. 250x y -+=16. 4 17. 13三、解答题18.解:(1)命题:91014p m m m ->+>⇒-<<, 即实数m 的取值范围为()1,4-;(2)命题p 真:[]2,2x ∈-时,216,4m x x ⎡⎤=-∈-⎢⎥⎣⎦,p 真q 假时1,44m ⎛⎫∈ ⎪⎝⎭,p 假q 真时[]6,1m ∈--,∴[]16,1,44m ⎛⎫∈--⋃ ⎪⎝⎭. 19.证明:(1)取11A C 的中点G ,连接,EG FG , 于是111//2EG B C ,又111//2BF B C , 所以//BF EG ,所以四边形BFGE 是平行四边形,所以//BE FG ,而BE ⊄面11A FC ,FG ⊆面11A FC , 所以直线//BE 平面11A FC ;(2)连接11,FB B G ,∵ 四边形11BCC B 为菱形,01160CC B ∠=,F 为BC 的中点,∴111FB B C ⊥,∵平面ABC ⊥平面11BCC B ,∴1FB ⊥平面111A B C ,又111B G AC ⊥,∴11FG A C ⊥, ∴1FGB ∠就是二面角11F A C B --的平面角,设棱长为2,则11FB BG ==14FGB π∠=,∴二面角11F A C B --的大小为4π. 20.解:(1)取AD 中点P ,连结,MP CP ,由条件CP AD ⊥, 又由,//2BAD MP AB π∠=得MP AD ⊥,∴AD ⊥面CMP ,又∵CM ⊂面MPC ,∴CM AD ⊥;(2)过M 作MH CP ⊥于点H ,由(1)可知,AD MH ⊥,∴MH ⊥面ACD , ∴MCP ∠即为直线CM 与面ACD 所成的角, 不妨设1CD =,则CM MP CP ===,∴cos MCP ∠==∴sin 3MCP ∠=所以直线CM 与平面ACD21.解:(1)设直线l 的方程为:y kx =,12,C C 到直线l 的距离为12,d d .由条件=221243d d -=,所以2243⨯-=,整理,得240k k -=,解得0k =或4k =, 所以直线l 的方程为:0y =或4y x =;(2)设:l y kx =;则由()()22215y kx x y =⎧⎪⎨+++=⎪⎩消去y ,得()()221240k x k x +++=, 解得122240,1k x x k+==-+.其中2k ≠-, 所以()222424,11k k k Q k k +⎛⎫+-- ⎪++⎝⎭, 由()()22112y kx x y =⎧⎪⎨-++=⎪⎩消去y ,得()()221220k x k x ++-=, 解得342220,1kx x k -==+,其中1k ≠,所以()222222,11k k k P k k -⎛⎫- ⎪++⎝⎭, 设(),M x y ,则()22211211k x k k k y k +⎧=-⎪+⎪⎨+⎪=-⎪+⎩消去k ,得:2220x y x y +++=,(挖去点33,22⎛⎫-- ⎪⎝⎭和36,55⎛⎫- ⎪⎝⎭). 22.解:(1)由已知可得直线l 的方程为:1y x =+,设()()1122,,,A x y B x y ,由221143y x x y =+⎧⎪⎨+=⎪⎩得:27880x x +-=,且121288,77x x x x +=-=-,所以12121212121212121221181113x x x x x x x x k k y y x x x x x x +++=+=+==+++++;(2)设直线l 的方程为:y kx m =+,()()1122,,,A x y B x y ,由22143y kx m x y =+⎧⎪⎨+=⎪⎩,得:()2224384120k x kmx m +++-=,由韦达定理可知21212228412,4343km m x x x x k k -+=-=++, 所以2443M kmx k =-+, 线段AB 的中垂线方程为:221434343km m y x k k k ⎛⎫=-++ ⎪++⎝⎭,整理得2143my x k m =--+, 所以243C my k =-+.又由()222221212228412414234343km m AB x x x x k k k -⎛⎫=+-=+--= ⎪++⎝⎭, 整理可得:2224343k k +-=+,即()222224314341k m k k +=+-+①, 所以()22222411222434343OMD M km m k S OC x m k k k ∆===+++将①代入整理可得:2211112231432124OMC kk S k k k k k k∆=-=-++++, 因为23,14k ⎡⎤∈⎢⎥⎣⎦,所以2k ⎤∈⎥⎣⎦,而我们知道,1112,3124y y k k kk==-++都是关于k 在2⎤⎥⎣⎦上的单调递减函数,所以当1k =时,OMC S ∆有最小值128,当k =时,OMC S ∆所以1,2842OMC S ∆⎡∈⎢⎣⎦.。

2020-2021学年湖北省鄂东南省级示范高中高二上学期期中数学试卷(含解析)

2020-2021学年湖北省鄂东南省级示范高中高二上学期期中数学试卷(含解析)

2020-2021学年湖北省鄂东南省级示范高中高二上学期期中数学试卷一、单选题(本大题共12小题,共36.0分)1.已知不同的平面α、β和不同的直线m、n,有下列四个命题①若m//n,m⊥α,则n⊥α;②若m⊥α,m⊥β,则α//β;③若m⊥α,m//n,n⊂β,则α⊥β;④若m//α,α∩β=n,则m//n,其中正确命题的个数是()A. 4个B. 3个C. 2个D. 1个2.已知平面α⊥平面β,m是α内的一条直线,n是β内的一条直线,且m⊥n,则()A. m⊥βB. n⊥αC. m⊥β或n⊥αD. m⊥β且n⊥α3.以椭圆短轴为直径的圆经过此椭圆长轴的两个三等分点,则椭圆离心率是()A. 13B. √33C. √34D. 2√234.已知数列,,,且,则数列的第五项为()A. B. C. D.5.下列直线中,平行于极轴且与圆ρ=2cosθ相切的是()A. ρcosθ=1B. ρsinθ=1C. ρcosθ=2D. ρsinθ=26.已知正三角形ABC的三个顶点都在球心为O、半径为3的球面上,且三棱锥O−ABC的高为2,点D是线段BC的中点,过点D作球O的截面,则截面积的最小值为()A. 15π4B. 4π C. 7π2D. 3π7.已知F为椭圆C:x24+y2=1的右焦点,过点F的直线l与椭圆交于A,B两点,P为AB的中点,O为原点.若△OPF是以OF为底边的等腰三角形,则l的斜率为()A. ±12B. ±√36C. ±2D. ±2√38.中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A. √6B. √5C. √62D. √529.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知,b=√33a,A=2B,则cosB=()A. 12B. √32C. 14D. √2210.8、抛物线y=的准线方程是()A. y=−1B. y=−2C. x=−1D. x=−211.已知椭圆C:=1,直线l:y=mx+1,若对任意的m∈R,直线l与椭圆C恒有公共点,则实数b的取值范围是()A. [1,4)B. [1,+∞)C. [1,4)∪(4,+∞)D. (4,+∞)12.已知数列{a n}的通项公式为a n=2n2+n,那么数列{a n}的前99项之和是()A. 99100B. 101100C. 9950D. 10150二、单空题(本大题共4小题,共12.0分)13.已知命题p:|1−x−13|≤2命题q:x2−2x+1−m2≤0(m>0),且p是q的必要而不充分条件,求实数m的取值范围.14.设向量a⃗=(1,2,3),b⃗ =(−1,y,z),且a⃗//b⃗ ,则y=______ ,z=______ .15.直线过点(2,−3),且在两个坐标轴上的截距互为相反数,则这样的直线方程是______.16.直线与椭圆恒有公共点,则实数的取值范围____三、解答题(本大题共6小题,共72.0分)17.在四棱锥P−ABCD中,平面PAD⊥平面ABCD,∠ACD=∠CAB,∠ADC=45°,AD=√2AC,PC=PD.(1)求证:PC⊥AD;(2)若AB=CD=PC=√2,求三棱锥C−PAB的高.18. 已知曲线C 1上任意一点M 到直线l :y =4的距离是它到点F(0,1)距离的2倍;曲线C 2是以原点为顶点,F 为焦点的抛物线. (1)求C 1,C 2的方程;(2)设过点F 的直线与曲线C 2相交于A ,B 两点,分别以A ,B 为切点引曲线C 2的两条切线l 1,l 2,设l 1,l 2相交于点P ,连接PF 的直线交曲线C 1于C ,D 两点,求AD ⃗⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ 的最小值.19. 数列{a n }的前项和记为S n ,a 1=t ,点(a n+1,S n )在直线y =12x −1上n ∈N +. (1)当实数t 为何值时,数列{a n }是等比数列?并求数列{a n }的通项公式;(2)若f(x)=[x]([x]表示不超过x 的最大整数),在(1)的结论下,令b n =f(log 3a n )+1,c n =a n +1b n b n+2,求{c n }的前n 项和T n .20. 已知直线l 1:mx −y =0,l 2:x +my −m −2=0. (1)求证:对m ∈R ,l 1与l 2的交点P 在一个定圆上;(2)若l 1与定圆的另一个交点为P 1,l 2与定圆的另一个交点为P 2,求当m 在实数范围内取值时,△PP 1P 2的面积的最大值及对应的m .21. 在正方体ABCD −A 1B 1C 1D 1中,E 、F 分别是AB 、B 1C 1的中点. (1)求证:BD ⊥平面ACC 1A 1; (2)求证:EF//平面ACC 1A 1.22. 已知圆直线与圆相切,且交椭圆于两点,是椭圆的半焦距,,(Ⅰ)求的值;(Ⅱ)O 为坐标原点,若求椭圆的方程;(Ⅲ)在(Ⅱ)的条件下,设椭圆的左右顶点分别为A,B,动点,直线AS,BS与直线分别交于M,N两点,求线段MN的长度的最小值.【答案与解析】1.答案:B解析:解:①,∵两条平行线中的一条垂直于一个平面α,则另一条也垂直于这个平面α,∴若m//n,m⊥α,则n⊥α,正确;②,若m⊥α,m⊥β,则α//β,这是判定面面平行的一种方法,故正确;③,若m⊥α,m//n,则n⊥α,又n⊂β,由面面垂直的判定定理得:α⊥β,故正确;④,若m//α,α∩β=n,则m//n,错误,原因是n与平面β的位置关系不确定.故选:B.①两条平行线中的一条垂直于一个平面α,则另一条也垂直于这个平面α,可判断①;②利用“一条直线垂直于两个平面,则这两个平面平行”可判断②;③利用面面垂直的判定定理可判断③;④依题意,直线n与平面β的位置关系不确定,可判断④.本题考查空间直线与直线平行、线面平行及面面垂直的判断与性质的应用,考查空间想象能力,是中档题.2.答案:C解析:解:平面α⊥平面β,m是α内的一条直线,n是β内的一条直线,且m⊥n,由图①②可以判断出m⊥β或n⊥α.故选:C.利用m⊥n作出所对应的两种图形即可判断出正确答案.本题是有面面垂直和线线垂直来推线面间的位置关系.做这一类型题的关键是理解课本定义.3.答案:D解析:根据题意,由椭圆的几何性质分析可得a=3b,进而计算可得c=2√2b,进而由椭圆的离心率公式计算可得答案.。

2020-2021学年黑龙江省哈师大附中高二第一学期期中数学(理)试题【解析版】

2020-2021学年黑龙江省哈师大附中高二第一学期期中数学(理)试题【解析版】

2020-2021学年黑龙江省哈师大附中高二第一学期期中数学(理)试题【解析版】一、单选题1350x y +-=的倾斜角为( ) A .300 B .600C .1200D .1500【答案】C【解析】∵350x y +-=的斜率为:3-直线的倾斜角为α,所以tan 3α=-120α=︒,故选C.2.已知直线l 过点(1,2)-且与直线2340x y -+=垂直,则l 的方程是( ) A .3210x y +-= B .3270x y ++= C .2350x y -+= D .2380x y -+=【答案】A【详解】直线2x –3y +1=0的斜率为2,3则直线l 的斜率为3,2-所以直线l 的方程为32(1).3210.2y x x y -=-++-=即故选A3.抛物线22y x =的焦点坐标为( ) A .(1,0) B .1(4,0)C .1(0,)4D .1(0,)8【答案】D【分析】将抛物线方程化为标准方程,即可得出开口方向和p ,进而求出焦点坐标. 【详解】解:整理抛物线方程得212x y =∴焦点在y 轴,14p =∴焦点坐标为1(0,)8故选D4.设F 1,F 2分别是椭圆2212516x y +=的左,右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为( ) A .4 B .3 C .2 D .5【答案】A【解析】由题意知OM 是12PF F △的中位线,∵3OM =,∴26PF =,又12210PF PF a +==,∴14PF =,故选A.5.点(4,2)P -与圆224x y +=上任一点连线的中点的轨迹方程是( ) A .22(2)(1)1x y -++= B .22(2)(1)4x y -++= C .22(4)(2)4x y ++-= D .22(2)(1)1x y ++-= 【答案】A【解析】试题分析:设圆上任一点为()00,Q x y ,PQ 中点为(),M x y ,根据中点坐标公式得,0024{22x x y y =-=+,因为()00,Q x y 在圆224x y +=上,所以22004x y +=,即()()2224224x y -++=,化为22(2)(1)1x y -++=,故选A.【解析】1、圆的标准方程;2、“逆代法”求轨迹方程.【方法点晴】本题主要考查圆的标准方程、“逆代法”求轨迹方程,属于难题.求轨迹方程的常见方法有:①直接法,设出动点的坐标(),x y ,根据题意列出关于,x y 的等式即可;②定义法,根据题意动点符合已知曲线的定义,直接求出方程;③参数法,把,x y 分别用第三个变量表示,消去参数即可;④逆代法,将()()00x g x y h x =⎧⎪⎨=⎪⎩代入()00,0=f x y .本题就是利用方法④求M 的轨迹方程的.6.过原点的直线l 与双曲线226x y -=交于A ,B 两点,点P 为双曲线上一点,若直线PA 的斜率为2,则直线PB 的斜率为( )A .4B .1C .12D .14【答案】C【分析】设(,)A m n ,(,)B m n --,(,)P x y ,代入双曲线的方程,作差,可得22221y nx m-=-,再由直线的斜率公式,结合平方差公式,计算可得所求值. 【详解】由题意可设(,)A m n ,(,)B m n --,(,)P x y , 则226m n -=,226x y -=, 即有2222y n x m -=-,即22221y n x m -=-, 由PA y n k x m -=-,PB y nk x m+=+, 可得2222·1PA PBy n k k x m -==-, 因为2PA k =,所以12PB k =. 故选:C .7.如果椭圆221369x y +=的弦被点()4,2平分,则这条弦所在的直线方程是( )A .20x y -=B .240x y +-=C .23120x y +-=D .280x y +-=【答案】D【分析】设这条弦的两端点1122(,),(,)A x y B x y ,则:2222112211369369x y x y +=+=,,用点差法得到:12120369x x y y k +++=,代入中点坐标,即得解斜率k . 【详解】设这条弦的两端点1122(,),(,)A x y B x y ,斜率为1212y y k x x -=-,则:2222112211369369x y x y +=+=,两式相减得:2222121212121212()()()()00369369x x y y x x x x y y y y ---+-++=∴+=变形得:12120369x x y y k +++=,又弦中点为:()4,2,故12k =-故这条弦所在得直线方程为:1242()y x -=--,即280x y +-= 故选:D【点睛】本题考查了点差法在弦中点问题中的应用,考查了学生转化与划归,数学运算的能力,属于中档题.8.设12,F F 是双曲线22124y x -=的两个焦点,P 是双曲线上的一点,且1234PF PF =,则12PF F △的面积等于( ) A .2 B .83C .24 D .48【答案】C【详解】双曲线的实轴长为2,焦距为1210F F =.根据题意和双曲线的定义知1222241233PF PF PF PF PF =-=-=,所以26PF =,18PF =, 所以2221212PF PF F F +=,所以12PF PF ⊥.所以121211682422PF F SPF PF =⋅=⨯⨯=. 故选:C【点睛】本题主要考查了焦点三角形以及椭圆的定义运用,属于基础题型.9.已知抛物线22y px =(0p >)的焦点F 与双曲线22145x y -=的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且2AK =,则A 点的横坐标为( ) A .2 B .3C .23D .4【答案】B【详解】因为已知条件中,抛物线22(0)y px p =>的焦点F 与双曲22145x y -=的右焦点重合,而双曲线中,a=2,5b =可知右焦点(3,0),抛物线的准线x=-2p,故点K (-2p ,0),设点A (x,y ),且22(0)y px p =>,则2AK AF =,可知222()2()()2222p p px y x x px ++=+∴+=,且由于3,62p p ==,解得点A 的横坐标为3, 故选:B.点评:解决该试题的关键是利用双曲线的性质以及抛物线的定义,运用坐标表示处关系式2AK AF =,然后借助于等式来求解点A 的坐标,属于基础题.10.已知抛物线2:8y x τ=,过抛物线τ的焦点且斜率为k 的直线l 交τ于M ,N 两点,已知(2,3)P -,0PM PN =,则k =( ) A .34B .43C .12D .2【答案】B【分析】本题先根据题意写出直线l 的直线方程,然后联立直线l 与抛物线τ的方程,消去y ,化简整理可得关于x 的一元二次方程,根据韦达定理可得12284x x k+=+,124x x =,接着计算出12y y +,12y y 关于k 的表达式,写出向量PM ,PN 的坐标式,代入并化简计算PM PN ,根据0PM PN =可进一步计算出k 的值,得到正确选项. 【详解】解:由题意,画图如下:由抛物线方程28y x =,可知抛物线τ的焦点坐标为(2,0),则直线l 的直线方程为:(2)y k x =-,显然0k ≠. 设1(M x ,1)y ,2(N x ,2)y ,则联立2(2)8y k x y x =-⎧⎨=⎩, 消去y ,整理得22224(2)40k x k x k -++=, 故12284x x k+=+,124x x =, 121212288(2)(2)(4)(44)y y k x k x k x x k k k∴+=-+-=+-=+-=, 2221212121228(2)(2)[2()4][42(4)4]16y y k x x k x x x x k k=--=-++=-++=-,1(2PM x =+,13)y -,2(2PN x =+,23)y -,∴1212·(2)(2)(3)(3)PM PN x x y y =+++--121212122()43()9x x x x y y y y =++++-++28842(4)41639k k =+++--⋅+22(34)k k -=,0PM PN =,∴22(34)0k k-=,解得43k =. 故选:B .【点睛】关键点睛:本题主要考查向量与解析几何的综合问题.考查了方程思想,韦达定理的应用,向量的运算能力,解答本题的关键是由题意1212·(2)(2)(3)(3)PM PN x x y y =+++--,然设出直线方程,与抛物线方程联立,写出韦达定理,在代入得到关于k 的方程.本题属中档题.11.点(),0F c 为双曲线()222210,0x y a b a b-=>>的右焦点,点P 为双曲线左支上一点,线段PF 与圆22239c b x y ⎛⎫-+= ⎪⎝⎭相切于点Q ,且2PQ QF =,则双曲线的离心率是( ) A 2 B 3C 5D .2【答案】C【解析】试题分析:设1(,0)F c -是双曲线的左焦点,圆222()39c b x y -+=的圆心为(,0)3c M ,半径为3b ,由于14233c cF M c MF =+==,又2PQ QF =,因此1//PF QM ,所以1F P PF ⊥,13PF MQ b ==,222243PF c b c a =-=+,由双曲线定义得12PF PF a -=,2232c a b a +=,解得5ce a==.故选C . 【解析】双曲线的几何性质,双曲线的定义,直线与圆的位置关系.【名师点睛】本题考查直线与双曲线相交问题,解题时,借助几何方法得出1PFF ∆中线段与,,a b c 的关系及1PFF ∆的性质,大大减少了计算量,而且明确得出了,,a b c 的等式,方便求出双曲线的离心率.这是我们在解解析几何问题要注意地方法. 12.如图,椭圆的中心在坐标原点,焦点在x 轴上,A 1,A 2,B 1,B 2为椭圆的顶点,F 2为右焦点,延长B 1F 2与A 2B 2交于点P ,若∠B 1PB 2为钝角,则该椭圆离心率的取值范围是( )A .52⎫-⎪⎪⎝⎭B .52⎛- ⎝⎭C .510,2⎛⎫⎪ ⎪⎝⎭ D .51,12⎛⎫- ⎪⎪⎝⎭【答案】C【分析】过1B 作直线22A B 的垂线l ,题意说明射线1B P 在直线l 上方,由此可得,,a b c 的不等关系(利用直线与x 轴交点得出不等式),从而可得离心率的范围. 【详解】设直线l 为过1B 且与22A B 垂直的直线,易知22,B A bk a=-则直线l 的斜率为a k b=, 而()10,B b -,则该直线l 的方程为ay x b b=-,所以该直线与x 轴的交点坐标为2,0b a ⎛⎫ ⎪⎝⎭,要使得12B PB ∠为钝角,则说明直线1B P 在直线l 上方,故满足2b c a <,结合222b a c =-,得到22,,cac a c e a<-=结合得210e e +-<,结合01,e <<解得51e ⎛-∈ ⎝⎭. 故选:C.【点睛】本题考查求椭圆离心率的范围,解题关键是利用过1B 与直线22A B 垂直的直线l 与射线1B P 关系得出不等式.二、填空题13.若,x y 满足约束条件1020220x y x y x y -+≥-≤+-≤⎧⎪⎨⎪⎩,则z x y =+的最大值为_____________.【答案】32【解析】试题分析:由下图可得在1(1,)2A 处取得最大值,即max 13122z =+=.【解析】线性规划.【方法点晴】本题考查线性规划问题,灵活性较强,属于较难题型.考生应注总结解决线性规划问题的一般步骤(1)在直角坐标系中画出对应的平面区域,即可行域;(2)将目标函数变形为a zy x b b=-+;(3)作平行线:将直线0ax by +=平移,使直线与可行域有交点,且观察在可行域中使zb最大(或最小)时所经过的点,求出该点的坐标;(4)求出最优解:将(3)中求出的坐标代入目标函数,从而求出z 的最大(小)值.14.若双曲线C 经过点(2,2),且与双曲线2214y x -=具有相同渐近线,则双曲线C的标准方程为 .【答案】221312x y -=【解析】试题分析:由题意设双曲线C 的标准方程为224y x λ-=,又过点(2,2),所以3,λ=-221312x y -=.【解析】双曲线渐近线15.倾斜角为45的直线l 经过抛物线24y x =的焦点F ,且与抛物线交于A ,B 两点,则AB 的长为__________________. 【答案】8【分析】直线l 的方程为1y x =-,与抛物线方程联立可得2610x x -+=,从而可得6A B x x +=,再根据抛物线的定义即可求出AB 的长.【详解】抛物线24y x =的焦点F 的坐标为(1,0),所以直线l 的方程为0tan 45(1)y x -=-,即1y x =-,由214y x y x=-⎧⎨=⎩,得2610x x -+=,所以6A B x x +=, 由抛物线的定义可知628A B AB x x p =++=+=,所以AB 的长为8. 故答案为:8【点睛】本题主要考查直线与抛物线的位置关系,考查抛物线焦点弦长的求法,属于中档题.16.已知过抛物线2:4C y x =焦点F 的直线交抛物线C 于P ,Q 两点,交圆2220x y x +-=于M ,N 两点,其中P ,M 位于第一象限,则11PM QN+的最小值为_____. 【答案】2【分析】设11(,)P x y ,22(,)Q x y ,根据题意可设直线PQ 的方程为1x my =+,将其与抛物线C 方程联立可求出121=x x ,结合图形及抛物线的焦半径公式可得12||||1PM QN x x ⋅==,再利用基本不等式,即可求出11PM QN+的最小值. 【详解】圆2220x y x +-=可化为22(1)1x y -+=,圆心坐标为(1,0),半径为1, 抛物线C 的焦点(1,0)F ,可设直线PQ 的方程为1x my =+,设11(,)P x y ,22(,)Q x y ,由214x my y x=+⎧⎨=⎩,得2440y my --=,所以124y y =-, 又2114y x =,2224y x =,所以222121212()14416y y y y x x =⋅==,因为1212||||(||||)(||||)(11)(11)1PM QN PF MF QF NF x x x x ⋅=--=+-+-==, 所以111122PM QN PM QN+≥⋅=,当且仅当||||1PM QN ==时,等号成立. 所以11PM QN+的最小值为2. 故答案为:2【点睛】本题主要考查抛物线的几何性质,基本不等式求最值,考查基本运算能力,属于中档题.三、解答题17.已知动圆M 过点(2,0)F ,且与直线2x =-相切. (Ⅰ)求圆心M 的轨迹E 的方程;(Ⅱ)斜率为1的直线l 经过点F ,且直线l 与轨迹E 交于点,A B ,求线段AB 的垂直平分线方程.【答案】(Ⅰ)28y x =;(Ⅱ)100x y +-=.【分析】(Ⅰ)由题意得圆心M 到点(2,0)F 等于圆心到直线2x =-的距离,利用两点间距离公式,列出方程,即可求得答案.(Ⅱ)求得直线l 的方程,与椭圆联立,利用韦达定理,可得1212,x x x x +的值,即可求得AB 中点00(,)P x y 的坐标,根据直线l 与直线AB 垂直平分线垂直,可求得直线AB 垂直平分线的斜率,利用点斜式即可求得方程.【详解】(Ⅰ)设动点(,)M x y 22(2)|2|x y x -+=+, 化简得轨迹E 的方程:28y x =;(Ⅱ)由题意得:直线l 的方程为:2y x =-,由228y x y x=-⎧⎨=⎩,得21240x x -+=,2124140∆=-⨯⨯>,设1122(,),(,)A x y B x y ,AB 中点00(,)P x y 则121212,4x x x x +==, 所以12062x x x +==,0024y x =-=, 又AB 垂直平分线的斜率为-1,所以AB 垂直平分线方程为100x y +-=.【点睛】本题考查抛物线方程的求法,抛物线的几何性质,解题的关键是直线与曲线联立,利用韦达定理得到1212,x x x x +的表达式或值,再根据题意进行化简和整理,考查计算求值的能力,属基础题.18.已知圆22 :(3)(4)4C x y -+-=,(1)若直线1l 过定点1,0A ,且与圆C 相切,求1l 的方程.(2)若圆D 的半径为3,圆心在直线2:20l x y +-=上,且与圆C 外切,求圆D 的方程.【答案】(1)1x =或()314y x =-;(2)()()22319x y -++=或()()22249x y ++-=.【分析】(1)将1l 的斜率分成存在和不存在两种情况,结合圆心到直线的距离等于半径,求得1l 的方程.(2)设出圆D 的圆心,利用两圆外切的条件列方程,由此求得圆心D 的坐标,进而求得圆D 的方程.【详解】(1)圆C 的圆心为()3,4C ,半径为12r =.当直线1l 斜率不存在时,即直线1x =,此时直线与圆相切.当直线1l 斜率存在时,设直线1l 的方程为()1y k x =-,即kx y k 0--=,由于1l 与圆C 相切,圆心到直线的距离等于半径,即23421k k k --=+,即221k k -=+34k =,直线1l 的方程为()314y x =-. 综上所述,直线1l 的方程为1x =或()314y x =-. (2)由于圆D 圆心在直线2l 上,设圆心(),2D a a -+,圆D 的半径23r =,由于圆D 与圆C 外切,所以12CD r r =+()()22324235a a -+-+-=+=,即()()223225a a -++=,解得3a =或2a =-.所以圆心()3,1D -或()2,4D -.所以圆D 的方程为()()22319x y -++=或()()22249x y ++-=.【点睛】本小题主要考查直线和圆的位置关系,考查圆与圆的位置关系,考查直线方程和圆的方程的求法,属于基础题.19.如图,在四棱锥P ABCD -中,四边形ABCD 为菱形,60BAD ∠=︒,PAD ∆为正三角形,平面PAD ⊥平面ABCD ,且E ,F 分别为AD ,PC 的中点.(1)求证://DF 平面PEB ;(2)求直线EF 与平面PDC 所成角的正弦值. 【答案】(1)证明见解析;(2)65. 【分析】(1)取PB 中点G ,推出//FG BC ,证明四边形DEGF 是平行四边形,得到//DF EG ,然后证明//DF 平面PEB .(2)以E 为原点,EA ,EB ,EP 分别为x ,y ,z 轴建立空间直角坐标系,求出平面PDC 的法向量,求出EF ,利用空间向量的数量积求解EF 与平面PDC 所成角的正弦值.【详解】(1)证明:取PB 中点G ,因为F 是PC 中点,//FG BC ∴,且12FG BC =,E 是AD 的中点,则//DE BC ,且12DE BC =, //FG DE ∴,且FG DE =,∴四边形DEGF 是平行四边形,//DF EG ∴,又DF ⊂/平面PEB ,EG ⊂平面PEB ,//DF ∴平面PEB .(2)因为E 是正三角形PAD 边为AD 的中点,则PE AD ⊥.因为平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,PE ⊂平面PAD ,PE ∴⊥平面ABCD ,四边形ABCD 为菱形,60BAD ∠=︒,∴正三角形BAD 中,BE AD ⊥,以E 为原点,EA ,EB ,EP 分别为x ,y ,z 轴建立空间直角坐标系, 不妨设菱形ABCD 的边长为2,则1AE ED ==,2PA =,3PE =223BE AB AE =-=则点33(0,0,0),(1,0,0),(3,0),3),(1,)22E D C PF ---, ∴(1DC =-30),(1DP =,03),设平面PDC 的法向量为(n x =,y ,)z ,则·0·0n DC n DP ⎧=⎨=⎩,即3030x z x y ⎧=⎪⎨-+=⎪⎩,解得33x x z⎧=⎪⎨=⎪⎩,不妨令1z =,得(3n =-,1-,1);又33(22EF =-, 设EF 与平面PDC 所成角为θ,∴36sin |cos |55?2EF n θ=<>=⋅=,.所以EF 与平面PDC 6. 【点睛】对于线面角可以转化为直线的方向向量与平面的法向量的夹角运算,对于证明线线关系,线面关系,面面关系等方面的问题,必须在熟练掌握有关的定理和性质的前提下,再利用已知来进行证明.20.如图,正三棱柱111ABC A B C -中,12AB AA ==,点D ,E 分别为AC ,1AA 的中点.(1)求点1B 到平面BDE 的距离; (2)求二面角1D BE C --的余弦值. 【答案】(12;(2)14. 【分析】(1)建立空间坐标系,求出平面BDE 的法向量n ,则1B 到平面BDE 的距离为1·nB n B ;(2)求出平面1BEC 的法向量m ,计算m ,n 的夹角得出二面角的大小. 【详解】解:(1)取11A C 的中点1D ,连结1DD ,则1DD ⊥平面ABC ,ABC ∆是等边三角形,BD AC ∴⊥,以D 为原点,分别以DA ,DB ,1DD 所在直线为坐标轴建立空间直角坐标系D xyz -, 则(0D ,0,0),(0B 30),(1E ,0,1),1(0B 32),1(1C -,0,2),∴(0DB =30),(1DE =,0,1),1(0BB =,0,2),设平面BDE 的法向量为1(n x =,1y ,1)z ,则·0·0n DB n DE ⎧=⎨=⎩,即111300x z ⎧=⎪⎨+=⎪⎩,令11z =可得(1n =-,0,1),∴点1B 到平面BDE 的距离为1·22B n nB ==(2)(1BE =,3-1),1(2EC =-,0,1),设平面1BEC 的法向量为2(m x =,2y ,2)z ,则1·0·0m BE m EC ⎧=⎪⎨=⎪⎩,即222223020xy z x z ⎧-+=⎪⎨-+=⎪⎩, 令21x =可得(1m =,3,2),cos m ∴<,·14222m n n m n >===⨯, ∴二面角1D BE C --的余弦值为14.【点睛】关键点睛:(1)解题关键是建立空间坐标系,求出平面BDE 的法向量n ,进而用公式求解;(2)解题关键是设平面1BEC 的法向量为2(m x =,2y ,2)z ,则1·0·0m BE m EC ⎧=⎪⎨=⎪⎩,求出m 后,利用公式求解二面角1D BE C --的余弦值,难度属于中档题21.已知椭圆()2222:10x y C a b a b+=>>的左顶点和下顶点分别为A ,B ,25AB =过椭圆焦点且与长轴垂直的弦的长为2. (1)求椭圆C 的方程;(2)已知M 为椭圆C 上一动点(M 不与A ,B 重合),直线AM 与y 轴交于点P ,直线BM 与x 轴交于点Q ,证明:AQ BP ⋅为定值.【答案】(1)221164x y +=;(2)证明见解析. 【分析】(1)根据25AB =2225a b +=,再由过椭圆焦点且与长轴垂直的弦的长为2,得到2a b =,列出方程组,求得22,a b 的值,即可求解;(2)由(1)得到点,A B 的坐标,设出,,M P Q 的坐标,由点M 在椭圆上,结合,,A P M 三点共线,求得AQ BP ⋅表示,即可求解.【详解】(1)由题意,椭圆C 的左顶点和下顶点分别为,A B ,可得(,0),(0,)A a B b -- 因为25AB =2225AB a b =+=又由过椭圆焦点且与长轴垂直的弦的长为2,可得222b a=,即2a b =,联立方程组,解得2216,4a b ==,所以椭圆的方程为221164x y +=.(2)由(1)可得(4,0),(0,2)A B --,设00(,),(0,),(,0)P Q M x y P y Q x ,因为点M 在椭圆上,所以2200416x y +=,由,,A P M 三点共线,可得0044P y y x =+, 同理可得0022Q x x y =+, 所以0000002482484242Q P x y x y x y x y AQ BP ++++⋅=+⋅+=⋅++2200000000000000004(4164816)4(16164816)(8)(2)248x y x y x y x y x y x y x y x y +++++++++==+++++000000002481616248x y x y x y x y +++==+++,即16AQ BP ⋅=,所以AQ BP ⋅为定值.【点睛】本题主要考查了椭圆的标准方程的求解,以及椭圆的性质的综合应用,其中解答中根据椭圆的方程,结合三点共线求得P y 和Q x 是解答得关键,着重考查推理与运算能力,属于难题.22.已知椭圆2222:1(0)x y C a b a b+=>>经过点3()-,且短轴长为2. (1)求椭圆C 的标准方程;(2)若直线l 与椭圆C 交于P ,Q 两点,且OP OQ ⊥,求OPQ △面积的取值范围.【答案】(1)2214x y +=;(2)4[,1]5. 【分析】(1)利用已知条件求出a ,b ,然后求解椭圆方程;(2)()i 当OP ,OQ 斜率一个为0,一个不存在时,1OPQ S ∆=;()ii 当OP ,OQ 斜率都存在且不为0时,设:OP l y kx =,1(P x ,1)y ,2(Q x ,2)y ,由2214y kx x y =⎧⎪⎨+=⎪⎩求出P 的坐标,然后推出Q 坐标,求解||OP ,||OQ ,求出三角形的面积的表达式,利用基本不等式求解最值. 【详解】(1)由题意知,221314a b+=,22b =,解得2a =,1b =, 故椭圆方程为:2214x y +=.(2)()i 当OP ,OQ 斜率一个为0,一个不存在时,1OPQ S ∆=,()ii 当OP ,OQ 斜率都存在且不为0时,设:OP l y kx =,1(P x ,1)y ,2(Q x ,2)y ,由2214y kx x y =⎧⎪⎨+=⎪⎩消y 得212414x k =+,2222112414k y k x k ==+, 22114y x k x y ⎧⎪⎪⎨=-+=⎪⎪⎩,得222244k x k =+,222222144y x k k ==+, ∴2222221122224444,144k k OP x y OQ x y k k ++=+==+=++ ∴22222421144441··2922144421OPQk k S OP OQ k k k k k ∆++===+++++ 又24222999012142k k k k k <=≤++++,所以415OPQ S ∆<, 综上,OPQ △面积的取值范围为4[,1]5.【点睛】方法点睛:与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决: (1)几何法:结合定义利用图形中几何量之间的大小关系或曲线之间位置关系列不等式,再解不等式.(2)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围.(3)利用代数基本不等式.代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思.(4)结合参数方程,利用三角函数的有界性.直线、圆或椭圆的参数方程,它们的一个共同特点是均含有三角式.(5)利用数形结合分析解答.。

2020-2021学年江苏省常州高级中学高二上学期期中数学试卷(含解析)

2020-2021学年江苏省常州高级中学高二上学期期中数学试卷(含解析)

2020-2021学年江苏省常州高级中学高二上学期期中数学试卷一、单选题(本大题共8小题,共40.0分) 1.以下判断正确的是( )A. 命题“负数的平方是正数”不是全称命题B. 命题“∀x ∈N ,x 3>x 2”的否定是“∃x ∈N ,x 3<x 2”C. “a =1”是函数f(x)=cos 2ax −sin 2ax 的最小正周期为π的必要不充分条件D. “b =0”是“函数f(x)=ax 2+bx +c 是偶函数”的充要条件2.数列{a n }满足a n =4a n−1+3,且a 1=0,则此数列的第5项是( )A. 15B. 255C. 16D. 363.已知各项不为0的等差数列{a n }的前n 项和为S n ,若a 5=2a 2,则S6a 2=( )A. 4B. 162C. 9D. 124. 已知正方体ABCD −A 1B 1C 1D 1的棱长为2,点P 在平面BCC 1B 1内,且D 1P ⊥AC 1,则线段D 1P 的长度的最小值为( )A. √3B. √6C. 2√2D. 2√65.现将甲、乙、丙、丁四个人安排到座位号分别是1,2,3,4的四个座位上,他们分别有以下要求,甲:我不坐座位号为1和2的座位; 乙:我不坐座位号为1和4的座位; 丙:我的要求和乙一样;丁:如果乙不坐座位号为2的座位,我就不坐座位号为1的座位. 那么坐在座位号为3的座位上的是( )A. 甲B. 乙C. 丙D. 丁6.如图,在△ABC 中,AE ⃗⃗⃗⃗⃗ =3EC ⃗⃗⃗⃗⃗ ,BE ⃗⃗⃗⃗⃗ =3BM ⃗⃗⃗⃗⃗⃗ ,则AM ⃗⃗⃗⃗⃗⃗ =( ) A. 23AB ⃗⃗⃗⃗⃗+14AC ⃗⃗⃗⃗⃗B. 12AB ⃗⃗⃗⃗⃗ +14AC ⃗⃗⃗⃗⃗ C. 23AB ⃗⃗⃗⃗⃗ +16AC ⃗⃗⃗⃗⃗ D. 34AB ⃗⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗⃗ 7.设数列lg100,lg(100sin π4),lg(100sin 2π4),⋯⋯,lg(100sin n−1π4)⋯的前n 项和为S n ,那么数列{S n }中最大的项是( )A. 13B. 14C. S 13D. S 148.△ABC 中,AB =6,AC =8,∠BAC =90°,△ABC 所在平面α外一点P 到点A 、B 、C 的距离都是13,则P 到平面α的距离为( )A. 7B. 9C. 12D. 13二、多选题(本大题共4小题,共20.0分) 9.已知空间向量a ⃗ =(−2,−1,1),b ⃗ =(3,4,5),则下列结论正确的是( )A. (2a ⃗ +b ⃗ )//a ⃗B. 5|a ⃗ |=√3|b ⃗ |C. a ⃗ ⊥(5a ⃗ +6b ⃗ )D. a ⃗ 与b ⃗ 夹角的余弦值为−√3610. 下列说法正确的是( )A. 过直线l 外一点P ,有且仅有一个平面与l 垂直B. 空间中不共面的四点能确定无数多个球C. 如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面D. 过点A 垂直于直线a 的所有直线都在过点A 垂直于a 的平面内11. 狄利克雷函数f(x)={1,x ∈Q0,x ∈C R Q是高等数学中的一个典型函数,对于狄利克雷函数f(x),下列命题中真命题的有( )A. 对任意x ∈R ,都有f[f(x)]=1B. 对任意x ∈R ,都有f(−x)+f(x)=0C. 若a <0,b >1,则有{x|f(x)>a}={x|f(x)<b}D. 存在三个点A(x 1,f(x 1)),B(x 2,f(x 2)),C(x 3,f(x 3)),使得△ABC 为等腰三角形12. 关于下列命题,正确的是( )A. 若点(2,1)在圆x 2+y 2+kx +2y +k 2−15=0外,则k >2或k <−4B. 已知圆M :(x +cosθ)2+(y −sinθ)2=1与直线y =kx ,对于任意的θ∈R ,总存在k ∈R 使直线与圆恒相切C. 已知圆M:(x+cosθ)2+(y−sinθ)2=1与直线y=kx,对于任意的k∈R,总存在θ∈R使直线与圆恒相切D. 已知点P(x,y)是直线2x+y+4=0上一动点,PA、PB是圆C:x2+y2−2y=1的两条切线,A、B是切点,则四边形PACB的面积的最小值为√6三、单空题(本大题共4小题,共20.0分)13.在数列中,,,则.14.下列函数为偶函数,且在上单调递增的函数是.①②③④15.直线与圆相交于、两点,若,则.(其中为坐标原点)16.在和之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为.四、解答题(本大题共6小题,共70.0分)17.已知集合A={x|2≤x≤6,x∈R},B={x|−1<x<5,x∈R},全集U=R.(1)求A∩(∁U B);(2)若集合C={x|x<a,x∈R},A∩C=⌀,求实数a的取值范围.(3)若集合D={x|m+1<x<2m−1,x∈R},B∩D≠⌀,求实数m的取值范围.18.某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张.为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少0.5万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变.(1)记2013年为第一年,每年发放的燃油型汽车牌照数构成数列{a n},每年发放的电动型汽车牌照数为构成数列{b n},完成下列表格,并写出这两个数列的通项公式;a1=10a2=9.5a3=______ a4=______ …b1=2b2=______ b3=______ b4=______ …(2)从2013年算起,累计各年发放的牌照数,哪一年开始超过200万张?19. 在正方体ABCD−A1B1C1D1中,O是底面ABCD对角线的交点.(Ⅰ)求证:BD⊥平面ACC1A1;(Ⅱ)求直线BC1与平面ACC1A1所成的角.20. 已知等差数列{a n}的公差为2,且a1−1,a2−1,a4−1成等比数列.(1)求数列{a n}的通项公式;(2)设b n=1a n a n+1(n∈N∗),数列{b n}的前n项和S n,求使S n<17成立的最大正整数n的值.21. 如图,正三棱柱ABC−A1B1C1中,AB=4,AA1=3√2,M,N分别是棱A1C1,AC的中点,E在侧棱A1A上,且A1E=2EA.(1)求证:平面MEB⊥平面BEN;(2)求平面BEN与平面BCM所成的锐二面角的余弦值.22. 在数列{a n}中,a1=1,a4=7,an+2−2a n+1+a n=0(n∈N﹢)(1)求数列a n的通项公式;(2)若b n=1n(3+a n))(n∈N+),求数列{b n}的前n项和S n.【答案与解析】1.答案:D解析:本题考查命题的真假判断与应用,着重考查全称命题与特称命题之间的转化及充分必要条件的概念及应用,考查函数的周期性与奇偶性,属于中档题.A,命题“负数的平方是正数”的含义为“任意一个负数的平方是正数”,是全称命题,可判断A;B,写出命题“∀x∈N,x3>x2”的否定,可判断B;C,利用充分必要条件的概念,从充分性与必要性两个方面可判断C;D,利用充分必要条件的概念与偶函数的定义可判断D.解:对于A,命题“负数的平方是正数”是全称命题,故A错误;对于B,命题“∀x∈N,x3>x2”的否定是“∃x∈N,x3≤x2”,故B错误;=π,充分性成立;对于C,a=1时,函数f(x)=cos2x−sin2x=cos2x的最小正周期为T=2π2反之,若函数f(x)=cos2ax−sin2ax=cos2ax的最小正周期T=2π2|a|=π,则a=±1,必要性不成立;所以“a=1”是函数f(x)=cos2ax−sin2ax的最小正周期为π的充分不必要条件,故C错误;对于D,b=0时,函数f(−x)=ax2+c=f(x),y=f(x)是偶函数,充分性成立;反之,若函数f(x)=ax2+bx+c是偶函数,f(−x)=f(x),解得a=0,即必要性成立;所以“b=0”是“函数f(x)=ax2+bx+c是偶函数”的充要条件,故D正确.故选:D.2.答案:B解析:解:a2=4a1+3=3a3=4a2+3=4×3+3=15a4=4a3+3=4×15+3=63a5=4a4+3=4×63+3=255故选B.分别令n=2,3,4,5代入递推公式计算即可.本题考查数列递推公式简单直接应用,属于简单题.3.答案:C。

人教版高二上册数学期中数学试卷带答案

人教版高二上册数学期中数学试卷带答案

2020-2021学年高二(上)期中数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.)1. 已知a>b,c>d>0,则()A.1 a <1bB.a−c>b−dC.ac>bdD.dc<d+4c+42. 关于x的不等式x+1x−2≥0的解集为()A.(−∞, −1]∪(2, +∞)B.[−1, 2)C.(−∞, −1]∪[2, +∞)D.[−1, 2]3. 设等差数列{a n}的前n项和为S n,公差d=1,且S6−S2=10,则a3+a4=()A.2B.3C.4D.54. 若不等式ax2+bx−1<0的解集为{x|−1<x<2},则a+b的值为()A.−14B.0 C.12D.15. 已知等比数列{a n}中,a2a3a4=1,a6a7a8=64,则a5=()A.±2B.−2C.2D.46. 已知在数列{a n}中,a1=2,a n+1=nn+1a n,则a2020的值为()A.1 2020B.12019C.11010D.110097. 已知a>0,b>0,a+b=3,则y=4a +1b+1的最小值为()A.9 8B.94C.92D.98. 已知数列{b n}满足b n=2λ(−12)n−1−n2,若数列{b n}是单调递减数列,则实数λ的取值范围是()A.(−1, 103) B.(−12, 103) C.(−1, 1) D.(−12, 1)二、多项选择题:本大题共4小题,每小题5分,共20分在每小题给出的四个选项中,都有多个选项是正确的,全部选对得5分,选对但不全的得3分,选错或不答的得0分.请把正确的选项填涂在答题卡相应的位置.上.)9. 下列说法正确的有()A.“a=b”是“ac=bc”的充分不必要条件B.“1a >1b”是“a<b”的既不充分又不必要条件C.“a≠0”是“ab≠0”的必要不充分条件D.“a>b>0”是“a n>b n(n∈N, n≥2)”的充要条件10. 已知等差数列{a n}的前n项和为S n,且a1>0,2a5+a11=0,则()A.a8<0B.当且仅当n=7时,S n取得最大值C.S4=S9D.满足S n>0的n的最大值为1211. 已知a,b均为正实数,且a+b=1,则()A.a2+b2的最小值为12B.ab+1ab的最小值为2C.√a+√b的最大值为√2D.1a +1b的最大值为412. 对于数列{a n},定义:b n=a n−1a n(n∈N∗),称数列{b n}是{a n}的“倒差数列”.下列叙述正确的有()A.若数列{a n}单调递增,则数列{b n}单调递增B.若数列{b n}是常数列,数列{a n}不是常数列,则数列{a n}是周期数列C.若a n=1−(−12)n,则数列{b n}没有最小值D.若a n=1−(−12)n,则数列{b n}有最大值三、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题卡相应位置.上.)13. 命题“∃x∈R,x2−2x+m≤0”的否定是________.14. 在等比数列{a n }中,已知a 3⋅a 8=10,则a 53⋅a 7的值为________.15. 已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.16. 大衍数列来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理.大衍数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题,其前10项依次是0,2,4,8,12,18,24,32,40,50,则此数列第19项的值为________,此数列的通项公式a n = {n 2−12(n)n 22(n).四、解答题:本大题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.)17. 在①f(x +1)−f(x)=2ax ,②f(x)的对称轴为x =12,③f(1)=2这三个条件中任选一个,补充在下面问题中,并回答下面问题.已知二次函数f(x)=ax 2+bx +1,若_____,且不等式f(x)≥0对任意的x ∈R 恒成立,试求实数a 的取值范围.18. 已知数列{a n }是公比q >1的等比数列,若a 1+a 2+a 3=14,且a 2+1是a 1,a 3的等差中项.(1)求数列{a n }的通项公式;(2)设b n =log 2a n ,数列{1b n b n+1}的前n 项和为T n ,若T n <m 2−1对n ∈N ∗恒成立,求满足条件的自然数m 的最小值.19. 已知数列{a n }中,a 1=2,且满足a n+1−2a n =2n+1(n ∈N ∗).(1)求证:数列{a n2n }是等差数列,并求数列{a n }的通项公式;(2)求证:对于数列{b n },b 1+2b 2+...+nb n =a n 的充要条件是b n =(n+1)2n−1n.20. 已知函数f(x)=a⋅2x +12x −1,a ∈R .(1)当a =1时,求不等式f(x)>3的解集;(2)若不等式|f(2x)−f(x)|≤1对任意x∈[1, 2]恒成立,求实数a的取值范围.21. 如图,某森林公园内有一条宽为2百米的笔直的河道(假设河道足够长),现拟在河道内围出一块直角三角形区域养殖观赏鱼.三角形区域记为△ABC,A到河两岸距离AE,AD相等,B,C分别在两岸上,AB⊥AC.为方便游客观赏,拟围绕△ABC区域在水面搭建景观桥,桥的总长度(即△ABC的周长)为l.设EC=x百米.(1)试用x表示线段BC的长度;(2)求l关于x的函数解析式f(x),并求f(x)的最小值.22. 已知数列{a n}为等差数列,公差为d,前n项和为S n.(1)若a1=0,d=2,求S100的值;,8)内,求d的取值范围;(2)若a1=−1,{a n}中恰有6项在区间(12(3)若a1=1,S2=3,集合A={a n|n∈N∗},问能否在集合A中抽取到无穷多个不全相等的元素组成一个新数列{b n},使得此新数列{b n}满足从第二项开始,每一项都等于它的前一项和后一项的调和平均数.若能,请举例说明;若不能,请说明理由.(注:叫作数a和数b的调和平均数).数2aba+b参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.【答案】D【解析】由不等式的性质逐一判断即可.2.【答案】C【解析】根据题意,原不等式变形可得(x+1)(x−2)>0或x+1=0,解可得x的取值范围,即可得答案.3.【答案】B【解析】先根据求和公式和等差数列的性质可得a5+a4=5,即可求出a3+a4.4.【答案】B【解析】不等式ax2+bx−1<0的解集是{x|−1<x<2},故−1,2是方程ax2+bx−1=0的两个根,由根与系数的关系求出a,b.5.【答案】C【解析】设等比数列{a n}的公比为q,由a2a3a4=1,a6a7a8=64,可得(q4)3=64,解得q2.又(a1q2)3=1,解得a1.利用通项公式即可得出.6.【答案】C【解析】直接利用递推关系式的应用求出数列的通项公式,进一步求出结果.7.【答案】B【解析】利用“乘1法”与基本不等式的性质即可得出.8.【答案】A【解析】)n−2n−1<0,分类讨论,根据数列的根据函数为递减数列可得b n+1−b n=6λ(−12函数特征即可求出.二、多项选择题:本大题共4小题,每小题5分,共20分在每小题给出的四个选项中,都有多个选项是正确的,全部选对得5分,选对但不全的得3分,选错或不答的得0分.请把正确的选项填涂在答题卡相应的位置.上.9.【答案】A,B,C【解析】利用不等式的基本性质、简易逻辑的判定方法即可判断出正误.10.【答案】A,C,D【解析】2a5+a11=0利用通项公式可得:a1=−6d.根据a1>0,可得d<0,利用通项公式和求和公式进而判断出结论.11.【答案】A,C,D【解析】由已知结合基本不等式分别检验各选项即可判断.12.【答案】B,D【解析】对于A,根据函数f(x)=x−1在(−∞, 0)和(0, +∞)上单调递增,但在整个定义域上不x是单调递增,即可判断;=t,通过数列的递推关系可得数列{a n}是以2为周期的周期数对于B,设b n=a n−1a n列,)n,分了n为奇数和偶数,利用数列的单调性即可判断.对于CD,若a n=1−(−12三、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题卡相应位置.上.13.【答案】∀x∈R,x2−2x+m>0【解析】根据含有量词的命题的否定即可得到结论.14.【答案】100【解析】根据等比数列的性质即可求出.15.【答案】6【解析】此题暂无解析16.【答案】180【解析】直接利用数据求出数列的关系式和通项公式.四、解答题:本大题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17.【答案】选①f(x+1)−f(x)=2ax,∵f(x)=ax2+bx+1,∴a(1+x)2+b(1+x)+1−ax2−bx−1=2ax,整理可得,2ax+a+b=2ax,∴a+b=0,∵f(x)=ax2−ax+1≥0对任意的x∈R恒成立,当a=0时,1≥0对任意的x∈R恒成立,∴{a>0a2−4a≤0,解得0<a≤4,故0≤a≤4;选②:f(x)的对称轴为x=12,∴−b2a =12,∴b=−a,∵f(x)=ax2−ax+1≥0对任意的x∈R恒成立,当a=0时,1≥0对任意的x∈R恒成立,∴{a>0a2−4a≤0,解得0<a≤4,故0≤a≤4;选③:f(1)=2,∴a+b+1=2即b=1−a,∵f(x)=ax2+(1−a)x+1≥0对任意的x∈R恒成立,当a=0时,x+1≥0不恒成立,当a≠0时,{a>0(1−a)2−4a≤0,解得3−2√2≤a≤3+2√2,故3−2√2≤a≤3+2√2.【解析】选①:f(x+1)−f(x)=2ax,结合已知二次函数代入可得a+b=0,然后由不等式恒成立,结合二次函数的性质可求;选②:f(x)的对称轴为x=12,结合已知二次函的对称轴方程可得a+b=0,然后由不等式恒成立,结合二次函数的性质可求;选③:f(1)=2,直接代入可得b=1−a,然后由不等式恒成立,结合二次函数的性质可求.18.【答案】数列{a n}是公比q>1的等比数列,若a1+a2+a3=14,且a2+1是a1,a3的等差中项.所以{a1+a2+a3=142(a2+1)=a1+a3,整理得{a1+qa1+a1⋅q2=142(a1⋅q+1)=a1+a1⋅q2,解得{a1=2q=2,故a n=2n.由于b n=log2a n=n,所以1b n b n+1=1n(n+1)=1n−1n+1,所以T n=1−12+12−13+⋯+1n−1n+1=1−1n+1<1,若T n<m2−1对n∈N∗恒成立,只需满足m2−1≥1即可,故m≥4,即满足条件的自然数m的最小值为4.【解析】(1)直接利用已知条件和关系式的应用求出数列的通项公式.(2)利用裂项相消法和恒成立问题的应用求出数列的和及m的最小值.19.【答案】数列{a n}中,a1=2,且满足a n+1−2a n=2n+1(n∈N∗).整理得a n+12n+1−a n2n=1(常数),所以数列{a n2n}是以1为首项,1为公差的等差数列.所以a n2n=1+(n−1)=n,所以a n=n⋅2n.证明:由于a n=n⋅2n,所以b1+2b2+...+nb n=n⋅2n①,当n=1时,b1=2,当n≥2时,b1+2b2+⋯+(n−1)b n−1=(n−1)⋅2n−1②,①-②得:nb n=n⋅2n−(n−1)⋅2n2=(n+1)⋅2n2,所以b n=(n+1)2n−1n,(首项符合通项),所以b n=(n+1)2n−1n,即数列{b n },b 1+2b 2+...+nb n =a n 的充要条件是b n =(n+1)2n−1n.【解析】(1)直接利用构造新数列的应用求出数列的通项公式; (2)利用数列的递推关系式的应用求出结果. 20. 【答案】当a =1时,f(x)=2x +12x −1,由f(x)>3,即2x +12x −1>3,化为2−2x2x −1>0, 即1<2x <2,可得0<x <1, 则解集为(0, 1); f(x)=a⋅2x +12x −1=a +a+12x −1,则f(2x)−f(x)=a+122x −1−a+12x −1=(a +1)⋅−2x22x −1,令t =2x ,因为x ∈[1, 2],可得t ∈[2, 4], 由题意可得|a +1|≤22x −12x=2x −12x=t −1t恒成立,即有|a +1|≤(t −1t )min ,而g(t)=t −1t 在[2, 4]递增,可得g(t)min =g(2)=32, 则|a +1|≤32,解得−52≤a ≤12, 则a 的取值范围是[−52, 12]. 【解析】(1)由题意可得f(x)=2x +12x −1,由指数不等式的解法和指数函数的单调性,可得所求解集;(2)计算f(2x)−f(x),令t =2x ,t ∈[2, 4],由题意可得|a +1|≤22x −12x=2x −12x =t −1t恒成立,即有|a +1|≤(t −1t)min ,运用g(t)=t −1t在[2, 4]的单调性,可得最小值,再由绝对值不等式的解法可得所求范围. 21.【答案】∵ AB ⊥AC ,∴ ∠EAC +∠BAD =90∘,在Rt △ABD 中,∠ABD +∠BAD =90∘,∴ ∠EAC =∠ABD ,则Rt △CAE ∽Rt △ABD , ∴ ACAB =ECAD .∵ EC =x ,AC =√AE 2+EC 2=√1+x 2,AD =1,∴AB=1×√1+x2x =√1+x2x,则BC=√AB2+AC2=√1+x2+1+x2x2=√x2+2+1x2=x+1x;f(x)=√1+x2+√1+x2x +x+1x,x>0.∵x>0,∴f(x)≥2√√1+x2⋅√1+x2x +2√x⋅1x=2√1x+x+2≥2√2+2.当且仅当√1+x2=√1+x2x ,且1x=x,即x=1时取“=”.∴f(x)min=2√2+2,故景观桥总长的最小值为(2√2+2)百米.【解析】(1)由已知证明Rt△CAE∽Rt△ABD,得ACAB =ECAD,由EC=x,得AC=√AE2+EC2=√1+x2,AD=1,再由勾股定理求BC;(2)写出f(x)的表达式,然后利用基本不等式求最值.22.【答案】因为a1=0,d=2,又因为S n=na1+n(n−1)2⋅d,所以S100=100×0+12×100×99×2=9900;设从第m(m∈N∗, m≥2)项开始在(12, 8)内,则{a m>12 a m−1≤12a m+5<8 a m+6≥8,即有{−1+(m−1)d>12−1+(m−2)d≤12−1+(m+4)d<8−1+(m+5)d≥8,解得{32(m−1)<d≤32(m−2)9m+5≤d<9m+4,所以{32(m−1)<9m+49 m+5≤32(m−2),解得m∈(2, 175],所以m=3,所以d∈[98, 97 );因为a1=1,S2=a1+a2=3,所以a2=2,d=a2−a1=1,所以a n=n,①新数列{b n}中有两个相同和一个不同项a m,a n,a m,若a n=2a m a ma m+a m=a m,矛盾;若a m=2a n a ma n+a m,解得a m=a n,所以a n,a m是两个不同项,且a m≥1,a n≥1,所以a n≠a m,所以新数列{b n}中有两个相同和一个不同项是不成立的;②新数列{b n}中有三个不同项a m,a n,a r,设m=a m,n=a n,r=a r,且m<n<r,b1=m,b2=n,则a n=2a m a ra m+a r ,即n=2mrm+r,解得r=mn2m−n ,设第四项为p,则r=2npn+p,即p=nr2n−r =mn22m−n2n−mn2m−n=mn3m−2n,设第五项为t,则p=2rtr+t ,即t=rp2r−p=mn2m−n⋅mn3m−2n2mn2m−n−mn3m−2n=mn4m−3n,由数学归纳法可得b n=b1b2(n−1)b1−(n−2)b2,即(n−1)b1>(n−2)b2,b1b2>n−2n−1,当n非常大时,n−2n−1趋向于1,则b1b2≥1,即b1≥b2(与假设矛盾),故三项不同的数列{b n}也不存在.综上可得,{b n}不存在.【解析】(1)运用等差数列的通项公式和求和公式,可得所求和;(2)设从第m(m∈N∗, m≥2)项开始在(12, 8)内,运用等差数列的通项公式可得m,d的不等式组,解不等式可得所求范围;(3)分别讨论①新数列{b n}中有两个相同和一个不同项a m,a n,a m;②新数列{b n}中有三个不同项a m,a n,a r,推理论证即可判断存在性.试卷第11页,总11页。

山东省临沂市2020_2021学年高二数学上学期期中试题含解析

山东省临沂市2020_2021学年高二数学上学期期中试题含解析
【详解】如图,圆拱桥 所在圆圆心为 ,水面跨度为 ,拱高 ,
设圆半径为 ,如此 ,解得 .
船宽 ,假如这条船能从桥下通过,如此此船水面以上最高高度为 ,
,如此 ,解得 .
故答案为:13;7.
四、解答题:此题共6小题.解答应写出文字说明、证明过程或演算步骤.
17. 直线 过定点 .
〔1〕假如直线 与直线 垂直,求直线 的方程;
A. 公共弦 所在直线方程为
B. 线段 中垂线方程为
C. 公共弦 的长为
D. 在过 , 两点的所有圆中,面积最小的圆是圆
【答案】AD
【解析】
【分析】
根据题意,依次分析选项:对于 ,联立两个圆的方程,分析可得公共弦 所在直线方程,可判断 ,对于 ,有两个圆的方程求出两圆的圆心坐标,分析可得直线 的方程,即可得线段 中垂线方程,可判断 ,对于 ,分析圆 的圆心 和半径,分析可得圆心 在公共弦 上,即可得公共弦 的长为圆 的直径,可判断 ,对于 ,由于圆心 在公共弦 上,在过 , 两点的所有圆中,即可判断 .
D. 假如直线 沿 轴向左平移3个单位长度,再沿 轴向上平移2个单位长度后,回到原来的位置,如此该直线 的斜率为
【答案】ACD
【解析】
【分析】
代入点的坐标判断A,求出纵截距判断B,求出斜率得倾斜角,判断C,写出平移直线后的方程,与原方程一致,由此求得 ,判断D.
【详解】 ,所以点 在直线上,A正确;
【详解】解:根据题意,依次分析选项:
对于 ,圆 与圆 ,联立两个圆的方程可得 ,即公共弦 所在直线方程为 , 正确,
对于 ,圆 ,其圆心 为 , ,圆 ,其圆心 为 ,直线 的方程为 ,即线段 中垂线方程 , 错误,
对于 ,圆 ,即 ,其圆心 为 , ,半径 ,圆心 , 在公共弦 上,如此公共弦 的长为 , 错误,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22
25
29
26
16
12
该兴趣小组确定的研究方案是:先从这六组数据中选取 2 组,用剩下的 4 组数据求 线性回归方程,再用被选取的 2 组数据进行检验;
(Ⅰ)求选取的 2 组数据恰好是相邻两个月的概率;
(Ⅱ)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出 关于 的线性回归方程 ;
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人, 则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
点睛:对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A区域的几何度量,最后计算 .
2.C
解析:C
【解析】
试题分析:本题考查几何概型问题,击中阴影部分的概率为 .
考点:几何概型,圆的面积公式.
3.D
解析:D
【解析】
【分析】
故选:A
【点睛】
本题主要考查了秦九韶算法的应用,属于中档题.
9.A
解析:A
【解析】
2班共有8个数据,中间两个是9和10,因此中位数为9.5,只有A符合,故选A.(1班10个数据最大为22,最小为8,极差为14).
10.A地的天气预报显示,A地在今后的三天中,每一天有强浓雾的概率为 ,现用随机模拟的方法估计这三天中至少有两天有强浓雾的概率,先利用计算器产生 之间整数值的随机数,并用0,1,2,3,4,5,6表示没有强浓雾,用7,8,9表示有强浓雾,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数:
所以所求概率为 ,
故选:C.
【点睛】
本题主要考查了古典概型及其概率的计算,其中解答中利用列举法求得基本事件的总数是解答的关键,着重考查了推理与计算能力.
8.A
解析:A
【解析】
【分析】
利用秦九韶算法,求解即可.
【详解】
利用秦九韶算法,把多项式改写为如下形式:
按照从里到外的顺序,依次计算一次多项式当 时的值:
A.1B.0C.1D.3
6.统计某校 名学生的某次数学同步练习成绩,根据成绩分数依次分成六组:
,得到频率分布直方图如图所示,若不低于140分的人数为110.① ;② ;③100分以下的人数为60;④分数在区间 的人数占大半.则说法正确的是( )
A.①②B.①③C.②③D.②④
7.我国数学家陈景润在哥德巴赫猜想的研究中做出了重大贡献,哥德巴赫猜想是:“任一大于2的偶数都可以写成两个质数之和”,如32=13+19.在不超过32的质数中,随机选取两个不同的数,其和等于30的概率为()
【点睛】
本题主要考查了古典概型及其概率的计算,其中解答中正确理解题意,合理分类讨论,利用组合数的公式是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于基础题.
4.C
解析:C
【解析】
【分析】
令 ,求得 之间的数据对照表,结合样本中心点的坐标满足回归直线方程,即可求得 ;再令 ,即可求得预测值 .
10.0
11.3
11.9
支出 (万元)
6.2
7.5
8.0
8.5
9.8
根据上表可得回归直线方程 ,其中 ,据此估计,该社区一户收入为15万元家庭年支出为()
A.11.4万元B.11.8万元C.12.0万元D.12.2万元
12.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是
(1)求居民收入在 的频率;
(2)根据频率分布直方图算出样本数据的中位数;
(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中按分层抽样方法抽出100人作进一步分析,则月收入在 的这段应抽取多少人?
26.地球海洋面积远远大于陆地面积,随着社会的发展,科技的进步,人类发现海洋不仅拥有巨大的经济利益,还拥有着深远的政治利益.联合国于第63届联合国大会上将每年的6月8日确定为“世界海洋日”.2019年6月8日,某大学的行政主管部门从该大学随机抽取100名大学生进行一次海洋知识测试,并按测试成绩(单位:分)分组如下:第一组[65,70),第二组[70,75),第二组[75,80),第四组[80,85),第五组[85,90],得到频率分布直方图如下图:
(1) 求 的值
(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取 人,再从这 人中随机抽取 人进行问卷调查,求在第1组已被抽到 人的前提下,第3组被抽到 人的概率;
(3)若从所有参与调查的人中任意选出 人,记关注“生态文明”的人数为 ,求 的分布列与期望.
25.某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在 ).
A. B. C. D.与a的值有关联
3.在含有3件次品的50件产品中,任取2件,则至少取到1件次品的概率为 ( )
A. B. C. D.
4.一组数据如下表所示:
1
2
3
4
已知变量 关于 的回归方程为 ,若 ,则预测 的值可能为( )
A. B. C. D.
5.阅读下边的程序框图,运行相应的程序,则输出s的值为( )
18.已知函数 满足对任意的实数 ,都有 成立,则实数 的取值范围为______________;
19.某公共汽车站,每隔15分钟有一辆车出发,并且发出前在车站停靠3分钟,则乘客到站候车时间大于10分钟的概率为________.(结果用分数表示)
20.已知 之间的一组数据不小心丢失一个,但已知回归直线过点 ,则丢失的数据是__________.
A. B. C. D.
8.用秦九韶算法求多项式 在 的值时,令 , ,…, ,则 的值为()
A.83B.82C.166D.167
9.某校高一1班、2班分别有10人和8人骑自行车上学,他们每天骑行路程(单位:千米)的茎叶图如图所示:
则1班10人每天骑行路程的极差和2班8人每天骑行路程的中位数分别是
A.14,9.5B.9,9C.9,10D.14,9
附: ,若 ,则 , , .
22.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数, 得到如下资料:
日期
1月10日
2月10日
3月10日
4月10日
5月10日
6月10日
昼夜温差
10
11Leabharlann 131286
就诊人数 (个)
由题意,恰好两件都是次品,共有 种不同的取法,恰好两件中一件是次品、一件是正品,共有 种不同的取法,即可求解.
【详解】
由题意,从含有3件次品的50件产品中,任取2件,共有 种不同的取法,
恰好两件都是次品,共有 种不同的取法,
恰好两件中一件是次品、一件是正品,共有 种不同的取法,
所以至少取到1件次品的概率为 ,故选D.
(2)在(1)的条件下,环保部门为此次参加问卷调查的市民制定如下奖励方案.
(ⅰ)得分不低于 的可以获赠 次随机话费,得分低于 的可以获赠 次随机话费;
(ⅱ)每次赠送的随机话费和相应的概率如下表.
赠送的随机话费/元
概率
现市民甲要参加此次问卷调查,记 为该市民参加问卷调查获赠的话费,求 的分布列及数学期望.
5.B
解析:B
【解析】
经过第一次循环得到 不满足
执行第二次循环得到 不满足 ,
执行第三次循环得到s=1,i=4,不满足 ,
经过第四次循环得到 满足判断框的条件
执行“是”输出 故选B.
6.B
解析:B
【解析】
【分析】
根据频率分布直方图的性质和频率分布直方图中样本估计总体,准确运算,即可求解.
【详解】
由题意,根据频率分布直方图的性质得 ,
(1)求实数 的值;
(2)若从第四组、第五组的学生中按组用分层抽样的方法抽取6名学生组成中国海洋实地考察小队,出发前,用简单随机抽样方法从6人中抽取2人作为正、副队长,列举出所有的基本事件并求“抽取的2人为不同组”的概率.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
设正方形边长为 ,则圆的半径为 ,正方形的面积为 ,圆的面积为 .由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是 ,选B.
2020-2021高二数学上期中试题带答案
一、选择题
1.如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是
A. B. C. D.
2.如图所示,墙上挂有边长为a的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为 的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是()
附:对于一组数据 , ,…,( ,其回归直线 的斜率和截距的最小二乘估计分别为
, .
23.画出解关于 的不等式 的程序框图,并用语句描述.
24.树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,大量的统计数据表明,参与调查者中关注此问题的约占80%.现从参与调查的人群中随机选出 人,并将这 人按年龄分组:第1组 ,第2组 ,第3组 ,第4组 ,第5组 ,得到的频率分布直方图如图所示
相关文档
最新文档