高二数学上学期期中考试试卷

合集下载

高二(上学期)期中考试数学试卷及答案

高二(上学期)期中考试数学试卷及答案

高二(上学期)期中考试数学试卷及答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.一直线过点(0,3),(3,0)-,则此直线的倾斜角为( )A .45°B .135°C .-45°D .-135°2.已知{}n a 是公差为d 的等差数列,n S 为其前n 项和.若3133S a =+,则d =( )A .2-B .1-C .1D .23.已知ABC 的顶点B ,C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC 的周长是( )A .B .6C .4D .4.设a R ∈,若直线10ax y +-=与直线10x ay ++=平行,则a 的值是( )A .1B .1,1-C .0D .0,15.已知直线:sin cos 1l x a y a -=,其中a 为常数且[0,2)a π∈.有以下结论:①直线l 的倾斜角为a ;①无论a 为何值,直线l 总与一定圆相切;①若直线l 与两坐标轴都相交,则与两坐标轴围成的三角形的面积不小于1;①若(,)p x y 是直线l 上的任意一点,则221x y +≥.其中正确结论的个数为( )A .1B .2C .3D .46.已知双曲线2222:1(0,0)x y C a b a b -=>>满足b a =,且与椭圆221123x y +=有公共焦点,则双曲线C 的方程为( )A .22145x y -= B .221810x y -= C .22154x y -= D .22143x y -= 7.在平面直角坐标系xoy 中,已知点()3,1P -在圆222:22150C x y mx y m +--+-=内,动直线AB 过点P 且交圆C 于,A B 两点,若ABC 的面积的最大值为8,则实数m 的取值范围是( )A .(3-+B .[]1,5C .][(35,3-⋃+D .][(),15,∞∞-⋃+8.已知A ,B 为圆22:2430C x y x y +--+=上的两个动点,P 为弦AB 的中点,若90ACB ∠=︒,则点P 的轨迹方程为()A .221(1)(2)4x y -+-=B .22(1)(2)1x y -+-=C .221(1)(2)4x y +++=D .22(1)(2)1x y +++=二、多选题9.已知直线30ax y a -+-=在两坐标轴上的截距相等,则实数=a ( )A .1B .1-C .3D .3-10.设抛物线24y x =,F 为其焦点,P 为抛物线上一点.则下列结论正确的是( )A .若()1,2P ,则2PF =B .若P 点到焦点的距离为3,则P 的坐标为(2,.C .若()2,3A ,则PA PF +D .过焦点F 做斜率为2的直线与抛物线相交于A ,B 两点,则6AB =11.如图,椭圆221:13+=x C y 和222:13y C x +=的交点依次为,,,.A B C D 则下列说法正确的是( )A .四边形ABCD 为正方形B .阴影部分的面积大于3.C .阴影部分的面积小于4.D .四边形ABCD 的外接圆方程为222x y +=12.已知圆222:22(1)2230()C x y mx m y m m m R ++-+++-=∈上存在两个点到点(0,1)A -的距离为4,则m 的可能的值为A .1B .1-C .3-D .5-三、填空题13.设()1,0F c -,()2,0F c 分别为椭圆()222210x y a b a b +=>>的左,右焦点,若直线22a x c=上存在点P ,使22PF c =,则椭圆离心率的取值范围为______.14.已知在数列{}n a 中,12a =,111n na a +=-,*n N ∈,则2021a =________.15.已知焦点为1F ,2F 的双曲线C P 为C 上一点,且满足2123PF PF =,若12PF F △的面积为C 的实轴长为________四、双空题16.抛物线2:2C y x =的焦点坐标是______;经过点()4,1P 的直线l 与抛物线C 相交于A ,B 两点,且点P 恰为AB 的中点,F 为抛物线的焦点,则AF BF +=______.五、解答题17.已知{n a }为等差数列,Sn 为其前n 项和,若1356,0a a a =+=.(1)求数列{n a }的通项公式;(2)求Sn .18.已知A (4, 9), B (6, 3)两点,求以线段AB 为直径的圆的方程.19.已知直线10:4l mx y ++=和直线()()2:2100,0l m x ny m n +-+=>>互相垂直,求m n 的取值范围. 20.已知①ABC 的顶点A (-1,5),B (-1,-1),C (3,7).(1)求边BC 上的高AD 所在直线的方程;(2)求边BC 上的中线AM 所在直线的方程;(3)求①ABC 的面积.21.已知抛物线2:2(0)C y px p =>的焦点为F ,点M 在抛物线C 上,且M 点的纵坐标为4,52p MF =.(1)求抛物线C 的方程;(2)过点(0,4)Q -作直线交抛物线C 于,A B 两点,试问抛物线C 上是否存在定点N 使得直线NA 与NB 的斜率互为倒数?若存在求出点N 的坐标,若不存在说明理由.22.已知椭圆()2222:10x y C a b a b+=>>的离心率为12,以椭圆C 的四个顶点为顶点的四边形面积为 (1)求椭圆C 的方程;(2)若椭圆C 的左顶点为A ,右焦点是F .点P 是椭圆C 上的点(异于左、右顶点),M 为线段PA 的中点,过M 作直线PF 的平行线l .延长PF 交椭圆C 于Q ,连接AQ 交直线l 于点B .①求证:直线l 过定点.①是否存在定点1D 、2D ,使得12BD BD +为定值,若存在,求出1D 、2D 的坐标;若不存在说明理由.参考答案:1.A【分析】根据斜率公式求得直线的斜率,得到tan 1α=,即可求解.【详解】设直线的倾斜角为α, 由斜率公式,可得03130k -==--,即tan 1α=, 因为0180α≤<,所以45α=,即此直线的倾斜角为45.故选:A.2.C【解析】根据{}n a 是公差为d 的等差数列,且3133S a =+,利用等差数列的前n 项和公式求解.【详解】因为{}n a 是公差为d 的等差数列,且3133S a =+,所以113333a d a +=+,解得1d =,故选:C3.D【分析】先由椭圆方程求出a =.【详解】由椭圆2213x y +=,得:a =由题意可得ABC 的周长为:221224AC CF F B BF a a a +++=+==.故选:D.4.A【分析】根据两直线平行则两直线斜率相等截距不相等可得答案.【详解】0a =时,两直线为10y -=、直线10x +=,显然不平行;所以0a ≠,两直线为1y ax =-+,1(1)=-+y x a, 所以1a a -=-,且11a -≠, 解得1a =.故选:A.5.C【分析】根据直线的性质及直线与圆的关系对选项一一判断即可.【详解】对于①,直线l 的倾斜角的取值范围为[0,)π,与角a 的不同,故①错误;对于①,(0,0)1=,则无论a 为何值,直线l 总与221x y +=相切,故①正确;对于①,若直线l 与两坐标轴都相交,则截距分别为1sin a ,1cos a -,则与两坐标轴围成的三角形的面积为111112sin cos sin 2a a a⋅=≥,故①正确; 对于①,由①知直线l 总与221x y +=相切,则直线l 上的点到原点的距离大于等于1,即221x y +≥,故①正确;综上所述,①①①共3个正确;故选:C6.A【分析】根据题意,结合椭圆与双曲线的几何性质,列出方程,求得,a b 的值,即可求解. 【详解】由椭圆的标准方程为221123x y +=,可得21239c =-=,即3c =, 因为双曲线C 的焦点与椭圆221123x y +=的焦点相同,所以双曲线C 中,半焦距3c =,又因为双曲线2222:1(0,0)x y C a b a b -=>>满足b a =,即b =,又由222+=a b c ,即229a ⎫⎪⎪⎝⎭+=,解得24a =,可得25b =, 所以双曲线C 的方程为22145x y -=. 故选:A .7.C【分析】由题知圆心为(),1,4C m r =,进而根据三角形面积公式得ABC 面积最大时,AB =,圆心C 到直线AB 的距离为4PC ≤<即可得答案.【详解】解:圆222:22150C x y mx y m +--+-=,即圆()()22:116C x m y -+-=,即圆心为(),1,4C m r =, 所以ABC 的面积为21sin 8sin 82ABC S r ACB ACB =∠=∠≤△,当且仅当2ACB π∠=,此时ABC 为等腰直角三角形,AB =C 到直线AB 的距离为= 因为点()3,1P -在圆222:22150C x y mx y m +--+-=内,所以4PC ≤<,即4<,所以,28(3)416m ≤-+<,解得31m -≤或53m ≤<+所以,实数m 的取值范围是][(35,3-⋃+故选:C8.B【分析】在直角三角形中利用几何关系即可获解【详解】圆C 即22(1)(2)2x y -+-=,半径r =因为CA CB ⊥,所以2AB ==又P 是AB 的中点,所以112CP AB == 所以点P 的轨迹方程为22(1)(2)1x y -+-=故选:B9.BC【分析】显然0a ≠,再分30a -=与30a -≠两种情况讨论,若30a -≠,求得直线在,x y 轴上的截距,即可得到方程,解得即可;【详解】解:依题意可知0a ≠,所以当30a -=,即3a =时,直线30ax y a -+-=化为30x y -=,此时直线在两坐标轴上的截距都为0,满足题意;当30a -≠,即3a ≠时,直线30ax y a -+-=在x 轴上的截距为3a a-,在y 轴上的截距为3a -,故33a a a -=-,解得1a =-; 综上所述,实数3a =或1a =-.故选:BC10.AC【分析】由抛物线的性质依次计算各选项所求,即可得出结果.【详解】抛物线24y x =,()1,0F .对于A ,()1,2P ,2PF ,A 正确;对于B ,设(,P x ±,()22143x x -+=,2x =,P 的坐标为(2,±.B 错误;对于C,()min PA PF AF +==正确;对于D ,直线:22l y x =-,联立24y x =,得:2310x x -+=,3A B x x +=,2=5B A x x AB ++=,D 错误. 故选:AC.11.ABC【分析】根据曲线的对称性,可判定A 正确;联立方程组求得A 的坐标,求得ABCD 的面积为13S =,可判定B 正确;由直线1,1x y =±=±围成的正方形的面积可判定C 正确;由232OA =,得出圆的方程,可判定D 错误.【详解】由题意,椭圆221:13+=x C y 和222:13y C x +=,根据曲线的对称性, 可得四边形ABCD 为正方形,选项A 正确;联立方程组,求得A ,所以正方形ABCD 的面积为13S =, 所以阴影部分的面积大于3,选项B 正确:由直线1,1x y =±=±围成的正方形的面积为2=4S ,所以阴影部分的面积小于4,选项C 正确;由232OA =,所以四边形ABCD 的外接圆方程为2232x y +=,选项D 错误. 故选:ABC .12.ACD【解析】根据题意,圆()()222:12C x m y m ++-+=⎡⎤⎣⎦与圆()222:14A x y ++=相交,再由两圆圆心距大于两圆半径之差,小于两圆半径之和,列出不等式,解得即可.【详解】由题知,圆()()222:12C x m y m ++-+=⎡⎤⎣⎦与圆()222:14A x y ++=相交,所以,4242CA -<<+,即26,解得()()1,20,171m ∈--,即m 的值可以为:1或3-或5-.故选:ACD.【点睛】本题体现了转化的数学思想,解题的关键在于将问题转化为两圆相交,属于基础题. 13.0e <≤【分析】由题设易知222||a PF c c≥-,结合椭圆离心率的性质即可得离心率的取值范围. 【详解】由题设,222||2a PF c c c=≥-,则22223c e a =≤,而01e <<,所以0e <≤故答案为:0e <≤14.12##0.5 【分析】由递推关系依次求出数列的前几项,归纳出周期后可得结论.【详解】由题意12a =,211122a =-=,311112a =-=-,41121a =-=-, 所以数列{}n a 是周期数列,周期为3,所以202136732212a a a ⨯+===. 故答案为:12.15【分析】由2123PF PF =和双曲线定义可得12,46a PF a PF ==,再结合余弦定理和c e a ==122cos 3F PF ∠=,利用面积公式1212121||||sin 2PF F S PF PF F PF =∠=a =. 【详解】由题意,221123PF PF PF PF ∴=> 由双曲线定义可知,122PF PF a -=21,46a PF a PF ==∴222222221212122212||||||36164524cos 2||||4848PF PF F F a a c a c F PF PF PF a a +-+--∴∠===又122cos 3c e c F PF a ===∴∠=又1212(0,)sin F PF F PF π∠∈∴∠=122121211||||sin 2422PF F S PF PF F PF a =∠=⨯=221,a ∴=又0a a >∴=故双曲线C16. ()1,0##0.5,02⎛⎫ ⎪⎝⎭; 9. 【分析】由抛物线的解析式可知22p =,即可得出焦点坐标为1,02F ⎛⎫ ⎪⎝⎭;过A 、B 、P 作准线的垂线且分别交准线于点M 、N 、K ,根据抛物线的定义可知AM BN AF BF +=+,由梯形的中位线的性质得出()1942212AM BN PK +==+=,进而可求出AF BF +的结果. 【详解】解:由抛物线2:2C y x =,可知22p =,则122p =, 所以抛物线2:2C y x =的焦点坐标为1,02F ⎛⎫ ⎪⎝⎭, 如图,过点A 作AM 垂直于准线交准线于M ,过点B 作BN 垂直于准线交准线于N ,过点P 作PK 垂直于准线交准线于K ,由抛物线的定义可得AM BN AF BF +=+,再根据()4,1P 为线段AB 的中点,而四边形AMNB 为梯形, 由梯形的中位线可知()1942212AM BN PK +==+=, 则9AM BN +=,所以9AF BF +=. 故答案为:1,02⎛⎫ ⎪⎝⎭;9. 17.(1)an =8﹣2n ;(2)27n S n n =-+.【分析】(1)应用等差数列通项公式求基本量,进而写出通项公式; (2)由等差数列前n 项和公式求Sn . (1)设等差数列{an }的公差为d ,由a 1=6,a 3+a 5=0,则6+2d +6+4d =0,解得d =﹣2, 因此an =a 1+(n ﹣1)d =8﹣2n , 所以{an }的通项公式为an =8﹣2n . (2)由题意知:()21172n n n S na d n n -=+=-+,18.(x -5)2+(y -6)2=10【分析】根据题意,求得圆心和半径,即可直接写出圆的标准方程.【详解】因为线段AB 为直径,所以线段AB 的中点C 为该圆的圆心,即C (5, 6).又因为AB ,所以所求圆的半径r =2AB, 因此,所求圆的标准方程为(x -5)2+(y -6)2=10. 19.10,2⎛⎫ ⎪⎝⎭【分析】通过两直线垂直的充要条件得到22n m m =+,然后两边同时除以m ,使用不等式即可解决. 【详解】因为12l l ⊥,所以()()210m m n ++⨯-=,所以22n m m =+,因为0m >,所以2221m m m m n m +==+. 因为0m >,所以22m +>,所以11022m <<+,故m n 的取值范围为10,2⎛⎫ ⎪⎝⎭. 20.(1)x +2y -9=0 (2)4y x =-+ (3)12【分析】(1)求得BC k ,根据垂直关系可得12AD k =-,再根据点斜式求解高AD 所在直线的方程即可;(2)根据中点坐标公式,结合两点式方程求解即可;(3)根据两点式方程可得边BC 所在直线的方程,再根据点到线的距离公式可得点A 到直线BC 的距离,进而根据三角形的面积公式求解即可. (1) 因为7(1)23(1)BC k --==--,所以12AD k =-,从而边BC 上的高AD 所在直线的方程为()1512y x -=-+,即x +2y -9=0(2)因为M 是BC 的中点,所以M (1,3),从而边BC 上的中线AM 所在直线的方程为315311y x --=---,即4y x =-+ (3)由题意知,边BC 所在直线的方程为()()()()117131y x ----=----,即210,x y BC -+==所以点A 到直线BC 的距离h ==ABC 的面积1122BC h =⋅=.21.(1)24y x =(2)存在,()44,【分析】(1)利用抛物线的焦半径公式求得点M 的横坐标,进而求得p,可得答案;(2)根据题意可设直线方程,和抛物线方程联立,得到根与系数的关系式,利用直线NA 与NB 的斜率互为倒数列出等式,化简可得结论. (1)(1)0(,4)M x 设 则05||22p pMF x =+=, 02x p ∴=, 2416p ∴=,0,2p p >∴=,故C 的方程为:24y x = ;(2)假设存在定点N ,使得直线NA 与NB 的斜率互为倒数, 由题意可知,直线AB 的斜率存在,且不为零,(4)AB x m y =+设的方程为,2011220(,),(,),(,)4y A x y B x y N y ,()244x m y y x ⎧=+⎨=⎩由, 24160y my m --=得,所以{Δ>0y 1+y 2=4m y 1y 2=−16m , 即4m <- 或0m > ,01020102222222000012010212441444444NA NB y y y y y y y y k k y y y y y y y y y y x x ----∴⋅=⋅=⋅=⋅=++---- 2001212()16y y y y y y ∴+++=,200(416)160y m y ∴-+-=恒成立,则024160160y y -=⎧⎨-=⎩ ,04y ∴=, (4,4),N ∴存在定点使得直线NA 与NB 的斜率互为倒数. 22.(1)2211612x y +=;(2)(i )证明见解析;(ii )存在,且()13,0D -、()21,0D -.【分析】(1)根据已知条件得出关于a 、b 、c 的方程组,解出这三个量的值,可得出椭圆C 的方程; (2)(i )分析可知直线PQ 不与x 轴重合,设设直线PQ 的方程为2x my =+,设点()00,P x y 、()11,Q x y ,写出点M 的坐标,化简直线l 的方程,即可得出直线l 所过定点的坐标;(ii )点(),B x y ,写出点B 的坐标,利用相关点法求出点B 的轨迹方程,可知点B 的轨迹为椭圆,求出椭圆的两个焦点坐标,结合椭圆的定义可得出结论. (1)解:由题意可得222121222c a a b a b c ⎧=⎪⎪⎪⋅⋅=⎨⎪=+⎪⎪⎩42a b c =⎧⎪=⎨⎪=⎩ 因此,椭圆C 的方程为2211612x y +=. (2)解:(i )易知点()2,0F 、()4,0A -,若PQ 与x 轴重合,则P 或Q 与点A 重合,不合乎题意,设直线PQ 的方程为2x my =+,设点()00,P x y 、()11,Q x y ,点M 的坐标为004,22x y -⎛⎫⎪⎝⎭,直线MB 的方程为00422x y x m y -⎛⎫-=- ⎪⎝⎭且002x my =+, 所以,直线l 的方程为1x my =-,因此,直线l 过定点()1,0-. (ii )因为B 为AQ 的中点,则114,22x y B -⎛⎫ ⎪⎝⎭,且有221111612x y +=, 设点(),B x y ,则11422x x y y -⎧=⎪⎪⎨⎪=⎪⎩,可得11242x x y y =+⎧⎨=⎩, 所以,()()2224211612x y ++=,即()222143x y ++=,即点B 的轨迹方程为()222143x y ++=,因为椭圆22143x y +=的两个焦点坐标分别为()1,0-、()1,0, 椭圆()222143x y ++=可由椭圆22143x y +=向左平移2个单位得到, 故椭圆()222143x y ++=的两个焦点坐标别为()3,0-、()1,0-, 故存在定点()13,0D -、()21,0D -使得124BD BD +=为定值. 【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明; (2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点; (3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.。

江西省萍乡市2024-2025学年高二上学期期中考试数学试卷

江西省萍乡市2024-2025学年高二上学期期中考试数学试卷

A. 2
2
B. 3 2
C. 10 5
D. 15 5
8.已知 O 为坐标原点,双曲线 C:
x2 a2
-
y2 b2
= 1(a
> 0,b
> 0) 的左、右焦点分别是 F1,F2,离
心率为 6 ,点 P ( x1, y1 ) 是 C 的右支上异于顶点的一点,过 F2 作 ÐF1PF2 的平分线的垂线,
2
垂足是 M,| MO |=
线 l 恰有 2 条,则 p 的取值范围为( )
A. 0 < p < 1
B. 0 < p < 2
C. p > 1
D. p > 2
5.已知椭圆 T
:
x2 a2
+
y2 b2
= 1(a
>b
>
0) 的右焦点为 F
,过 F
且斜率为 1 的直线 l 与T
交于
A, B
试卷第11 页,共33 页
两点,若线段 AB 的中点 M 在直线 x + 2 y = 0 上,则T 的离心率为( )
5
6
7
8
答案 A
B
D
A
D
B
C
A
题号 11
12
答案 ABD BC
1.A 【分析】先解出集合 M,再由子集关系求解集合 N 即可.
【详解】由 ln x < 0 得 0 < x < 1,所以 M = {x 0 < x < 1} ,
因为 M Í N ,所以 a < ex 对 "x Î(0,1) 恒成立,
所以 a £ 1 .

2024-2025学年高二上学期期中模拟考试数学试题含解析

2024-2025学年高二上学期期中模拟考试数学试题含解析

2024-2025学年高二数学上学期期中模拟卷(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:沪教版2020必修第三册第十~十一章。

5.难度系数:0.72。

一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.不重合的两个平面最多有条公共直线【答案】1【解析】根据平面的位置关系可知,不重合两平面平行或相交,当相交时,有且只有一条公共直线.故答案为:12.已知球的表面积是16π,则该球的体积为.3.空间中一个角∠A的两边和另一个角∠B的两边分别平行,若∠A=,则∠B=;【答案】【解析】如图,若角∠A 的两边和角∠B 的两边分别平行,且方向相同,则∠A 与∠B 相等此时70B A ∠=∠=︒;②当角∠A 的两边和角∠B 的两边分别平行,且一边方向相同另一边方向相反,则∠A 与∠B 互补,此时180110B A ∠=︒-∠=︒.故答案为70︒或110︒.4.如图,正三棱柱的底面边长为2,高为1,则直线1B C 与底面ABC 所成的角的大小为(结果用反三角函数值表示).5.在空间中,给出下面四个命题,其中真命题为.(填序号)①过平面α外的两点,有且只有一个平面与平面α垂直;②若平面β内有不共线三点到平面α的距离都相等,则αβ∥;③若直线l 与平面α内的任意一条直线垂直,则l α⊥;④两条异面直线在同一平面内的射影一定是两条相交直线.【答案】③【解析】①过平面α外两点可确定一条直线,当这条直线垂直于平面α时,有无数个平面垂直于平面α,故①错误;②若三点在平面α同侧,则αβ∥;若三点在平面α两侧,则α与β相交,故②错误;③直线l 与平面α内的任意一条直线垂直,则l 垂直于平面α内两条相交直线,由线面垂直的判定定理可得l α⊥,故③正确;④两条异面直线在同一个平面内的射影有可能是两条相交直线,也可能是两条平行直线,还可能是一个点和一条直线,故④错误;故答案为:③6.正四棱锥P -ABCD 的所有棱长均相等,E 是PC 的中点,那么异面直线BE 与P A 所成角的余弦值为.连接AC 交BD 于O 点,连接OE ,则OE 因为⊥PO 面ABCD ,所以PO DB ⊥,又因为所以直在角三角形EOB 中,设PA a =,则故答案为:33.7.如图,有一圆锥形粮堆,其轴截面是边长为6m 的正ABC V ,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程是m .【答案】35【解析】解:由题意得:圆锥的底面周长是6π,则66180n ππ=,解得:180n ︒=可知圆锥侧面展开图的圆心角是180︒,如图所示:则圆锥的侧面展开图中:()3m AP =,6(m)AB =,90BAP ︒∠=所以在圆锥侧面展开图中:()223635m BP =+=故答案为:358.已知一球体刚好和圆台的上、下底面及侧面都相切,且圆台上底面的半径为2,下底面的半径为1,则该圆台的侧面积为.【答案】9π【解析】圆台的轴截面如下图示:截面中圆为内切球的最大圆,且2AF DF AG DH ====,1BE CE BG CH ====,所以3AB CD ==,而上下底面周长分别为4π、2π,故该圆台的侧面积为13(2π4π)9π2⨯⨯+=.故答案为:9π9.如图,已知三棱柱111ABC A B C -的体积为3,P ,Q ,R 分别为侧棱1AA ,1BB ,1CC 上的点,且1AP CR AA +=,则Q ACRP V -=.则111332Q ACRP V d S d -=⋅⋅=⋅⋅⋅设三棱柱111ABC A B C -的体积故答案为:1.10.已知大小为π6的二面角的一个面内有一点,它到二面角的棱的距离为6,则这个点到另一个面的距离为.11.正方形ABCD 中,E ,F 分别为线段AB ,BC 的中点,连接DE ,DF ,EF ,将ADE V ,CDF V ,BEF △分别沿DE ,DF ,EF 折起,使A ,B ,C 三点重合,得到三棱锥O DEF -,则该三棱锥外接球半径R 与内切球半径r 的比值为.【答案】26【解析】在正方形ABCD 中,,AD AE CD ⊥12.空间给定不共面的A,B,C,D四个点,其中任意两点间的距离都不相同,考虑具有如下性质的平面α:A,B,C,D中有三个点到的距离相同,另一个点到α的距离是前三个点到α的距离的2倍,这样的平面α的个数是___________个【答案】32【解析】首先取3个点相等,不相等的那个点由4种取法;然后分3分个点到平面α的距离相等,有以下两种可能性:(1)全同侧,这样的平面有2个;(2)不同侧,必然2个点在一侧,另一个点在一侧,1个点的取法有3种,并且平面过三角形两个点边上的中位线,考虑不相等的点与单侧点是否同侧有两种可能,每种情况下都唯一确定一个平面,故共有6个,⨯=个,所有这两种情况共有8个,综上满足条件的这样的平面共有4832故答案为:32二、选择题(本题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分;每题有且只有一个正确选项)13.下列几何体中,多面体是()A.B.C.D.【答案】B【解析】A选项中的几何体是球,是旋转体;B选项中的几何体是三棱柱,是多面体;C 选项中的几何体是圆柱,旋转体;D 选项中的几何体是圆锥,是旋转体.故选B.14.已知两个平面α、β,在下列条件下,可以判定平面α与平面β平行的是().A .α、β都垂直于一个平面γB .平面α内有无数条直线与平面β平行C .l 、m 是α内两条直线,且l ∥β,m ∥βD .l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β【答案】D【解析】对于A ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B 都与平面ABCD 垂直,但这两个平面不平行,所以A 错误,对于B ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,平面11AAC C 中所有平行于交线1AA 的直线都与平面11AA B B 平行,但这两个平面不平行,所以B 错误,对于C ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,,M N 分别为11,A B AB 的中点,则1,MN BB 在平面11AA B B 内,且都与平面11AAC C 平行,但这两个平面不平行,所以C 错误.对于D ,因为l 、m 是两条异面直线,所以将这两条直线平移到共面α时,一定在α内形成两条相交直线,由面面平行的判定定理可知,该结论正确.故选:D15.将3个1212⨯的正方形沿邻边的中点剪开分成两部分(如图1);将这6部分接于一个边长为六边形边上(如图2),若拼接后的图形是一个多面体的表面展开图,则该多面体的体积是()A .17282B .864C .576D .2【答案】B【解析】折成的多面体如图①所示,将其补形为正方体,如图②,所求多面体体积为正方体的一半,又依题易求得正方体的边长为12,故3112864,2V =⨯=故选:B.16.如图,在正方体1111ABCD A B C D -中,E 是棱BC 的中点,F 是侧面11BCC B 上的动点,且1A F ∥平面1AD E .设1A F 与平面11BCC B 所成的角为1,A F α与1AD 所成的角为β,那么下列结论正确的是()A .α的最小值为arctan2,β的最小值为arctan3B .α的最小值为arctan3,β的最大值为2πC .α的最小值大于arctan2,β的最小值大于arctan3D .α的最大值小于arctan3,β的最大值小于2π设正方体的棱长为2,因为MN GE ∥,且MN ⊄MN ∴∥平面1AEGD ;同理1A N ∥平面1AEGD ,且∴平面1A MN ∥平面AEGD ∵11A B ⊥面11BB C C ,所以又1AD MN ,所以1A F 与1AD 所成的角为111tan A B B Fα∴=;当F 为MN 中点时,此时当F 与M 或N 重合时,此时2tan 22α∴≤≤,arctan2对于β,当F 为MN 中点时,当F 与M 或N 重合时,β()221252A F ⎛⎫∴=-= ⎪ ⎪⎝⎭tan 3β∴=,tan 3β∴≥,arctan 3β≤≤又arctan3 1.4≈,arctan2故选:A.三、解答题(本大题共有5题,满分78分,第17-19题每题14分,第20、21题每题18分.)17.如图,长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为1DD 的中点.(1)求证:直线1BD //平面PAC ;(2)求异面直线1BD 与AP 所成角的大小.【解析】(1)设AC 和BD 交于点O ,则O 为BD 的中点,连接PO ,(1分)∵P 是1DD 的中点,∴1//PO BD ,(3分)又∵PO ⊂平面PAC ,1⊄BD 平面PAC ,∴直线1BD //平面PAC ;(6分)(2)由(1)知,1//PO BD ,∴APO ∠即为异面直线1BD 与AP 所成的角,(8分)∵PA PC =12AO AC ==且PO AO ⊥,∴1sin2AO APO AP ∠==.又(0,90]APO ∠∈︒︒,∴30APO ∠=︒故异面直线1BD 与AP 所成角的大小为30︒.(14分)18.如图,在圆柱中,底面直径AB 等于母线AD ,点E 在底面的圆周上,且AF D E ⊥,F 是垂足.(1)求证:AF DB ⊥;(2)若圆柱与三棱锥D ABE -的体积的比等于3π,求直线DE 与平面ABD 所成角的大小.【解析】(1)证明:根据圆柱性质,DA ⊥平面ABE ,因为EB ⊂平面ABE ,所以DA EB ⊥,又因为AB 是圆柱底面的直径,点E 在圆周上,所以AE EB ⊥,因为AE DA A ⋂=且,AE DA ⊂平面DAE ,所以EB ⊥平面DAE ,(2分)又因为AF ⊂平面DAE ,所以EB AF ⊥,因为AF D E ⊥,且EB DE E =I ,且,EB DE ⊂平面DEB ,所以AF ⊥平面DEB ,又因为DB ⊂平面DEB ,所以AF DB ⊥.(6分)(2)解:过点E 作EH AB ⊥,H 是垂足,连接DH ,根据圆柱性质,平面ABD ⊥平面ABE ,且平面ABD ⋂平面ABE AB =,且EH ⊂平面ABE ,所以EH ⊥平面ABD ,因为DH ⊂平面ABD ,所以DH 是ED 在平面ABD 上的射影,从而EDH ∠是DE 与平面ABD 所成的角,(8分)设圆柱的底面半径为R ,则2DA AB R ==,所以圆柱的体积为32πV R =,且21233D ABEABE R V AD S EH -=⋅=⋅ ,由:3πD ABE V V -=,可得EH R =,可知H 是圆柱底面的圆心,且AH R =,且DH =,在直角EDH 中,可得tan EH EDH DH ∠==EDH ∠=(14分)19.如图,将边长为2的正方形ABCD 沿对角线BD 折叠,使得平面ABD ⊥平面CBD ,AE ⊥平面ABD ,且2AE(1)求证:直线EC 与平面ABD 没有公共点;(2)求点C 到平面BED 的距离.【解析】(1)取BD 的中点F ,连接CF 、AF ,如图,依题意,在BCD △中,,BC CD BC CD =⊥,则CF BD ⊥,而平面ABD ⊥平面CBD ,平面ABD ⋂平面CBD BD =,CF ⊂平面CBD ,于是得CF ⊥平面ABD ,且2CF =因为AE ⊥平面ABD ,且2AE =//AE CF ,且AE CF =,从而得四边形AFCE 为平行四边形,//EC AF ,(4分)又AF ⊂平面ABD ,EC ⊂/平面ABD ,则//EC 平面ABD ,所以直线EC 与平面ABD 没有公共点;(6分)(2)因为CF ⊥平面ABD ,AF ⊂平面ABD ,所以CF AF ⊥,因为BD AF ⊥,BD CF F = ,,BD CF ⊂平面,CBD 所以AF ⊥平面,CBD 因为//,EC AF ,于是得EC ⊥平面CBD ,因为AE ⊥平面ABD ,,AB AD ⊂平面ABD ,所以,AE AB AE AD ⊥⊥,(8分)因为EC AF ==EB ED =,则等腰BED 底边BD 上的高2h ==,12BED S BD h =⋅= ,而2BCD S =,设点C 到平面BED 的距离为d ,由C BED E BCD V V --=得1133BED BCD S d S EC ⋅=⋅ ,即2=,解得1d =,所以点C 到平面BED 的距离为1(14分)20.如图所示,在四棱锥P ABCD -中,底面四边形ABCD 是菱形,底面,AC BD O PAC = △是边长为2的等边三角形,PB =PD ,AP =4AF(1)求证:PO ⊥底面ABCD (2)求直线CP 与OF 所成角的大小.(3)在线段PB 上是否存在点M ,使得//CM 平面BDF ?如果存在,求BMBP的值;如果不存在,请说明理由.【解析】(1)因为底面ABCD 是菱形,且AC BD O = ,所以O 为AC ,BD 中点,在PBD △中,PB =PD ,可得PO ⊥BD ,因为在PAC 中,PA =PC ,O 为AC ,BD 中点,所以PO ⊥AC ,(3分)又因为AC ⋂BD =O ,所以PO ⊥底面ABCD .(4分)(2)连接OF ,取AP 中点为E ,连接OE ,因为底面ABCD 是菱形,AC ⋂BD =O ,由O 为AC 中点,且E 为AP 中点,AP =4AF ,所以F 为AE 中点,所以CP //OE .,故∠EOF 为直线CP 与OF 所成的角,(8分)又由PAC 为等边三角形,且E 为中点,所以∠EOF =30o .(10分)(3)存在,13BM BP =,连接CE ,ME ,因为AP =4AF ,E 为AP 中点,所以13EF FP =,又因为13BM BP =,所以在PFB △中,EF BMFP BP =,即EM //BF ,(12分)因为EM ⊄平面BDF ,BF ⊂平面BDF ,所以EM //平面BDF ,由(2)知EC //OF ,因为EC ⊄平面BDF ,OF ⊂平面BDF ,所以EC //平面BDF ,因为EC ⋂EM =E ,所以平面EMC //平面BDF ,因为CM ⊂平面EMC ,所以CM //平面BDF .(18分)21.在棱长均为2的正三棱柱111ABC A B C -中,E 为11B C 的中点.过AE 的截面与棱111,BB AC 分别交于点F ,G.(1)若F 为1BB 的中点,试确定点G 的位置,并说明理由;(2)在(1)的条件下,求截面AGEF 与底面ABC 所成锐二面角的正切值;(3)设截面AFEG 的面积为0S ,AEG △面积为1S ,AEF △面积为2S ,当点F 在棱1BB 上变动时,求2012S S S 的取值范围.【解析】(1)在平面11BCC B 内延长1CC ,FE 相交于点P ,则P ∈平面AGEF ,又1P CC ∈⊂平面11ACC A ,则有平面AGEF 平面11ACC A AG =,P AG ∈,即A ,G ,P 三点共线.(2分)因为E 为11B C 的中点,F 为1BB 的中点,所以11112PC B F CC ==,所以113PC PC =,又因为1//GC AC ,所以1113GC PC AC PC ==,所以111112333GC AC A C ===,即点G 为棱11AC 上靠近点1C 的三等分点.(4分)(2)在平面11BCC B 内延长CB ,EF 相交于点Q ,连接AQ ,则平面AGEF 平面ABC AQ =,在平面11ACC A 内作GM AC ⊥于点M ,则GM ⊥平面ABC ,又AQ ⊂平面ABC ,所以G M AQ ⊥,在平面ABC 内作MN AQ ⊥于点N ,连接GN ,又,GM MN ⊂平面GMN ,GM MN M ⋂=,所以AQ ⊥平面GMN ,GN ⊂平面GMN ,所以AQ GN ⊥,所以GNM ∠为截面AGEF 与底面ABC 所成锐二面角的平面角.(6分)在AQC 中,作CH AQ ⊥于点H ,11BQ C E ==,2AC =,3CQ =,60AC B ∠= ,12222ABC S =⨯⨯⨯=△AQC S =由余弦定理2222cos 4967AQ AC CQ AC CQ ACQ =+-⋅⋅∠=+-=,则AQ122AQC S AQ CH ==⋅ ,可得3217CH =,所以237MN CH ==,又22G M AA ==,所以21tan 3GM GNM MN ∠==,故截面AGEF 与底面ABC (10分)(3)设1GC m =,则[]0,1m ∈,2PG mGA m=-.设PGE 的面积为S ,所以12S m S m=-,又因为21S S S =+,所以1222S m S -=,且1221,122S m S -⎡⎤=∈⎢⎥⎣⎦,故()22120121212212S S S S SS S S S S S +==++,令12S t S =,则1,12t ⎡⎤∈⎢⎥⎣⎦,(11分)设()112,12g t t t t ⎛⎫⎡⎤=++∈ ⎪⎢⎥⎣⎦⎝⎭,当12112t t ≤<≤时,()()()()121212121212111t t g t g t t t t t t t t t --=+--=-,120t t -<,120t t >,1210t t -<,则()()120g t g t ->,即()()12g t g t >,所以()12g t t t =++在1,12t ⎡⎤∈⎢⎥⎣⎦上单调递减,所以()()min 14g t g ==,()max 1922g t g ⎛⎫== ⎪,所以()94,2g t ⎡⎤∈⎢⎥,。

南京市南师附中2024-2025学年高二上学期期中考试数学试卷及答案

南京市南师附中2024-2025学年高二上学期期中考试数学试卷及答案

南京师大附中2024—2025学年度第1学期高二年级期中考试数学试卷命题人:高二数学备课组 审阅人:高二数学备课组一.选择题1.过两点()2,4-和()4,1-的直线在x 轴上的截距为( )A .145B .145-C .73D .73-2.过圆225x y +=上一点()2,1M --作圆的切线l ,则直线l 的方程为( ) A .230x y -+=B .250x y ++=C .250x y --=D .250x y +-=3.若k ∈R ,则“22k -<<”是“方程221362x y k k+=+-表示椭圆”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.若抛物线24y x =上的一点M 到坐标原点O M 到该抛物线焦点的距离为( ) A .5B .3C .2D .15.设直线l 的方程为()sin 10x y θθ+-=∈R ,则直线l 的倾斜角α的范围是( ) A .()0,πB .πππ3π,,4224⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦C .π3π,44⎡⎤⎢⎥⎣⎦D .ππ,42⎡⎫⎪⎢⎣⎭6.若直线上存在到曲线T 上一点的距离为d 的点,则称该直线为曲线T 的d 距离可相邻直线.已知直线:430l x y m +-=为圆()()22:2716C x y -++=的3距离可相邻直线,则m 的取值范围是( )A .[]48,22-B .[]18,8--C .(][),4822,-∞-+∞D .(][),188,-∞--+∞7.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,M 为双曲线右支上的一点.若M 在以12F F 为直径的圆上,且12π5π,312MF F ⎛⎫∠∈ ⎪⎝⎭,则该双曲线离心率的取值范围为( )A .(B .)+∞C .()1D .)18.已知A ,B 分别是椭圆2214x y +=的左、右顶点,P 是椭圆在第一象限内一点.若2PBA PAB ∠=∠,则PA PB的值是( )A .5BC .5D .5二.多选题9.已知椭圆22:143x y C +=的左、右焦点分别为1F ,2F ,P 为椭圆C 上一点.则下列说法错误的是( )A .椭圆CB .12PF F △的周长为5C .1290F PF ∠<︒D .113PF ≤≤10.已知()0,2M ,()0,3N ,在下列方程表示的曲线上,存在点P 满足2MP NP =的有( ) A .370x -=B .4320x y +-=C .221x y +=D .2222140x y x y +-+-=11.天文学家卡西尼在研究土星及其卫星的运行规律时发现:同一平面内到两个定点的距离之积为常数的点的轨迹是卡西尼卵形线.已知定点()1,0F c -,()2,0F c ,动点P 满足212PF PF a ⋅=(a ,0c >且均为常数).设动点P 的轨迹为曲线E .则下列说法正确的是( ) A .曲线C 既是轴对称图形,又是中心对称图形B .12PF PF +的最小值为2aC .曲线E 与x 轴可能有三个交点D .2ca ≥时,曲线E 上存在Q 点,使得12QF QF ⊥ 三.填空题12.与双曲线2212x y -=有公共渐近线,且过点的双曲线的方程为______.13.若直线l 过抛物线24y x =的焦点.与抛物线交于A ,B 两点.且线段AB 中点的横坐标为2.则弦AB 的长为______.14.已知点()5,4P ,点F 为抛物线2:8C y x =的焦点.若以点P ,F 为焦点的椭圆与抛物线有公共点,则椭圆的离心率的最大值为______.四.解答题15.已知直线1:220l ax y +-=与直线2:220l x ay +-=.(1)当12l l ⊥时,求a 的值;(2)当12l l ∥时,求1l 与2l 之间的距离.16.已知点()1,2A ,()1,2B --,点P 满足4PA PB ⋅=. (1)求点P 的轨迹Γ的方程;(2)过点()2,0Q -分别作直线MN ,RS ,交曲线Γ于M ,N ,R ,S 四点,且MN RS ⊥,求四边形MRNS 面积的最大值与最小值.17.已知椭圆()2222:10x y E a b a b +=>>的一个焦点坐标为()2,0,离心率为23.(1)求椭圆E 的标准方程;(2)设动圆22211:C x y t +=与椭圆E 交于A ,B ,C ,D 四点.动圆()222222212:C x y t t t +=≠与椭圆E 交于A ',B ',C ',D '四点.若矩形ABCD 与矩形A B C D ''''的面积相等,证明:2212t t +为定值.18.已知椭圆()2222:10x y C a b a b+=>>和抛物线()2:20E y px p =>.从两条曲线上各取两个点,将其坐标混合记录如下:(1P -,(22,P,)31P -,()49,3P .(1)求椭圆C 和抛物线E 的方程;(2)设m 为实数,已知点()3,0T -,直线3x my =+与抛物线E 交于A ,B 两点.记直线TA ,TB 的斜率分别为1k ,2k ,判断2121m k k +是否为定值,并说明理由. 19.设a 为实数,点()2,3在双曲线2222:12x y C a a -=+上. (1)求双曲线C 的方程; (2)过点1,12P ⎛⎫⎪⎝⎭作斜率为k 的动直线l 与双曲线右支交于不同的两点M ,N ,在线段MN 上取异于点M ,N 的点H ,满足PM MHPN HN=. (ⅰ)求斜率k 的取值范围;(ⅱ)证明:点H 恒在一条定直线上.南京师大附中2024—2025学年度第1学期高二年级期中考试数学试卷命题人:高二数学备课组 审阅人:高二数学备课组一.选择题1.【答案】A【解析】直线的斜率()415246k --==---,∴直线的方程为()5426y x -=-+,即5763y x =-+, ∴直线在x 轴上的截距为145,故选A . 2.【答案】B【解析】00525xx yy x y +=⇒--=,故选B . 3.【答案】B【解析】方程221362x y k k +=+-表示椭圆3602021362k k k k k+>⎧⎪⇒->⇒-<<-⎨⎪+≠-⎩或12k -<<,故选B . 4.【答案】C【解析】设点2,4y M y ⎛⎫⎪⎝⎭,由MO =()2220054y y ⎛⎫-+-= ⎪⎝⎭, ∴24y =或220y =-(舍去),即214y x ==, ∴M 到抛物线24y x =的准线1x =-的距离()112d =--=,根据抛物线定义得选项C .5.【答案】C【解析】当sin 0θ=时,则直线的斜率不存在,即直线的倾斜角为π2, 当sin 0θ≠时,则直线的斜率(][)1,11,sin k θ=-∈-∞-+∞,即直线倾斜角为πππ3π,,4224⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦, 综上所述,直线的倾斜角的范围为π3π,44⎡⎤⎢⎥⎣⎦.故选C . 6.【答案】A【解析】圆C 的半径为4,直线l 上存在到圆C 上一点的距离为3的点, 故圆心()2,7C -到直线l 的距离7d ≤,即()423775m⨯+⨯--≤,解得[]48,22m ∈-,故选A .7.【答案】D【解析】设21MF F θ∠=,则12sin MF c θ=,22cos MF c θ=, 根据双曲线定义122sin 2cos 2MF MF c c a θθ-=-=,1π4c aθ=⎛⎫- ⎪⎝⎭,π5π,312θ⎛⎫∈ ⎪⎝⎭,故πππ,4126θ⎛⎫-∈ ⎪⎝⎭1c e a =<,故选D . 8.【答案】C【法一】由题意知()2,0A -,()2,0B ,设()00,P x y , 直线P A ,PB 的斜率分别为1k ,2k ,则1214k k =-, 由正弦定理得sin 2cos sin PA PBAPAB PB PAB∠==∠∠, 又22tan tan tan 21tan PABPBA PAB PAB∠∠=∠=-∠,则122121k k k -=-, 联立解得2119k =,即22211cos tan 9cos PAB PAB PAB -∠=∠=∠,所以cos PAB ∠=,即5PA PB =, 【法二】设()00,P x y ,则00tan 2y PAB x ∠=+,00tan 2y PBA x ∠=--, 0000200022102tan tan 221312y y x PBA PAB PBA PAB x x y x +∠=∠⇒-=∠=∠=⇒=-⎛⎫- ⎪+⎝⎭,20144169y =5PAPB==二.多选题9.【答案】AB对于选项A :由题意可知2a =,1c ===,∴离心率12c e a ==,故选项A 错误, 对于选项B :由椭圆的定义1224PF PF a +==,1222F F c ==, ∴12PF F △的周长为426+=,故选项B 错误,对于选项C :当点P 为椭圆短轴端点时,12tan23F PF c b ∠==, 又∵120902F PF ∠︒<<︒,∴12302F PF∠=︒,即1260F PF ∠=︒, ∴1290F PF ∠<︒,故选项C 正确, 对于选项D :由椭圆的几何性质可知1a c PF a c -≤≤+,∴113PF ≤≤,故选项D 正确.10.【答案】BC【解析】()2254,39P x y x y ⎛⎫⇒=+-= ⎪⎝⎭对于A ,7233d R -=>=,所以直线与圆相离,不存在点P ; 对于B ,5232553d R -==<=,所以直线与圆相交,存在点P ; 对于C ,121252133C C R R ==+=+,所以两圆外切,存在点P ;对于D ,()()22121221116433x y C C R R -++=⇒=<-=-,所以两圆内含,不存在点P . 11.【答案】ACD【解析】212a PF PF =⋅==对于A ,用x -代x 得222x y c ++=y 轴对称,用y -代y 得222x y c ++=x 轴对称,用x -代x ,y -代y 得222x y c ++=所以曲线C 既是中心对称图形,又是轴对称图形,所以A 正确;对于B ,当0a >时,122PF PF a +≥=,当0a =时,显然P 与1F 或2F 重合,此时122PF PF c +=,所以B 错误; 对于C ,根据对称性可得,曲线E 与x 轴可能有三个交点,所以C 正确; 对于D ,若存在点P ,使得12PF PF ⊥,则12PF PF ⊥,因为()1,PF c x y =---,()2,PF c x y =--,所以222x y c +=,由222x y c ++=22c =222c a ≥,所以D 正确.三.填空题12.【答案】2212x y -= 【解析】设所求双曲线方程为()2202x y λλ-=≠,将点代入双曲线方程得121λ=-=-,故方程为2212x y -=.13.【答案】6【解析】设A 、B 两点横坐标分别为1x ,2x , 线段AB 中点的横坐标为2,则1222x x +=,故12426AB x x p =++=+=. 14.【答案】57【解析】由抛物线方程得()2,0F ,准线方程为2x =-, 又点()5,4P ,则25c PF ==,在抛物线上取点H ,过H 作HG 垂直直线2x =-,交直线2x =-于点G , 过P 作PM 垂直直线1x =-,交直线1x =-于点M ,由椭圆和抛物线定义得()2527a HF HP HG HP PM =+=+≥=--=,故椭圆离心率2527c e a =≤.四.解答题15.【解析】(1)由12l l ⊥,则20a a +=,解得0a =.(2)由12l l ∥得22244a a ⎧=⎨-≠-⎩,解得1a =-,直线2l 的方程为220x y -+-=,即220x y -+=, 直线1l 的方程为220x y --=, 因此,1l 与2l 之间的距离为d ==. 16.【解析】(1)设(),P x y ,则()()41,21,2PA PB x y x y =⋅=--⋅----,故轨迹方程为229x y +=. (2)假设点O 到MN 的距离为m ,到RS 的距离为n,则12S MN RS == 因为MN RS ⊥,所以224m n +=,所以)204S m ==≤≤,所以S ⎡⎤∈⎣⎦,所以四边形MRNS 面积的最大值14,最小值17.【解析】(1) 222249253a b a b e ⎧-=⎧=⎪⎪⇒⇒⎨⎨=⎪==⎩⎪⎩椭圆22:195x y E += (2)设()33,A x y ',矩形ABCD 与矩形A B C D ''''的面积相等 ∴331144x y x y =,即22221133x y x y=∵A ,A '均在椭圆上,∴22223113515199x x x x ⎛⎫⎛⎫⨯-=⨯- ⎪ ⎪⎝⎭⎝⎭,即22139x x +=,222231135151599x x y y ⎛⎫⎛⎫+=-+-= ⎪ ⎪⎝⎭⎝⎭ 故()()()()()22222222222212113313131314t t x y x y x x x x y y +=+++=+=+++=为定值. 18.【解析】(1)将四个点带入抛物线方程解得12p =-,12,2,12,故抛物线E 方程为2y x =故(1P -,)31P -为椭圆上的点22222242186141a a b b a b ⎧+=⎪⎧=⎪⎪⇒⇒⇒⎨⎨=⎪⎩⎪+=⎪⎩椭圆C 方程22184x y += (2)设()12,A x x ,()22,B x y ,则1222123303x my y y m y my y y y x =++=⎧⎧⇒--=⇒⎨⎨=-=⎩⎩()()()121222212121212666136212my my m y y m m m k k y y y y y y ++++=+=++=-为定值. 19.【解析】(1)因为点()2,3在双曲线C 上,所以22222312a a -=+,整理得42780a a +-=, 即()()22180a a -+=,解得21a =,则双曲线C 的方程为2213y x -=; (2)(ⅰ)易知直线l 的方程为112y k x ⎛⎫=-+ ⎪⎝⎭,即112y kx k =+-, 联立2211213y kx k y x ⎧=+-⎪⎪⎨⎪-=⎪⎩,消去y 并整理得()()222132404k x k k x k k ⎛⎫-+---+= ⎪⎝⎭, 设()11,M x y ,()22,N x y ,因为直线l 与双曲线的右支有两个不同的交点M ,N , 所以关于x 的方程()()222132404kxk k x k k ⎛⎫-+---+= ⎪⎝⎭有两个不同的正数根1x ,2x ,()()()()()()()()()22222222212434033416043202301303404k k k k k k k k k k k k k k k k k ⎧⎛⎫-+--+> ⎪⎪⎧-+->⎝⎭⎪⎪⎪⎪--<⇒-->⎨⎨⎪⎪-<⎛⎫⎪⎪⎩---+> ⎪⎪⎝⎭⎩,解得k ∈⎝则斜率k的取值范围为⎝; (ⅱ)设()00,H x y ,由(ⅰ)得()()12222233k k k k x x k k --+=-=--,()222122221144416443343k k k k k k x x k k k ⎛⎫--+-+ ⎪-+⎝⎭===---, 因为1112x a ≥=>,2112x a ≥=>,()()01020x x x x --<, 又P ,M ,N ,H 在同一直线l 上,所以111222112122112122x x PM x PN x x x ---===---,0120MH x x HN x x -=-, 由PM MH PN HN=得0112202121x x x x x x --=--,即()()()()1202012121x x x x x x --=--, 化简得()()()1201212214x x x x x x x +-=-+,所以()()202222241621333k k k k k k x k k k --⎛⎫-+-=- ⎪---⎝⎭, 整理得()()()2202234162k k k x k k k k --+=-+--,解得0832kx k -=-,即003821x k x -=- 又点()00,H x y 在直线112y k x ⎛⎫=-+ ⎪⎝⎭上,所以()001136911223264k k y k x k k +⎛⎫=-+=+= ⎪--⎝⎭ 即00000386921386421x x y x x -+⋅-=--⋅-,故点H 恒在定直线3260x y --=上.。

安徽省池州市贵池区2024-2025学年高二上学期期中检测数学试题含答案

安徽省池州市贵池区2024-2025学年高二上学期期中检测数学试题含答案

2024~2025学年第一学期高二期中检测数学(答案在最后)全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.5.本卷主要考查内容:选择性必修第一册第一章~第二章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量()1,2,4a =,()1,0,2b =-r,则a b ⋅的值为()A.()1,0,8- B.9C.-7D.7【答案】D 【解析】【分析】根据空间向量数量积坐标运算法则进行计算.【详解】()()1,1,2,00874,21a b ⋅⋅=-=-++=.故选:D2.直线+1=0x 的倾斜角为()A.34π B.4π C.2π D.不存在【答案】C 【解析】【分析】根据倾斜角的定义可得结果【详解】因为直线+1=0x 即直线1x =-垂直于轴,根据倾斜角的定义可知该直线的倾斜角为2π,故选:C.3.与直线20x y +=垂直,且在x 轴上的截距为-2的直线方程为().A.220x y -+=B.220x y --= C.220x y -+= D.220x y --=【答案】A 【解析】【分析】先求出直线的斜率,再利用直线的点斜式方程求解.【详解】由题得所求直线的斜率为12,∴所求直线方程为10(2)2y x -=+,整理为220x y -+=.故选:A【点睛】方法点睛:求直线的方程,常用的方法:待定系数法,先定式(从直线的五种形式中选择一种作为直线的方程),后定量(求出直线方程中的待定系数).4.如图所示,在平行六面体1111ABCD A B C D -中,点E 为上底面对角线11A C 的中点,若1BE AA x AB y AD =++,则()A.11,22x y =-=B.11,22x y ==-C.11,22x y =-=-D.11,22x y ==【答案】A 【解析】【分析】根据空间向量的线性运算即可求解.【详解】根据题意,得;11()2BE BB BA BC =++11122AA BA BC=++111,22AA AB AD =-+ 1BE AA xAB y AD =++ 又11,,22x y =-=∴故选:A5.已知向量()0,0,2a = ,()1,1,1b =- ,向量a b + 在向量a上的投影向量为().A.()0,0,3 B.()0,0,6C.()3,3,9- D.()3,3,9--【答案】A 【解析】【分析】根据空间向量的坐标运算及投影向量的公式计算即可.【详解】由题意可知()1,13a b +=-,,()6,2a b a a +⋅== ,所以向量a b + 在向量a上的投影向量为()()()60,0,20,0,322a b a a a a +⋅⋅=⨯=⋅ .故选:A6.若圆()()2213425O x y -+-=:和圆()()()222228510O x y r r +++=<<:相切,则r 等于A.6B.7C.8D.9【答案】C 【解析】【分析】根据的圆标准方程求得两圆的圆心与半径,再根据两圆内切、外切的条件,分别求得r 的值并验证510r <<即可得结果.【详解】圆()()2213425O x y -+-=:的圆心()13,4O ,半径为5;圆()()2222:28O x y r +++=的圆心()22,8O --,半径为r.=|r-5|,求得r=18或-8,不满足5<r<10.=|r+5|,求得r=8或-18(舍去),故选C.【点睛】本题主要考查圆的方程以及圆与圆的位置关系,属于基础题.两圆半径为,R r ,两圆心间的距离为d ,比较d 与R r -及d 与R r +的大小,即可得到两圆的位置关系.7.在空间直角坐标系Oxyz 中,已知点()2,1,0D ,向量()4,1,2,m m =⊥平面DEF ,则点O 到平面DEF 的距离为()A.21B.7C.21D.21【答案】B 【解析】【分析】根据空间向量的坐标运算直接计算点O 到平面DEF 的距离.【详解】因为()2,1,0D ,所以()2,1,0OD = ,又向量()4,1,2,m m =⊥平面DEF ,所以()4,1,2m =是平面DEF 的一个法向量所以点O 到平面DEF的距离为7OD m d m ⋅===.故答案为:7.8.已知直线l :x -my +4m -3=0(m ∈R ),点P 在圆221x y +=上,则点P 到直线l 的距离的最大值为()A.3B.4C.5D.6【答案】D 【解析】【分析】先求得直线过的定点的坐标,再由圆心到定点的距离加半径求解.【详解】解:直线l :x -my +4m -3=0(m ∈R )即为()()340x y m -+-=,所以直线过定点()3,4Q ,所以点P 到直线l的距离的最大值为16OQ r +=+=,故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线2y x =与0x y a ++=交于点()1,P b ,则()A.3a =-B.2b =C.点P 到直线30ax by ++=的距离为13D.点P 到直线30ax by ++=的距离为13【答案】ABD 【解析】【分析】联立直线方程结合其交点坐标求参数a 、b ,进而应用点线距离公式求P 到直线30ax by ++=的距离即可.【详解】由题意,得:210b b a =⎧⎨++=⎩,解得3a =-,2b =,故A 、B 正确,∴()1,2到直线3230x y -++=的距离13d ==,故C 错误,D 正确.故选:ABD.10.已知空间向量()()3,1,2,3,3,1a b =--= ,则下列说法正确的是()A.()32//a b a+B.()57a a b⊥+C.a =D.b =【答案】BCD 【解析】【分析】根据题意,结合向量的坐标运算,以及向量的共线和垂直的坐标表示,准确计算,即可求解.【详解】因为向量()()3,1,2,3,3,1a b =--= ,可得214,10a a b =⋅=-,对于A 中,由()323,3,8a b +=-,设32a b a λ+= ,即()3,3,8(3,1,2)λ-=--,可得33382λλλ-=-⎧⎪=-⎨⎪=⎩,此时方程组无解,所以32a b + 与a 不平行,所以A 错误;对于B 中,由()257575147(10)0a a b a a b ⋅+=+⋅=⨯+⨯-=,所以()57a a b ⊥+,所以B 正确;对于C中,由a ==,所以C 正确;对于D中,由b == D 正确.故选:BCD.11.直线2y x m =+与曲线y =恰有两个交点,则实数m 的值可能是()A.4B.5C.3D.4110【答案】AD 【解析】【分析】做出函数图象,数形结合,求出m 的取值范围,再进行选择.【详解】做出函数2y x m =+与y =的草图.设2y x m =+与圆224x y +=2=⇒m =m =-(舍去).因为函数2y x m =+与y =有两个交点,所以4m ≤<.故选:AD三、填空题:本题共3小题,每小题5分,共15分.12.已知在空间直角坐标系xOy 中,点A 的坐标为(1,2,)3-,点B 的坐标为(0,1,4)--,点A 与点C 关于x 轴对称,则||BC =___________.【答案】【解析】【分析】首先根据对称求出点C 的坐标,然后根据两点间的距离公式求||BC 的值即可.【详解】因为点A 与点C 关于x 轴对称,所以点C 的坐标为()1,2,3-,又因为点B 的坐标为(0,1,4)--,所以BC ==.13.过点()2,4作圆224x y +=的切线,则切线方程为___________.【答案】2x =或34100x y -+=【解析】【分析】考虑直线斜率不存在和直线斜率存在两种情况,利用圆心到直线距离等于半径列出方程,求出切线方程.【详解】①直线的斜率不存在时2x =满足,②直线斜率存在时,设切线方程为()42y k x -=-,则324d k ==⇒=,所以切线方程为4y -=()324x -,即34100x y -+=.故答案为:2x =或34100x y -+=.14.在平面直角坐标系xOy 中,设直线y =-x +2与圆x 2+y 2=r 2(r >0)交于A ,B 两点.若圆上存在一点C ,满足5344OC OA OB =+,则r 的值为________.【答案】【解析】【详解】22225325539OC OA OB OA 2OA OB OB44164416⎛⎫=+=+⋅⋅+ ⎪⎝⎭即222225159r r r cos AOB r 16816=+∠+,整理化简得cos∠AOB=-35,过点O 作AB 的垂线交AB 于D,则cos∠AOB=2cos 2∠AOD-1=-35,得cos 2∠AOD=15.又圆心到直线的距离为OD==,所以cos 2∠AOD=15=22OD r=22r ,所以r 2.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.已知直线l 过点()2,1P -.(1)若直线l 与直线230x y ++=垂直,求直线l 的方程(2)若直线l 在两坐标轴的截距互为相反数,求直线l 的方程.【答案】(1)240x y --=;(2)20x y +=或30x y --=.【解析】【分析】(1)根据直线方程垂直设出方程求解未知数即可;(2)根据截距的概念分类讨论求方程即可.【小问1详解】因为直线l 与直线230x y ++=垂直,所以可设直线l 的方程为20x y m -+=,因为直线l 过点()2,1P -,所以()2210m -⨯-+=,解得4m =-,所以直线l 的方程为240x y --=【小问2详解】当直线l 过原点时,直线l 的方程是2xy =-,即20x y +=.当直线l 不过原点时,设直线l 的方程为x y a -=,把点()2,1P -代入方程得3a =,所以直线l 的方程是30x y --=.综上,所求直线l 的方程为20x y +=或30x y --=16.已知向量()()1,1,,2,,a t t t b t t =--=.(1)若a b ⊥ ,求t 的值;(2)求b a -的最小值.【答案】(1)2(2)5【解析】【分析】(1)由空间向量垂直得到方程,求出答案;(2)计算出()1,21,0b a t t -=+-,利用模长公式得到b a -= ,求出最小值.【小问1详解】因为a b ⊥ ,所以0a b ⋅=,即()()22110t t t t -+-+=,解得2t=;【小问2详解】()1,21,0 b a t t-=+-所以b a-=.所以当15t=时,b a-取得最小值为5.17.如图,在四棱锥P ABCD-中,底面ABCD为直角梯形,//AD BC,AB BC⊥,AP⊥平面ABCD,Q为线段PD上的点,2DQ PQ=,1AB BC PA===,2AD=.(1)证明://BP平面ACQ;(2)求直线PC与平面ACQ所成角的正弦值.【答案】(1)证明见解析(2)13【解析】【分析】(1)利用三角形相似得2MD MB=,结合2DQ PQ=,则有//MQ BP,利用线面平行的判定即可证明;(2)以A为坐标原点,建立合适的空间直角坐标系,求出平面ACQ的法向量,利用线面角的空间向量法即可得到答案.【小问1详解】如图,连接BD与AC相交于点M,连接MQ,∵//BC AD,2AD BC=,则AMD CMB,∴2MD ADMB CB==,2MD MB=,∵2DQ PQ=,∴//MQ BP,BP ⊄ 平面ACQ ,MQ Ì平面ACQ ,∴//BP 平面ACQ ;【小问2详解】AP ⊥ 平面ABCD ,,AB AD ⊂平面ABCD ,,AP AB AP AD ∴⊥⊥,因为底面AB BC ⊥,则AB ,AD ,AP 两两垂直,以A 为坐标原点,建立如图所示空间直角坐标系,各点坐标如下:()0,0,0A ,()1,1,0C ,()0,0,1P ,220,,33Q ⎛⎫⎪⎝⎭.设平面ACQ 的法向量为(),,m x y z =,由()1,1,0AC = ,220,,33AQ ⎛⎫= ⎪⎝⎭ ,有02233AC m x y AQ m y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1x =,1y =-,1z =,可得()1,1,1m =- ,由()1,1,1CP =-- ,有1CP m ⋅=,CP m ==,则1cos ,3CP m == .故直线PC 与平面ACQ 所成角的正弦值为13.18.如图,在正方体1111ABCD A B C D -中,,F G 分别是棱1,CC AD 的中点,E 为棱AB 上一点,且异面直线1B E 与BG 所成角的余弦值为25.(1)证明:E 为AB 的中点;(2)求平面1B EF 与平面11ABC D 所成锐二面角的余弦值.【答案】(1)见解析(2)4242【解析】【分析】(1)以D 为坐标原点,建立如图所示的空间直角坐标系D xyz -,不妨令正方体的棱长为2,设()2,,0E a ,利用111cos ,B E BG B E BG B E BG⋅= ,解得1a =,即可证得;(2)分别求得平面1B EF 与平面11ABC D 的法向量m n ,,利用cos ,m n m n m n⋅=⋅ 求解即可.【小问1详解】证明:以D 为坐标原点,建立如图所示的空间直角坐标系D xyz -.不妨令正方体的棱长为2,则()0,0,0D ,()1,0,0G ,()2,2,0B ,()12,2,2B ,()0,2,1F ,设()2,,0E a ,则()10,2,2B E a =-- ,()1,2,0BG =-- ,所以()1121422cos ,5524B E BG a B E BG B E BG a ⋅-===-+ ,所以2430a a -+=,解得1a =(3a =舍去),即E 为AB 的中点.【小问2详解】由(1)可得()10,1,2B E =-- ,()2,1,1EF =- ,设(),,m x y z = 是平面1B EF 的法向量,则12020m B E y z m EF x y z ⎧⋅=--=⎪⎨⋅=-++=⎪⎩ .令2z =,得()1,4,2m =-- .易得平面11ABC D 的一个法向量为()12,0,2n DA == ,所以cos ,42m n m n m n ⋅===⋅ .所以所求锐二面角的余弦值为42.19.已知圆C 过点(1,0)M -且与直线20x +-=相切于点1,22⎛⎫ ⎪ ⎪⎝⎭,直线:30l kx y k --+=与圆C 交于不同的两点A ,B .(1)求圆C 的方程;(2)若圆C 与x 轴的正半轴交于点P ,直线PA ,PB 的斜率分别为1k ,2k ,求证:12k k +是定值.【答案】(1)221x y +=(2)证明见解析.【解析】【分析】(1)确定圆心和半径,可得圆C 的方程.(2)把直线方程与圆C 方程联立,得到12x x +,21x x ,再表示出12k k +,运算整理即可.【小问1详解】过点1,22⎛⎫ ⎪ ⎪⎝⎭且与直线20x +-=垂直的直线为:1022x y ⎛⎫⎫---= ⎪⎪ ⎪⎭⎝⎭0y -=.又线段MN,其中1,22N ⎛⎫ ⎪ ⎪⎝⎭的垂直平分线为:()222213122x y x y ⎛⎫⎛⎫++=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭0y +=.由00y y -=+=,得圆心()0,0C ,又221r CM ==.故圆C 的方程为:221x y +=.【小问2详解】将()3y kx k =+-代入221x y +=得:()2231x kx k ⎡⎤++-=⎣⎦,整理得:()()()222123310k x k k x k ++-+--=.由0∆>⇒()()()22224341310k k k k ⎡⎤--+-->⎣⎦⇒43k >.设1,1,2,2,则()122231k k x x k -+=+,()2122311k x x k --=+.又()1,0P ,所以()111111133111k x y k k x x x -+===+---,同理:2231k k x =+-.所以121233211k k k x x +=++--()()()121236211x x k x x +-=+--()()1212123621x x k x x x x +-=+-++()()()22222336123123111k k k k k k k k k -⨯-+=+----+++()()()22222336123123111k k k k k k k k k -⨯-+=+----+++18629k k --=+23=-.所以1223k k +=-为定值.。

2024-2025学年湖南省长沙市长郡中学高二上学期期中考试数学试卷(含答案)

2024-2025学年湖南省长沙市长郡中学高二上学期期中考试数学试卷(含答案)

2024-2025学年湖南省长沙市长郡中学高二上学期期中考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.直线x+y−12=0的倾斜角是( )A. π4B. π2C. 3π4D. π32.已知点B是点A(3,4,5)在坐标平面Oxy内的射影,则|OB|等于A. 5B. 34C. 41D. 523.长轴长是短轴长的3倍,且经过点P(3,0)的椭圆的标准方程为A. x29+y2=1 B. x281+y29=1C. x29+y2=1或y281+x29=1 D. y29+x2=1或x281+y29=14.已知方程x22+m −y2m+1=1表示双曲线,则m的取值范围为A. (−2,−1)B. (−∞,−2)∪(−1,+∞)C. (1,2)D. (−∞,1)∪(2,+∞)5.在正四棱锥P−ABCD中,PA=4,AB=2,E是棱PD的中点,则异面直线AE与PC所成角的余弦值是( )A. 612B. 68C. 38D. 56246.已知椭圆C:x29+y25=1的右焦点为F,P是椭圆上任意一点,点A(0,23),则▵APF的周长的最大值为A. 9+21B. 14C. 7+23+5D. 15+37.已知A(−3,0),B(0,3),从点P(0,2)射出的光线经x轴反射到直线AB上,又经过直线AB反射到P点,则光线所经过的路程为A. 210B. 6C. 26D. 268.已知A,B两点的坐标分别是(−1,0),(1,0),直线AM,BM相交于点M,且直线AM的斜率与直线BM的斜率的差是2,则点M的轨迹方程为A. y=−x2+1(x≠±1)B. y=x2+1(x≠±1)C. x=−y2+1(y≠±1)D. x=y2+1(y≠±1)二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

9.已知A(−3,−4),B(6,3)两点到直线l:ax+y+1=0的距离相等,则a的值可取A. −13B. 13C. −79D. 7910.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,过点F1的直线与C的左支相交于P,Q两点,若PQ⊥PF2,且4|PQ|=3|PF2|,则( )A. |PQ|=4aB. 3PF1=PQC. 双曲线C的渐近线方程为y=±223x D. 直线PQ的斜率为411.已知椭圆C1:x29+y25=1,将C1绕原点O沿逆时针方向旋转π2得到椭圆C2,将C1上所有点的横坐标、纵坐标分别伸长到原来的2倍得到椭圆C3,动点P,Q在C1上,且直线PQ的斜率为−12,则A. 顺次连接C1,C2的四个焦点构成一个正方形B. C3的面积为C1的4倍C. C3的方程为4x29+4y25=1D. 线段PQ的中点R始终在直线y=109x上三、填空题:本题共3小题,每小题5分,共15分。

山东省济南市山东省实验中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

山东省济南市山东省实验中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

山东省实验中学2024~2025学年第一学期期中高二数学试题 2024.11(选择性必修—检测)说明:本试卷满分150分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第2页,第Ⅱ卷为第3页至第4页.试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效。

考试时间120分钟。

第Ⅰ卷(共58分)一、单选题(本题包括8小题,每小题5分,共40分。

每小题只有一个选项符合题意)1.已知空间向量,,,若,,共面,则实数( )A.1B.2C.3D.42.“”是“直线与直线平行”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件3.给出下列说法,其中不正确的是()A.若,则,与空间中其它任何向量都不能构成空间的一个基底向量B.若,则点是线段的中点C.若,则,,,四点共面D.若平面,的法向量分别为,,且,则3.若三条直线,,不能围成三角形,则实数的取值最多有( )A.2个B.3个C.4个D.5个4.实数,满足,则的最小值为( )A. B.7C. D.36.若直线与曲线有两个不同的交点,则实数的取值范围是( )A.()1,2,0a = ()0,1,1b =- ()2,3,c m = a b cm =1m =-()1:2310l mx m y +++=2:30l x my ++=a b ∥a b c2PM PA PB =+M AB 2OA OB OC OD =+-A B C D αβ()12,1,1n =- ()21,,1n t =-αβ⊥3t =1:43l x y +=2:0l x y +=3:2l x my -=m x y 2222x y x y +=-3x y -+3+:20l kx y --=:1C x =-k k >5k <≤k <<1k <≤7.在三棱锥中,为的重心,,,,,,若交平面于点,且,则的最小值为( )A.B.C.1D.8.已知椭圆的左、右焦点分别为,,点在上且位于第一象限,圆与线段的延长线,线段以及轴均相切,的内切圆为圆.若圆与圆外切,且圆与圆的面积之比为4,则的离心率为( )A.C.二.多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.)9.下列说法正确的是()A.若直线的倾斜角越大,则直线的斜率就越大B.圆与直线必有两个交点C.在轴、轴上的截距分别为,的直线方程为D.设,,若直线与线段有交点,则实数的取值范围是10.已知椭圆的离心率为,长轴长为6,,分别是椭圆的左、右焦点,是一个定点,是椭圆上的动点,则下列说法正确的是( )A.焦距为2B.椭圆的标准方程为P ABC -G ABC △PD PA λ= PE PB μ= 12PF PC =λ()0,1μ∈PG DEF M 12PM PG =λμ+122343()2222:10x y C a b a b+=>>1F 2F P C 1O 1F P 2PF x 12PF F △2O 1O 2O 1O 2O C 123522:4O x y +=10mx y m +--=x y a b 1x y a b+=()2,2A -()1,1B :10l ax y ++=AB a (]322⎡⎫-∞-+∞⎪⎢⎣⎭,,()2222:10x y E a b a b +=>>23F F '()1,1A P E E 22195x y +=C.D.的最大值为11.立体几何中有很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数24,棱长为的半正多面体,它所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得的,下列结论正确的有()A.平面B.,,,四点共面C.点到平面的距离为D.若为线段上的动点,则直线与直线所成角的余弦值范围为第Ⅱ卷(非选择题,共92分)三、填空题(本题共3小题,每小题5分,共15分,其中14题第一空2分,第二空3分.)12.已知直线的倾斜角,则直线的斜率的取值范围为______.13.如图,已知点,,从点射出的光线经直线反射后再射到直线上,最后经直线反射后又回到点,则光线所经过的路程是______.14.杭州第19届亚运会的主会场——杭州奥体中心体育场,又称“大莲花”(如图1所示).会场造型取意于杭州丝绸纹理与纺织体系,建筑体态源于钱塘江水的动态,其简笔画如图2所示.一同学初学简笔画,先AF '=PA PF +6AG ⊥BCDG A F C D B ACD E BC DE AF 12⎡⎢⎣l 2,43ππθ⎛⎫∈⎪⎝⎭l ()8,0A ()0,4B -()3,0P AB OB OB P画了一个椭圆与圆弧的线稿,如图3所示.若椭圆的方程为,下顶点为,为坐标原点,为圆上任意一点,满足,则点的坐标为______;若为椭圆上一动点,当取最大值时,点恰好有两个,则的取值范围为______.图1 图2 图3四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)已知两直线和的交点为.(1)直线过点且与直线平行,求直线的一般式方程;(2)圆过点且与相切于点,求圆的一般方程.16.(15分)已知椭圆,且过点.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于,两点,且点在第一象限,点,分别为椭圆的右顶点和上顶点,求四边形面积的最大值.17.(15分)在梯形中,,,,为的中点,线段与交于点(如图1).将沿折起到位置,使得(如图2).图1 图2(1)求证:平面平面;(2)线段上是否存在点,使得与平面的值;若不存在,请说明理由.E()222210x ya ba b+=>>10,2A⎛⎫-⎪⎝⎭O P C2PO PA=C Q QC Q a1:20l x y++=2:3210l x y-+=Pl P310x y++=lC()1,01l P C()2222:10x yC a ba b+=>>⎛⎝C12l C M N M A B CAMBN SABCD AB CD∥3BADπ∠=224AB AD CD===P AB AC DP O ACD△AC ACD'△D O OP'⊥D AC'⊥ABCPD'Q CQ BCD'PQPD'18.(17分)已知直线,半径为2的圆与相切,圆心在轴上且在直线的右上方.(1)求圆的方程;(2)直线与圆交于不同的,两点,且,求直线的斜率;(3)过点的直线与圆交于,两点(在轴上方),问在轴正半轴上是否存在定点,使得轴平分?若存在,请求出点的坐标:若不存在,请说明理由.19.(17分)已知点,是平面内不同的两点,若点满足(,且),则点的轨迹是以有序点对为“稳点”的-阿波罗尼斯圆.若点满足,则点的轨迹是以为“稳点”的-卡西尼卵形线.已知在平面直角坐标系中,,.(1)若以为“稳点”的-阿波罗尼斯圆的方程为,求,,的值;(2)在(1)的条件下,若点在以为“稳点”的5-卡西尼卵形线上,求(为原点)的取值范围;(3)卡西尼卵形线是中心对称图形,且只有1个对称中心,若,,求证:不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称.:40l x ++=C l C x l C 2y kx =-C M N 120MCN ︒∠=2y kx =-()0,1M C A B A x y N y ANB ∠N A B P PAPBλ=0λ>1λ≠P (),A B λQ ()0QA QB μμ⋅=>Q (),A B μ()2,0A -()(),2B a b a ≠-(),A B λ221240x y x +-+=a b λQ (),A B OQ O 0b =λ=a μ(),A B μ山东省实验中学2024~2025学年第一学期期中高二数学试题参考答案 2024.11选择题1234567891011ABCBDDCCBDBCDABD填空题12..13.,.解答题15.【答案】(1)(2).【详解】(1)直线与直线平行,故设直线为,……1分联立方程组,解得.直线和的交点.……3分又直线过点,则,解得,即直线的方程为.……5分(2)设所求圆的标准方程为,的斜率为,故直线的斜率为1,由题意可得,……8分解得,……11分故所求圆的方程为.(()1,-∞-+∞ ,20,3⎛⎫-⎪⎝⎭a >340x y ++=221140333x y x y +++-=l 310x y ++=l 130x y C ++=203210x y x y ++=⎧⎨-+=⎩11x y =-⎧⎨=-⎩∴1:20l x y ++=2:3210l x y -+=()1,1P --l P 1130C --+=14C =l 340x y ++=()()222x a y b r -+-=1:20l x y ++=1-CP ()()()()2222221110111a b r a b r b a ⎧--+--=⎪⎪-+-=⎨⎪+⎪=+⎩216162518a b r ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩2211256618x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭化为一般式:.……13分16.【答案】(1)(2)【详解】(1)由椭圆,解得,……2分由椭圆过点,得,联立解得,,……4分所以椭圆的方程为.……5分(2)由题意可设,点在第一象限,,……6分设,,点,到直线的距离分别为,,由,消可得,,,……8分10分,,直线的一般式方程:,,,,……12分14分当时,有最大值为……15分17.【答案】(1)证明见解析(2)存在,【详解】(1)证明:在梯形中,,22114333x y x y+++-=2214xy+=2222:1x yCa b+==2a b= C⎛⎝221314a b+=2a=1b=C2214xy+=1:2l y x m=+M11m∴-<<()11,M x y()22,N x y A B l1d2d221412xyy x m⎧+=⎪⎪⎨⎪=+⎪⎩y222220x mx m++-=122x x m∴+=-21222x x m=-MN∴===()2,0A()0,1B l220x y m-+=1d∴=2d=12d d∴+=()121122AMN BMNS S S MN d d∴=+=⋅+==△△m=S13ABCD AB CD∥,,为的中点,,,,……1分是正三角形,四边形为菱形,,,……3分,,又,,平面,平面,……5分平面,平面平面.……6分(2)存在,,理由如下:……8分平面,,,,两两互相垂直,如图,以点为坐标原点,,,所在直线为,,轴建立空间直角坐标系.则,,,,,,设平面的一个法向量为,则,即,令,则,,,……11分设,,,, (12)分设与平面所成角为,则,即,,解得,224AB AD CD ===3BAD π∠=P AB CD PB ∴∥CD PB =BC DP =ADP ∴△DPBC AC BC ∴⊥AC DP ⊥AC D O ⊥' D O OP '⊥AC OP O = AC OP ⊂ABC D O ∴'⊥ABC D O ⊂' D AC '∴D AC '⊥ABC 13PQ PD '=D O ⊥' BAC OP AC ⊥OA ∴OP OD 'O OA OP OD 'x y z ()C ()2,0B ()0,0,1D '()0,1,0P )2,1BD ∴'=- )CD '=CBD '(),,n x y z =00n BD n CD ⎧⋅=⎪⎨⋅=⎪⎩'' 200y z z -+=+=⎪⎩1x =0y =z =(1,0,n ∴=()01PQ PD λλ'=≤≤)CP =()0,1,1PD =-'),CQ CP PQ CP PD λλλ∴=+=+=- CQ BCD 'θsin cos ,CQ n CQ n CQ n θ⋅====23720λλ-+=01λ≤≤ 13λ=线段上存在点,且,使得与平面……15分18.【答案】(1)(2)(3)【详解】(1)设圆心,则,……2分解得或(舍),故圆的方程为.……4分(2)由题意可知圆心到直线的距离为,……6分,解得.……8分(3)当直线的斜率存在时,设直线的方程为,,,,由得,……10分,……12分若轴平分,则,即,即,即,即,即,……14分当时,上式恒成立,即;……15分当直线的斜率不存在或斜率为0时,易知满足题意;综上,当点的坐标为时,轴平分.……17分19.【答案】(1),,(2)(3)证明见解析【详解】(1)因为以为“稳点”的—阿波罗尼斯圆的方程为,设是该圆上任意一点,则,……1分所以,……3分∴PD 'Q 13PQ PD '=CQ BCD '224x y +=k =()0,4N ()(),04C a a >-422a +=0a =8a =-C 224x y +=C 2y kx =-2sin 301︒=1=k =AB AB ()10y kx k =+≠()()0,0N t t >()11,A x y ()22,B x y 224,1x y y kx ⎧+=⎨=+⎩()221230k x kx ++-=12221k x x k -∴+=+12231x x k -=+y ANB ∠AN BN k k =-12120y t y t x x --+=1212110kx t kx tx x +-+-+=()()1212210kx x t x x +-+=()()22126011t k k k k -⨯--+=++40k kt -+=4t =()0,4N AB ()0,4N N ()0,4y ANB ∠2a =0b =λ=[]1,3(),A B λ221240x y x +-+=(),P x y 22124x y x +=-()()()()22222222222222244162212224PA x y x y x x x y ax by a b a x by a bx a y b PB+++++===+--++--+-+-+-因为为常数,所以,,且,……5分所以,,.……6分(2)解:由(1)知,,设,由,所以,……7分,整理得,即,所以,……9分,……10分由,得,即的取值范围是.……12分(3)证明:若,则以—阿波罗尼斯圆的方程为,整理得,该圆关于点对称.……15分由点,关于点对称及,可得—卡西尼卵形线关于点对称,令,解得,与矛盾,所以不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称……17分22PA PB2λ2240a b -+=0b =2a ≠-2a =0b =λ==()2,0A -()2,0B (),Q x y 5QA QB ⋅=5=()222242516x y x ++=+2240y x =--≥42890x x --≤()()22190x x +-≤209x ≤≤OQ ==209x ≤≤13OQ ≤≤OQ []1,30b =(),A B ()()222222x y x a y ⎡⎤++=-+⎣⎦()22244240x y a x a +-++-=()22,0a +()2,0A -(),0B a 2,02a -⎛⎫⎪⎝⎭QA QB μ⋅=μ2,02a -⎛⎫⎪⎝⎭2222a a -+=2a =-2a ≠=-a μ(),A B μ。

高二上学期数学期中考试卷附答案

高二上学期数学期中考试卷附答案

【一】选择题〔共12小题,每题5分,共60分〕1.以下命题中,错误的选项是〔〕A、平行于同一个平面的两个平面平行B、假设直线a不平行于平面M,那么直线a与平面M有公共点C、直线a∥平面α,P∈α,那么过点P且平行于直线a的直线只有一条,且在平面α内D、假设直线a∥平面M,那么直线a与平面M内的所有直线平行2.如下图的一个几何体及其正视图如图,那么其俯视图是〔〕A、 B、 C、 D、3.过点〔﹣2,3〕,倾斜角等于直线2x﹣y+3=0的倾斜角的直线方程为〔〕A、﹣2x+y﹣7=0 B、﹣x+2y﹣8=0 C、2x+y+1=0 D、x+2y﹣4=04.一个底面半径和高都为2的圆椎的表面积为〔〕A、4〔+1〕πB、4〔2+1〕πC、4πD、8π5.一长方体从一个顶点出发的三条棱长分别为3,,4,假设该长方体的顶点都在一个球的球面上,那么这个球的体积为〔〕A、288πB、144πC、108πD、36π6.如图,棱长都相等的平行六面体ABCD﹣A′B′C′D′中,∠DAB=∠A′AD=∠A′AB=60°,那么二面角A′﹣BD﹣A的余弦值为〔〕A、B、﹣ C、D、﹣7.如图,正方形SG1G2G3中,E,F分别是G1G2,G2G3中点,D是EF与SG2的交点,现沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,那么在四面体G﹣SEF中必有〔〕A、SD⊥平面EFGB、SE⊥GFC、EF⊥平面SEGD、SE⊥SF8.直线〔a﹣1〕x+〔a+1〕y+8=0与〔a2﹣1〕x+〔2a+1〕y﹣7=0平行,那么a 值为〔〕A、0B、1C、0或1D、0或﹣49.如图,正方体ABCD﹣A′B′C′D′中,AB的中点为E,AA′的中点为F,那么直线D′F 和直线CE〔〕A、都与直线DA相交,且交于同一点B、互相平行C、异面D、都与直线DA相交,但交于不同点10.△ABC的顶点坐标分别是A〔5,1〕,B〔1,1〕,C〔1,3〕,那么△ABC的外接圆方程为〔〕A、〔x+3〕2+〔y+2〕2=5B、〔x+3〕2+〔y+2〕2=20C、〔x﹣3〕2+〔y﹣2〕2=20D、〔x﹣3〕2+〔y﹣2〕2=511.一个几何体的三视图及相关尺寸如下图,其中其主视图和侧视图是一等腰梯形与一个矩形组成的图形,俯视图是两个同心圆组成的图形,那么该几何体的体积为〔〕A、25πB、19πC、11πD、9π12.三点A〔2,2〕,B〔3,1〕,C〔﹣1,﹣1〕,那么过点A的直线l与线段BC有公共点时〔公共点包含公共点〕,直线l的斜率kl的取值范围是〔〕A、[﹣1,1]B、〔﹣∞,﹣1]∪[1,+∞〕C、〔﹣1,1〕D、〔﹣∞,﹣1〕∪〔1,+∞〕【二】填空题〔共4小题,每题5分,共20分〕13.直线l的方程为3x﹣2y+6=0,那么直线l在x轴上的截距是;y轴上的截距是.14.与直线4x﹣3y﹣2=0垂直且点〔1,0〕到它的距离为1的直线是.15.如图,在正方体ABCD﹣A′B′C′D′中,异面直线AC与BC′所成的角为.16.在直角坐标平面xOy内,一条光线从点〔2,4〕射出,经直线x+y﹣1=0反射后,经过点〔3,2〕,那么反射光线的方程为.【三】解答题解答应写出文字说明,演算步骤或证明过程.17.在直角坐标系中,平行四边形ABCD的两对角线AC、BD交于点O〔﹣1,1〕,其中A〔﹣2,0〕,B〔1,1〕.分别求该平行四边形的边AD、DC所在直线的方程.18.圆C的圆心在直线x﹣2y﹣3=0上,并且经过A〔2,﹣3〕和B〔﹣2,﹣5〕,求圆C的标准方程.19.如下图,多面体ABCD﹣A1B1C1D1是棱长为1的正方体.〔1〕求证:平面AB1D1∥平面BDC1;〔2〕求四棱锥D1﹣AB1C1D的体积.20.如图,直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=90°,∠EAC=60°,AB=AC、〔1〕在直线AE上是否存在一点P,使得CP⊥平面ABE?请证明你的结论;〔2〕求直线BC与平面ABE所成角θ的余弦值.21.等边三角形ABC的边长为2沿平行于BC的线段PQ折起,使平面APQ⊥平面PBCQ,设点A到直线PQ的距离为x,AB的长为D、〔Ⅰ〕x为何值时,d2取得最小值,最小值是多少;〔Ⅱ〕假设∠BAC=θ,求cosθ的最小值.参考答案与试题解析【一】选择题〔共12小题,每题5分,共60分〕1.以下命题中,错误的选项是〔〕A、平行于同一个平面的两个平面平行B、假设直线a不平行于平面M,那么直线a与平面M有公共点C、直线a∥平面α,P∈α,那么过点P且平行于直线a的直线只有一条,且在平面α内D、假设直线a∥平面M,那么直线a与平面M内的所有直线平行【考点】命题的真假判断与应用.【专题】对应思想;空间位置关系与距离;简易逻辑;立体几何.【分析】根据平面平行的几何特征,可判断A;根据直线与平面位置关系的分类与定义,可判断B;根据公理3和线面平行的性质定理,可判断C;根据线面平行的几何特征,可判断D、【解答】解:平行于同一个平面的两个平面平行,故A正确;假设直线a不平行于平面M,那么a与M相交,或a在M内,那么直线a与平面M 有公共点,故B正确;直线a∥平面α,P∈α,那么P与a确定的面积与平面α相交,由公理3可得两个平面有且只有一条交线,且过点P,再由线面平行的性质定理可得交线平行于直线a,故C正确;假设直线a∥平面M,平面M内的直线与直线a平行或异面,故D错误;应选:D、【点评】此题以命题的真假判断为载体,考查了空间线面关系的几何特征,考查空间想象能力,难度中档.2.如下图的一个几何体及其正视图如图,那么其俯视图是〔〕A、 B、 C、 D、【考点】简单空间图形的三视图.【专题】数形结合;数形结合法;空间位置关系与距离.【分析】该几何体的俯视图即上部分四棱锥的俯视图,且四条棱都能看见,应为实线.【解答】解:因为该组合体上部为四棱锥,且顶点在底面的投影在底面中心,所以该几何体的俯视图为C、应选C、【点评】此题考查了简单几何体的三视图,是基础题.3.过点〔﹣2,3〕,倾斜角等于直线2x﹣y+3=0的倾斜角的直线方程为〔〕A、﹣2x+y﹣7=0B、﹣x+2y﹣8=0C、2x+y+1=0D、x+2y﹣4=0【考点】直线的倾斜角;直线的一般式方程.【专题】计算题;方程思想;定义法;直线与圆.【分析】过点〔﹣2,3〕,倾斜角等于直线2x﹣y+3=0的倾斜角的直线方程设为2x﹣y+c=0,代入点的坐标,求出c的值即可.【解答】解:过点〔﹣2,3〕,倾斜角等于直线2x﹣y+3=0的倾斜角的直线方程设为2x﹣y+c=0,∴﹣2×2﹣3+c=0,解得c=7,故方程为2x﹣y+7=0,即为﹣2x+y﹣7=0,应选:A、【点评】此题考查了直线的倾斜角和直线方程,属于基础题.4.一个底面半径和高都为2的圆椎的表面积为〔〕A、4〔+1〕πB、4〔2+1〕πC、4πD、8π【考点】棱柱、棱锥、棱台的侧面积和表面积.【专题】对应思想;定义法;空间位置关系与距离.【分析】根据题意,求出母线长,再求底面积与侧面积的和即可.【解答】解:底面半径和高都为2的圆锥,其底面积为S底面积=π•22=4π,母线长为=2,所以它的侧面积为S侧面积=π•2•2=4π;所以圆锥的表面积为:S=S底面积+S侧面积=4π+4π=4〔+1〕π.应选:A、【点评】此题考查了求空间几何体表面积的应用问题,是基础题目.5.一长方体从一个顶点出发的三条棱长分别为3,,4,假设该长方体的顶点都在一个球的球面上,那么这个球的体积为〔〕A、288πB、144πC、108πD、36π【考点】球的体积和表面积.【专题】数形结合;数形结合法;空间位置关系与距离.【分析】根据题意,得出长方体内接于球,球的直径等于长方体的对角线长,由此求出球的半径与体积.【解答】解:根据题意,长方体内接于球,所以球的直径为该长方体的对角线;即〔2R〕2=32++42=36,解得R=3;所以这个球的体积为V球=πR3=×π×33=36π.应选:D、【点评】此题考查了球的内接长方体以及球的体积的应用问题,也考查了空间想象能力,是基础题.6.如图,棱长都相等的平行六面体ABCD﹣A′B′C′D′中,∠DAB=∠A′AD=∠A′AB=60°,那么二面角A′﹣BD﹣A的余弦值为〔〕A、B、﹣ C、D、﹣【考点】二面角的平面角及求法.【专题】计算题;数形结合;转化思想;空间角.【分析】判断四面体A′BDA为正四面体,取BD的中点E,连接AE,A′E,由等腰三角形〝三线合一〞的性质,易得∠AEA′即为侧面与底面所成二面角的平面角,解三角形AA′E即可得到正四面体侧面与底面所成二面角的余弦值.【解答】解:棱长都相等的平行六面体ABCD﹣A′B′C′D′中,∠DAB=∠A′AD=∠A′AB=60°,那么四面体A′BDA为正四面体.取BD的中点E,连接AE,A′E,设四面体的棱长为2,那么AE=A′E=且AE⊥BD,A′E⊥BD,那么∠AEA′即为侧面与底面所成二面角的平面角,在△AA′E中,cos∠AEA′==故正四面体侧面与底面所成二面角的余弦值是:.应选:A、【点评】此题考查的知识点是二面角的平面角及求法,其中确定∠AEA′即为相邻两侧面所成二面角的平面角,是解答此题的关键.7.如图,正方形SG1G2G3中,E,F分别是G1G2,G2G3中点,D是EF与SG2的交点,现沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,那么在四面体G﹣SEF中必有〔〕A、SD⊥平面EFGB、SE⊥GFC、EF⊥平面SEGD、SE⊥SF【考点】直线与平面垂直的性质.【专题】计算题;转化思想;综合法;空间位置关系与距离.【分析】根据题意,在折叠过程中,始终有SG1⊥G1E,SG3⊥G3F,即SG⊥GE,SG ⊥GF,由线面垂直的判定定理,得SG⊥平面EFG,分析四个答案,即可给出正确的选择.【解答】解:在A中:设正方形的棱长为2a,那么DG=a,SD=a,∵SG2≠DG2+SD2,∴SD与DG不垂直,∴SD不垂直于平面EFG,故A错误;在B 中:∵在折叠过程中,始终有SG1⊥G1E,SG3⊥G3F,∴SG⊥GE,SG⊥GF,又∵EG⊥GF,SG∩EG=G,∴GF⊥平面SEG,∵SE⊂平面SGE,∴SE⊥GF,故B正确;在C中:△EFG中,∵EG⊥GF,∴EF不与GF垂直,∴EF不垂直于平面SEG,故C错误;在D中:由正方形SG1G2G3中,E,F分别是G1G2,G2G3中点,得∠ESF<∠G1SG3=90°,∴SE与SF不垂直,故D错误.应选:B、【点评】线线垂直可由线面垂直的性质推得,直线和平面垂直,这条直线就垂直于平面内所有直线,这是寻找线线垂直的重要依据.垂直问题的证明,其一般规律是〝由想性质,由求证想判定〞,也就是说,根据条件去思考有关的性质定理;根据要求证的结论去思考有关的判定定理,往往需要将分析与综合的思路结合起来.8.直线〔a﹣1〕x+〔a+1〕y+8=0与〔a2﹣1〕x+〔2a+1〕y﹣7=0平行,那么a 值为〔〕A、0B、1C、0或1D、0或﹣4【考点】直线的一般式方程与直线的平行关系.【专题】计算题;转化思想;综合法;直线与圆.【分析】由条件利用两直线平行的性质能求出a的值.【解答】解:∵直线〔a﹣1〕x+〔a+1〕y+8=0与〔a2﹣1〕x+〔2a+1〕y﹣7=0平行,∴当a=1时,两直线都垂直于x轴,两直线平行,当a=﹣1时,两直线x=4与y=﹣7垂直,不平行,当a≠±1时,由两直线平行得:,解得a=0.∴a值为0或1.应选:C、【点评】此题考查直线方程中参数的求法,是基础题,解题时要认真审题,注意直线平行的性质的合理运用.9.如图,正方体ABCD﹣A′B′C′D′中,AB的中点为E,AA′的中点为F,那么直线D′F 和直线CE〔〕A、都与直线DA相交,且交于同一点B、互相平行C、异面D、都与直线DA相交,但交于不同点【考点】空间中直线与直线之间的位置关系.【专题】证明题;转化思想;综合法;空间位置关系与距离.【分析】连接EF,A′B,CD′,证明E,F,D′,C共面,且EF=CD′,即可得出结论.【解答】解:连接EF,A′B,CD′,那么∵AB的中点为E,AA′的中点为F,∴EF∥A′B,∵A′B∥CD′,∴EF∥CD′,∴E,F,D′,C共面,且EF=CD′∴直线D′F和直线CE与直线DA相交,且交于同一点,应选:A、【点评】此题考查E,F,D′,C共面的证明,考查学生分析解决问题的能力,比较基础.10.△ABC的顶点坐标分别是A〔5,1〕,B〔1,1〕,C〔1,3〕,那么△ABC的外接圆方程为〔〕A、〔x+3〕2+〔y+2〕2=5B、〔x+3〕2+〔y+2〕2=20C、〔x﹣3〕2+〔y﹣2〕2=20D、〔x﹣3〕2+〔y﹣2〕2=5【考点】圆的标准方程.【专题】转化思想;综合法;直线与圆.【分析】由条件求得△ABC为直角三角形,可得它的外接圆的圆心为斜边AC的中点〔3,2〕,半径为AC,由此求得它的外接圆的标准方程.【解答】解:由△ABC的顶点坐标分别是A〔5,1〕,B〔1,1〕,C〔1,3〕,可得AB⊥CB,故△ABC的外接圆的圆心为斜边AC的中点〔3,2〕,半径为AC=•=,故圆的方程为〔x﹣3〕2+〔y﹣2〕2=5,应选:D、【点评】此题主要考查求圆的标准方程的方法,直角三角形的性质,求出圆心坐标和半径的值,是解题的关键,属于基础题.11.一个几何体的三视图及相关尺寸如下图,其中其主视图和侧视图是一等腰梯形与一个矩形组成的图形,俯视图是两个同心圆组成的图形,那么该几何体的体积为〔〕A、25πB、19πC、11πD、9π【考点】由三视图求面积、体积.【专题】数形结合;数形结合法;立体几何.【分析】由三视图可知该几何体为圆台与圆柱的组合体.圆台底面半径分别为1,2,高为3,圆柱底面半径为2,高为1.代入体积公式计算.【解答】解:三视图可知该几何体为圆台与圆柱的组合体.圆台底面半径分别为1,2,高为3,圆柱底面半径为2,高为1.∴圆台的上底面面积S1=π×12=π,圆台的下底面面积S2=π×22=4π,圆柱的底面面积S3=π×22=4π,∴V圆台=〔S1+S2+〕×3=7π,V圆柱=S3×1=4π,V=V圆台+V圆柱=11π.应选C、【点评】此题考查了常见几何体的三视图及体积,是基础题.12.三点A〔2,2〕,B〔3,1〕,C〔﹣1,﹣1〕,那么过点A的直线l与线段BC有公共点时〔公共点包含公共点〕,直线l的斜率kl的取值范围是〔〕A、[﹣1,1]B、〔﹣∞,﹣1]∪[1,+∞〕C、〔﹣1,1〕D、〔﹣∞,﹣1〕∪〔1,+∞〕【考点】直线的斜率.【专题】计算题;数形结合;数形结合法;直线与圆.【分析】求出直线AC的斜率kAC=1,直线AB的斜率kAB=﹣1,作出图象,数形结合能求出直线l的斜率kl的取值范围.【解答】解:如图,过A作AD⊥x轴,交x轴于D〔2,0〕,∵三点A〔2,2〕,B〔3,1〕,C〔﹣1,﹣1〕,直线AC的斜率kAC==1,直线AB的斜率kAB==﹣1,∴结合图象,得:直线l的斜率kl的取值范围是〔﹣∞,﹣1]∪[1,+∞〕.应选:B、【点评】此题考查直线的取值范围的求法,是基础题,解题时要注意直线的斜率公式和数形结合思想的合理运用.【二】填空题〔共4小题,每题5分,共20分〕13.直线l的方程为3x﹣2y+6=0,那么直线l在x轴上的截距是﹣2 ;y轴上的截距是 3 .【考点】直线的截距式方程.【专题】计算题;转化思想;综合法;直线与圆.【分析】直线l:3x﹣2y+6=0中,令y=0,求出x的值直线l在x轴上的截距;令x=0,求出的y的值是直线l在y轴上的截距.【解答】解:∵直线l的方程为3x﹣2y+6=0,∴当y=0时,解得x=﹣2,当x=0时,解得y=3,∴直线l在x轴上的截距是﹣2,y轴上的截距是3.故答案为:﹣2,3.【点评】此题考查直线方程的横截距和纵截距的求法,是基础题,令y=0,求出x的值直线l在x轴上的截距;令x=0,求出的y的值是直线l在y轴上的截距.14.与直线4x﹣3y﹣2=0垂直且点〔1,0〕到它的距离为1的直线是3x+4y+2=0或3x+4y﹣8=0 .【考点】直线的一般式方程与直线的垂直关系;点到直线的距离公式.【专题】方程思想;转化思想;直线与圆.【分析】设与直线4x﹣3y﹣2=0垂直的直线方程为3x+4y+m=0.根据点〔1,0〕到它的距离为1,可得=1,解得m即可得出.【解答】解:设与直线4x﹣3y﹣2=0垂直的直线方程为3x+4y+m=0.∵点〔1,0〕到它的距离为1,∴=1,解得m=2或﹣8.因此所求的直线方程为:3x+4y+2=0,或3x+4y﹣8=0.故答案为:3x+4y+2=0,或3x+4y﹣8=0.【点评】此题考查了相互垂直的直线斜率之间的关系、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.15.如图,在正方体ABCD﹣A′B′C′D′中,异面直线AC与BC′所成的角为60°.【考点】异面直线及其所成的角.【专题】计算题;转化思想;综合法;空间角.【分析】连结A′B、A′C′,由AC∥A′C′,得∠A′C′B是异面直线AC与BC′所成的角,由此能求出异面直线AC与BC′所成的角.【解答】解:在正方体ABCD﹣A′B′C′D′中,连结A′B、A′C′,∵AC∥A′C′,∴∠A′C′B是异面直线AC与BC′所成的角,∵A′B=BC′=A′C′,∴∠A′C′B=60°,∴异面直线AC与BC′所成的角为60°.故答案为:60°.【点评】此题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.16.在直角坐标平面xOy内,一条光线从点〔2,4〕射出,经直线x+y﹣1=0反射后,经过点〔3,2〕,那么反射光线的方程为x﹣26y+1=0 .【考点】与直线关于点、直线对称的直线方程.【专题】数形结合;方程思想;转化思想;直线与圆.【分析】设点P点〔2,4〕关于直线x+y﹣1=0的对称点为P′〔a,b〕,那么,解得a,B、再利用点斜式即可得出.【解答】解:设点P点〔2,4〕关于直线x+y﹣1=0的对称点为P′〔a,b〕,那么,解得a=﹣3,b=﹣1.∴反射光线的斜率为:=,∴反射光线的方程y﹣2=〔x﹣3〕,化为x﹣2y+1=0.故答案为:x﹣2y+1=0.【点评】此题考查了垂直平分线的性质、中点坐标公式、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于中档题.【三】解答题解答应写出文字说明,演算步骤或证明过程.17.在直角坐标系中,平行四边形ABCD的两对角线AC、BD交于点O〔﹣1,1〕,其中A〔﹣2,0〕,B〔1,1〕.分别求该平行四边形的边AD、DC所在直线的方程.【考点】直线的两点式方程.【专题】计算题;转化思想;综合法;直线与圆.【分析】设点C的坐标为〔a,b〕,点D的坐标为〔c,d〕,由平行四边形的性质和中点坐标公式求出C〔0,2〕,D〔﹣3,1〕,由此能求出该平行四边形的边AD、DC所在直线的方程.【解答】解:设点C的坐标为〔a,b〕,点D的坐标为〔c,d〕,由,,解得,∴C〔0,2〕,D〔﹣3,1〕,∴AD所在直线方程为:,即y=﹣x﹣2.DC所在直线方程为:,即y=.【点评】此题考查直线方程的求法,是基础题,解题时要认真审题,注意平行四边形的性质和中点坐标公式的合理运用.18.圆C的圆心在直线x﹣2y﹣3=0上,并且经过A〔2,﹣3〕和B〔﹣2,﹣5〕,求圆C的标准方程.【考点】圆的标准方程.【专题】转化思想;综合法;直线与圆.【分析】线段AB的中垂线所在直线与直线x﹣2y﹣3=0的交点即为圆C的圆心,再求出半径CA的值,即可求得圆的标准方程.【解答】解:由,线段AB的中垂线所在直线与直线x﹣2y﹣3=0的交点即为圆C的圆心.线段AB的斜率为:KAB==,∴线段AB的中垂线所在直线的斜率为﹣=﹣2,又∵线段AB的中点为〔0,﹣4〕,∴线段AB的中垂线所在直线方程为:y+4=﹣2x,即2x+y+4=0.由,求得,∴圆C的圆心坐标为〔﹣1,﹣2〕∴圆C的半径r满足:r2=〔2+1〕2+〔﹣3+2〕2=10,∴圆C的标准方程为〔x+1〕2+〔y+2〕2=10.【点评】此题主要考查求圆的标准方程,直线的斜率公式,两条直线垂直的性质,求出圆心坐标及半径,是解题的关键,属于基础题.19.如下图,多面体ABCD﹣A1B1C1D1是棱长为1的正方体.〔1〕求证:平面AB1D1∥平面BDC1;〔2〕求四棱锥D1﹣AB1C1D的体积.【考点】棱柱、棱锥、棱台的体积;平面与平面平行的判定.【专题】综合题;转化思想;综合法;空间位置关系与距离.【分析】〔1〕在平面AB1D1找两条相交直线AB1,AD1分别平行于平面BDC1;〔2〕连接D1C,设D1C∩C1D=O,证明D1O为四棱锥D1﹣AB1C1D的高,求出底面积,即可求四棱锥D1﹣AB1C1D的体积.【解答】〔1〕证明:由,在四边形DBB1D1中,BB1∥DD1且BB1=DD1,故四边形DBB1D1为平行四边形,即D1B1∥DB,﹣﹣﹣﹣﹣2’∵D1B1⊄平面DBC1,∴D1B1∥平面DBC1;﹣﹣﹣﹣﹣3’同理在四边形ADC1B1中,AB1∥DC1,﹣﹣﹣﹣﹣4’同理AB1∥平面DBC1,﹣﹣﹣﹣﹣﹣﹣5’又∵AB1∩D1B1=B1,﹣﹣﹣﹣﹣6’∴平面AB1D1∥平面BDC1.﹣﹣﹣﹣7’〔2〕解:连接D1C,设D1C∩C1D=O,那么在正方形D1CICD中,D1C⊥DC1,﹣﹣﹣﹣8’又在正方体ABCD﹣A1B1C1D1中,B1C1⊥平面C1CDD1,所以D1C⊥B1C1,﹣﹣﹣﹣9’∵DC1∩B1C1=C1,∴D1C⊥平面AB1C1D,﹣﹣10’即D1O为四棱锥D1﹣AB1C1D的高;由,在正方形DCC1D1中,边长为1,∴D1C=DC1=,∴四棱锥的高D1O=,﹣﹣﹣﹣11’又在正方体ABCD﹣A1B1C1D1中,四边形AB1C1D为矩形,且C1D=,B1C1=1,故=1×=﹣﹣﹣﹣12’∴==﹣﹣﹣﹣14’【点评】此题考查平面与平面平行的判定,考查四棱锥D1﹣AB1C1D的体积,考查学生分析解决问题的能力,属于中档题.20.如图,直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=90°,∠EAC=60°,AB=AC、〔1〕在直线AE上是否存在一点P,使得CP⊥平面ABE?请证明你的结论;〔2〕求直线BC与平面ABE所成角θ的余弦值.【考点】直线与平面所成的角;直线与平面垂直的判定.【专题】综合题;转化思想;综合法;空间位置关系与距离;空间角.【分析】〔1〕存在满足条件的点P.在梯形ACDE内过C作CP⊥AE,垂足为P,那么垂足P即为满足条件的点.由推导出BA⊥CP,CP⊥AB,由此能证明CP⊥平面ABE、〔2〕连接BP,那么∠CBP为BC与平面ABE所成角,由此能求出直线BC与平面BAE 所成角的余弦值.【解答】解:〔1〕存在满足条件的点P.在梯形ACDE内过C作CP⊥AE,垂足为P,那么垂足P即为满足条件的点.证明如下:∵∠BAC=90°,即BA⊥AC,平面ACDE⊥平面ABC,∴BA⊥平面ACDE,又∵CP⊂平面ACDE,∴BA⊥CP.由CP⊥AE,CP⊥AB,AB∩AE=A,可知CP⊥平面ABE、〔2〕连接BP,由〔1〕可知CP⊥平面ABE,P为垂足,∴∠CBP为BC与平面ABE所成角θ.在RT△APC中,∠PAC=60°,∠APC=90°,∴PC=ACsin60°=.在RT△BAC中,AB=AC,∠BAC=90°,∴BC===,∴在RT△BPC中,∠BPC=90°,BC=,PC=,即sinθ=sin∠CBP===,且0<θ<,∴cosθ===,故直线BC与平面BAE所成角的余弦值为.【点评】此题考查使得线面垂直的点是否存在的判断与证明,考查直线与平面所成角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.21.等边三角形ABC的边长为2沿平行于BC的线段PQ折起,使平面APQ⊥平面PBCQ,设点A到直线PQ的距离为x,AB的长为D、〔Ⅰ〕x为何值时,d2取得最小值,最小值是多少;〔Ⅱ〕假设∠BAC=θ,求cosθ的最小值.【考点】直线与平面垂直的判定;余弦定理.【专题】空间位置关系与距离.【分析】〔I〕如图〔1〕为折叠前对照图,图〔2〕为折叠后的空间图形.利用面面垂直和线面垂直的判定与性质定理和二次函数的单调性即可得出;〔II〕在等腰△ADC中,使用余弦定理和利用余弦函数的单调性即可得出.【解答】解:〔Ⅰ〕如图〔1〕为折叠前对照图,图〔2〕为折叠后的空间图形.∵平面APQ⊥平面PBCQ,又∵AR⊥PQ,∴AR⊥平面PBCQ,∴AR⊥RB、在Rt△BRD中,BR2=BD2+RD2=,AR2=x2.故d2=BR2+AR2=.∴当时,d2取得最小值.〔Ⅱ〕∵AB=AC=d,BC=2,∴在等腰△ADC中,由余弦定理得,即,∴当时,cosθ取得最小值.【点评】此题考查了面面垂直和线面垂直的判定与性质定理和二次函数的单调性、余弦定理和余弦函数的单调性等基础知识与基本技能方法,属于难题.。

高二上学期期中考试数学试题(带答案)

高二上学期期中考试数学试题(带答案)

高二上学期期中考试数学试题(带答案)高二上学期期中考试数学试题(带答案)注:题号后(A)表示1-7班必做,(B)表示8班必做。

)完卷时间:120分钟,总分:150分)一、选择题:(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.设$a,b,c\in R$,且$a>b$,则()A.$ac>bc$B.$\frac{1}{a}<\frac{1}{b}$C.$a^2>b^2$D.$a^3>b^3$2.已知数列$\{a_n\}$是公差为2的等差数列,且$a_1,a_2,a_5$成等比数列,则$a_2=$()A.$-2$B.$-3$C.$2$D.$3$3.已知集合$A=\{x\in R|x^2-4x-12<0\},B=\{x\in R|x<2\}$,则$A\cap B=$()A.$\{x|x<6\}$B.$\{x|-2<x<2\}$C.$\{x|x>-2\}$D.$\{x|2\leq x<6\}$4.若变量$x,y$满足约束条件$\begin{cases}x+y\leq 4\\x\geq 1\end{cases}$,则$z=2x+y$的最大值和最小值分别为()A.4和3B.4和2C.3和2D.2和55.已知等比数列$\{a_n\}$的前三项依次为$a-1,a+1,a+4$,则$a_n=$A.$4\cdot (\frac{3}{2})^{n-1}$B.$4\cdot (\frac{2}{3})^{n-1}$C.$4\cdot (\frac{3}{2})^{n-2}$D.$4\cdot (\frac{2}{3})^{n-2}$6.在$\triangle ABC$中,边$a,b,c$的对角分别为$A,B,C$,且$\sin^2 A+\sin^2 C-\sin A\sin C=\sin^2 B$。

黑龙江省齐齐哈尔市第八中学校2024-2025学年高二上学期期中考试数学试卷

黑龙江省齐齐哈尔市第八中学校2024-2025学年高二上学期期中考试数学试卷

2024-2025学年度上学期期中考试高二数学试题一、单选题(每小题5分,共40分)1.某工厂生产三种不同型号的产品,它们的产量之比为,用分层抽样的方法抽取一个容量为的样本.若样本中型号的产品有120件,则样本容量为( )A .250B .200C .180D .1502.黑龙江省将从2022年秋季入学的高一年级学生开始实行高考综合改革,高考采用“3+1+2”模式,其中“1”为首选科目,即物理与历史二选一.某校为了解学生的首选意愿,对部分高一学生进行了抽样调查,制作出如下两个等高条形图,根据条形图信息,下列结论正确的是( )A .样本中选择物理意愿的男生人数少于选择历史意愿的女生人数B .样本中女生选择历史意愿的人数多于男生选择历史意愿的人数C .样本中男生人数少于女生人数D .样本中选择物理学科的人数较多3. 从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件A 为“第一次取到的数是偶数”,事件B 为“第二次取到的数是奇数”,则( )A.B.C.D.4. 给出下列说法中错误的是( )A. 回归直线恒过样本点的中心B. 两个变量相关性越强,则相关系数就越接近1C. 某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的方差不变D. 在回归直线方程中,当变量x 增加一个单位时,平均减少0.5个单位5. 现有4道填空题,学生张三对其中3道题有思路,1道题思路不清晰.有思路的题做对的概率为,思路不清晰的题做对的概率为,张三从这4道填空题中随机选择1题,则他做对该题的概率为( ),,A B C 2:2:6n C n ()P B A =52451651258ˆˆˆy bx a =+()x y ||r ˆ20.5yx =-ˆy 3414A.B.C.D.6. .随机变量X 的分布列如表所示,若E(X)=,则D (3X ﹣2)=( )X ﹣101PabA .9B .5C .D .37.某次数学考试后,为分析学生的学习情况,某校从某年级中随机抽取了100名学生的成绩,整理得到如图所示的频率分布直方图.则下列说法错误的是( )A .估计该年级学生成绩的众数约为75B .C .估计该年级学生成绩的75百分位数约为85D .估计该年级成绩在80分及以上的学生成绩的平均数约为87.508.箱中有标号为1,2,3,4,5,6,7,8且大小相同的8个球,从箱中一次摸出3个球,记下号码并放回,如果三球号码之积能被10整除,则获奖.若有2人参加摸奖,则恰好有2人获奖的概率是( )A.B .C .D .二、多选题(每小题6分,共18分)9.有一散点图如图所示,在5个(x ,y )数据中去掉D (3,10)后,下列说法中正确的是( )A .相关系数r 变小 B .残差平方和变小C .决定系数R 2变小D .解释变量x 与响应变量y 的相关性变强10.下列命题正确的是( )A .数据4,5,6,7,8,8的第50百分位数为6B .设随机变量,若,则的最大值为43C .对于随机事件A ,B ,若,,,则A 与B 相互独立D .已知采用分层随机抽样得到的高三年级男生、女生各100名学生的身高情况为:男生样本581814340.05a =81784813929491849()6,X B p ~()2E X ≤()D X ()()P AB P A =∣()0P A >()0P B >平均数为172,方差为120,女生样本平均数为165,方差为120,则总体样本方差为12011.甲、乙、丙、丁四名同学每人从三种卡片中随机选取一张(每种卡片有多张),每种卡片至少有一人选择.事件为“甲选择卡片A ”,事件为“乙选择卡片”,则下列结论正确的是( )A .事件与不互斥B .C .D .三、填空题(每小题5分,共15分)12.若X 服从正态分布N (10,σ2),且P (X ≤8)=P (X ≥20﹣t ),则t 的值为 .13.在的展开式中,的系数为14.已知袋子中有a 个红球和b 个蓝球,现从袋子中随机摸球,则下列说法中正确的是 .①每次摸1个球,摸出的球观察颜色后不放回,则第2次摸到红球的概率为②每次摸1个球,摸出球观察颜色后不放回,则第1次摸到红球的条件下,第2次摸到红球的概率为③每次摸出1个球,摸出的球观察颜色后放回,连续摸n 次后,摸到红球的次数X 的方差为④从中不放回摸个球,摸到红球的个数X 的概率是四、解答题(共计77分)15.(13分)已知的展开式中所有项的二项式系数和为128,各项系数和为.(1)求n 和a 的值;(2)求展开式中项的系数(3)求的展开式中的常数项.16. (15分)共享汽车进驻城市,绿色出行引领时尚,某市有统计数据显示,某站点5天的使用汽车,,A B C M N B M N ()()||P N MP MN =()3136P M N =()23P M N ⋃=()()()()2391111x x x x ++++++++ 3x aa b+()()()11a a a b a b -++-naa b+()n n a ≤()C C C k n ka bn a bP X k -+==21nax x ⎛⎫+ ⎪⎝⎭1-4x -22112nx ax x x ⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭用户的数据如下,用两种模型①:②分别进行拟合,进行残差分析得到如表所示的残差值及一些统计量的值:日期(天)12345用户(人)1322455568模型①的残差值模型②的残差值(1)残差值的绝对值之和越小说明模型拟合效果越好,根据残差,比较模型①,②的拟合效果,应选择哪一个模型?并说明理由;(2)求出(1)中所选模型的回归方程.(参考公式:,,参考数据:,)17.(15分)4月23日是联合国教科文组织确定的“世界读书日”.为了解某地区高一学生阅读时间的分配情况,从该地区随机抽取了500名高一学生进行在线调查,得到了这500名学生的日平均阅读时间(单位:小时),并将样本数据分成[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],(12,14],(14,16],(16,18]九组,绘制成如图所示的频率分布直方图.(1)从这500名学生中随机抽取一人,日平均阅读时间在(10,12]内的概率;(2)为进一步了解这500名学生数字媒体阅读时间和纸质图书阅读时间的分配情况,从日平均阅读时间在(12,14],(14,16],(16,18]三组内的学生中,采用分层抽样的方法抽取了10人,现从这10人中随机抽取3人,记日平均阅读时间在(14,16]内的学生人数为X ,求X 的分布列和数学期望和方差;(3)以样本的频率估计概率,从该地区所有高一学生中随机抽取10名学生,用P (k )表示这10名学y bx a =+y a =+x y 1.1- 2.8- 1.2- 1.9-0.40.3 5.4- 3.2- 1.6- 3.81221ˆni ii nii x ynx y bxnx==-=-∑∑ˆˆay bx =-52155ii x==∑51752i i i x y ==∑生中恰有k 名学生日平均阅读时间在(8,12]内的概率,其中k =0,1,2,…,10.当P (k )最大时,写出k 的值.(写出证明)18.(17分)如图,在四棱锥中,平面平面,为棱的中点.(1)证明:平面;(2)若,(i )求平面PDM 与平面BDM 的余弦值;(ii )在线段上是否存在点Q ,使得点Q 到平面的的值;若不存在,说明理由.19.(17分)某中学举办“数学知识竞赛”,初赛采用“两轮制”方式进行,要求每个班级派出两个小组,且每个小组都要参加两轮比赛,两轮比赛都通过的小组才具备参与决赛的资格.高三(6)班派出甲、乙两个小组参赛,在初赛中,若甲、乙两组通过第一轮比赛的概率分别是34,35,通过第二轮比赛的概率分别是45,23,且各个小组所有轮次比赛的结果互不影响.(1)若高三(6)班获得决赛资格的小组个数为X ,求X 的分布列;(2)已知甲、乙两个小组在决赛中相遇,决赛以三道抢答题形式进行,抢到并答对一题得100分,答错一题扣100分,得分高的获胜.假设这两组在决赛中对每个问题回答正确的概率恰好是各自获得决赛资格的概率,且甲、乙两个小组抢到该题的可能性分别是13,23,假设每道题抢与答的结果均互不影响,求乙已在第一道题中得100分的情况下甲获胜的概率.P ABCD -PDC ⊥,,ABCD AD DC AB DC ⊥∥11,2AB CD AD M ===PC //BM PAD 1PC PD ==PA BDM PQ。

四川省成都市第十二中学(四川大学附属中学)_2024-2025学年高二上学期期中考试数学试题

四川省成都市第十二中学(四川大学附属中学)_2024-2025学年高二上学期期中考试数学试题

四川省成都市第十二中学(四川大学附属中学) 2024-2025学年高二上学期期中考试数学试题
学校:___________姓名:___________班级:___________考号:___________
四、解答题
15.某校高二年级举行了“学宪法、讲宪法”知识竞赛,为了了解本次竞赛的学生答题情况,从中抽取了200名学生的成绩(成绩均为正整数,满分为100分)作为样本进行统计,
按照[)
50,60,[)
70,80,[)
60,70,[)
90,100的分组作出频率分布直方图如图所示.
80,90,[]
(1)求频率分布直方图中x的值,并估计该200名学生成绩的中位数和平均数;
(2)若在[)
70,80的样本成绩对应的学生中按分层抽样的方法抽取7人进行访谈,60,70和[)
再从这七人中随机抽取两人进行学习跟踪,求抽取的两人都来自[)
70,80组的概率.
16.如图,四边形
A ABB是圆柱的轴截面,C是下底面圆周上一点,点D是线段BC中点
11
则圆C有且仅有3个点,,
M N P
故选:BCD.
11.ABD
【分析】将二十四等边体补形为正方体,且二十四等边体根据题意易知正方体棱长为2,
uuu r uuu
根据向量的坐标,可得2
CE=。

江苏省扬州市扬州中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

江苏省扬州市扬州中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

江苏省扬州中学2024-2025学年第一学期期中试卷高 二 数 学 2024.11一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.圆的圆心和半径分别是( )A .,1B .,3C .,2D .,22.经过两点,的直线的斜率为( )A .B .C .D .3.椭圆x 225+y 216=1的焦点为为椭圆上一点,若,则( )A .B .C .D .4.已知双曲线的离心率大于实轴长,则的取值范围是( )A .B .C .D.5.两平行直线与之间的距离为( )ABCD6.已知圆关于直线对称,则实数( )A .1或B .1C .3D .或37.已知抛物线C :y 2=2px (p >0)的焦点为,若抛物线上一点满足|MF |=2,∠OFM =60°,则( )A .3B .4C .6D .88.如图,双曲线的左右焦点分别为、,过的直线与该双曲线的两支分别交于、两点(在线段上),⊙与⊙分别为与的内切圆,其半径分别为、,则的取值范围是( )A .B .C .D .(0,+∞)二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.下列说法正确的是( )A .若,且直线不经过第二象限,则,.()()22232x y +++=()2,3-()2,3-()2,3--()2.3-(2,7)A (4,6)B 12-2-12212,,F F P 13PF =2PF =435722:1y C x m -=m (3,)+∞)+∞(0,3)320mx y --=4670x y --=22:330C x y mx y +-++=:0l mx y m +-=m =3-1-F M p =2218y x -=1F 2F 1F l A B A 1F B 1O 2O 12AF F △2ABF △1r 2r 12r r 1132⎛⎫ ⎪⎝⎭,1233⎛⎫⎪⎝⎭,1223⎛⎫ ⎪⎝⎭,0abc ≠0ax by c ++=0ab >0bc <B .方程()表示的直线都经过点.C .,直线不可能与轴垂直.D .直线的横、纵截距相等.10.已知曲线.点,,则以下说法正确的是( )A .曲线C 关于原点对称B .曲线C 存在点P,使得C .直线与曲线C 没有交点D .点Q 是曲线C 上在第三象限内的一点,过点Q 向作垂线,垂足分别为A ,B ,则.11.已知集合.由集合中所有的点组成的图形如图中阴影部分所示,中间白色部分形如美丽的“水滴”.给出下列结论,正确的有( )A .白色“水滴”区域(含边界)任意两点间距离的最大值为B .在阴影部分任取一点,则到坐标轴的距离小于等于3.C .阴影部分的面积为.D .阴影部分的内外边界曲线长为.三、填空题:本题共3小题,每小题5分,共15分.12.若双曲线的离心率为2,则其两条渐近线所成的锐角的大小为 .13.已知椭圆的左、右焦点分别为F 1、F 2,过点的直线交椭圆于A 、B 两点,若,则该椭圆的离心率为 .14.已知为曲线y =1+4―x 2上的动点,则的最大值为 .四、解答题:本题共5小题,共77分.解答题写出文字说明、证明过程或演算步骤.15.已知△ABC 的顶点坐标是为的中点.(1)求中线的方程;(2)求经过点且与直线平行的直线方程.16.已知双曲线C :x 2a2―y 2b 2=1(a >0,b >0)的离心率为为双曲线的右焦点,且点到直线的()()21250x y λλ++--=R λ∈()2,1m ∈R 220m x y ++=y 3310x y +-=:44C x x y y =-1F 2(0,F 124PF PF -=2y x =2y x =±45QA QB ⋅=(){}22,(cos )(sin )4,0πP x y x y θθθ=-+-=≤≤∣P 1M M 8π8π()222210,0y x a b a b -=>>22221(0)x y a b a b+=>>2F 1AB F B ⊥,14sin 5F AB ∠=(),P a b 223a b a b --++()()()2,0,6,2,2,3,A B C M --AB CM B AC ()5,,03F c F 2a x c=距离为.(1)求双曲线的方程;(2)若点,点为双曲线左支上一点,求的最小值.17.已知,是抛物线:上的两点.(1)求抛物线的方程;(2)若斜率为的直线经过的焦点,且与交于,两点,求的最小值.18.椭圆与椭圆:有相同的焦点,且经过点.(1)求椭圆的方程;(2)椭圆的右焦点为,设动直线与坐标轴不垂直,与椭圆交于不同的,两点,且直线和的斜率互为相反数.①证明:动直线恒过轴上的某个定点,并求出该定点的坐标.②求△OMN 面积的最大值.19.定义:M 是圆C 上一动点,N 是圆C 外一点,记的最大值为m ,的最小值为n ,若,则称N 为圆C 的“黄金点”;若G 同时是圆E 和圆F 的“黄金点”,则称G 为圆“”的“钻石点”.已知圆165C ()12,0A P C PA PF +()6,2A m +()24,8B m +C ()221y px p =>C ()0k k ≠l C C P Q 2PQ k +C 1C 2212x y +=31,2Q ⎛⎫ ⎪⎝⎭C C B l l C M N BM BN l x MN MN 2m n =E F -A :,P 为圆A 的“黄金点”(1)求点P 所在曲线的方程.(2)已知圆B :,P ,Q 均为圆“”的“钻石点”.①求直线的方程.②若圆H 是以线段为直径的圆,直线l :与圆H 交于I ,J 两点,对于任意的实数k ,在y 轴上是否存在一点W ,使得y 轴平分?若存在,求出点W 的坐标;若不存在,请说明理由.()()221113x y +++=()()22221x y -+-=A B -PQ PQ 13y kx =+IWJ ∠江苏省扬州中学2024-2025学年第一学期期中试卷高二数学(参考答案)2024.11参考答案:题号12345678910答案C A D A C C A C BD CD 题号11 答案ABD8.【详解】设,∴S △AF 1F 2=12r 1(8+2m )=(4+m )r 1,S △ABF 2=12r 2(2m +2p )=(m +p )r 2,.在△与△中:,即,,当双曲线的斜率为正的渐近线时,取最大,此时,,当与轴重合时,取最小,此时,经上述分析得:,.故选:C.10.【详解】当时,曲线,即;当时,曲线,即;不存在;时,曲线,即;时,曲线,即;画出图形如右:对于A ,由图可得A 错误,故A 错误;对于B ,方程是以为上下焦点的双曲线,当时,曲线C 存在点P ,使得,故B 错误;对于C ,一三象限曲线的渐近线方程为,所以直线与曲线C 没有交点,故C 正确;对于D ,设,设点在直线上,点在直线,11222,,6,2,2AF m BA p F F AF m BF m p ====+=+-()()11224m r S m S p m p r +∴==+12AF F 2AF B 122cos cos F AF F AB ∠=-∠()()()()()2222222262222224m m m p m p m p m m m pm++-++-+-=-⇒=⋅⋅+⋅+⋅-32212324444444m m r m mp m m m r p mp m m m++-∴===+++--//l m p →+∞404m m ∴-=⇒=l x m 2m =()2,4m ∈1212,23r r ⎛⎫∴∈ ⎪⎝⎭0,0x y ≥>22:44C x y =-2214y x -=0,0x y ≥<22:44C x y =--2214y x +=-0,0x y ≤≥22:44C x y -=-2214y x +=0,0x y <≤22:44C x y -=--2214y x -=2214y x -=12,F F 0,0x y ≥>214PF PF -=2y x =2y x =()00,Q x y A 2y x =B 2y x =-又点Q 是曲线C 上在第三象限内的一点,代入曲线方程可得,故D 正确;故选:CD.11.【详解】对于A ,由于,令时,整理得,解得,“水滴”图形与轴相交,最高点记为A ,则点A 的坐标为,点,白色“水滴”区域(含边界)任意两点间距离的最大值为,故A 正确;对于B ,由于,整理得:,所以,所以到坐标轴的距离为或,因为,所以,,所以到坐标轴的距离小于等于3,故B正确;对于C ,由于,令时,整理得,解得,因为表示以为圆心,半径为的圆,则,且,则在x 轴上以及x 轴上方,故白色“水滴”的下半部分的边界为以为圆心,半径为1的半圆,阴影的上半部分的外边界是以为圆心,半径为3的半圆,根据对称可知:白色“水滴”在第一象限的边界是以以为圆心,半径为2的圆弧,设,则,即AN 所对的圆心角为,同理AM 所在圆的半径为2,所对的圆心角为,阴影部分在第四象限的外边界为以为圆心,半径为2的圆弧,设,可得,DG 所对的圆心角为,同理DH 所在圆的半径为2,所对的圆心角为,故白色“水滴”图形由一个等腰三角形,两个全等的弓形,和一个半圆组成,22004455x y QA QB -⋅==22(cos )(sin )4x y θθ-+-=0x =[]32sin 0,2y yθ=-∈[1]y ∈- y (0,1)B -||1AB =22(cos )(sin )4x y θθ-+-=2cos cos 2sin sin x y αθαθ=+⎧⎨=+⎩2cos cos ,2sin sin )(M αθαθ++M ||2cos cos αθ+|2sin sin |αθ+cos [1,1],sin [0,1]θθ∈-∈2cos cos ||2cos ||cos |213|αθαθ+≤+≤+=|2sin sin ||2sin ||sin |213αθαθ+≤+≤+=M 22(cos )(sin )4x y θθ-+-=0y =[]32cos 2,2y yθ=-∈-[3,1][1,3]x ∈-- 22(cos )(sin )4x y -+-=θθ()cos ,sin Q θθ2r =13r OQ OP OQ r =-≤≤+=0πθ≤≤()cos ,sin Q θθO O ()1,0M -()1,0N 2AN AM MN ===π3π3()1,0N ()()3,0,3,0G H -π1,3ON OD OND ==∠=2π32π3所以它的面积是.轴上方的半圆(包含阴影和水滴的上半部分)的面积为,第四象限的阴影和水滴部分面积可以看作是一个直角三角形和一个扇形的面积的和,且等于所以阴影部分的面积为C 错误;对于D ,轴上方的阴影部分的内外边界曲线长为,轴下方的阴影部分的内外边界曲线长为,所以阴影部分的内外边界曲线长为,故D 正确.故选:ABD.12.13【详解】如图,设,因为,所以.由椭圆定义可知,,由,可得,所以.在Rt △F 1BF 2中,由,可得,即得,故得14.【详解】曲线,由于在曲线上,令,则,(其中),,又,,当时取得最大值15.【详解】(1)因为,所以,212π111π2π1222326S S S S ⎛=++=⨯⨯+⨯+⨯=⎝V 弓形半圆x 219π3π22⨯=2114π21π323⨯⨯+=941116π2(πππ2363++-=+x 1π4132π3223πππ2333⨯⨯+⨯⨯=+=x 111112π1(2π2π2)2π2233⨯⨯+⨯⨯-⨯⨯=13π11π8π33+=π314BF t =1AB F B ⊥,14sin 5F AB ∠=15,3AF t AB t ==21212=25,224AF a AF a t BF a BF a t =--=-=-22493AB AF BF a t t =+=-=13t a =1242,33BF a BF a ==2221212||||||F F BF BF =+222424(()33a a c =+2295c a =c e a ==9+1y =()()22141x y y +-=≥(),P a b ()2cos ,0π12sin a b θθθ=⎧≤≤⎨=+⎩()()222232cos 12sin 32cos 12sin a b a b θθθθ--++=---+++2cos 2sin 454sin 42sin 2cos 54sin θθθθθθ=--++=+-++()96sin 2cos 9θθθϕ=+-=+-sin ϕ=cos ϕ=π0,2ϕ⎛⎫∈ ⎪⎝⎭[][]0,π,πθθϕϕϕ∈∴-∈-- π,02ϕ⎛⎫-∈- ⎪⎝⎭ππ,π2ϕ⎛⎫-∈ ⎪⎝⎭∴π2θϕ-=223a b a b --++9+()()2,0,6,2A B -()4,1M -故的方程是,即;(2)因为直线的斜率,所以经过点且与直线平行的直线方程为,即.16.【详解】(1)由题意知,解得,则,所以双曲线的方程为.(2)记双曲线的左焦点为,则,可得,当三点共线时,最小,且最小值为.故的最小值为.17.【详解】(1)∵,是抛物线C :上的两点,∴,则,整理得,解得, 当时,,解得,不合题意;当时,,解得.故抛物线C 方程为y 2=6x .(2)由(1)知C 的焦点为,故直线l 的方程为,联立,得,必有,设,,则,∴, ∴,即所以的最小值为18.【详解】(1)椭圆:的焦点坐标为,所以椭圆的焦点坐标也为,即得焦距为,∵椭圆过点,∴,CM 143124y x +-=+--2350x y +-=AC 303224ACk -==---B AC ()3264y x +=--34100x y +-=253165c a a c c ⎧=⎪⎪⎨⎪-=⎪⎩35a c =⎧⎨=⎩4b ==C 221916x y -=C 0F ()05,0F -0026PA PF PA PF a PA PF +=++=++0,,P F A 0PA PF +017AF =PA PF +17623+=()6,2A m +()24,8B m +()221y px p =>()()22212,848m p m p⎧+=⎪⎨+=⎪⎩()()22842m m +=+216m =4m =±4m =-()21224p m =+=113p =<4m =()212236p m =+=31p =>3,02⎛⎫⎪⎝⎭32y k x ⎛⎫=- ⎪⎝⎭2632y xy k x ⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩()222293604k x k x k -++=0∆>()11,P x y ()22,Q x y 212236k x x k ++=2122236636k PQ x x p k k+=++=+=+222666PQ k k k +=++≥+226k k=2k =2PQ k +6+1C 2212x y +=()1,0±C ()1,0±22c =C 31,2Q ⎛⎫⎪⎝⎭24a +=∴,,∴椭圆的标准方程为.(2)①设直线:(),由,得,设M (x 1,y 1),N (x 2,y 2),所以,,所以,因为直线和的斜率互为相反数,所以,所以,所以,所以.即,所以,因为,所以,所以动直线恒过轴上的定点②由①知,,且,即,又S △OMN =12⋅|OT |⋅|y 1―y 2|=12⋅4⋅(y 1+y 2)2―4y1y 2令,则,∴S △OMN=24⋅n (3n +16)2≤24⋅n (2⋅3n⋅16)2=24⋅n 4⋅3n ⋅16=3(当且仅当时取“=”)∴(S △OMN )max =3.19.【详解】(1)因为点P 为圆A 的“黄金点”,即,所以点P的轨迹是以AP 所在曲线的方程为(2)①因为P 为圆B 的“黄金点”,则所以,即点P 在圆上,则P 是圆和的交点.因为P ,Q 均为圆“”的“钻石点”,所以直线即为圆和的公共弦所在直线,2a =b =22143x y +=l x my t =+0m ≠223412x my t x y =+⎧⎨+=⎩()2223463120m y mty t +++-=122634mt y y m +=-+212231234t y y m -=+()()()()1221121212111111MF NF y x y x y yk k x x x x -+-+=+=----()()()()1221121111y my t y my t x x +-++-=--BM BN 0MB NB k k =+()()()()12211211011y my t y my t x x +-++-=--()()1221110y my t y my t +-++-=()()1212210my y t y y +-+=()22231262103434t mtm t m m --⨯+-⨯=++()640m t -=0m ≠4t =l x ()4,0T 1222434m y y m +=-+1223634y y m =+()()22Δ24434360m m =-+⋅>24m >224==240n m =->24m n =+316n ==PA =()()2211 3.x y +++=()121PB PB +=-||3PB =()()22229x y -+-=()()22113x y +++=()()22229x y -+-=A B -PQ ()()22113x y +++=()()22229x y -+-=两圆方程相减可得,故直线的方程为.②设的圆心为的圆心为,半径为.直线的方程为,得的中点坐标为,点S 到直线,则,所以圆H 的方程为.假设轴上存在点满足题意,设,.若轴平分,则,即,整理得又,所以代入上式可得,整理得①,由可得,所以x 1+x 2=―23k k 2+1,x 1x 2=―89k 2+1,代入①并整理得,此式对任意的都成立,所以.故轴上存在点,使得轴平分.0x y +=PQ 0x y +=22(1)(1)3x y +++=(11),S --()()22229x y -+-=(2,2)T 3ST y x =PQ (0,0)0x y +==12PQ ==221x y +=y (0),W t ()()1122,,,I x y J x y 120x x ≠y IWJ ∠0IM JW k k +=12120y t y tx x --+=()()21120.x y t x y t -+-=11223,113y kx y kx =+=+211211)33(()0x kx t x kx t +-++-=()12121203kx x t x x ⎛⎫+-+= ⎪⎝⎭22131y kx x y ⎧=+⎪⎨⎪+=⎩()22281039k x kx ++-=2203k kt -+=k 3t =y ()0,3W y IWJ ∠。

湖南省长沙市2024-2025学年高二上学期期中考试数学试卷(含解析)

湖南省长沙市2024-2025学年高二上学期期中考试数学试卷(含解析)

湖南省长沙市2024-2025学年高二上学期期中考试数学试卷时量:120分钟满分:150分得分______一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数,则在复平面对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限2.设直线的倾斜角为,则A. B. C. D.3.如图,在平行六面体中,为与的交点.若,则下列向量中与相等的是A.B. C. D.4.已知数列为等差数列,.设甲:;乙:,则甲是乙的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.假设一水渠的横截面曲线是抛物线形,如图所示,它的渠口宽AB 为2m ,渠深OC 为1.5m ,水面EF 距AB 为0.5m ,则截面图中水面的宽度EF)A.0.816mB.1.33mC.1.50mD.1.63m6.已知圆.与圆外切,则ab 的最大值为A.2B.C.D.37.若函数在区间上只有一个零点,则的1i2iz -=+z :80l x -+=αα=30︒60︒120︒150︒1111ABCD A B C D -M 11A C 11B D AB 1,,a AD b AA c ===BM1122a b c ++1122a b c -++1122a b c --+1122a b c -+{}n a *,,,p q s t ∈N p q s t +=+p q s t a a a a +=+ 2.448≈≈≈221:()(3)9C x a y -++=222:()(1)1C x b y +++=52)44()2sin cos sin cos (0)f x x x x x ωωωωω=+->π0,2⎛⎫⎪⎝⎭ω取值范围为A. B. C. D.8.已知分别为椭圆的左、右焦点,椭圆上存在两点A ,B 使得梯形的高为(为该椭圆的半焦距),且,则椭圆的离心率为B.D.二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是A.用简单随机抽样从含有50个个体的总体中抽取一个容量为10的样本,某个个体被抽到的概率是0.2B.已知一组数据1,2,m ,6,7的平均数为4,则这组数据的方差是5C.数据27,12,14,30,15,17,19,23的分位数是18D.若样本数据的平均值为8,则数据的平均值为1510.下列四个命题中正确的是A.过定点,且在轴和轴上的截距互为相反数的直线方程为B.过定点的直线与以为端点的线段相交,则直线的斜率的取值范围为或C.定点到圆D.过定点且与圆相切的直线方程为或11.在棱长为2的正方体中,点满足,则A.当时,点到平面B.当时,点到平面C.当时,存在点,使得D.当时,存在点,使得平面PCD 选择题答题卡题号1234567891011得分答案三、填空题:本题共3小题,每小题5分,共15分.12.假设,且与相互独立,则______.14,33⎛⎤ ⎥⎝⎦14,33⎡⎫⎪⎢⎣⎭17,66⎛⎤⎥⎝⎦17,66⎡⎫⎪⎢⎣⎭12,F F 2222:1(0)x y E a b a b+=>>E 12AF F B c c 124AF BF =E 4556m 50%1210,,,x x x 121021,21,,21x x x --- (1,1)P -x y 20x y --=(1,1)P -(3,1),(3,2)M N -k 12k - (32)k …(1,0)Q 22(1)(3)4x y ++-=2-(1,0)Q 22(1)(3)4x y ++-=51250x y +-=1x =1111ABCD A B C D -P 1,,[0,1]AP AC AD λμλμ=+∈0λ=P 11A BC 0μ=P 11A BC 34μ=P 1BP PC ⊥34λ=P 1BC ⊥()0.3,()0.4P A P B ==A B ()P AB =13.斜率为1的直线与椭圆相交于A ,B 两点,AB 的中点为,则______.14.已知公差不为0的等差数列的前项和为,若,则的最小值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知的三个内角A ,B ,C 的对边分别为a ,b ,c ,且.(1)求角;(2)若,点满足,且,求的面积.16.(15分)在四棱锥中,底面ABCD 是正方形,若.(1)求证:平面平面ABCD ;(2)求平面ABQ 与平面BDQ 所成夹角的余弦值.17.(15分)已知双曲线的左、右焦点分别为的一条渐近线方程为,且.(1)求的方程;(2)A ,B 为双曲线右支上两个不同的点,线段AB 的中垂线过点,求直线AB 的斜率的取值范围.18.(17分)已知是数列的前项和,若.(1)求证:数列为等差数列.(2)若,数列的前项和为.(ⅰ)求取最大值时的值;22143x y +=(,1)M m m ={}n a n n S 457,,{5,0}a S S ∈-n S ABC π22sin 6b aA c+⎛⎫+=⎪⎝⎭C 1a =D 2AD DB = ||CD = ABC Q ABCD -2,3AD QD QA QC ====QAD ⊥2222:1(0,0)x y E a b a b-=>>12,,F F E y =2c =E E (0,4)C n S {}n a n 1112n n n n S S a a ++-={}n a 12,13n n a c a =-=+{}n c n n T n T n(ⅱ)若是偶数,且,求.19.(17分)直线族是指具有某种共同性质的直线的全体,例如表示过点的直线,直线的包络曲线定义为:直线族中的每一条直线都是该曲线上某点处的切线,且该曲线上的每一点处的切线都是该直线族中的某条直线.(1)若圆是直线族的包络曲线,则m ,n 满足的关系式是什么?(2)若点不在直线族的任意一条直线上,求的取值范围和直线族的包络曲线.(3)在(2)的条件下,过曲线上A ,B 两点作曲线的切线,其交点为.若且,B ,C 不共线,探究是否成立?请说明理由.m 2(1)nn n b a=-21mi i b =∑1x ty =+(1,0)221:1C x y +=1(,)mx ny m n +=∈R ()00P x y ,2:(24)4(2)0()a x y a a Ω-++-=∈R 0y ΩE E E 12,l l P (0,1)C A PCA PCB ∠=∠长沙市2024-2025学年度高二第一学期期中考试数学参考答案一、二、选择题题号1234567891011答案DABADDACACDBDBD1.D 【解析】因为,对应点为,在第四象限.故选D.2.A【解析】由直线,可得直线的斜率为设直线的倾斜角为,其中,可得.故选A.3.B 【解析】.故选B.4.A 【解析】甲是乙的充分条件;若为常数列,则乙成立推不出甲成立.5.D 【解析】以为原点,OC 为轴,建立如图所示的平面直角坐标系,设扡物线的标准方程为,由题意可得,代入得,得,故抛物线的标准方程为,设,则,则,所以截面图中水面的宽度EF 约为,故选D.6.D 【解析】圆的圆心,半径,1i (1i)(2i)13i 2i (2i)(2i)55z ---===-++-13,55⎛⎫- ⎪⎝⎭:80l x +=l k =l α0180α︒︒<…tan α=30α︒=11111111111111222222BM BB B M AA B A B C AA AB AD a b c =+=++=-+=-++ {}n a O y 22(0)x py p =>(1,1.5)B 22x py =13p =13p =223x y =()()0000,0,0F x y x y >>0 1.50.51y =-=200221,0.81633x x =⨯===≈0.8162 1.63m ⨯≈221:()(3)9C x a y -++=1(,3)C a -13r =圆的圆心,半径,依题意,,于是,即,因此,当且仅当时取等号,所以ab 的最大值为3.故选D.7.A 【解析】由,令,则由题意知.8.C 【解析】如图,由,得,则为梯形的两条底边,作于点,由梯形的高为,得,在Rt 中,,则有,即,在中,设,则,,即,解得在中,,同理,又,所以,即,所以离心率.故选C.9.ACD 【解析】对于A ,一个总体含有50个个体,以简单随机抽样方式从该总体中抽取一个容量为10的样本,222:()(1)1C x b y +++=2(,1)C b --21r =12124C C r r =+=222()24a b ++=22122224a b ab ab ab ab =+++=…3ab …a b =)22π()sin 2sin cos sin 222sin 23f x x x x x x x ωωωωωω⎛⎫=-==-⎪⎝⎭πππ2π362k x k x ωωω-=⇒=+ππππ14,626233ωωωω⎛⎤<+⇒∈ ⎥⎝⎦…214AF BF =12//AF BF 12,AF BF 12AF F B 21F P AF ⊥P 12AF F B c 2PF c =12F PF 122F F c =1230PF F ︒∠=1230AF F ︒∠=12AF F 1AF x =22AF a x =-22221121122cos30AF AF F F AF F F ︒=+-222(2)4a x x c -=+-1AF x ==12BF F 21150BF F ︒∠=2BF =214AF BF = 4=3a =c e a ==则指定的某个个体被抽到的概率为,故A 正确;对于B ,数据1,2,m ,6,7的平均数是,这组数据的方差是,故B 错误;对于C ,,第50百分位数为,故C 正确;对于D ,依题意,,则,故D 正确;故选ACD.10.BD 【解析】对于A ,过点且在轴和轴上的截距互为相反数的直线还有过原点的直线,其方程为错误;对于B ,直线PM ,PN 的斜率分别为,依题意,或,即或,B 正确;对于C ,圆的圆心,半径,定点到圆C 错误;对于D ,圆的圆心,半径,过点斜率不存在的直线与圆相切,当切线斜率存在时,设切线方程为,解得,此切线方程为,所以过点且与圆相切的直线方程为或,D 正确;故选BD.11.BD 【解析】在棱长为2的正方体中,建立如图所示的空间直角坐标系,11100.2505⨯== 4,4512674m =⨯----=222222126(14)(24)(44)(64)(74)55s ⎡⎤=-+-+-+-+-=⎣⎦850%4⨯=1719182+=8x =2116115x -=-=(1,1)-x y ,A y x =-2(1)31(1)1,312312PN FM k k ----====----PMk k ...FN k k ...12k - (3)2k …22:(1)(3)4C x y ++-=(1,3)C -2r =(1,0)Q 2(1)x +2(3)4y +-=22,+=+22:(1)(3)4C x y ++-=(1,3)C -2r =(1,0)1x =C (1)y k x =-2=512k =-51250x y +-=(1,0)22(1)(3)4x y ++-=51250x y +-=1x =1111ABCD A B C D -则,,设平面的法向是为,则令,得,对于,当时,,点到平面的距离A 错误;对于B ,当时,,点到平面的距离B 正确;对于C ,当时,,则,当时,显然,方程无实根,即BP 与不垂直,C 错误;对于D ,当时,,则,显然,即,由,得,即当时,,而平面PCD ,因此平面PCD ,D 正确.故选BD.三、填空题12.0.12【解析】由,且与相互独立,得,13.【解析】设直线AB 的方程为,代入椭圆方程,1111(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,0,2),(2,0,2),(2,2;2),(0,2,2)A B C D A B C D 11(2,0,2),(0,2,2)BA BC =-=11A BC (,,)n x y z = 11220,220,n BA x z n BC y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩1z =(1,1,1)n =- A 0λ=11(0,2,2),(0,2,2),(0,2,22)AP AD P A P μμμμμμμ===-P 11A BC 11||n A P d n ⋅=== 0μ=(2,2,0),(2,2;0),(22,2,0)AP AC P BP λλλλλλλ===-P 11A BC 2||||n BP d n ⋅===34μ=133333(2,2,0)0,,2,2,42222AP AC AD λλλλλ⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭ 13333112,2,,22,2,,22,2,222222P BP C P λλλλλλ⎛⎫⎛⎫⎛⎫+=-+=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 2213135(22)228602242BP C P λλλλλ⎛⎫⎛⎫⋅=-++--=-+= ⎪⎪⎝⎭⎝⎭ 2564802∆=-⨯⨯<1PC 34λ=133333,,0(0,2,2),2,242222AP AC AD μμμμμ⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭ 3331,2,2,,2,2,(2,0,0),(0,2,2)2222P DP DC BC μμμμ⎛⎫⎛⎫+=-== ⎪ ⎪⎝⎭⎝⎭10DC BC ⋅= 1BC DC ⊥1122402DP BC μμ⎛⎫⋅=-+= ⎪⎝⎭ 18μ=18μ=1BC DP ⊥,,DC DP D DC DP ⋂=⊂1BC ⊥()0.3,()0.4P A P B ==A B ()()()0.12P AB P A P B ==43-y x b =+22143x y +=可得,由韦达定理可得,则,则,则,所以.14.-6【解析】取得最小值,则公差或,①当时,,所以,又,所以,所以,故,令,得,所以的最小值为.②当,不合题意.综上所述:的最小值为-6.四、解答题15.【解析】(1),,,,,.…………………………………………………………………………………6分(2)由,,,分16.【解析】(1)证明:中,,22784120x bx b ++-=1287b x x +=-()121427M b x x x =+=-43177M M b y x b b b =+=-+==73b =474733M m x ==-⨯=-n S 40,5d a >=-10a =40a =7470S a ==55S =-535S a =31a =-4310a a d -==>4n a n =-0n a …4n …n S 346S S ==-4745,735a S a =-==-4570,5,0,n a S S S ==-=π2πsin 2sin 2sin 2sin 66sin b a B A A A c C ++⎛⎫⎛⎫+=⇒+=⎪ ⎪⎝⎭⎝⎭cos )sin sin()2sin A A C A C A ∴+=++sin cos sin sin cos cos sin 2sin A C A C A C A C A +=++sin sin cos 2sin ,(0,π),sin 0A C A C A A A =+∈∴≠ πππ5πcos 2sin 1,,6666C C C C ⎛⎫⎛⎫=+⇒-=-∈- ⎪ ⎪⎝⎭⎝⎭ ππ2π,623C C ∴-=∴=222()33AD DB CD CA AD CA AB CA CB CA =⇒=+=+=+-1212,||3333CD CA CB CD CA CB ∴=+∴=+== 22214474272b a ab b b ⎛⎫∴++⋅-=⇒+-= ⎪⎝⎭211230(1)(3)03,sin 1322b b b b b S ab C ∴--=⇒+-=⇒=∴==⨯⨯=QCD 2,3CD AD QD QC ====所以,所以.又平面平面QAD ,所以平面QAD.又平面ABCD ,所以平面平面ABCD .……………………………………………………5分(2)取AD 的中点,因为,所以,且,因为,平面平面ABCD ,平面平面,所以平面ABCD .在平面ABCD 内作,以OD 为轴,OQ 为轴,建立空间直角坐标系,如图所示,则,设平面ABQ 的法向量为,由,得令,得,所以平面ABQ 的一个法向量.设平西BDQ 的法向量为,由,得令,得,所以平面BDQ 的一个法向量.所以222CD QD QC +=CD QD ⊥,,CD AD AD QD D AD ⊥⋂=⊂QAD QD ⊂,CD ⊥CD ⊂QAD ⊥O QD QA =OQ AD ⊥2OQ ==OQ AD ⊥QAD ⊥QAD ⋂ABCD AD =OQ ⊥Ox AD ⊥y z O xyz -(0,0,0),(0,1,0),(2,1,0),(2,1,0),(0,1,0),(0,0,2)O A B C D Q --()111,,x y z α=(2,0,0),(0,1,2)AB AQ ==11120,20,AB x AQ y z αα⎧⋅==⎪⎨⋅=+=⎪⎩ 11z =-112,0y x ==(0,2,1)α=-()222,,x y x β=(2,2,0),(0,1,2)BD DQ =-=-2222220,20,BD x y DQ y x ββ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ 21z =222,2y x ==(2,2,1)β=|cos ,αβ〈〉所以平面ABQ 与平面BDQ分17.【解析】(1)由题得推出所以双曲线的方程为.……………………………………………………………………4分(2)由题意可知直线AB 斜率存在且,设,设AB 的中点为.由消去并整理得,则,即,,于是点为.由中垂线知,所以,解得:.所以由A ,B 在双曲线的右支上可得:,且,且或,所以,即,综上可得,.…………………………………………………………………………15分18.【解析】(1)因为,所以是以为首项,以为公差的等差数列,所以,即①,2222,,b a c c a b ⎧=⎪⎪=⎨⎪=+⎪⎩1,a b ==E 2213y x -=k ≠()()1122:,,,,AB y kx m A x y B x y =+M 22,33y kx m x y =+⎧⎨-=⎩y ()22223230,30k x kmx m k ----=-≠()()()22222(2)4331230km k m m k ∆-+-+-+-=223m k >-()21212121222222326,,223333km m km m x x x x y y k x x m k m k k k k ++==-+=++=⋅+=----M 2222234331243,,333M C MC M m y y km m m k k k km k k x kmk ---+⎛⎫-=== ⎪--⎝⎭-1MC AB k k ⋅=-231241m k km k-+=-23m k =-22221223303033m m x x m k k k m++=-=->⇒=-<⇒>-12222003km x x k k k +==>⇒>-()()()()()222222221230333403m k k k k k k ∆=+->⇒-+-=-->⇒<24k >24k >2k >(2,)k ∈+∞1112n n n n S S a a ++-=n n S a ⎧⎫⎨⎬⎩⎭111a a =12111(1)22n n S n n a +=+-=12n n n S a +=所以②,由②-①可得,即,所以,所以,所以数列为等差数列.………………………………………………………7分(2)(Ⅰ)由题意知在等差数列中,,故.可得,当时,取最大值.………………………………………………………………………………12分(Ⅱ).………………………………………………………………17分19.【解析】(1)由定义可知,与相切,则圆的圆心到直线的距离等于1,则,即.……………………………………………………4分(2)点不在直线族的任意一条直线上,所以无论取何值时,4)无解.将整理成关于的一元二次方程:.1122n n n S a +++=1122n n n n a a ++=11111n n a a a a n n +====+ 111(1),n n a n a a na +=+=11n n a a a +-={}n a {}n a 1(1)2n a a n d n =+-=-132n c n =-22(1)11(2)12(6)362n n n T n n n n -=+⨯-=-=--+∴6n =n T 222222212321234521m i m mi bb b b b a a a a a a ==++++=-+-+-++∑ ()()()()22222222123456212m m a a a a a a a a -=-++-++-+++-+ ()21232284m a a a a m m =-++++=+ 1mx ny +=221x y +=1C (0,0)1mx ny +=d 1==221m n +=()00,P x y 2:(24)4(2)0(R)a x y a a Ω-++-=∈a (2a -2004(2)0x y a ++-=200(24)4(2)0a x y a -++-=a ()()2000244440a x a y x +-++-=。

北京市2024-2025学年高二上学期期中考试数学试卷含解析

北京市2024-2025学年高二上学期期中考试数学试卷含解析

2024-2025学年第一学期高二数学期中考试2024.11(答案在最后)一、单选题(每小题4分,共40分)1.已知α,β是两个不同的平面,l ,m 是两条不同的直线,下列说法正确的是()A.若//αβ,l α⊂,m β⊂,则//l mB.若αβ⊥,l α⊂,则l β⊥C.若l α⊥,αβ⊥,则//l βD.若l α∥,m α⊥,则l m⊥【答案】D 【解析】【分析】根据空间中直线与平面,以及平面与平面的关系,即可结合选项逐一求解.【详解】对于A ,若//αβ,l α⊂,m β⊂,则//l m 或者l m ,异面,故A 错误,对于B ,若αβ⊥,l α⊂,且l 与α,β的交线垂直,才有l β⊥,否则l 与β不一定垂直,故B 错误,对于C ,若l α⊥,αβ⊥,则//l β或者l β⊂,故C 错误,对于D ,若l α∥,m α⊥,则l m ⊥,D 正确,故选:D2.下列可使非零向量,,a b c构成空间的一组基底的条件是()A.,,a b c两两垂直B.b cλ=C.a mb nc=+ D.0a b c ++= 【答案】A 【解析】【分析】由基底定义和共面定理即可逐一判断选项A 、B 、C 、D 得解.【详解】由基底定义可知只有非零向量,,a b c不共面时才能构成空间中的一组基底.对于A ,因为非零向量,,a b c 两两垂直,所以非零向量,,a b c不共面,可构成空间的一组基底,故A 正确;对于B ,b c λ= ,则,b c 共线,由向量特性可知空间中任意两个向量是共面的,所以a 与,b c 共面,故B错误;对于C ,由共面定理可知非零向量,,a b c共面,故C 错误;对于D ,0a b c ++=即a b c =--,故由共面定理可知非零向量,,a b c共面,故D 错误.故选:A.3.在棱长为1的正方体1111ABCD A B C D -中,则点B 到直线1AC 的距离为()A.23B.33C.3D.223【答案】C 【解析】【分析】利用解直角三角形可求点B 到直线AC 1的距离.【详解】如图,连接1BC ,由正方体的性质可得1BC =1AB BC ⊥,故B 到1AC 的63=,故选:C.4.已知直线l 的方向向量为()1,2,4v =- ,平面α的法向量为(),1,2n x =-,若直线l 与平面α垂直,则实数x 的值为()A.10-B.10C.12-D.12【答案】D 【解析】【分析】根据线面垂直得到()1,2,4v =- 与(),1,2n x =- 平行,设v kn =r r ,得到方程组,求出12x =.【详解】直线l 与平面α垂直,故()1,2,4v =- 与(),1,2n x =-平行,设v kn =r r ,即1224kx k k =⎧⎪=⎨⎪-=-⎩,解得12x =.故选:D5.《九章算术》中的“商功”篇主要讲述了以立体几何为主的各种形体体积的计算,其中堑堵是指底面为直角三角形的直棱柱.如图,在堑堵111ABC A B C -中,,M N 分别是111,AC BB 的中点,G 是MN 的中点,若1AG xAB y AA z AC =++,则x y z ++=()A.1B.12C.32D.34【答案】C 【解析】【分析】连接,AM AN ,由()111312244AG AM AN AB AA AC =+=++,即可求出答案.【详解】连接,AM AN如下图:由于G 是MN 的中点,()12AG AM AN=+∴11111222AA AC AB AA ⎛⎫=+++ ⎪⎝⎭1131244AB AA AC =++.根据题意知1AG xAB y AA z AC =++ .32x y z ∴++=.故选:C.6.已知直线1:3470l x y -+=与直线()2:6110l x m y m -++-=平行,则1l 与2l 之间的距离为()A.2B.3C.4D.5【答案】A 【解析】【分析】根据两条直线平行,求出m 值,再应用平行线间的距离公式求值即可.【详解】因为直线1:3470l x y -+=与直线()2:6110l x m y m -++-=平行,所以6(1)1=347m m -+-≠-,解之得7m =.于是直线2:6860l x y --=,即2:3430l x y --=,所以1l 与2l2=.故选:A7.若直线y kx =与圆()2221x y -+=的两个交点关于直线20x y b ++=对称,则k ,b 的直线分别为()A.12k =,4b =- B.12k =-,4b =C.12k =,4b = D.12k =-,4b =-【答案】A 【解析】【分析】由圆的对称性可得20x y b ++=过圆的圆心且直线y kx =与直线20x y b ++=垂直,从而可求出,k b .【详解】因为直线y kx =与圆()2221x y -+=的两个交点关于直线20x y b ++=对称,故直线y kx =与直线20x y b ++=垂直,且直线20x y b ++=过圆心()2,0,所以()21k ⨯-=-,2200b ⨯++=,所以12k =,4b =-.故选:A【点睛】本题考查直线方程的求法,注意根据圆的对称性来探求两条直线的位置关系以及它们满足的某些性质,本题属于基础题.8.已知圆()()22:349C x y -+-=,直线l 过点()2,3P ,则直线l 被圆C 截得的弦长的最小值为()A. B.C. D.【答案】A 【解析】【分析】先判断出()2,3P 与圆的位置关系,然后根据圆心到直线l 的距离的最大值求解出弦长的最小值.【详解】直线l 恒过定点()2,3P ,圆()()22:349C x y -+-=的圆心为()3,4C ,半径为3r =,又()()222233429PC=-+-=<,即P 在圆内,当CP l ⊥时,圆心C 到直线l 的距离最大为d PC =,此时,直线l 被圆C 截得的弦长最小,最小值为=.故选:A .9.已知圆C 的方程为22(2)x y a +-=,则“2a >”是“函数y x =的图象与圆C 有四个公共点”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】找出||y x =与圆有四个公共点的等价条件,据此结合充分条件、必要条件概念判断即可.【详解】由圆C 的方程为22(2)x y a +-=可得圆心()0,2,半径r =,若圆与函数y x =相交,则圆心到直线y x =的距离d ==<即2a >,若函数y x =的图象与圆C 有四个公共点,则原点在圆的外部,即220(02)a +->,解得4a <,综上函数y x =的图象与圆C 有四个公共点则24a <<,所以“2a >”是“函数y x =的图象与圆C 有四个公共点”的必要不充分条件,故选:B10.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:平面内到两个定点A 、B 的距离之比为定值(1)λλ≠的点所形成的图形是圆,后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,(2,0)A -,(4,0)B .点P 满足||1||2PA PB =,设点P 所构成的曲线为C ,下列结论不正确的是()A.C 的方程为22(4)16x y ++=B.在C 上存在点D ,使得D 到点(1,1)的距离为3C.在C 上存在点M ,使得||2||MO MA =D.C 上的点到直线34130x y --=的最小距离为1【答案】C 【解析】【分析】对A :设点 th ,由两点的距离公式代入化简判断;对B :根据两点间的距离公式求得点(1,1)到圆上的点的距离的取值范围,由此分析判断;对C :设点 th ,求点M 的轨迹方程,结合两圆的位置关系分析判断;对D :结合点到直线的距离公式求得C 上的点到直线34130x y --=的最大距离,由此分析判断.【详解】对A :设点 th ,∵12PA PB =12=,整理得()22416x y ++=,故C 的方程为()22416x y ++=,故A 正确;对B :()22416x y ++=的圆心()14,0C -,半径为14r =,∵点(1,1)到圆心()14,0C -的距离1d==,则圆上一点到点(1,1)的距离的取值范围为[]1111,4d r d r ⎤-+=⎦,而)34∈,故在C 上存在点D ,使得D 到点(1,1)的距离为9,故B 正确;对C :设点 th ,∵2MO MA ==,整理得2281639x y ⎛⎫++= ⎪⎝⎭,∴点M 的轨迹方程为2281639x y ⎛⎫++= ⎪⎝⎭,是以28,03C ⎛⎫- ⎪⎝⎭为圆心,半径243r =的圆,又12124833C C r r =<=-,则两圆内含,没有公共点,∴在C 上不存在点M ,使得2MO MA =,C 不正确;对D :∵圆心()14,0C -到直线34130x y --=的距离为25d ==,∴C 上的点到直线34130x y --=的最小距离为211d r -=,故D 正确;故选:C.【点睛】思路点睛:利用点与圆的位置关系来判定B ,利用圆与圆的位置关系来判定C ,结合数形思想即可.二、填空题(每小题5分,共25分)11.已知圆锥的母线与底面所成角为45 ,高为1.则该圆锥的体积为________.【答案】1π3##π3【解析】【分析】根据圆锥的结构特征,圆锥底面半径、高、母线长构成一个直角三角形,从而求出圆锥底面半径,再利用锥体的体积公式即可求解.【详解】因为圆锥底面半径OA 、高PO 、母线PA 构成一个Rt PAO △,又45PAO ∠= ,1PO =,所以底面圆半径1OA =,则该圆锥的体积22111π×π11π333V OA PO =⨯⨯=⨯⨯⨯=,故答案为:1π3.12.已知平面α的一个法向量为(2,3,5)n =,点(1,3,0)A --是平面α上的一点,则点(3,4,1)P --到平面α的距离为__________.【答案】3819【解析】【分析】利用空间向量法可得出点P 到平面α的距离为PA nd n⋅= ,即可求解.【详解】由题意可知()2,1,1PA =-,根据点P 到平面α的距离为19PA nd n⋅==.故答案为:381913.过两条直线1:30l x y -+=与2:20l x y +=的交点,倾斜角为π3的直线方程为____________(用一般式表示)20y -++=【解析】【分析】联立两方程求出交点坐标,再由点斜式写出直线方程,然后化为一般形式即可;【详解】由题意可得12:30:20l x y l x y -+=⎧⎨+=⎩,解得交点坐标为()1,2-,又所求直线的倾斜角为π3,故斜率为πtan 3=所以直线方程为)21y x -=+,20y -++=.14.已知某隧道内设双行线公路,车辆只能在道路中心线一侧行驶,隧道截面是半径为4米的半圆,若行驶车辆的宽度为2.5米,则车辆的最大高度为______________米.【答案】392【解析】【分析】建立如图所示的平面直角坐标系,得出半圆方程,设(2.5,0)A ,求出A 点处半圆的高度即可得.【详解】建立如图所示的平面直角坐标系,O 是圆心, 2.5OA =,半圆方程为2216x y +=(0y ≥)(2.5,0)A ,B 在半圆上,且BA ⊥x 轴,则2216 2.59.75B y =-=,2B y =,故答案为:2.15.如图,在棱长为2的正方体1111ABCD A B C D -中,点M 在线段1BC (不包含端点)上运动,则下列结论正确的是______.(填序号)①正方体1111ABCD A B C D -的外接球表面积为48π;②异面直线1A M 与1AD 所成角的取值范围是,32ππ⎛⎤⎥⎝⎦;③直线1//A M 平面1ACD ;④三棱锥1D AMC -的体积随着点M 的运动而变化.【答案】②③【解析】【分析】由正方体的对角线即为外接球的直径求得球表面积判断①,由异面直线所成角的定义确定1A M 与1BC 的夹角范围判断②,根据线面平面平行的判定定理判断③,换度后由三棱锥体积公式判断④.【详解】正方体对角线长为,即这外接球直径,因此球半径为r =2412ππ==S r ,①错;正方体中AB 与11C D 平行且相等,11ABC D 是平行四边形,11//AD BC ,11A BC V 是正三角形,1A M 与1BC 的夹角(锐角或直角)的范围是[,32ππ,因此②正确;由②上知11//BC AD ,而1BC ⊄平面1ACD ,1AD ⊂平面1ACD ,所以1//BC 平面1ACD ,同理1//A B 平面1ACD ,又11A B BC B ⋂=,11,A B BC ⊂平面11A BC ,所以平面11//A BC 平面1ACD ,而1A M ⊂平面11A BC ,所以1//A M 平面1ACD ,③正确;由1//BC 平面1ACD ,因此M 到平面1ACD 的距离不变,所以11D AMC M ACD V V --=不变,④错.故答案为:②③.三、解答题(共85分)16.已知ABC V 顶点()1,2A 、()3,1B --、()3,3C -.(1)求线段BC 的中点及其所在直线的斜率;(2)求线段BC 的垂直平分线1l 的方程;(3)若直线2l 过点A ,且2l 的纵截距是横截距的2倍,求直线2l 的方程.【答案】(1)中点为()0,2-,13-(2)320x y --=;(3)2y x =或240x y +-=.【解析】【分析】(1)根据中点坐标公式和斜率公式求解;(2)根据(1)中结果结合两直线垂直的斜率关系,得出中垂线斜率,然后利用点斜式方程求解;(3)分类讨论直线是否过原点结合截距式方程即可求解【小问1详解】由()3,1B --、()3,3C -,可知BC 中点为()0,2-,且()()311333BC k ---==---,【小问2详解】由(1)可得13BC k =-,BC 垂直平分线斜率1k 满足11BC k k ⋅=-,即13k =,又BC 的垂直平分线过(0,2)-,所以边BC 的垂直平分线1l 的方程为()()230y x --=-,即320x y --=;【小问3详解】当直线2l 过坐标原点时,2221k ==,此时直线2:2l y x =,符合题意;当直线2l 不过坐标原点时,由题意设直线方程为12x y a a +=,由2l 过点()1,2A ,则1212a a +=,解得2a =,所以直线2l 方程为124x y +=,即240x y +-=,综上所述,直线2l 的方程为2y x =或240x y +-=.17.在平面直角坐标系xOy 中,圆C 经过点()1,0A 和点()1,2B -,且圆心在直线220x y -+=上.(1)求圆C 的标准方程;(2)若直线3x ay =+被圆C 截得弦长为a 的值.【答案】(1)()2214x y ++=(2)a =【解析】【分析】(1)先求线段AB 的垂直平分线所在直线的方程,进而求圆心和半径,即可得方程;(2)由垂径定理可得圆心到直线的距离1d =,利用点到直线的距离公式运算求解.【小问1详解】因为()1,0A ,()1,2B -的中点为()0,1E ,且直线AB 的斜率20111AB k -==---,则线段AB 的垂直平分线所在直线的方程为1y x =+,联立方程1220y x x y =+⎧⎨-+=⎩,解得10x y =-⎧⎨=⎩,即圆心()1,0C -,2r CA ==,所以,圆C 的方程为()2214x y ++=.【小问2详解】因为直线3x ay =+被曲线C截得弦长为,则圆心到直线的距离1d ==,由点到直线的距离公式可得1=,解得a =18.已知圆22:68210C x y x y +--+=,直线l 过点()1,0A .(1)求圆C 的圆心坐标及半径长;(2)若直线l 与圆C 相切,求直线l 的方程;(3)设直线l 与圆C 相切于点B ,求 R .【答案】(1)圆心坐标为 th ,半径长为2.(2)1x =或3430x y --=.(3)4.【解析】【分析】(1)将圆化为标准方程即可求出圆心坐标以及半径长;(2)讨论直线l 的斜率不存在与存在两种情况,不存在时设出直线方程kx y k 0--=根据点到直线距离公式求解即可;(3)根据两点间距离公式求出AC 长,再根据勾股定理求解即可.【小问1详解】圆C 方程可化为:()()22344x y -+-=,圆心坐标为 th ,半径长为2.【小问2详解】①当直线l 的斜率不存在时,方程为 ,圆心 th 到直线l 距离为2,满足题意.②当直线l 的斜率存在时,设直线l 的方程是h ,即kx y k 0--=.由圆心()34,到直线l2=,解得34k =,此时直线l 的方程为3430x y --=.综上,直线l 的方程为 或3430x y --=.【小问3详解】∵圆C 的圆心坐标为 th ,()1,0A ,∴()()22314025AC =-+-=.如图,由相切得,AB BC ⊥,2BC =,∴222044AB AC BC =-=-=.19.如图所示,在几何体ABCDEFG 中,四边形ABCD 和ABFE 均为边长为2的正方形,//AD EG ,AE ⊥底面ABCD ,M 、N 分别为DG 、EF 的中点,1EG =.(1)求证://MN 平面CFG ;(2)求直线AN 与平面CFG 所成角的正弦值.【答案】(1)证明见解析(2)53【解析】【分析】(1)建立空间直角坐标系,求得直线MN 的方向向量31,,12MN ⎛⎫=- ⎪⎝⎭ ,求得平面CFG 的法向量1n ,然后利用10n MN ⋅= ,证明1MN n ⊥ ,从而得出//MN 平面CFG ;(2)求得直线AN 的方向向量()1,0,2AN = ,由(1)知平面CFG 的法向量1n ,结合线面角的向量公式即可得解.【小问1详解】因为四边形ABCD 为正方形,AE ⊥底面ABCD ,所以AB ,AD ,AE 两两相互垂直,如图,以A 为原点,分别以AB ,AD ,AE 方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系A xyz -,由题意可得 t t ,()2,0,0B ,()2,2,0C ,()0,2,0D ,()0,0,2E ,()2,0,2F ,()0,1,2G ,30,,12M ⎛⎫ ⎪⎝⎭,()1,0,2N ,则()0,2,2CF =- ,()2,1,2CG =-- ,31,,12MN ⎛⎫=- ⎪⎝⎭ 设平面CFG 的一个法向量为 th t ,则11n CF n CG⎧⊥⎪⎨⊥⎪⎩ ,故11·=0·=0n CF n CG ⎧⎪⎨⎪⎩ ,即11111220220y z x y z -+=⎧⎨--+=⎩,则111112y z x z =⎧⎪⎨=⎪⎩,令12z =,得()11,2,2n = ,所以()1331,2,21,,111221022n MN ⎛⎫⎛⎫⋅=⋅-=⨯+⨯-+⨯= ⎪ ⎪⎝⎭⎝⎭,所以1MN n ⊥ ,又MN ⊄平面CFG ,所以//MN 平面CFG .【小问2详解】由(1)得直线AN 的一个方向向量为()1,0,2AN = ,平面CFG 的一个法向量为()11,2,2n = ,设直线AN 与平面CFG 所成角为θ,则111sin cos,3n ANn ANn ANθ⋅=====⋅,所以直线AN与平面CFG 所成角的正弦值为53.20.如图,已知等腰梯形ABCD中,//AD BC,122AB AD BC===,E是BC的中点,AE BD M=,将BAE沿着AE翻折成1B AE△,使1B M⊥平面AECD.(1)求证:CD⊥平面1B DM;(2)求平面1B MD与平面1B AD夹角的余弦值;(3)在线段1B C上是否存在点P,使得//MP平面1B AD,若存在,求出11B PB C的值;若不存在,说明理由.【答案】(1)证明见解析(2)155(3)存在,1112B PB C=.【解析】【分析】(1)作出辅助线,得到四边形ABED是菱形,AE BD⊥,得到1,AE B M AE DM⊥⊥,证明出AE⊥平面1B DM,再证明出四边形AECD是平行四边形,故//AE CD,所以CD⊥平面1B DM;(2)证明出1,,AE B M DM两两垂直,建立空间直角坐标系,写出点的坐标,求出两平面的法向量,利用面面角的余弦向量公式求出平面1B MD与平面1B AD夹角余弦值;(3)假设线段1B C上存在点P,使得//MP平面1B AD,作出辅助线,得到A M P Q,,,四点共面,四边形AMPQ为平行四边形,所以12PQ AM CD==,所以P是1B C的中点,求出11B PB C.【小问1详解】如图,在梯形ABCD 中,连接DE ,因为E 是BC 的中点,所以12BE BC =,又122AD BC ==,所以AD BE =,又因为//AD BE ,所以四边形ABED是平行四边形,因为AB AD =,所以四边形ABED 是菱形,从而AE BD ⊥,BAE 沿着AE 翻折成1B AE △后,有1,AE B M AE DM⊥⊥又11,,B M DM M B M DM =⊂ 平面1B DM ,所以AE ⊥平面1B DM ,由题意,易知//,AD CE AD CE =,所以四边形AECD 是平行四边形,故//AE CD ,所以CD ⊥平面1B DM .【小问2详解】因为1B M ⊥平面AECD ,DM ⊂平面AECD ,则有1B M DM ⊥,由(1)知1,AE B M AE DM ⊥⊥,故1,,AE B M DM 两两垂直,以M 为坐标原点,1,,ME MD MB 所在直线分别为,,x y z轴,建立空间直角坐标系,因为AB BE AE ==,所以ABE 为等边三角形,同理ADE V 也为等边三角形,则(()()1,1,0,0,0,B A D -,设平面1B AD 的一个法向量为 tht ,则()()()(1,,0,,0m AD x y z x m B D x y z ⎧⋅=⋅=+=⎪⎨⋅=⋅=-=⎪⎩ ,令1y =得1x z ==,故()m = ,又平面1B MD 的一个法向量为()1,0,0n = ,则cos ,5m n m n m n ⋅==⋅ ,故平面1B MD 与平面1B AD 夹角的余弦值为5;【小问3详解】假设线段1B C 上存在点P ,使得//MP 平面1B AD ,过点P 作PQ CD∥交1B D 于Q ,连接MP AQ ,,如图所示:所以////AM CD PQ ,所以A M P Q ,,,四点共面,又因为//MP 平面1B AD ,所以//MP AQ ,所以四边形AMPQ 为平行四边形,所以12PQ AM CD ==,所以P 是1B C 的中点,故在线段1B C 上存在点P ,使得//MP 平面1B AD ,且1112B P B C =.21.“曼哈顿几何”也叫“出租车几何”,是在19世纪由赫尔曼·闵可夫斯基提出来的.如图是抽象的城市路网,其中线段AB 是欧式空间中定义的两点最短距离,但在城市路网中,我们只能走有路的地方,不能“穿墙”而过,所以在“曼哈顿几何”中,这两点最短距离用(),d A B 表示,又称“曼哈顿距离”,即(),d A B AC CB =+,因此“曼哈顿两点间距离公式”:若()11,A x y ,()22,B x y ,则()2121,d A B x x y y =-+-(1)①点()A 3,5,()2,1B -,求(),d A B 的值.②求圆心在原点,半径为1的“曼哈顿单位圆”方程.(2)已知点()10B ,,直线220x y -+=,求B 点到直线的“曼哈顿距离”最小值;(3)设三维空间4个点为(),,i i i i A x y z =,1,2,3,4i =,且i x ,i y ,{}0,1i z ∈.设其中所有两点“曼哈顿距离”的平均值即d ,求d 最大值,并列举最值成立时的一组坐标.【答案】(1)①7;②1x y +=;(2)2;(3)2,()10,0,0A ,()21,0,1A ,()31,1,0A ,()40,1,1A .【解析】【分析】(1)①②根据“曼哈顿距离”的定义求解即可;(2)设直线220x y -+=上任意一点坐标为()11,22C x x +,然后表示(),d C B ,分类讨论求(),d C B 的最小值;(3)将i A 的所有情况看做正方体的八个顶点,列举出不同情况的d ,即可得到d 的最小值.【小问1详解】①(),32517d A B =-++=;②设“曼哈顿单位圆”上点的坐标为(),x y ,则001x y -+-=,即1x y +=.【小问2详解】设直线220x y -+=上任意一点坐标为()11,22C x x +,则()11,122d C B x x =-++,当11x <-时,()1,31d C B x =--,此时(),2d C B >;当111x -≤≤时,()1,3d C B x =+,此时(),2d C B ≥;当11x >时,()1,31d C B x =+,此时(),4d C B >,综上所述,(),d C B 的最小值为2.【小问3详解】如图,A B C D E F G H ''''''''-为正方体,边长为1,则i A 对应正方体的八个顶点,当四个点在同一个面上时,(i )例如:,,,A B C D '''',此时121121463d +++++==;(ii )例如:,,,A E G C '''',此时23113226d +++++==;当四个点不在同一个平面时,(iii )例如:,,,A C H D '''',此时22222226d +++++==;(iiii )例如:,,,A B E D '''',此时221112563d +++++==;(iiiii )例如:,,,A B E H '''',此时112231563d +++++==;(iiiiii )例如:,,,A B E G '''',此时1223121166d +++++==;综上所述,d 的最大值为2,例如:()10,0,0A ,()21,0,1A ,()31,1,0A ,()40,1,1A .。

2023-2024学年人大附中高二数学上学期期中考试卷附答案解析

2023-2024学年人大附中高二数学上学期期中考试卷附答案解析

2023-2024学年人大附中高二数学上学期期中考试卷(试卷满分150分,考试时间120分钟)2023.11第I 卷(共18题,满分100分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)1.已知平面//α平面β,直线a α⊂,直线b β⊂,则a 与b 的位置关系是()A .平行B .平行或异面C .异面D .异面或相交2.已知点()3,1,0A -,若向量()2,5,3AB =-,则点B 的坐标是().A .()1,6,3-B .()5,4,3-C .()1,6,3--D .()2,5,3-3.一个水平放置的平面图形OAB 用斜二测画法作出的直观图是如图所示的等腰直角O A B '''△,其中A B ''=,则平面图形OAB 的面积为()A .B .C .D .4.已知1cos ,3a b 〈〉=-,则下列说法错误的是()A .若,a b分别是直线12,l l 的方向向量,则12,l l所成角余弦值是13B .若,a b分别是直线l 的方向向量与平面α的法向量,则l 与α所成角正弦值是13C .若,a b分别是平面ABC 、平面BCD 的法向量,则二面角A BC D --的余弦值是13D .若,a b分别是直线l 的方向向量与平面α的法向量,则l 与α所成角余弦值是223.5.一个三棱锥的各棱长均相等,其内部有一个内切球,即球与三棱锥的各面均相切,过一条侧棱和对边的中点作三棱锥的截面,所得截面图形是A .B .C .D .6.如图,平行六面体1111ABCD A B C D -的底面ABCD 是矩形,其中2AB =,4=AD ,13AA =,且1160A AD A AB ∠=∠=︒,则线段1AC 的长为()A .9B C D .7.如图,已知大小为60︒的二面角l αβ--棱上有两点A ,B ,,AC AC l α⊂⊥,,BD BD l β⊂⊥,若3,3,7AC BD CD ===,则AB 的长度()A .22B .40C .D 8.鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根完全一样的正四棱柱体分成三组,经90°榫卯起来.若正四棱柱的高为6,底面正方形的边长为1,现将该鲁班锁放进一个球形容器(容器壁的厚度忽略不计),则该球形容器表面积的最小值为A .41πB .42πC .43πD .44π9.如图,1111ABCD A B C D -是棱长为4的正方体,P QRH -是棱长为4的正四面体,底面ABCD ,QRH 在同一个平面内,//BC QH ,则正方体中过AD 且与平面PHQ 平行的截面面积是A ..C ..10.《九章算术·商功》中有这样一段话:“斜解立方,得两壍堵.斜解壍堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.”意思是:如图,沿正方体对角面11A B CD 截正方体可得两个壍堵,再沿平面11B C D 截壍堵可得一个阳马(四棱锥1111D A B C D -),一个鳖臑(三个棱锥11D B C C -),若P 为线段CD 上一动点,平面α过点P ,CD ⊥平面α,设正方体棱长为1,PD x =,α与图中鳖臑截面面积为S ,则点P 从点D 移动到点C 的过程中,S 关于x 的函数图象大致是()A .B .C .D .二、填空题(本大题共5小题,每小题5分,共25分.请把结果填在答题纸上的相应位置.)11.已知正方形ABCD 的边长为2,则AB AC =+ .12.已知圆锥的轴截面是边长为2的等边三角形,则此圆锥的表面积为.13.平面与平面垂直的判定定理符号语言为:.14.在移动通信中,总是有很多用户希望能够同享一个发射媒介,进行无线通信,这种通信方式称为多址通信.多址通信的理论基础是:若用户之间的信号可以做到正交,这些用户就可以同享一个发射媒介.在n 维空间中,正交的定义是两个n 维向量()()1212,,,,,,,n n a x x x b y y y =⋯=⋯满足11220n n x y x y x y ++⋯+=.已知某通信方式中用户的信号是4维非平向量,有四个用户同享一个发射媒介,已知前三个用户的信号向量为22(0,0,0,1),(0,0,1,0),,,0,022⎫⎪⎪⎝⎭.写出一个满足条件的第四个用户的信号向量.15.一个三棱锥的三个侧面中有一个是边长为2的正三角形,另两个是等腰直角三角形,则该三棱锥的体积可能为.三、解答题(本大题共3小题,共35分.解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)16.已知空间直角坐标系中四个点的坐标分别为:(1,1,1),(1,2,3),(4,5,6),(7,8,)A B C D x .(1)求||AC ;(2)若AB CD ⊥ ,求x 的值;(3)若D 点在平面ABC 上,直接写出x 的值.17.如图所示,在四棱锥P ABCD -中,BC 平面PAD ,12BC AD =,E 是PD 的中点.(1)求证:BC AD ∥;(2)求证:CE 平面PAB ;(3)若M 是线段CE 上一动点,则线段AD 上是否存在点N ,使MN 平面PAB ?说明理由.18.如图所标,已知四棱锥E ABCD -中,ABCD 是直角梯形,90ABC BAD ∠=∠=︒,平面EAB ⊥平面ABCD ,63AB BC BE AD AE =====,,(1)证明:BE ⊥平面ABCD ;(2)求B 到平面ADE 的距离;(3)求二面角A DE C --的余弦值.第Ⅱ卷(共8道题,满分50分)一、选择题(共4小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)19.关于空间中的角,下列说法中正确的个数是()①空间中两条直线所成角的取值范围是π0,2⎡⎤⎢⎣⎦②空间中直线与平面所成角的取值范围是π0,2⎡⎤⎢⎥⎣⎦③空间中二面角的平面角的取值范围是π0,2⎡⎤⎢⎣⎦④空间中平面与平面所成角的取值范围是π0,2⎡⎤⎢⎥⎣⎦A .1B .2C .3D .420..如图,在正方形ABCD 中,点E 、F 分别为边BC ,AD 的中点.将ABF △沿BF 所在直线进行翻折,将CDE 沿DE 所在直线进行翻折,在翻折的过程中,下列说法正确的是()A .点A 与点C 在某一位置可能重合B .点A 与点C 3ABC .直线AB 与直线DE 可能垂直D .直线AF 与直线CE 可能垂直21.在正方体ABCD A B C D -''''中,P 为棱AA '上一动点,Q 为底面ABCD 上一动点,M 是PQ 的中点,若点,P Q 都运动时,点M 构成的点集是一个空间几何体,则这个几何体是()A .棱柱B .棱台C .棱锥D .球的一部分22.如图,在棱长为2的正方体1111ABCD A B C D -中,P 为线段11A C 的中点,Q 为线段1BC 上的动点,则下列结论正确的是()A .存在点Q ,使得//PQ BDB .存在点Q ,使得PQ ⊥平面11AB C DC .三棱锥Q APD -的体积是定值D .存在点Q ,使得PQ 与AD 所成的角为π6二、填空题(共3小题,每小题5分,共15分.把答案填在答题纸上的相应位置.)23.如图,在边长为2正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在正方体表面上移动,且满足11B P D E ⊥,则点1B 和满足条件的所有点P 构成的图形的周长是.24.已知正三棱柱111ABC A B C -的所有侧棱长及底面边长都为2,D 是1CC 的中点,则直线AD 与平面1A BD所成角的正弦值为.25.点O 是正四面体1234A A A A 的中心,()11,2,3,4i OA i ==.若11223344OP OA OA OA OA λλλλ=+++ ,其中()011,2,3,4i i λ≤≤=,则动点P 扫过的区域的体积为.三、解答题(本小题15分,解答应写出文字说明过程或演算步骤.请将答案写在答题纸上的相应位置.)26.已知自然数集()*{1,2,3,,}N A n n =∈ ,非空集合{}()*12,,,N m E e e e A m =⊆∈ .若集合E 满足:对任意a A ∈,存在,(1)i j e e E i j m ∈≤≤≤,使得,,{1,0,1}i j a xe ye x y =+∈-,称集合E 为集合A 的一组m 元基底.(1)分别判断下列集合E 是否为集合A 的一组二元基底,并说明理由:①{1,2},{1,2,3,4,5}E A ==;②{2,3},{1,2,3,4,5,6}E A ==.(2)若集合E 是集合A 的一组m 元基底,证明:(1)n m m ≤+;(3)若集合E 为集合{1,2,3,,19}A = 的一组m 元基底,求m 的最小值.1.B【分析】利用直线与平面的位置关系判断即可.【详解】因为平面//α平面β,直线a α⊂,直线b β⊂,所以a 与b 没有交点,即a 与b 可能平行,也可能异面.故选:B.2.B【分析】根据空间向量的坐标表示可得.【详解】由空间向量的坐标表示可知,AB OB OA =-,所以()()()2,5,33,1,05,4,3OB AB OA =+=-+-=-,所以点B 的坐标为()5,4,3-.故选:B 3.B【分析】先求得原图形三角形的底与高的值,进而求得原图形的面积【详解】因为在直观图中,O A A B ''''=O B ''==,,高为2⨯=故原图形的面积为12=.故选:B4.C【分析】根据向量法逐一判断即可.【详解】对于A :因为直线与直线所成角范围为0,2π⎡⎤⎢⎥⎣⎦,所以12,l l 所成角余弦值为1cos ,3a b 〈〉= ,故A 正确;对于B :因为直线与平面所成角范围为0,2π⎡⎤⎢⎥⎣⎦,所以l 与α所成角正弦值3s n 1cos ,i a b θ〈=〉= ,l 与α所成223=,故BD 正确;对于C :因为二面角的平面角所成角范围为[)0,p,所以二面角A BC D --的余弦值可能为负值,故C 错误;故选:C 5.B【分析】设三棱锥S ABC -的各棱长均相等,由,SC SH 确定的平面,得到截面SCD ∆,再由正四面体的性质和图象的对称性加以分析,同时对照选项,即可求解.【详解】如图所示,设三棱锥S ABC -的各棱长均相等,球O 是它的内切球,设H 为底面ABC ∆的中心,根据对称性可得内切球的球心O 在三棱锥的高SH 上,由,SC SH 确定的平面交AB 于D ,连接,AD CD ,得到截面SCD ∆,截面SCD 就是经过侧棱SC 与AB 中点的截面,平面SCD 与内切球相交,截得的球大圆如图所示,因为SCD ∆中,圆O 分别与,AD CE 相切于点,E H ,且SD CD =,圆O 与SC 相离,所对照各个选项,可得只有B 项的截面符合题意,故选B.【点睛】本题主要考查了正四面体的内切球的截面问题,其中解答中正确理解组合体的结构特征是解答的关键,着重考查了正四面体的性质,球的性质的应用,属于中档试题.6.C【分析】由11AC AC CC =+ ,两边平方,利用勾股定理以及数量积的定义求出2211,,2AC AC CC CC ⋅ 的值,进而可得答案【详解】由11AC AC CC =+ ,2222211111()2AC AC AC CC AC AC CC CC ==+=+⋅+ .因为底面ABCD 是矩形,2AB =,4=AD ,13AA =,所以2241620=AC AC =+= ,219CC = ,因为1160A AB A AD ∠=∠=,所以1123cos 603,43cos 606AB CC BC CC ⋅=⨯⨯=⋅=⨯⨯=所以()1111822()2()=23+6=1AC CC AB BC CC AB CC BC CC ⋅=+⋅=⋅+⋅,2112018947,47AC AC =++==故选:C.7.C【分析】过A 作AE BD 且AE BD =,连接,CE DE ,易得60CAE ︒∠=,通过线面垂直的判定定理可得ED ⊥平面AEC ,继而得到ED EC ⊥,由勾股定理即可求出答案.【详解】解:过A 作AE BD 且AE BD =,连接,CE DE ,则四边形ABDE 是平行四边形,因为BD AB ⊥,所以平行四边形ABDE 是矩形,因为BD l ⊥,即AE l ⊥,而AC l ⊥,则CAE ∠是二面角l αβ--的平面角,即60CAE ︒∠=,因为3BD AE AC ===,即ACE △为正三角形,所以3CE =,因为,ED AE l AC ⊥⊥,即ED AC ⊥,,,AE AC A AE AC ⋂=⊂平面AEC ,所以ED ⊥平面AEC ,因为EC ⊂平面AEC ,所以ED EC ⊥,所以在Rt EDC中,ED =AB ED ==故选:C8.A【解析】由于图形的对称性,只要求出一组正四棱柱的体对角线,即是外接圆的直径.【详解】由题意,该球形容器的半径的最小值为并在一起的两个长方体体对角线的一半,即为14122=,∴该球形容器体积的最小值为:42π⨯=41π.故选:A.【点睛】本题考查了几何体的外接球问题,考查了空间想象能力,考查了转化思想,该类问题的一个主要方法是通过空间想象,把实际问题抽象成空间几何问题,属于中档题.9.C【分析】首先要根据面面平行的性质定理确定截面的形状,再根据正四面体的性质、等角定理等确定点,E F 的具体位置、AE 的长度,从而求出截面面积.【详解】设截面与1111,A B D C 分别相交于点,E F 则//EF AD ,过点P 作平面QRH 的垂线,垂足为O ,则O 是底面QRH的中心.设OR HQ G ⋂=,则EAB PGO ∠=∠,又因为4323RG RO OG ===,3PO ==,所以22sin sin 3PO EAB PGO PG ∠=∠==,所以43EA EA =⇒=,所以四边形AEFD的面积4S =⨯=选C.【点睛】本题考查正棱锥的平行关系、等角定理,考查空间想象能力,突显了直观想象的考查.属中档题.10.B【分析】分析得出11PMN CB C △△,可得出1PNxCC =,求出PMN S △关于x 的函数关系式,由此可得出合适的选项.【详解】设M 、N 分别为截面与1DB 、1DC 的交点,DP x =,01x ≤≤,CD ⊥ 平面PMN ,CD ⊥平面11B CC ,所以,平面//PMN 平面11B CC ,因为平面1DCC 平面PMN PN =,平面1DCC 平面111B CC CC =,所以,1//PN CC ,同理可得11//MN B C ,1//PM B C ,所以,111111PN DN MN DM PM DP x CC DC B C DB B C DC ======,所以,11PMN CB C △△,易知111111122CB C S B C CC =⋅=△,因此,112212PMN CB C S x S x ==△△.故选:B.【点睛】关键点点睛:本题考查函数图象的辨别,解题的关键就是充分分析图形的几何特征,以此求出函数解析式,结合解析式进行判断.11.【分析】根据向量数量积以及模长公式即可求解.【详解】由题意可知π2,,4AB AC AB AC ===,24,2AB AC ∴=⋅=⨯故AB AC +===故答案为:12.3π【分析】由轴截面可确定圆锥底面半径和母线长,代入圆锥表面积公式即可.【详解】 圆锥轴截面是边长为2的等边三角形,∴圆锥底面半径1r =,圆锥母线长2l =,∴圆锥的表面积2ππ2ππ3πS rl r =+=+=.故答案为:3π.13.,a a αβαβ⊂⊥⇒⊥(答案不唯一)【分析】根据“平面与平面垂直的判定定理”写出正确答案.【详解】平面与平面垂直的判定定理:,a a αβαβ⊂⊥⇒⊥.故答案为:,a a αβαβ⊂⊥⇒⊥(答案不唯一)14.()1,1,0,0(答案不唯一)【分析】根据“正交”的定义列方程,从而求得正确答案.【详解】设满足条件的第四个用户的信号向量是(),,,x y z u ,则()()()(0,0,0,1),,,0(0,0,1,0),,,0,,,,022x y z u x y z u x y z u ⎧⎪⋅=⎪⎪⋅=⎨⎪⎛⎫⎪-⋅=⎪ ⎪⎪⎝⎭⎩,则00022u z x y ⎧⎪=⎪⎪=⎨⎪-=⎪⎩,则0,u z x y ===,故一个满足条件的信号向量是()1,1,0,0.故答案为:()1,1,0,0(答案不唯一)15.(或3或,答案不唯一)【分析】根据已知条件进行分类讨论,结合三棱锥的体积公式求得正确答案.【详解】(1)BCD △是等边三角形,且,AB AC AD AC ⊥⊥,如下图所示,由于,,AB AD A AB AD =⊂ 平面ABD ,所以AC ⊥平面ABD,2,BC BD CD AB AD AC ======222,AB AD BD AB AD +=⊥,则1132A BCD V -=⨯.(2)BCD △是等边三角形,且,AB BD AB BC ⊥⊥,如下图所示,由于,,BD BC B BD BC ⋂=⊂平面BCD ,所以AB ⊥平面BCD ,2BC BD CD AB ====,所以112322sin 602323A BCD V -=⨯⨯⨯⨯︒⨯=.(3)BCD △是等边三角形,且,AB BD CD AC ⊥⊥,如下图所示,取AD 的中点O ,连接,OB OC ,则2BC BD CD AB ====,22AD =122OB OC AD ===222,OB OC BC OB OC +=⊥,,,,,AD OB AD OC OB OC O OB OC ⊥⊥⋂=⊂平面OBC ,所以AD ⊥平面OBC .所以112222232A BCD V -⎛=⨯⨯ ⎝.故答案为:23(或23或23,答案不唯一).16.(1)92x =(3)9x =【分析】(1)根据空间向量的模求得正确答案.(2)根据向量垂直列方程,化简求得x 的值.(3)根据向量共面列方程,从而求得x 的值.【详解】(1)()3,4,5,AC AC ===(2)()()0,1,2,3,3,6AB CD x ==-,由于AB CD ⊥ ,所以3212290AB CD x x ⋅=+-=-= ,解得92x =.(3)()()0,1,2,3,4,5AB AC ==,设AD aAB bAC =+ ,即()()()()6,7,10,,23,4,53,4,25x a a b b b b a b a b -=+=++,所以6374125ba b x a b =⎧⎪=+⎨⎪-=+⎩,解得1,2,9a b x =-==.17.(1)证明见解析(2)证明见解析(3)存在,证明见解析【分析】(1)根据线面平行的性质定理即可证明;(2)由中位线、线面平行的性质可得四边形BCEF 为平行四边形,再根据线面平行的判定即可证明;(3)根据线面、面面平行的性质定理和判断定理即可判断存在性.【详解】(1)在四棱锥P ABCD -中,BC 平面PAD ,BC ⊂平面ABCD ,AD ⊂平面PAD ,平面ABCD ⋂平面PAD AD =,所以BC AD ∥;(2)如下图,取F 为AP 中点,连接,EF BF ,由E 是PD 的中点,所以EF AD ∥且12EF AD =,由(1)知BC AD ∥,又12BC AD =,所以EF BC ∥且EF BC =,所以四边形BCEF 为平行四边形,故CE BF ∥,而CE ⊂平面PAB ,BF ⊄平面PAB ,则CE 平面PAB .(3)取AD 中点N ,连接CN ,EN ,因为E ,N 分别为PD ,AD 的中点,所以EN PA ∥,因为EN ⊄平面PAB ,PA ⊂平面PAB ,所以EN 平面PAB ,线段AD 存在点N ,使得MN 平面PAB ,理由如下:由(2)知:CE 平面PAB ,又CE EN E = ,CE ⊂平面CEN ,EN ⊂平面CEN ,所以平面CEN 平面PAB ,又M 是CE 上的动点,MN ⊂平面CEN ,所以MN 平面PAB ,所以线段AD 存在点N ,使得MN 平面PAB .18.(1)证明详见解析(2)3222-【分析】(1)通过证明BE AB ⊥,结合面面垂直的性质定理证得BE ⊥平面ABCD.(2)建立空间直角坐标系,利用向量法求得B 到平面ADE 的距离.(3)利用向量法求得二面角A DE C --的余弦值.【详解】(1)由于222AB BE AE +=,所以BE AB ⊥,由于平面EAB ⊥平面ABCD ,且交线为AB ,BE ⊂平面EAB ,所以BE ⊥平面ABCD .(2)由于BC ⊂平面ABCD ,所以BE BC ⊥,所以,,BC AB BE 两两相互垂直,由此建立如图所示空间直角坐标系,则()()()()6,0,0,0,6,0,0,0,6,3,6,0C A E D,故()()3,0,0,0,6,6AD AE==-,设平面ADE的法向量为(),,m x y z=,则30660m AD xm AE y z⎧⋅==⎪⎨⋅=-+=⎪⎩,故可设()0,1,1m=,又()0,6,0BA=,所以B到平面ADE的距离为m BAm⋅==.(3)由(2)得平面ADE的法向量为()0,1,1 m=.而()()3,6,0,3,6,6CD ED=-=-,设平面CDE的法向量为(),,n a b c=,则3603660n CD a bn ED a b c⎧⋅=-+=⎪⎨⋅=+-=⎪⎩,故可设()2,1,2n=,由图可知二面角A DE C--为钝角,设为θ,则cos2m nm nθ⋅=-==-⋅.19.C【分析】由空间中直线与直线、直线与平面、平面与平面所成角范围判断即可.【详解】对于①:由空间中两条直线所成角的取值范围是π0,2⎡⎤⎢⎣⎦,可知①正确;对于②:由空间中直线与平面所成角的取值范围是π0,2⎡⎤⎢⎥⎣⎦,可知②正确;对于③:空间中二面角的平面角的取值范围是[]0,π,可知③错误;对于④:空间中平面与平面所成角的取值范围是π0,2⎡⎤⎢⎣⎦,可知④正确;故选:C20.D【分析】将ABF△沿BF所在直线进行翻折,将CDE沿DE所在直线进行翻折,在翻折过程中A,C的运动轨迹分别是圆,AB,AF是以BF为旋转轴的圆锥侧面;CE,CD是以DE为旋转轴的圆锥侧面;【详解】由题意,在翻折过程中A,C的运动轨迹分别是两个平行的圆,所以点A与点C不可能重合,故选项A错误;点A与点C的最大距离为正方形的对角线AC=,故选项B错误;由题易知直线BF与直线DE平行,所以直线AB与直线DE所成角和直线AB与直线BF所成角相等,显然直线AB与直线BF不垂直,故选项C错误;由题在正方形中直线AF 与直线CE 平行,设翻折后点A 为1A ,由题易知初始位置ππ,42AFB ⎛⎫∠∈ ⎪⎝⎭,当ABF △沿BF 所在直线翻折到与平面BEDF 重合时,1π2,π2A FA AFB ⎛⎫∠=∠∈ ⎪⎝⎭所以在此连续变化过程中必存在1π2A FA ∠=,即1A F AF ⊥,所以1A F CE ⊥,所以翻折过程中,直线AF 与直线CE 可能垂直,故选项D 正确.故选:D.21.A【分析】先讨论P 点与A 点重合,M 点的轨迹,再分析把P 点从A 点向上沿1AA 移动,在移动的过程中M 点的轨迹,从而可得出结论.【详解】解:若P 点与A 点重合,设,AB AD 的中点分别为,E F ,移动Q 点,则此时M 点的轨迹为以,AE AF 邻边的正方形,再将P 点从A 点向上沿1AA 移动,在移动的过程中可得M 点的轨迹是将以,AE AF 邻边的正方形沿1AA 向上移动,最后当点P 与1A 重合时,得到最后一个正方形,故所得的几何体为棱柱.故选:A.22.B【分析】A 由11//BD B D 、11B D PQ P = 即可判断;B 若Q 为1BC 中点,根据正方体、线面的性质及判定即可判断;C 只需求证1BC 与面APD 是否平行;D 利用空间向量求直线夹角的范围即可判断.【详解】A :正方体中11//BD B D ,而P 为线段11A C 的中点,即为11B D 的中点,所以11B D PQ P = ,故,BD PQ 不可能平行,错;B :若Q 为1BC 中点,则1//PQ A B ,而11A B AB ⊥,故1PQ AB ⊥,又AD ⊥面11ABB A ,1A B ⊂面11ABB A ,则1A B AD ⊥,故PQ AD ⊥,1AB AD A ⋂=,1,AB AD ⊂面11AB C D ,则PQ ⊥面11AB C D ,所以存在Q 使得PQ ⊥平面11AB C D ,对;C :由正方体性质知:11//BC AD ,而1AD 面APD A =,故1BC 与面APD 不平行,所以Q 在线段1BC 上运动时,到面APD 的距离不一定相等,故三棱锥Q APD -的体积不是定值,错;D :构建如下图示空间直角坐标系D xyz -,则(2,0,0)A ,(1,1,2)P ,(2,2,)Q a a -且02a ≤≤,所以(2,0,0)DA = ,(1,1,2)PQ a a =--,若它们夹角为θ,则2222(1)|1|cos 2(1)1(2)233a a a a θ=⨯-++-⋅-+令1[1,1]t a =-∈-,则cos θ==,当(0,1]t ∈,则[)11,t ∈+∞,cos θ∈;当0=t 则cos 0θ=;当[1,0)t ∈-,则(]1,1t ∞∈--,2cos (0,]2θ∈;所以πcos 6=不在上述范围内,错.故选:B23.【分析】以点D 为坐标原点,建立如下图所示的空间直角坐标系,由坐标法证明11,D E MN D E AM ⊥⊥,从而得出满足条件的所有点P 构成的图形,进而得出周长.【详解】以点D 为坐标原点,建立如下图所示的空间直角坐标系,如图,取1,CC CD 的中点分别为,N M ,连接11,,,AM MN B N AB ,由于1AB MN ∥,所以1,,,A B N M 四点共面,且四边形1AB NM 为梯形,()()()()()12,0,0,0,1,0,0,2,1,0,0,2,1,2,0A M N D E ,()()()12,1,0,0,1,1,1,2,2AM MN D E =-==- ,因为11220,220AM D E MN D E ⋅=-+=⋅=-= 所以11,D E MN D E AM ⊥⊥,所以由线面垂直的判定可知1D E ⊥平面1AB NM ,即满足条件的所有点P 构成的图形为1AB NM ,由于11NM AB AM B N ===,则满足条件的所有点P构成的图形的周长为.故答案为:3225+24.10【分析】以A 为原点,建立空间直角坐标系,求得向量(0,2,1)AD = 和平面1A BD 的一个法向量为(3,1,2)n = ,结合向量的夹角公式,即可求解.【详解】如图所示,以A 为原点,过点A 垂直于AC 的直线为x 轴,以AC 和1AA 所在的直线分别为y 轴和z 轴,建立空间直角坐标系,因为正四棱柱111ABC A B C -的所有侧棱长及底面边长都为2,可得1(0,0,0),(0,0,2),(3,1,0),(0,2,1)A A B D ,则11(0,2,1),(3,1,2),(0,2,1)AD A B A D ==-=- ,设平面1A BD 的法向量为(,,)n x y z = ,则1132020n A B y z n A D y z ⎧⋅=+-=⎪⎨⋅=-=⎪⎩ ,令1y =,可得3,2x z ==,所以(3,1,2)n =,设直线AD 与平面1A BD 所成的角为θ,可得410sin cos ,5522AD n AD n AD n θ⋅====⨯ ,所以直线AD 与平面1A BD 所成的角的正弦值为105.故答案为:105.25.16391639【分析】将正四面体1234A A A A 放入正方体中,得到正方体的体对角线是12OA ,从而得到该正方体的边长,再根据条件得到P 扫过的区域的体积即可.【详解】图,作出正四面体1234A A A A ,将正四面体1234A A A A 放入正方体中,如下图所示:则O 是该正方体的中心,设该正方体的棱长为a ,则22212a a a ++=⨯,解得:233a =,又11223344OP OA OA OA OA λλλλ=+++ ,()011,2,3,4i i λ≤≤=,则知P 扫过的区域的边界是以该正方体的六个面作延伸的六个全等的正方体的中心为顶点的正方体,其中两个面如下图所示:可得动点P 扫过的区域的体积为该正方体体积的2倍,即动点P 扫过的区域的体积3233239V ⎛=⨯= ⎝⎭.故答案为:163.26.(1)①不是;②是(2)证明见解析(3)5【分析】(1)根据题干信息,利用二元基底的定义加以验证即可;(2)首先设12m e e e <<⋅⋅⋅<,计算出i j a xe ye =+的各种情况下的正整数个数并求出它们的和,结合题意可得:22C C m m m m n +++≥,即可得证:()1n m m ≤+;(3)由(2)可知()119m m +≥,所以4m ≥,并且得到结论“基底中元素表示出的数最多重复一个”,再讨论当4m =时,集合E 的所有情况均不可能是A 的4元基底,而当5m =时,A 的一个基底{}1,3,5,9,16E =,由此可得m 的最小值为5.【详解】(1){}1,2E =不是{}1,2,3,4,5A =的一个二元基底理由是{}()412,1,0,1x y x y ≠⋅+⋅∈-{}2,3E =是{}1,2,3,4,5,6A =的一个二元基底理由是11213=-⨯+⨯;21203=⨯+⨯;30213=⨯+⨯;41212=⨯+⨯,51213=⨯+⨯,61313=⨯+⨯.(2)不妨设12m e e e <<⋅⋅⋅<,则形如()101i j e e i j m ⋅+⋅≤<≤的正整数共有m 个;形如()111i i e e i m ⋅+⋅≤≤的正整数共有m 个;形如()111i j e e i j m ⋅+⋅≤<≤的正整数至多有2C m 个;形如()()111i j e e i j m -+⋅≤<≤的正整数至多有2C m 个;又集合{}1,2,3,,A n =⋅⋅⋅含有n 个不同的正整数,E 为集合A 的一个m 元基底.故22C C m m m m n +++≥,即()1m m n +≥.(3)由(2)可知()119m m +≥,所以4m ≥.当4m =时,()1191m m +-=,即用基底中元素表示出的数最多重复一个.假设{}1234,,,E e e e e =为{}1,2,3,,19A =⋅⋅⋅的一个4元基底,不妨设1234e e e e <<<,则410e ≥.当410e =时,有39e =,这时28e =或27e =.如果28e =,则1109=-,198=-,1899=+,18108=+,重复元素超出一个,不符合条件;如果27e =,则16e =或15e =,易知{}6,7,9,10E =和{}5,7,9,10E =都不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当411e =时,有38e =,这时27e =,16e =,易知{}6,7,8,11E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当412e =时,有37e =,这时26e =,15e =,易知{}5,6,7,12E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当413e =时,有36e =,这时25e =,14e =,易知{}4,5,6,13E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当414e =时,有35e =,这时24e =,13e =,易知{}3,4,5,14E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当415e =时,有34e =,这时23e =,12=e ,易知{}2,3,4,15E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当416e =时,有33e =,这时22e =,11e =,易知{}1,2,3,16E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当417e ≥时,E 均不可能是A 的4元基底.当5m =时,易验证A 的一个基底{}1,3,5,9,16E =,理由:11101=⨯+⨯;21111=⨯+⨯;31301=⨯+⨯;41113=⨯+⨯;51501=⨯+⨯;61313=⨯+⨯;719116=-⨯+⨯;81315=⨯+⨯;91901=⨯+⨯;101515=⨯+⨯;1115116=-⨯+⨯;121319=⨯+⨯;1313116=-⨯+⨯;141519=⨯+⨯;1511116=-⨯+⨯;1611601=⨯+⨯;1711611=⨯+⨯;181919=⨯+⨯;1911613=⨯+⨯.综上所述,m 的最小值为5.【点睛】方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的:遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,照章办事,逐条分析、验证、运算,使问题得以解决.。

2024学年景德镇市高二数学上学期期中考试卷及答案解析

2024学年景德镇市高二数学上学期期中考试卷及答案解析

2024学年景德镇市高二数学上学期期中考试卷满分:150分考试时间:120(分钟)2024.11第一部分选择题(共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线l 过点()1,2A ,()3,4B ,则直线l 的倾斜角为()A.π6-B.π3-C.π4 D.π32.直线210x y -+=的方向向量是()A.()2,1B.()2,1- C.()1,2 D.()1,2-3.“13m =-”是“两条直线10x my +-=,()3210m x y -+-=平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.定义:通过24小时内降水在平地上的积水厚度(mm )来判断降雨程度;其中小雨(0mm 10mm -),中雨(10mm 25mm -),大雨(25mm 50mm -),暴雨(50mm 100mm -);小明用一个圆锥形容器(如图)接了24小时的雨水,则这天降雨属于哪个等级()A.小雨B.中雨C.大雨D.暴雨5.直线3y x =关于=1对称直线l ,直线l 的方程是()A.20y +-= B.20y ++= C.20x +-= D.20x ++=6.若P 是ABC V 所在平面外一点,且PA BC ⊥,PB AC ⊥,则点P 在ABC V 所在平面内的射影O 是ABC V 的()A.内心B.外心C.重心D.垂心7.四边形ABCD 是矩形,3AB AD =,点E ,F 分别是AB ,CD 的中点,将四边形AEFD 绕EF 旋转至与四边形BEFC 重合,则直线,ED BF 所成角α在旋转过程中()A.逐步变大B.逐步变小C .先变小后变大D.先变大后变小8.半球内放三个半径为的小球,三小球两两相切,并且与球面及半球底面的大圆面也相切,则该半球的半径是()A.1+B.C.D.+二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列命题中,正确的有()A.若向量a 、b 与空间任意向量都不能构成一组基,则//a b r rB.若非零向量a ,b ,c满足a b ⊥ ,b c ⊥ ,则有//a cr r C.“倾斜角相等”是“斜率相等”的充要条件D.若{},,a b b c c a +++ 是空间的一组基,则{},,a b c也是空间的一组基10.用一个平面去截正方体,所得截面不.可能是()A.直角三角形B.直角梯形C.正五边形D.正六边形11.如图,在正方体1111ABCD A B C D -中,点P 在线段1B C 上运动,则下列结论正确的是()A.直线1BD ⊥平面11A C DB.三棱锥11P AC D -的体积为定值C.异面直线AP 与1A D 所成角的取值范围是ππ,42⎡⎤⎢⎥⎣⎦D.直线1C P 与平面11A C D 所成角的正弦值的最大值为3第二部分非选择题(共92分)三、填空题:本题共3小题,每小题5分,共15分.12.设直线1l ,2l 的方向向量分别为()2,2,1a =-,()3,2,b m =- ,若12l l ⊥,则m =__________.13.有一根高为3π,底面半径为1的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为________.14.如图,已知正三棱锥P ABC -的侧棱长为l ,过其底面中心O 作动平面α,交线段PC 于点S ,交PA ,PB 的延长线于M ,N 两点.则111PS PM PN++=______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知直线():20R l x ky k k -++=∈.(1)若直线l 不经过...第一象限,求k 的取值范围;(2)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,AOB V 的面积为S (O 为坐标原点),求S 的最小值和此时直线l 的方程.16.如图,AE ⊥平面ABCD ,//CF AE ,//AD BC ,AD AB ⊥,1AB AD ==,22AE BC CF ===.(1)求证://BF 平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值;17.如图,PDCE 为矩形,ABCD 为梯形,平面PDCE ⊥平面ABCD ,90BAD ADC ∠=∠=︒,112AB AD CD ===,PD =(1)若M 为PA 中点,求证://AC 平面MDE ;(2)求直线PB 与直线CD 所成角的大小;(3)设平面PAD ⋂平面EBC l =,试判断l 与平面ABCD 能否垂直?并证明你的结论.18.如图,平行六面体1111ABCD A B C D -的所有棱长均为,底面ABCD 为正方形,11π3A AB A AD ∠=∠=,点E 为1BB 的中点,点F 为1CC 的中点,动点P 在平面ABCD内.(1)若O 为AC 中点,求证:1A O AO ⊥;(2)若//FP 平面1D AE ,求线段CP 长度的最小值.19.在空间直角坐标系中,若平面α过点()000,,P x y z ,且平面α的一个法向量为(),,n a b c =,则平面α的方程为()()()0000a x x b y y z z z -+-+-=,该方程称为平面α的点法式方程,整理后为0ax by cz t +++=(其中000t ax by cz =---),该方程称为平面α的一般式方程.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是平行四边形,BC ,BD ,1BC 两两垂直,1AD =,BD =,直线1CC 与平面ABCD 所成的角为π4,以B 为坐标原点,BC ,BD ,1BC 的方向分别是x ,y ,z 轴的正方向,建立如图所示的空间直角坐标系.(1)求平面11DC D 的一般式方程.(2)求1A 到直线11C D 的距离.(3)在棱1BB 是否存在点M ,使得平面1A DM ⊥平面11C D M ?若存在,求出1MBBB 的值;若不存在,请说明理由.乐平三中2024-2025学年度上学期期中考试高二数学试卷满分:150分考试时间:120(分钟)第一部分选择题(共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线l 过点()1,2A ,()3,4B ,则直线l 的倾斜角为()A.π6-B.π3-C.π4 D.π3【答案】C 【解析】【分析】求出直线的斜率,由斜率与倾斜角关系即可求解.【详解】由题可得:42131l k -==-,所以直线l 的倾斜角为:45︒;故选:C2.直线210x y -+=的方向向量是()A.()2,1 B.()2,1- C.()1,2 D.()1,2-【答案】A 【解析】【分析】根据直线的斜率及方向向量定义判断即可.【详解】直线210x y -+=的斜率为12,所以方向向量是()2,1.故选:A.3.“13m =-”是“两条直线10x my +-=,()3210m x y -+-=平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】利用直线平行的条件计算可得结论.【详解】当13m =-时,两条直线330x y --=,310x y -+=,两直线平行,所以“13m =-”是“两条直线10x my +-=,()3210m x y -+-=平行”的充分条件;因为直线()3210m x y -+-=的斜率存在且为23m -,由两直线平行,所以10x my +-=的斜率存在且为1m-,所以123m m -=-,解得1m =或13m =-,当1m =时,直线方程均为10x y +-=,此时直线重合,故1m =不符合题意,舍去;所以“13m =-”是“两条直线10x my +-=,()3210m x y -+-=平行”的充要条件.故选:C .4.定义:通过24小时内降水在平地上的积水厚度(mm )来判断降雨程度;其中小雨(0mm 10mm -),中雨(10mm 25mm -),大雨(25mm 50mm -),暴雨(50mm 100mm -);小明用一个圆锥形容器(如图)接了24小时的雨水,则这天降雨属于哪个等级()A.小雨B.中雨C.大雨D.暴雨【答案】B 【解析】【分析】计算圆锥的体积,进而可得降雨高度,即可判断.【详解】做出容器的轴截面,如图所示,则200AB =,300OC =,150CF =,则F 为OC 中点,则11002DE AB ==,50DF =,由已知在直径为200mm 的圆柱内的降雨总体积231π125000πmm 3V DF CF =⋅⋅⋅=,则降雨高度为2125000π12.5mm π10000πV OA ==⋅,所以降雨级别为中雨,故选:B.5.直线3y x =关于=1对称直线l ,直线l 的方程是()A.20y +-= B.20y ++= C.20x +-= D.20x +=【答案】C 【解析】【分析】根据题意可知直线33y x =与直线1x =交于点(1,)3A ,求出原点关于直线1x =对称的对称点B ,利用两点坐标求直线斜率公式和直线的点斜式方程即可得出结果.【详解】如图,直线33y x =与直线1x =交于点3(1,)3A ,直线33y x =过原点(0,0),因为直线3y x =与直线l 关于直线1x =对称,所以原点关于直线1x =的对称点为(2,0)B ,且直线l 过点A 、B ,则直线l 的斜率为303123l k -==--,所以直线l 的方程为0(2)3y x -=-,即20x -=.故选:C6.若P 是ABC V 所在平面外一点,且PA BC ⊥,PB AC ⊥,则点P 在ABC V 所在平面内的射影O是ABC V 的()A.内心B.外心C.重心D.垂心【答案】D 【解析】【分析】根据且PA BC ⊥,PB AC ⊥,利用线面垂直的判定定理得到BC OA ⊥,OB AC ⊥即可.【详解】解:如图所示:因为,⊥⊥PA BC PO BC ,且PA PO P =I ,所以⊥BC 平面PAO ,则BC OA ⊥,同理得OB AC ⊥,所以O 是ABC V 的垂心.故选:D7.四边形ABCD 是矩形,3AB AD =,点E ,F 分别是AB ,CD 的中点,将四边形AEFD 绕EF 旋转至与四边形BEFC 重合,则直线,ED BF 所成角α在旋转过程中()A.逐步变大B.逐步变小C.先变小后变大D.先变大后变小【答案】D 【解析】【分析】根据初始时刻ED 与BF 所成角可判断BC ,由题可知D 在平面BCFE 内的投影P 一直落在直线CF 上,进而某一时刻EP BF ⊥,可得DE 与BF 所成角为π2,可判断AD.【详解】由题可知初始时刻ED 与BF 所成角为0,故B C ,错误,在四边形AEFD 绕EF 旋转过程中,,EF DF EF FC ⊥⊥,,,DF FC F DF FC =⊂ 平面DFC ,所以⊥EF 平面DFC ,EF ⊂平面EFCB ,所以平面DFC⊥平面EFCB ,故D 在平面BCFE 内的投影P 一直落在直线CF 上,所以一定存在某一时刻EP BF ⊥,而DP ⊥平面EFCB ,DP BF ⊥,又,,DP PE P DP PE =⊂ 平面DPE ,所以BF ⊥平面DPE ,此时DE 与BF 所成角为π2,然后α开始变小,故直线,ED BF 所成角α在旋转过程中先变大后变小,故选项A 错误,选项D 正确.故选:D.8.半球内放三个半径为的小球,三小球两两相切,并且与球面及半球底面的大圆面也相切,则该半球的半径是()A.1+B.C.D.+【答案】D 【解析】【分析】根据条件求出以三个小球的球心1O 、2O 、3O 构成的三角形的外接圆半径,再通过勾股定理求解即可.【详解】三个小球的球心1O 、2O 、3O 构成边长为的正三角形,则其外接圆半径为2.设半球的球心为O ,小球1O 与半球底面切于点A .如图,经过点O 、1O 、A 作半球的截面,半圆O 的半径OC OA ⊥,1O B OC ⊥于点B .则12OA O B ==.在1Rt OAO 中,由(()2222R R =+⇒=.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列命题中,正确的有()A.若向量a 、b 与空间任意向量都不能构成一组基,则//a br rB.若非零向量a ,b ,c 满足a b ⊥ ,b c ⊥,则有//a c r rC.“倾斜角相等”是“斜率相等”的充要条件D.若{},,a b b c c a +++ 是空间的一组基,则{},,a b c也是空间的一组基【答案】AD 【解析】【分析】根据空间向量共线、垂直、基底、共面、倾斜角和斜率的关系、充要条件等知识对选项进行分析,从而确定正确答案.【详解】A 选项,∵a ,b与任何向量都不构成空间向量的基底,∴a ,b 只能为共线向量,∴//a b r r,A 对;B 选项,取()1,0,1a = ,()1,1,1b =- ,()1,2,1c =-,显然满足a b ⊥ ,a c ⊥ ,但b 与c不平行,B 不对;C 选项,倾斜角相等时,可能倾斜角都是90︒,此时直线没有斜率,所以C 选项错误.D 选项,∵a b + ,b c + ,c a +为一组基底,∴对于空间任意向量d,存在实数m ,n ,t ,使()()()()()()d m a b n b c t c a m t a m n b n t c =+++++=+++++ ,∴a ,b ,c也是一组基底,D 对;故选:AD10.用一个平面去截正方体,所得截面不.可能是()A.直角三角形B.直角梯形C.正五边形D.正六边形【答案】ABC【解析】【分析】根据正方体的几何特征,我们可分别画出用一个平面去截正方体得到的几何体的图形,然后逐一与四个答案中的图形进行比照,即可判断选项.【详解】当截面为三角形时,可能出现正三角形,但不可能出现直角三角形;截面为四边形时,可能出现矩形,平行四边形,等腰梯形,但不可能出现直角梯形;当截面为五边形时,不可能出现正五边形;截面为六边形时,可能出现正六边形,故选:ABC .11.如图,在正方体1111ABCD A B C D -中,点P 在线段1B C 上运动,则下列结论正确的是()A.直线1BD ⊥平面11A C DB.三棱锥11P AC D -的体积为定值C.异面直线AP 与1A D 所成角的取值范围是ππ,42⎡⎤⎢⎥⎣⎦D.直线1C P 与平面11A C D 所成角的正弦值的最大值为3【答案】ABD【解析】【分析】在选项A 中,利用线面垂直的判定定理,结合正方体的性质进行判断即可;在选项B 中,根据线面平行的判定定理、平行线的性质,结合三棱锥的体积公式进行求解判断即可;在选项C 中,根据异面直线所成角的定义进行求解判断即可;在选项D 中,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法进行求解即可.【详解】在选项A 中,∵1111AC B D ⊥,111A C BB ⊥,1111B D BB B ⋂=,且111,B D BB ⊂平面11BB D ,∴11A C ⊥平面11BB D ,1BD ⊂平面11BB D ,∴111A C BD ⊥,同理,11DC BD ⊥,∵1111A C DC C ⋂=,且111,A C DC ⊂平面11A C D ,∴直线1BD ⊥平面11A C D ,故A 正确;在选项B 中,∵11//A D B C ,1A D ⊂平面11A C D ,1B C ⊄平面11A C D ,∴1//B C 平面11A C D ,∵点P 在线段1B C 上运动,∴P 到平面11A C D 的距离为定值,又11A C D 的面积是定值,∴三棱锥11P AC D -的体积为定值,故B 正确;在选项C 中,∵11//A D B C ,∴异面直线AP 与1A D 所成角为直线AP 与直线1B C 的夹角.易知1AB C △为等边三角形,当P 为1B C 的中点时,1AP B C ⊥;当P 与点1B 或C 重合时,直线AP 与直线1B C 的夹角为π3.故异面直线AP 与1A D 所成角的取值范围是ππ,32⎡⎤⎢⎥⎣⎦,故C 错误;在选项D 中,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z轴,建立空间直角坐标系,如图,设正方体1111ABCD A B C D -的棱长为1,则(),1,P a a ,()10,1,1C ,()1,1,0B ,()10,0,1D ,所以()1,0,1C P a a =- ,()11,1,1D B =-.由A 选项正确:可知()11,1,1D B =- 是平面11A C D 的一个法向量,∴直线1C P 与平面11A C D所成角的正弦值为:1111C P D B C P D B ⋅=⋅∴当12a =时,直线1C P 与平面11A C D 所成角的正弦值的最大值为63,故D 正确.故选:ABD第二部分非选择题(共92分)三、填空题:本题共3小题,每小题5分,共15分.12.设直线1l ,2l 的方向向量分别为()2,2,1a =- ,()3,2,b m =- ,若12l l ⊥,则m =__________.【答案】10【解析】【分析】根据向量垂直的坐标表示可得方程,解方程即可.【详解】由已知12l l ⊥,即a b ⊥ ,则()()232210a b m ⋅=-⨯+⨯-+⨯= ,解得10m =,故答案为:10.13.有一根高为3π,底面半径为1的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为________.【答案】5π【解析】【分析】考虑圆柱的侧面展开图,将其延展一倍后矩形的对角线的长度即为铁丝的最短长度.【详解】如图,把圆柱的侧面展开图再延展一倍,所以铁丝的最短长度即为AB 的长,又5AB π==,填5π.【点睛】几何体表面路径最短问题,往往需要考虑几何体的侧面展开图,把空间问题转为平面问题来处理.14.如图,已知正三棱锥P ABC -的侧棱长为l ,过其底面中心O 作动平面α,交线段PC 于点S ,交PA ,PB 的延长线于M ,N 两点.则111PS PM PN ++=______.【答案】3l【解析】【分析】利用空间向量的线性运算得到333PA PB PC PO PM PN PS x y z=⋅+⋅+⋅ ,再利用空间四点共面的性质即可得解.【详解】依题意,设,,PM x PN y PS z ===,则PA PA PM x =⋅ ,PB PB PN y =⋅ ,PC PC PS z=⋅,由O 为底面ABC V 中心,连接PO ,OA ,()2132PO PA AO PA AB AC =+=+⨯+ ()()133PA PB PC PA PB PA PC PA ++⎡⎤=+-+-=⎣⎦ 111333zPA PB PC PM PN PS x y =⨯⋅+⨯⋅+⨯⋅ 333PA PB PC PM PN PS x y z =⋅+⋅+ ,又因为,,,S M N O 四点共面,所以+1333PA PB PCx y z += 且PA PB PC l === ,所以+1333l l l x y z +=,即1113+x y z l+=,即1113PS PM PN l++=.故答案为:3l 【点睛】关键点睛:空间向量的有效运用:空间向量是解决空间几何问题的有力工具.通过设定向量的关系,可以有效地将几何问题转化为代数问题,简化求解过程.共面条件的判断:四点共面的条件在空间几何中非常重要.利用这一条件,可以将空间中的复杂关系转化为简单的线性关系,方便求解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知直线():20R l x ky k k -++=∈.(1)若直线l 不经过...第一象限,求k 的取值范围;(2)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,AOB V 的面积为S (O 为坐标原点),求S 的最小值和此时直线l 的方程.【答案】(1)[]2,0-(2)S 的最小值为4,此时直线l 的方程为240x y -+=【解析】【分析】(1)验证0k =时,直线l 是否符合要求,当0k ≠时,将直线方程化为斜截式,结合条件列不等式求k 的取值范围;(2)先求直线在x 轴和y 轴上的截距,表示AOB V 的面积,利用基本不等式求其最小值.【小问1详解】当0k =时,方程20x ky k -++=可化为2x =-,不经过第一象限;当0k ≠时,方程20x ky k -++=可化为121y x k k=++,要使直线不经过第一象限,则10210k k⎧≤⎪⎪⎨⎪+≤⎪⎩解得20k -≤<.综上,k 的取值范围为[]2,0-.【小问2详解】由题意可得0k >,由20x ky k -++=取0y =得2x k =--,取0x =得2k y k+=,所以()11214124442222k S OA OB k k k k ⎛⎫+⎛⎫==⋅⋅+=++≥= ⎪ ⎪ ⎪⎝⎭⎝⎭,当且仅当4k k=时,即2k =时取等号,综上,此时min 4S =,直线l 的方程为240x y -+=.16.如图,AE ⊥平面ABCD ,//CF AE ,//AD BC ,AD AB ⊥,1AB AD ==,22AE BC CF ===.(1)求证://BF 平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值;【答案】(1)证明见解析(2)49【解析】【分析】(1)根据题意可利用面面平行的判定定理证明平面//BCF 平面ADE ,再由面面平行的性质可得结论;(2)由几何体特征建立以A 为原点的空间直角坐标系A xyz -,利用空间向量求出直线CE 的方向向量与平面BDE 的法向量,即可求出直线CE 与平面BDE 所成角的正弦值.【小问1详解】由//CF AE ,CF ⊂/平面ADE ,AE ⊂平面ADE ,则//CF 平面ADE ,由//AD BC ,BC ⊂/平面ADE ,AD ⊂平面ADE ,则//BC 平面ADE ,而CF BC C = ,,CF BC ⊂平面BCF ,故平面//BCF 平面ADE ,又BF ⊂平面BCF ,则//BF 平面ADE ;【小问2详解】AE ⊥平面ABCD ,,AB AD ⊂平面ABCD ,则AE AB ⊥,AE AD ⊥,又AD AB ⊥,以A 为原点,分别以,,AB AC AE 为,,x y z 轴构建空间直角坐标系A xyz -,如下图所示:又1AB AD ==,22AE BC CF ===,所以()1,0,0B ,()1,2,0C ,()0,1,0D ,()0,0,2E ,则(1,2,2)CE =-- ,(1,0,2)BE =- ,(0,1,2)DE =- ,令平面BDE 的一个法向量(),,m x y z = ,则2020m BE x z m DE y z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令1z =,则2,2x y ==,即(2,2,1)m = ,所以44cos ,339m CE m CE m CE⋅〈〉===⨯ ,即直线CE 与平面BDE 所成角的正弦值为49.17.如图,PDCE 为矩形,ABCD 为梯形,平面PDCE ⊥平面ABCD ,90BAD ADC ∠=∠=︒,112AB AD CD ===,PD =(1)若M 为PA 中点,求证://AC 平面MDE ;(2)求直线PB 与直线CD 所成角的大小;(3)设平面PAD ⋂平面EBC l =,试判断l 与平面ABCD 能否垂直?并证明你的结论.【答案】(1)证明见解析(2)π3(3)能垂直,证明见解析【解析】【分析】(1)先证明MN AC ∥,再利用线面垂直的判定定理即可证明;(2)利用线线平行可得PBA ∠是直线PB 与直线CD 所成角,利用面面垂直可得PD AB ⊥,结合已知条件可得PA =,利用线面垂直可得AB PA ⊥,可得出tan PBA ∠的值,即可求解.(3)根据题意可得EC l ∥,利用平行的传递性,可证明l ⊥平面ABCD .【小问1详解】连结PC ,交DE 于N ,连接MN ,∵PDCE 为矩形,∴N 为PC 的中点,在PAC 中,M ,N 分别为PA ,PC 的中点,∴MN AC ∥,因为MN ⊂面MDE ,AC ⊄面MDE ,所以AC ∥平面MDE .【小问2详解】∵90BAD ADC ∠=∠=︒,∴AB CD ∥,∴PBA ∠是直线PB 与直线CD 所成角.∵PDCE 为矩形,∴PD CD ⊥,∵平面PDCE ⊥平面ABCD ,又PD ⊂平面PDCE ,平面PDCE ⋂平面ABCD CD =,∴PD ⊥平面ABC ,∵,AD AB ⊂平面ABCD ,∴PD AD ⊥,PD AB ⊥,在Rt PDA 中,∵1AD =,PD =PA =,∵90BAD ∠=︒,∴AB AD ⊥,又∵PD AB ⊥,=PD AD D ⋂,PD ⊂平面PAD ,AD ⊂平面PAD ,∴AB ⊥平面PAD ,∵PA ⊂平面PAD ,∴AB PA ⊥,在Rt PAB △中,∵1AB =,∴tan PAPBA AB ∠==∴π3PBA ∠=,从而直线PB 与直线CD 所成的角为π3;【小问3详解】l 与平面ABCD 垂直.证明如下:∵PDCE 为矩形,∴EC PD ∥,∵PD ⊂平面PAD ,EC ⊄平面PAD ,∴EC ∥平面PAD ,EC ⊂平面EBC ,∵平面PAD ⋂平面EBC l =,∴EC l ∥,则∥l PD ,由(2)可知PD ⊥平面ABCD ,∴l ⊥平面ABCD .18.如图,平行六面体1111ABCD A B C D -的所有棱长均为2,底面ABCD 为正方形,11π3A AB A AD ∠=∠=,点E 为1BB 的中点,点F 为1CC 的中点,动点P 在平面ABCD 内.(1)若O 为AC 中点,求证:1A O AO ⊥;(2)若//FP 平面1D AE ,求线段CP 长度的最小值.【答案】(1)证明见解析(2)105【解析】【分析】(1)由条件先求1AD AA ⋅ ,1AB AA ⋅ ,AD AB ⋅ ,再证明10AO AO ⋅= ,由此完成证明;(2)建立空间直角坐标系,设(),,0P m n ,求平面1D AE 的法向量和直线FP 的方向向量,由条件列方程确定,m n 的关系,再求CP 的最小值即可.【小问1详解】由已知12AB A A AD ===1π3A AD ∠=,1π3A AB ∠=,π2BAD ∠=,所以11π122cos 232AD AA ⋅== ,11π122cos 232AB AA ⋅=⨯= ,0AD AB ⋅= ,因为O 为AC 中点,所以111222AO AC AB AD ==+ ,又()11111112222A O AO AO AA AO AB AD AA AB AD ⎛⎫⎛⎫⋅=-⋅=+-⋅+ ⎪ ⎪⎝⎭⎝⎭ ,所以111110002244A O AO ⋅=+++--= ,所以1AO AO⊥所以1A O AO⊥【小问2详解】连接1A D ,1A B ,∵12A A AD ==,1π3A AD ∠=∴12A D =,∵12A A AB ==,1π3A AB ∠=∴12A B =,连接BD ,由正方形的性质可得,,B O D 三点共线,O 为BD 的中点,所以1AO BD ⊥,由第一问1A O AO ⊥,,AO BD ⊂平面ABCD ,AO BD O = ,所以1A O ⊥平面ABCD ,以O 为坐标原点,1,,OA OB OA 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系()1,0,0A 、()0,1,0D -、()10,0,1A 、()0,1,0B 、()1,0,0C -()112,1,1AD AD AA =+=-- 1131,1,222AE AB BE AB AA ⎛⎫=+=+=- ⎪⎝⎭,设平面1D AE 法向量为n ,(),,n x y z =r,则100n AD n AE ⎧⋅=⎪⎨⋅=⎪⎩ ,所以203022x y z z x y --+=⎧⎪⎨-++=⎪⎩,∴73022x z -+=,令3x =,则7z =,1y =.∴()3,1,7n =为平面1D AE 的一个法向量,因为点P 在平面ABCD 内,故设点P 的坐标为(),,0m n ,因为()112FP OP OF OP OC CF OP OC AA =-=-+=-- ,所以31,,22FP m n ⎛⎫=+- ⎪⎝⎭ ,0FP n ⋅= ,则310m n ++=,所以CP == ,所以当25m =-时,CP有最小值,最小值为5.19.在空间直角坐标系中,若平面α过点()000,,P x y z ,且平面α的一个法向量为(),,n a b c =,则平面α的方程为()()()0000a x x b y y z z z -+-+-=,该方程称为平面α的点法式方程,整理后为0ax by cz t +++=(其中000t ax by cz =---),该方程称为平面α的一般式方程.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是平行四边形,BC ,BD ,1BC 两两垂直,1AD =,BD =,直线1CC 与平面ABCD 所成的角为π4,以B 为坐标原点,BC ,BD ,1BC 的方向分别是x ,y ,z 轴的正方向,建立如图所示的空间直角坐标系.(1)求平面11DC D 的一般式方程.(2)求1A 到直线11C D 的距离.(3)在棱1BB 是否存在点M ,使得平面1A DM ⊥平面11C D M ?若存在,求出1MB BB 的值;若不存在,请说明理由.【答案】(1y ++-=(2)2(3)存在,且14MB BB =-【解析】【分析】(1)根据直线1CC 与平面ABCD 所成的角求得1BC ,根据平面的点法式方程求得正确答案.(2)利用等面积法来求得1A 到直线11C D 的距离.(3)设出M 点的坐标,利用面面垂直列方程,化简求得正确答案.【小问1详解】由于11,,,,BC BC BC BD BC BD B BC BD ⊥⊥⋂=⊂平面ABCD ,所以1⊥BC 平面ABCD ,所以1C BC ∠是直线1CC 与平面ABCD 所成的角,所以14πC BC ∠=,所以11BC BC ==.所以()()()()111,0,0,1,1,0,0,1,D C C CD C D =-=,所以()()()111110,0,11,1,BD BC C D BC CD =+=+=+-=-,()11,0,1DD =- ,设平面11DC D 的法向量为(),,n x y z = ,则11100n C D x n DD x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,故可设n = ,D ∈平面11DC D ,则平面11DC D()(()0100x y z -+⋅-+-=,0y ++-=.【小问2详解】在Rt BCD △中,π2CBD ∠=,1,2BC BD CD ===,设B 到CD 的距离为h,则1121,222h h ⨯==,由于平行四边形ABCD 和平行四边形1111D C B A 全等,所以1A 到直线11C D 的距离等于设B 到CD 的距离,即1A 到直线11C D的距离为2.【小问3详解】()11,0,1B -,()11,0,1BB =-,()A -,()()()1111,0,12,BA BA AA BA BB =+=+=-+-=-,即()1A -,而()()1,1,D D -,所以()12,0,1DA =-,设1,01MB BB λλ=≤≤,则()1,0,BM BB λλλ==- ,即(),0,M λλ-,所以()12,1A M λλ=--,(),DM λλ=-,()11,1D M λλ=--,()11C D =- ,设平面1A DM 的法向量为()111,,u x y z = ,则11111120u DA x z u DM x z λλ⎧⋅=-+=⎪⎨⋅=--+=⎪⎩,故可设,u λ= .设平面11C D M 的法向量为()222,,v x y z = ,则()()112212220110v C D x v D M x z λλ⎧⋅=-+=⎪⎨⋅=-+-=⎪⎩,故可设)1,v λ=-- ,若平面1A DM ⊥平面11C D M ,则0u v ⋅= ,即()()23116830λλλλλλ-+-+=+-=,解得4λ=,负根舍去,所以存在符合题意的点M,且14MB BB =.。

福建省厦门2024-2025学年高二上学期期中考试数学试题(含答案)

福建省厦门2024-2025学年高二上学期期中考试数学试题(含答案)

福建省厦门2024-2025学年高二上学期期中考试数学试题本试卷共4页。

全卷满分150分。

考试用时120分钟。

注意事项:1.答题前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效。

3.考试结束后,将答题卡交回。

一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若经过两点的直线的倾斜角为,则等于()A.-3B.-1C.0D.22.已知双曲线的离心率为,则该双曲线的渐近线方程为()A. B. C. D.3.已知圆与圆关于直线对称,则的方程为()A. B. C. D.4.已知抛物线的焦点为,过点且斜率大于0的直线交于A,B两点,若,则的斜率为()5.如图,椭圆的两个焦点分别为,以线段为边作等边三角形若该椭圆恰好平分的另两边,则椭圆的离心率为()(3,1)(2,1)A y B+-、3π4y22221(0,0)x ya ba b-=>>542y x=±12y x=±43y x=±34y x=±22:(1)(2)1M x y+++=22(3)(4)1N x y-++=:l l 250x y++=250x y--=250x y++=250x y--=2:4C y x=F F l C16||3AB=l22221(0)x ya ba b+=>>12,F F12F F12AF F 12AF FV12,AF AF6.已知为双曲线的右焦点,过点作的一条渐近线的垂线,垂足为E ,O 为坐标原点,若的面积为1,则的焦距的最小值为( )A.1B.2C.4D.7.如图,已知直线与抛物线交于A ,B 两点,且交AB 于点,点的坐标为,则方程为( )A. B. C. D.8.已知是椭圆与双曲线的公共焦点,是它们的一个公共点,且,线段的中垂线经过.记椭圆的离心率为,双曲线的离心率为,则的取值范围是( )A. B. C. D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得6分,部分选对得部分分,有选错的得0分.9.已知为双曲线的一个焦点,则下列说法中,正确的是( )A.的虚轴长为6B.的离心率为C.的渐近线方程为D.点到的一条渐近线的距离为410.已知动点在直线上,动点在圆上,过点作圆的两条切线,切点分别为A 、B ,则下列描述正确的有( )1-F 2222:1(0,0)x y C a b a b-=>>F C OEF V C l 22y x =,OA OB OD AB ⊥⊥D D (1,1)l 20x y +-=20x y ++=20x y -+=20x y --=12,F F P 12PF PF >1PF 2F 1e 2e 2114e e +(5,)+∞(6,)+∞(7,)+∞(6,7)F 22:1169x y Γ-=ΓΓ54Γ430x y ±=F ΓP :60l x y +-=Q 22:(1)(1)4C x y -+-=P CA.直线与圆相交B.|PQ |的最小值为C.四边形PACB 面积的最小值为4D.存在点,使得11.如图,曲线可以看作“蝴蝶结”的一部分,已知曲线上除原点外的所有点均满足其到原点的距离的立方与该点横纵坐标之积的绝对值的商恒为定值,则( )A.曲线关于直线对称B.曲线经过点,其方程为C.曲线围成的图形面积小于D.存在,使得曲线上有5个整点(即横、纵坐标均为整数的点)三、填空题:本题共3小题,每小题5分,共15分.12.已知椭圆的焦距是2,则的值是_____________.13.已知抛物线,从抛物线内一点发出平行于轴的光线经过抛物线上点反射后交抛物线于点,则的面积为____________.14.双曲线的离心率可以与其渐近线有关,比如函数的图象是双曲线,它的实轴在直线上,虚轴在直线上,实轴顶点是,焦点坐标是,已知函数.则其在一象限内的焦点横坐标是__________.四、解答题:共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题13分)已知圆与轴交于A ,B 两点,动点与点A 的距离是它与点距离倍.(1)求点的轨迹方程;l C 2-P 120APB ︒∠=C C (0)a a >C y x =C (1,1)--()322||x yxy +=C 2π8a (2,6)a ∈C 221(4)4x y m m +=>m 24y x =A x B C ABC V 1y x=y x =y x =-(1,1),(1,1)--(y x =+e 22O :4x y +=x P B P(2)过点作倾斜角为直线交点的轨迹于M ,N 两点,求弦长|MN |.16.(本小题15分)已知双曲线的一条渐近线方程为,且经过点.(1)求双曲线的方程;(2)直线与双曲线相交于两点,若线段AB 的中点坐标为,求直线的方程.17.(本小题15分)已知椭圆分别为椭圆的左、右顶点.(1)求椭圆的方程;(2)过点作斜率不为0的直线,直线与椭圆交于P ,Q 两点,直线AP 与直线BQ 交于点,记AP 的斜率为的斜率为.求证:为定值.18.(本小题17分)已知抛物线的焦点为,点是上的一点,且.(1)求抛物线的方程;(2)设点(其中)是上异于的两点,的角平分线与轴垂直,为线段AB 的中点.(i )求证:点N 在定直线上;(ii )若的面积为6,求点A 的坐标.19.(本小题17分)通过研究,已知对任意平面向量,把绕其起点沿逆时针方向旋转角得到向量,叫做把点绕点逆时针方向旋转角得到点,(1)已知平面内点,点,把点绕点逆时针旋转得到点,求点的坐标;(2)已知二次方程的图像是由平面直角坐标系下某标准椭圆绕原点逆时针旋转所得的斜椭圆,B 45︒l P 2222:100x y C a b a b-=>>(,)0x -=P C l C ,A B (3,2)l 2222:1(0)x y C a b a b+=>>,F A B C C (1,0)D l l C M 1,k BQ 2k 12k k 2:2(0)C y px p =>F (,2)M t C ||2MF =C ()()1122,,,A x y B x y 12x x <C M AMB ∠x N MAB ∆(,)AB x y =AB A θ(cos sin ,sin cos )AP x y x y θθθθ=-+B A θP (A B -B A π3P P 221x y xy +-=22221(0)x y a b a b+=>>O π4C(i )求斜椭圆的离心率;(ii )过点作与两坐标轴都不平行的直线交斜椭圆于点M 、N ,过原点作直线与直线垂直,直线交斜椭圆于点G 、H是否为定值,若是,请求出定值,若不是,请说明理由.C Q 1l C O 2l 1l 2l C 21||OH +福建省厦门2026届高二上期中考试数学试题参考答案及评分标准一、选择题:本题共8小题,每小题5分,共40分。

高二上学期期中考试数学试卷含答案(共5套)

高二上学期期中考试数学试卷含答案(共5套)

高二上学期期中考试数学试题本卷分Ⅰ(选择题)、Ⅱ卷(非选择题)两部分,其中Ⅰ卷1至2页,第二卷2至4页,共150分,考试时间120分钟。

第Ⅰ卷(选择题,共60分)一、单选题:本题共12个小题,每小题5分1.“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.有下列四个命题:(1)“若,则,互为倒数”的逆命题;(2)“面积相等的三角形全等”的否命题;(3)“若,则有实数解”的逆否命题;(4)“若,则”的逆否命题.其中真命题为()A.(1)(2)B.(2)(3)C.(4)D.(1)(2)(3)3.若则为()A.等边三角形 B.等腰直角三角形C.有一个内角为30°的直角三角形 D.有一个内角为30°的等腰三角形4.已知.若“”是真命题,则实数a的取值范围是A.(1,+∞)B.(-∞,3)C.(1,3)D.5.的内角,,的对边分别为,,,若,,,则的面积为A.B.C.D.6.已知中,,则等于()A.B.或C.D.或7.等差数列的前项和为,若,则等于()A.58B.54C.56D.528.已知等比数列中,,,则()A.2B.C.D.49.已知,则z=22x+y的最小值是A.1 B.16 C.8 D.410.若关于的不等式的解集为,则的取值范围是()A.B.C.D.11.当a>0,关于代数式,下列说法正确的是()A.有最小值无最大值B.有最大值无最小值C.有最小值也有最大值D.无最小值也无最大值12.在△ABC中,AB=2,C=,则AC+BC的最大值为A.B.3C.4D.2第Ⅱ卷(非选择题,共90分)二、填空题:共4个小题,每小题5分,共20分13.命题的否定是______________.14.已知的三边长构成公差为2的等差数列,且最大角的正弦值为,则这个三角形的周长为________.15.已知数列{a n}的前n项和为S n,a1=1,当n≥2时,a n+2S n-1=n,则S2 017的值____ ___ 16.已知变量满足约束条件若目标函数的最小值为2,则的最小值为__________.三、解答题:共6题,共70分,解答应写出必要的文字说明、证明过程或演算步骤。

北京市延庆区2024-2025学年高二上学期期中考试数学试题(含答案)

北京市延庆区2024-2025学年高二上学期期中考试数学试题(含答案)

延庆区2024-2025学年第一学期期中试卷高二数学2024.11本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题纸上,在试卷上作答无效.考试结束后,将本试卷和答题纸一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.在复平面内,复数的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知向量且,那么( )A. B.6C.9D.183.在空间直角坐标系中,点关于坐标平面的对称点为()A. B. C. D.4.设分别是空间中直线的方向向量,则直线所成角的大小为( )A. B. C. D.5.过和两点的直线的倾斜角是()A. B.1 C. D.6.“”是“直线与平行”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.在平行六面体中,,点在上,且,则( )1i +()()1,2,1,3,,a b x y =-= a ∥b b = ()1,2,3P xOy ()1,2,3-()1,2,3-()1,2,3--()1,2,3-()()120,1,1,1,0,1v v ==- 12,l l 12,l l π65π6π32π3()2,0-()0,21-3π4π41a =1:20l ax y +-=()2:2120l x a y +++=1111ABCD A B C D -1,,AA a AB b AD c === P 1AC 1:1:2A P PC =AP =A. B.C. D.8.已知正方体的棱长为为的中点,则到平面的距离为( )9.在正方体中,点是线段上任意一点,则与平面所成角的正弦值不可能是( )A. B.10.已知点,直线,若直线上至少存在三个,使得为直角三角形,直线倾斜角的取值范围是( )211333a b c ++ 122333a b c ++ 112333a b c -++ 122333a b c -- 1111ABCD A B C D -2,E 1BB 1B 11A D E 1111ABCD A B C D -E 11A C AE ABCD 1323()()0,1,0,1A B -:2l y kx =-l M MAB V lA. B.C. D.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.复数,则__________.12.已知点,点在线段上,且,则点坐标为__________.13.若平面,平面的法向量为,平面的法向量为,写出平面的一个法向量__________.14.已知点,直线与线段无交点,则直线在轴上的截距为__________;的取值范围是__________.15.如图:在直三棱柱中,,.记,给出下列四个结论:①存在,使得任意,都有;②对于任意点,都不存在点,使得平面平面;③的最小值为3;④当取最小时,过点作三棱柱的截面,则截面周长为.其中,所有正确结论的序号是__________.三、解答题共6小题,共85分.解答应写出文字说明,证明过程或演算步骤.16.(本小题13分)已知的顶点坐标为.π5π0,,π66⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦πππ2π,,3223⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦πππ3π,,4224⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦πππ5π,,6226⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦5i 12iz =-z =()()1,1,4,1,4,2A B -C AB 2AC CB =C αβ⊥α()11,2,3n = β()2,,0n x y = β()()1,3,1,4A B -:2l y ax =-AB l y a 111ABC A B C -13,90AB BB BC ABC ∠==== 1,(01,01)CH xCB CP yCB x y ==<≤≤≤ (),f x y AH HP =+H P AH HP ⊥H P AHP ⊥11A B C (),f x y (),f x y ,,A H P 5ABC V ()()()1,52,14,3A B C ---、、(1)求过点且与直线平行的直线的方程;(2)求边上的中线所在直线的方程;(3)求边上的高所在直线的方程.17.(本小题14分)如图,在三棱柱中,底面是的中点,且.(1)求证:平面;(2)若,求直线与平面所成角的正弦值;(3)若,求平面与平面所成角的余弦值.18.(本小题14分)设的内角对应的边分别为,且.(1)求角的大小;(2)从下列三个条件中选择一组作为已知,使存在且唯一,并求的面积.条件①:;条件②:;条件③:.注:如果选择的条件使不存在或不唯一,第(2)问得0分.19.(本小题14分)已知函数,且的图像过点.(1)求函数的最小正周期和单调递减区间;(2)若函数在上与直线有交点,求实数的取值范围;(3)设函数,记函数在上的最大值为,求的最小B AC BC AB 111ABC A B C -1CC ⊥,ABC D 11A C 12AC BC CC ===1BC ∥1AB D AC BC ⊥1CC 1AB D AC BC ⊥1AB D 11ACC A ABC V ,,A B C ,,a bc sin cos b A B =B ABC V ABC V 3,sin 2sin b C A ==5b a ==b C ==ABC V ()22sin cos 2cos f x a x x x =+()f x π,06⎛⎫- ⎪⎝⎭()f x ()f x π,12m ⎡⎤-⎢⎥⎣⎦3y =m ()()()g x f x t t =-∈R ()g x π11π,612⎡⎤⎢⎥⎣⎦()M t ()M t值及此时的值.20.(本小题15分)如图,已知四棱锥中,底面是边长为4的正方形,平面是正三角形,分别为的中点.(1)求证:平面;(2)求点到平面的距离;(3)线段上是否存在点,使得三棱锥的值;若不存在,说明理由.21.(本小题15分)给定正整数,设集合.对于集合中的任意元素和,记.设,且集合,对于中任意元素,若则称具有性质.(1)判断集合是否具有性质,集合是否具有性质;(直接写出答案,结论不需要证明)(2)判断是否存在具有性质的集合,并加以证明;(3)若集合具有性质,证明:.t P ABCD -ABCD CD ⊥,PAD PAD V ,,,E F G O ,,,PC PD BC AD PO ⊥ABCD A EFG PC M M EFG -PM PC 2n ≥(){}{}12,,,,0,1,1,2,,n k M t t t t k n αα==∈= ∣M ()12,,,n x x x β= ()12,,,n y y y γ= 1122n n x y x y x y βγ⋅=+++ A M ⊆(){}12,,,,1,2,,i i i i in A t t t i n αα=== ∣A ,i j αα,,1,,i j p i j i j αα=⎧⋅=⎨≠⎩A (),T n p ()()(){}1,1,0,1,0,1,0,1,1A =()3,2T ()()()(){}1,1,0,0,1,0,1,0,0,1,1,0,1,0,0,1B =()4,2T ()4,T p A A (),T n p ()121,2,,j j nj t t t p j n +++==延庆区2024-2025学年第一学期期中考试高二数学参考答案及评分标准2024.11一、选择题(共10小题,每小题4分,共40分)1.D2.A3.B4.C5.D6.C7.A8.B9.A 10.B二、填空题(共5小题,每小题5分,共25分)12. 13.(不唯一,共线即可)14.,(注:第一问3分,第二问2分)15.①③④(注:对一个2分,两个3分,有选错0分)三、解答题(共6小题,共85分)16.(共13分)解:(1)直线的斜率过点且与直线平行的直线的斜率为过点且与直线平行的直线方程为(2)设边的中点为,因为,所以点的坐标为,即,所以边的中线所在直线方程为()1,3,0()2,1,0-2-()6,5-AC 532145AC k -==---B AC 25-B AC ()21225905y x x y +=-+⇒++=BC D ()()2,14,3B C --、D 2413,22-+-+⎛⎫ ⎪⎝⎭()1,1D 51211AD k -==---BC ()121230y x x y -=--⇒+-=(3)因为,所以边的高线所在直线的斜率为,因此边的高线所在直线方程为.17.(共14分)(1)证明:连接,设,连接,由为三棱柱,得.又是的中点,所以是的中位线,.平面平面,平面;(2)解:底面,以为原点,的方向分别为轴正方向建立如图所示的空间直角坐标系,则,,设平面的法向量为由,得;15621AB k --==-+AB 16-AB ()13462206y x x y -=--⇒+-=1A B 11A B AB E ⋂=DE 111ABC A B C -1A E BE =D 11A C DE 11ΔA BC 1BC ∴∥DE 1BC ⊄ 1,AB D DE ⊂1AB D 1BC ∴∥1AB D 1CC ⊥ ,ABC AC BC ⊥C 1,,CA CB CC ,,x y z ()()()0,0,0,2,0,0,0,2,0C A B ()()()()1112,0,2,0,2,2,0,0,2,1,0,2A B C D ()()()110,0,2,2,2,2,1,0,2CC AB AD ==-=- 1AB D (),,n x y z =12220220n AB x y z n AD x z ⎧⋅=-++=⎪⎨⋅=-+=⎪⎩ ()2,1,1n =设直线与平面所成角为.则.直线与平面.(3)设平面与平面所成角为为锐角,平面的法向量为,,平面与平面.18.(共14分)解:(1),由正弦定理得,在中,,,.(2)若选①,由余弦定理,得,解得若选③,1CC 1AB Dθ111sin cos ,n CC n CC n CC θ⋅=<>== ∴1CC 1AB D 1AB D 11ACC A ,αα11ACC A ()0,1,0m =cos cos ,n m n m n m α⋅=<>== 1AB D 11ACC A sin cos b A B =sin sin a b A B =sin sin cos B A A B =ABC V sin 0,tan A B ≠=()0,πB ∈ π3B ∴=sin 2sin ,2C A c a== 2222cos b a c ac B =+-222944cos a a a B =+-a c ==1sin 2S ac B ∴==b C == ()sin sin sin cos cos sin A B C B C B C =+=+=由正弦定理可得:选择②,面积公式2分;余弦定理2分.不超过4分.19.(共14分)解:(1)由题意,,解得,,,的最小正周期;的单调减区间为(2)函数在区间上与直线有交点所以,函数在区间上的最大值为3,又因为所以,解得.实数的取值范围是.(3)当时,取最大值4c =1sin 2S bc A ==2πππ3sin 2cos 206364f a ⎛⎫⎛⎫⎛⎫-=-+-=+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭a =()22cos f x x x ∴=+cos21x x =++π2sin 216x ⎛⎫=++ ⎪⎝⎭()f x 2ππ2T ==()f x π2ππ,π,63k k k z ⎡⎤++∈⎢⎥⎣⎦()f x π,12m ⎡⎤-⎢⎥⎣⎦3y =()f x π,12m ⎡⎤-⎢⎥⎣⎦ππ20,266x m ⎡⎤+∈+⎢⎥⎣⎦ππ262m +≥π6m ≥∴m π,6∞⎡⎫+⎪⎢⎣⎭()()ππ11πππ2sin 21,,,2,2π661262g x f x t x t x x ⎛⎫⎡⎤⎡⎤=-=++-∈+∈ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦ππ262x +=()f x t -3t -当时,取最小值所以,当时,当时,所以,当时,20.(共15分)(1)证明:因为是正三角形,是的中点,所以.又因为平面平面,平面,所以面;解:(2)因为两两互相垂直.以点为原点,的方向分别为轴正方向建立如图所示的空间直角坐标系.则,设平面的法向量为,由,得,点到平面的距离π3π262x +=()f x t -1t --1t ≤()3M t t=-1t >()1M t t =+1t =min ()2M t =PAD V O AD PO AD ⊥CD ⊥,PAD PO ⊂,PADCD PO ⊥,,AD CD D CD AD ⋂=⊂ABCD PO ⊥ABCD ,,OA OG OP O ,,OA OG OP,,x y z ()()()()()(0,0,0,2,0,0,2,4,0,2,4,0,2,0,0,0,0,O A B C D P --((()1,,,0,4,0,E F G --()((0,2,0,1,2,,1,4,EF EG FG =-==EFG (),,n x y z =2020n EF y n EG x y ⎧⋅=-=⎪⎨⋅=+=⎪⎩ )n = (3,AE =- A EFG AE n d n ⋅==(3)设所以点到面的距离为定值解得:或.21.(共15分)(1)集合具有性质,集合B 不具有性质.(2)当时,集合A 中的元素个数为4.由题设.假设集合A 具有性质,则①当时,,矛盾.②当时,,不具有性质,矛盾.③当时,.因为和至多一个在A 中;和至多一个在A 中;和至多一个在A 中,故集合A 中的元素个数小于4,矛盾.④当时,,不具有性质,矛盾.⑤当时,,矛盾.综上,不存在具有性质的集合.11,0,,122PM PC λλ⎡⎫⎛⎤=∈⋃⎪ ⎢⎥⎣⎭⎝⎦()()2,4,,12,4M EM λλλλ-=-- M EFG 2PF n d nλ⋅== cos ,||||EF EG EF EG EF EG ⋅<>=== 1sin ,22EFG S EF EG EF EG =<>=V 11sin ,36M EFGEFG V S h EF EG EF EG h -==<>=V 14PM PC λ==34A ()3,2T ()4,2T 4n ={}0,1,2,3,4p ∈()4,T p 0p =(){}0,0,0,0A =1p =()()()(){}1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1A =()4,1T 2p =()()()()()(){}1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,0,0,1,0,1,0,0,1,1A ⊆()1,1,0,0()0,0,1,1()1,0,1,0()0,1,0,1()1,0,0,1()0,1,1,03p =()()()(){}1,1,1,0,1,1,0,1,1,0,1,1,0,1,1,1A =()4,3T 4p =(){}1,1,1,1A =()4,T p A(3)记,则.若,则,矛盾.若,则,矛盾.故.假设存在使得,不妨设,即.当时,有或成立.所以中分量为1的个数至多有.当时,不妨设.因为,所以的各分量有个1,不妨设.由时,可知,中至多有1个1,即的前个分量中,至多含有个1.又,则的前个分量中,含有个1,矛盾.所以.因为,所以.所以.()121,2,,j j j nj c t t t j n =+++= 12n c c c np +++= 0p =(){}0,0,,0A = 1p =(){}1,0,0,,0A = 2p ≥j 1j c p +…1j =11c p +…1c n =0j c =()12,3,,j c j n == 12,,,n ααα ()1212n n n n np +-=-<…11p c n +<…11211,111,0p n t t t t +===== n n p αα⋅=n αp 23,11n n n p t t t +==== i j ≠1i j αα⋅={}121,2,3,,1,,,,q q p q q p t t t +∀∈+ 121,,,p ααα+ 1p +121p p p ++=+()11,2,,1i n i p αα⋅==+ 121,,,p ααα+ 1p +()()1122p p p +++=+()1,2,,j c p j n = …12n c c c np +++= ()1,2,,j c p j n == ()121,2,,j j nj t t t p j n +++==。

重庆市2024-2025学年高二上学期期中考试数学试卷含答案

重庆市2024-2025学年高二上学期期中考试数学试卷含答案

重庆市高2026届高二上期期中考试数学试题(答案在最后)2024.11注意事项:1.本试卷满分为150分,考试时间为120分钟.2.答卷前,考生务必将自己的姓名、班级、准考证号填写在答题卡上.3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每题5分,共40分.1.直线l 过(,),(,)()P b c b Q a c a a b ++≠两点,则直线l 的斜率为()A.a b a b+- B.a b a b-+ C.1D.1-【答案】C 【解析】【分析】利用直线上两点的坐标求斜率即可.【详解】由题意可知,斜率()()1a b a bk a c b c a b--===+-+-,故选:C.2.若平面α的法向量为()4,4,2n =--,方向向量为(),2,1x 的直线l 与平面α垂直,则实数x =()A.4B.4- C.2D.2-【答案】D 【解析】【分析】根据直线垂直于平面,则直线的方向向量平行于平面的法向量,即可求解.【详解】由直线l 与平面α垂直,故直线l 方向向量(),2,1x 与平面α的法向量()4,4,2n =--平行,设()()4,4,2,2,1x λ--=,即4422xλλλ=⎧⎪-=⎨⎪-=⎩,解得22x λ=-⎧⎨=-⎩.故选:D.3.圆心为(1,1)-且过原点的圆的一般方程是()A.22220x y x y ++-= B.22220x y x y +-+=C.22220x y x y +--= D.222210x y x y ++-+=【答案】B 【解析】【分析】先求半径,再得圆的标准方程,最后转化为圆的一般方程.【详解】由题意知,()0,0在圆上,圆心为(1,1)-,所以圆的半径r ==,所以圆的标准方程为()()22112x y -++=,则一般方程为:22220x y x y +-+=,故选:B.4.椭圆22221x y a b +=和2222(0,0,,0)x y k a b a b k a b+=>>≠>一定具有()A.相同的离心率B.相同的焦点C.相同的顶点D.相同的长轴长【答案】A 【解析】【分析】先将方程化为标准方程,再根据离心率,焦点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

临澧一中高二数学上学期期中考试试卷
(满分150分 时间120分钟)
命题人:临澧一中 黄道宏
一、 选择题(5分⨯10=50分)
1、 点(0,5)到直线y=2x 的距离是( )
A 、25
B 、5
C 、2
3
D 、25
2、双曲线19
42
2=-y x 的渐近线方程是( ) A 、x y 23±
= B 、x y 32±= C 、x y 49±= D 、x y 9
4
±= 3、已知R ∈α,则直线0sin =-y x α的倾斜角的取值范围是( )
A 、⎥⎦⎤⎢⎣⎡4,0π
B 、[)π,0
C 、⎥⎦⎤⎢⎣⎡43,4ππ
D 、⎪⎭

⎢⎣⎡⋃⎥⎦⎤⎢⎣⎡πππ,434,0 4、已知点()()412,3,与点Q P 关于直线l 对称,则直线l 的方程为( ) A 、01=+-y x B 、0=-y x C 、01=++y x D 、0=+y x
5、已知两点()()3,2,9,4--Q P ,则直线PQ 与y 轴的交点分所成的比为( ) A 、
31 B 、2
1
C 、2
D 、3 6、圆04022
2
2
2
=++=-+y y x x y x 和圆的位置关系是( ) A 、相离 B 、外切 C 、相交 D 、内切
7、已知两点()()0,2,0,2N M -,点P 满足PM ⋅=12,则点P 的轨迹方程为( )
A 、116
22
=+y x B 、1622=+y x C 、822=-x y D 、822=+y x
8、椭圆19
252
2=+y x 的焦点为21、F F ,P 为椭圆上的一点,已知 9021=∠PF F
,则21PF F ∆的面积为( )
A 、9
B 、12
C 、18
D 、16
9、设ABC ∆的一个顶点是()1,3-A ,C B ∠∠,的平分线方程分别是0=x 、x y =,则直线BC 的方程是( )
A 、52+=x y
B 、32+=x y
C 、53+=x y
D 、2
5
21+-
=x y 10、直线13
4=+y
x 与191622=+y x 相交于A 、B 两点,该椭圆上点P 使得APB ∆的面积为3,这样的点P 共有( )
A 、1个
B 、2个
C 、3个
D 、4个
二、填空题(4分⨯5=20分) 11、圆的直径端点为(2,0),(2,-2),则此圆的方程是 。

12、与双曲线14162
2=-y x 有公共焦点,且过点(2,23)的双曲线方程为 。

13、若椭圆
19822=++y k x 的离心率为21
,则k 的值为 。

14、已知12,000
33-+=
⎪⎩

⎨⎧≥≥≤-+x y z y x y x y x 则满足、的取值范围是 。

15、已知A (-4,0),B (2,0),以AB 为直径的圆与y 轴的负半轴交于C ,则过C 点的圆的切线方
程为 。

三、解答题(12分⨯2+14分⨯4=80分)
16、一直线被两直线1L :40653:,062=--=++y x L y x 截得的线段中点恰好是坐标原点,求这条直线方程。

17、求经过A ()1,2-,和直线1=+y x 相切,且圆心在直线x y 2-=上的圆的方程。

18、自点()3,3-发出的光线L 射到x 轴上,被x 轴反射,其反射线所在直线与圆
074422=+--+y x y x 相切,求光线L 所在的直线方程。

19、某厂准备生产甲、乙两种适销产品,每件销售收入分别为3千元、2千元。

甲、乙产品都需要在A 、B 两种设备上加工,在每台设备A 、B 上加工一件甲产品所需工时分别为1小时、2小时,加工一件乙产品所需工时分别为2小时、1小时,A 、B 两种设备每月有效使用台时数分别为400和500。

如何安排生产可使收入最大?
20、我边防局接到情报,在海礁AB 所在直线l 的一侧点M 处有走私团伙在进行交易活动,边防局迅速派出快艇前去搜捕。

如图,已知快艇出发位置在l 的另一侧码头P 处,PA=8公里,PB=10公里,
60=∠APB 。

(1)是否存在点M ,使快艇沿航线M B P M A P →→→→或的路程相等。

如存在,则建立适当的直角坐标系,求出点M 的轨迹方程,且画出轨迹的大致图形;如不存在,请说明理由。

(2)问走私船在怎样的区域上时,路线M B P M A P →→→→比路线的路程短,请说明理由。

21、已知A 、B 、C 是长轴长为4的椭圆上的三点,点A 是长轴的一个顶点,BC 过椭圆中心O ,如图,且|,|2||,0AC BC BC AC ==⋅ (1)求椭圆的方程;
(2)如果椭圆上两点P 、Q 使PCQ ∠的平分线垂直AO ,则是否存在实数λ,使?AB PQ λ=请说明理由。

欢迎访问
P
B
M
A
B
C
A
O。

相关文档
最新文档