高二数学上学期期末考试题及答案

合集下载

高二上学期期末考试数学复习题(带答案)详解+解析点睛

高二上学期期末考试数学复习题(带答案)详解+解析点睛

高二上学期期末考试数学复习题(带答案)详解+解析点睛姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx 题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)第 1 题已知命题,,则为()A.,B.,C.,D.,【答案解析】B【分析】根据全称命题的否定是特称命题的知识选出正确选项.【详解】原命题是全称命题,其否定是特称命题,注意到要否定结论,故B选项正确,D选项不正确.故选:B【点睛】本小题主要考查全称命题的否定,属于基础题.第 2 题某学校高一、高二年级共有1800人,现按照分层抽样的方法,抽取90人作为样本进行某项调查.若样本中高一年级学生有42人,则该校高一年级学生共有()A. 420人B. 480人C. 840人D. 960人【答案解析】C【分析】先由样本容量和总体容量确定抽样比,用高一年级抽取的人数除以抽样比即可求出结果.【详解】由题意需要从1800人中抽取90人,所以抽样比为,又样本中高一年级学生有42人,所以该校高一年级学生共有人.故选C【点睛】本题主要考查分层抽样,先确定抽样比,即可确定每层的个体数,属于基础题型..第 3 题已知双曲线的离心率是2,则其渐近线方程为()A. B.C. D.【答案解析】A【分析】利用离心率求得,由此求得渐近线方程.【详解】依题意,所以渐近线方程为,即.故选:A【点睛】本小题主要考查双曲线渐近线方程的求法,属于基础题.第 4 题设,则“”是“”的()A. 充要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件【答案解析】C【分析】首先解两个不等式,再根据充分、必要条件的知识选出正确选项.【详解】由解得.由得.所以“”是“”必要而不充分条件故选:C【点睛】本小题主要考查充分、必要条件的判断,考查绝对值不等式的解法,属于基础题.第 5 题若将一个质点随机投入如图所示的长方形ABCD中,其中,,则质点落在以AB为直径的半圆内的概率是()A. B. C. D.【答案解析】C【分析】利用几何概型概率计算公式,计算出所求的概率.【详解】依题意,长方体的面积为,半圆的面积为,所以质点落在以为直径的半圆内的概率是.故选:C【点睛】本小题主要考查几何概型的计算,属于基础题.第 6 题在正三棱柱ABC﹣A1B1C1中,,则异面直线与所成角的余弦值为()A. B. C. D.【答案解析】D【分析】作出异面直线所成的角,解三角形求得其余弦值.【详解】设,是的中点,所以,所以是两条异面直线所成的角(或补角).在三角形中,,,所以.所以异面直线与所成角的余弦值为.故选:D【点睛】本小题主要考查异面直线所成角的求法,属于基础题.第 7 题若函数在区间(1,+∞)单调递增,则的取值范围是()A. B. C. D.【答案解析】B【分析】利用函数在区间上的导函数为非负数列不等式,解不等式求得的取值范围.【详解】依题意在区间上恒成立,所以,所以.所以实数的取值范围是.故选:B【点睛】本小题主要考查利用导数,根据函数在给定区间上的单调性求参数的取值范围,属于基础题. 第 8 题设函数是奇函数的导函数,(),,当时,,则使得成立的的取值范围是()A. B.C. D.【答案解析】A【分析】构造函数,当时,根据已知条件,判断出.当时,根据为偶函数,判断出的单调性.结合,求得使得成立的的取值范围.【详解】由于是定义在上的奇函数,所以.构造函数,当时,,所以在上递增,由于,所以为偶函数,所以在区间上递减且.所以当时,,;当时,,.所以使得成立的的取值范围是.故选:A【点睛】本小题主要考查利用导数研究不等的解集,考查函数的奇偶性和单调性,属于中档题.第 9 题(多选题)下列命题中真命题的是()A. 若实数,满足,则,互为倒数B. 面积相等的两个三角形全等C. 设,“若,则方程有实根”的逆否命题D. “若,则”的逆命题【答案解析】AC【分析】A利用倒数的知识进行判断;B利用全等三角形的知识进行判断;C利用原命题的真假性来判断;D利用原命题的逆命题的真假性来判断.【详解】对于A选项,根据倒数的知识可知,A选项正确.对于B选项,两个三角形的面积相等,不一定是全等三角形,所以B选项错误.对于C选项,当时,,所以方程有实根,为真命题,故其逆否命题为真命题,所以C选项正确.对于D选项,原命题的逆命题为“若,则”不正确,因为也可以,所以D选项为假命题.综上所述,正确的为AC.故选:AC【点睛】本小题主要考查命题真假性的判断,考查逆否命题、逆命题真假性,属于基础题.第 10 题(多选题)“悦跑圈”是一款基于社交型的跑步应用,用户通过该平台可查看自己某时间段的运动情况,某人根据2019年1月至2019年11月期间每月跑步的里程(单位:十公里)的数据绘制了下面的折线图,根据该折线图,下列结论正确的是()A. 月跑步里程逐月增加B.l 一共个月份,里程中间的是从小到大的第个,根据折线图可知,跑步里程的中位数为月份对应的里程数,故C选项正确.根据折线图可知,月至月的月跑步里程相对于月至月波动性更小,变化比较平稳,故D选项正确.综上所述,正确的选项为BCD.故选:BCD【点睛】本小题主要考查折线图,考查图表分析、数据处理能力,属于基础题.第 11 题(多选题)设椭圆的左右焦点为,,P是C上的动点,则下列结论正确的是() A. B. 离心率C.面积的最大值为D. 以线段为直径的圆与直线相切【答案解析】AD【分析】根据椭圆的定义判断A选项正确性,根据椭圆离心率判断B选项正确性,求得面积的最大值来判断C选项的正确性,求得圆心到直线的距离,与半径比较,由此判断D选项的正确性.【详解】对于A选项,由椭圆的定义可知,所以A选项正确.对于B选项,依题意,所以,所以B选项不正确.对于C选项,,当为椭圆短轴顶点时,的面积取得最大值为,所以C选项错误.对于D选项,线段为直径的圆圆心为,半径为,圆心到直线的距离为,也即圆心到直线的距离等于半径,所以以线段为直径的圆与直线相切,所以D选项正确.综上所述,正确的为AD.故选:AD【点睛】本小题主要考查椭圆的定义和离心率,考查椭圆的几何性质,考查直线和圆的位置关系,属于基础题..第 12 题(多选题)定义在区间上的函数的导函数图象如图所示,则下列结论正确的是()A. 函数f(x)在区间(0,4)单调递增B. 函数f(x)在区间单调递减C. 函数f(x)在处取得极大值D. 函数f(x)在处取得极小值【答案解析】ABD【分析】根据导函数图像判断出函数的单调性和极值,由此判断出正确选项.【详解】根据导函数图像可知,在区间上,,单调递减,在区间上,,单调递增.所以在处取得极小值,没有极大值.所以A,B,D选项正确,C选项错误.故选:ABD【点睛】本小题主要考查利用导函数图像判断函数单调区间、极值,属于基础题第 13 题同时掷两枚质地均匀的骰子,所得的点数之和为5的概率是.【答案解析】【详解】列表如下:从列表中可以看出,所有可能出现的结果共有36种,这些结果出现的可能性相等.∵点数的和为5的结果共有4种:(1,4),(2,3),(4,1),(3,2)∴点数的和为5的概率P==故答案为第 14 题已知函数,为的导函数,则的值为__________.【答案解析】【分析】求得函数的导函数,由此求得的值.【详解】依题意,所以.故答案为:【点睛】本小题主要考查导数的计算,属于基础题.第 15 题已知向量,,且满足,则的值为__________.【答案解析】【分析】先求得,根据两个向量垂直的坐标表示列方程,解方程求得的值.【详解】依题意,由于,所以,即,解得.故答案为:【点睛】本小题主要考查空间向量垂直的坐标表示,考查空间向量的线性运算,属于基础题.第 16 题设抛物线的焦点为F,过点F作直线与抛物线交于A、B两点,点M满足,过M作轴的垂线与抛物线交于点,若,则点P的横坐标为__________,__________.【答案解析】1 ; 8【分析】利用抛物线的定义,求得点的坐标,设出直线的方程,联立直线的方程和抛物线的方程,利用韦达定理,求得点坐标的表达式,根据两点的纵坐标相同列方程,解方程求得直线的斜率,由此求得.【详解】由于点满足,所以是线段中点.抛物线的焦点坐标为,准线方程为.设,由于在抛物线上,且,根据抛物线的定义得,所以,则,不妨设.若直线斜率不存在,则,则,此时的纵坐标和的纵坐标不相同,不符合题意.所以直线的斜率存在.设,设直线的方程为,代入抛物线方程并化简得,则.由于是线段中点,所以,而,所以,即,即,解得.所以,所以,则到准线的距离为,根据抛物线的定义结合中位线的性质可知.故答案为: 1 ; 8【点睛】本小题主要考查抛物线的定义,考查直线和抛物线的位置关系,考查运算求解能力,属于中档题.第 17 题已知函数.(1)求曲线在点(0,0)处的切线方程;(2)求f(x)在区间[-2,2]上的最大值与最小值.【答案解析】(1);(2)最大值为,最小值为【分析】(1)求得函数在时的导数,由点斜式求得切线方程.(2)利用导数求得的单调区间,区间端点的函数值和极值点的函数值,由此求得在区间上的最大值与最小值.【详解】(1)由题意得,则,所以曲线在点处的切线方程为,即;(2)令,得,当时,,当时,,所以在上单调递减,在上单调递增,又,所以,所以在上的最大值为,最小值为.【点睛】本小题主要考查利用导数求切线方程,考查利用导数求函数的最值,属于基础题.第 18 题已知双曲线E的两个焦点为,,并且E经过点.(1)求双曲线E的方程;(2)过点的直线与双曲线E有且仅有一个公共点,求直线的方程.【答案解析】(1);(2)或【分析】(1)利用,以及列方程组,解方程组求得,由此求得双曲线的方程.(2)当直线斜率不存在时,直线与双曲线没有交点.当直线斜率存在时,设出直线的方程,联立直线的方程和双曲线的方程,消去得到,根据二次项系数和判别式进行分类讨论,由此求得直线的方程.【详解】(1)由已知可设双曲线的方程为,则,解得,所以双曲线的方程为.(2)当直线斜率不存在时,显然不合题意所以可设直线方程为,联立,得,①当,即或,方程只有一解,直线与双曲线有且仅有一个公共点,此时,直线方程为,②当,即,要使直线与双曲线有且仅有一个公共点,则,解得,此时,直线方程为,综上所述,直线的方程为或.【点睛】本小题主要考查双曲线方程的求法,考查根据直线和双曲线交点个数求参数,属于中档题. .第 19 题某手机厂商在销售某型号手机时开展“手机碎屏险”活动.用户购买该型号手机时可选购“手机碎屏险”,保费为元,若在购机后一年内发生碎屏可免费更换一次屏幕,为了合理确定保费的值,该手机厂商进行了问卷调查,统计后得到下表(其中表示保费为元时愿意购买该“手机碎屏险”的用户比例):(1)根据上面的数据计算得,求出关于的线性回归方程;(2)若愿意购买该“手机碎屏险”的用户比例超过0.50,则手机厂商可以获利,现从表格中的5种保费任取2种,求这2种保费至少有一种能使厂商获利的概率.附:回归方程中斜率和截距的最小二乘估计分别为,【答案解析】(1);(2)【分析】(1)利用回归直线方程计算公式,计算出关于的线性回归方程.(2)利用列举法和古典概型概率计算公式,计算出所求概率.【详解】(1)由,,,,得所以关于的回归直线方程为.(2)现从表格中的种保费任选种,所有的基本事件有:,,,,,,,,,,共有种.其中至少有一种保费能使厂商获利的基本事件有:,,,,,,,共种.所以从表格中的种保费任选种,其中至少有一种保费能使厂商获利的概率为.【点睛】本小题主要考查回归直线方程的计算,考查古典概率问题的求解,属于基础题.第 20 题在如图所示的六面体中,四边形ABCD是边长为2的正方形,四边形ABEF是梯形,,平面ABCD⊥平面ABEF,,.(1)在图中作出平面ABCD与平面的交线,并写出作图步骤,但不要求证明;(2)求证:平面;(3)求平面ABEF与平面所成角的余弦值【答案解析】(1)见解析;(2)见解析;(3)【分析】(1)延长与相交于点,连接,根据公理和公理可知,即是所求.(2)通过证明四边形是平行四边形,证得,由此证得平面.(3)利用勾股定理计算出,建立空间直角坐标系,通过平面和平面的法向量,计算出二面角的余弦值.【详解】(1)延长与相交于点,连接,则直线就是平面与平面的交线.(2)因为,,所以是的中位线,故,因为,所以,且,所以四边形是平行四边形,所以,因为面,面,所以平面.(3)在平面内,过点作的平行线交于点,又,所以四边形为平行四边形,所以,,,又因为,所以,所以为直角三角形,且,,.在平面内,过点作的垂线交于点,又因为平面平面,平面平面,所以面.以为坐标原点,的方向为轴正方向,的方向为轴正方向,的方向为轴正方向,建立如图所示的空间直角坐标系.则,,,,所以,,设是平面的法向量,则,即,所以可取.因为是平面的法向量,所以,所以平面与平面所成角的余弦值.【点睛】本小题主要考查线面平行的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.第 21 题已知椭圆的离心率为,,,,的面积为.(1)求椭圆C的方程;(2)过右焦点F作与轴不重合的直线交椭圆C于P,Q两点,连接,分别交直线于,M,N两点,若直线,的斜率分别为,,试问:是否为定值?若是,求出该定值,若不是,请说明理由.【答案解析】(1);(2)为定值,理由见解析【分析】(1)结合椭圆离心率、的面积、列方程组,解方程组求得,由此求得椭圆的标准方程.(2)当直线斜率不存在时,求得两点的坐标,由此求得直线的方程,进而求得两点的坐标,由此求得,,求得.当直线斜率存在时,设直线方程为,联立直线的方程和椭圆方程,写出韦达定理,求得直线的方程,进而求得两点的坐标,由此求得,,结合韦达定理计算.由此证得为定值.【详解】(1)由题意得,解得,所以椭圆的方程为.(2)由(1)知,,①当直线斜率不存在时,直线方程为,联立,得,不防设,,则直线方程为,令,得,则,此时,,同理,所以,②当直线斜率存在时,设直线方程为,联立,得,设,,则,,直线方程为,令,得,则,同理,所以,,所以综上所述,为定值.【点睛】本小题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,考查根与系数关系,考查运算求解能力,考查分类讨论的数学思想方法,属于难题.第 22 题已知函数,,为的导函数.(1)若,求a的值;(2)讨论的单调性;(3)若恰有一个零点,求a的取值范围.【答案解析】(1);(2)见解析;(3)或【分析】(1)利用列方程,解方程求得的值.(2)求得函数的导函数,对分成等四种情况,分类讨论的单调区间.(3)结合(1)求得的的单调区间,判断出的单调区间,结合的取值范围、零点的存在性定理进行分类讨论,由此求得的取值范围.【详解】(1)由,得,得;(2)①当时,令,得,令,得,所以在上单调递增,在上单调递减;②当时,令,得,,i)当时,,所以在上单调递增;ii)当时,令,得或;令,得,所以在和单调递增,在单调递减;iii)当时,令,得或;令,得,所以在和单调递增,在单调递减;综上:①当时,在上单调递增;在单调递减;②i)当时,在上单调递增;ii)当时,在和单调递增,在单调递减;iii)当时,在和单调递增,在单调递减;(3)①当时,由(2)知,在单调递增,在单调递减,所以在单调递增,在单调递减,又因为,所以恰有一个零点,符合题意;②i)当时,在单调递增,所以在单调递增,又,所以在恰有一个零点,符合题意;ii)当时,在单调递增,在单调递减,在单调递增,所以在单调递增,在单调递减,在单调递增,因为,所以是函数的一个零点,且,当时,取且,则,所以,所以在恰有一个零点,所以在区间有两个零点,不合题意;iii)当时,在单调递增,在单调递减,在单调递增,所以在单调递增,在单调递减,在单调递增,又因为,所以是函数的一个零点,且,又因为,所以,所以在区间有两个零点,不合题意;综上的取值范围为或.【点睛】本小题主要考查导数的计算,考查利用导数研究函数的单调性,考查利用导数研究函数的零点,考查零点的存在性定理,考查分类讨论的数学思想方法,属于难题.。

2022-2023学年云南省曲靖市高二年级上册学期期末考试数学试题【含答案】

2022-2023学年云南省曲靖市高二年级上册学期期末考试数学试题【含答案】

2022-2023学年云南省曲靖市高二上学期期末考试数学试题一、单选题1.设集合,,则{}2430A x x x =-+<{}480xB x =->A B =A .B .C .D .3(3,)2--3(3,2-3(1,)23(,3)2【答案】D【分析】先根据一元二次不等式和指数不等式的解法求出集合A,B ,再利用交集的定义求出.A B ⋂【详解】,,则()(){}{}31013A x x x x x =--<=<<{}233222x B x x x ⎧⎫=>=>⎨⎬⎩⎭,故选D.332A B x x ⎧⎫⋂=<<⎨⎬⎩⎭【点睛】本题主要考查集合的交集运算,熟练掌握交集运算是解题的关键.2.复数(其中i 为虚数单位)的虚部为( )31iz i +=-A .B .C .D .21-i-2i【答案】D【分析】根据复数的乘除法运算法则可得复数,再根据复数的概念可得其虚部.12z i =+【详解】因为,()()()()31324121112i i i iz i i i i ++++====+--+所以复数的虚部是2,z 故选:D .【点睛】本题考查了复数的乘除法算法则,考查了复数的概念,属于基础题.3.我国古代数学家赵爽的弦图是由四个全等的直角三角形与-一个小正方形拼成的一个大正方形(如图).如果小正方形的边长为,大正方形的边长为,直角三角形中较小的锐角为,则210θ( )c 26os sin πθθπ⎛⎫⎛⎫--=⎪ ⎭⎝+⎪⎝⎭A BC D 【答案】D【分析】设出直角三角形中较短的直角边,利用勾股定理求出x 的值,从而求出sin θ,cos θ的值,再利用两角和与差的三角函数公式即可算出结果.【详解】直角三角形中较短的直角边为x ,则:x 2+(x +2)2=102,解得:x =6,∴sin θ,cos θ,35=45=∴sin ()﹣cos ()=﹣cos θ﹣(cos θcos )sin θ)cos θ2πθ-6πθ+66sin sinππθ-12=1=故选:D .【点睛】本题考查的知识点是两角和与差的余弦公式,诱导公式,难度不大,属于基础题.4.下面定义一个同学数学成绩优秀的标志为:“连续5次考试成绩均不低于120分”.现有甲、乙、丙三位同学连续5次数学考试成绩的记录数据(记录数据都是正整数):①甲同学:5个数据的中位数为127,众数为120;②乙同学:5个数据的中位数为125,总体均值为127;③丙同学:5个数据的中位数为135,总体均值为128,总体方差为19.8;则可以判定数学成绩优秀的同学为( )A .甲、丙B .乙、丙C .甲、乙D .甲、乙、丙【答案】A【分析】根据题意,由中位数,平均数,众数以及方差的意义,即可得到结果.【详解】在①中,甲同学:5个数据的中位数为127,众数为120,所以前三个数为120,120,127,则后两个数肯定大于127,故甲同学数学成绩优秀,故①成立;在②中,5个数据的中位数为125,总体均值为127,可以找到很多反例,如:118,119,125,128,128,故乙同学数学成绩不优秀,故②不成立;在③中,5个数据的中位数为135,总体均值为128,总体方差为19.8,设,1234x x x x <<<则()()()()()222221234112812812812813512819.85x x x x ⎡⎤-+-+-+-+-=⎣⎦∴,()()()()2222123412812812812850x x x x -+-+-+-=∴,()211112850128128120x x x -≤⇒-≤⇒≥->∴丙同学数学成绩优秀,故③成立,∴数学成绩优秀有甲和丙2个同学.故选:A5.函数的部分图象是( )()22sin 1x f x x -=A .B .C .D .【答案】A【分析】首先判断出为偶函数,然后结合时,为负数,确定正确选项.()f x 06x π<<()f x 【详解】因为,所以是偶函数,则的图象关于()()()222sin 12sin 1x x f x f x x x ----===-()f x ()f x轴对称,排除C ,D ;当时,,排除B.y 06x π<<()0f x <故选:A【点睛】本题考查函数图象,考查推理论证能力.6.的内角,,的对边分别为,,,已知,ABC A B C a b c cos cos 3cos a B b A c C +=,则( )sin sin sin 0a A c C b A -+=b a =A .B .C .D .53737252【答案】A【解析】由正弦定理及,先求得,又由正弦定理及cos cos 3cos a B b A c C +=1cos 3C =,得,结合余弦定理,即可求得本题答sin sin sin 0a A c C b A -+=22a c ab -=-222cos 2a b c C ab +-=案.【详解】在中,由正弦定理及,ABC cos cos 3cos a B b A c C +=得,sin cos cos sin 3sin cos A B A B C C +=∴,sin()sin 3sin cos A B C C C +==又,∴;sin 0C ≠1cos 3C =由正弦定理及,得,sin sin sin 0a A c C b A -+=22a c ab -=-又由余弦定理得,22221cos 223a b c b ab C ab ab +--===所以,得.213b a -=53b a =故选:A【点睛】本题主要考查正余弦定理的综合应用,考查学生的转化能力和运算求解能力.7.已知曲线在点处的切线方程为,则e ln xy a x x =+()1,ae 2y x b =+A .B .C .D .,1a e b ==-,1a e b ==1,1a e b -==1,1a e b -==-【答案】D【解析】通过求导数,确定得到切线斜率的表达式,求得,将点的坐标代入直线方程,求得.a b 【详解】详解:ln 1,xy ae x '=++,1|12x k y ae ='==+=1a e -∴=将代入得,故选D .(1,1)2y x b =+21,1b b +==-【点睛】本题关键得到含有a ,b 的等式,利用导数几何意义和点在曲线上得到方程关系.8.已知椭圆的左、右焦点分别为,且,点在椭圆上,22221x y a b +=12,F F 122FF c =A , ,则椭圆的离心率1120AF F F ⋅= 212AF AF c ⋅=e =A B CD【答案】C【详解】由于,则, , 1120AF F F ⋅= 2,b A c a ⎛⎫- ⎪⎝⎭()()12,0,,0F c F c -22120,,2,b b AF AF c a a ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ , , , , , ,,42122b AF AF c a ⋅== 2b ac=22a c ac -=21e e -=210e e +-=e = ,则,选C.01e <<e 二、多选题9.如图,在长方体中,,M ,N 分别为棱的中点,1111ABCD A B C D -14,2AA AB BC ===111,C D CC 则下列说法正确的是( )A .A 、M 、N 、B 四点共面B .平面平面ADM ⊥11CDDC C .直线与所成角的为D .平面BN 1B M 60︒//BN ADM【答案】BC【分析】A.由点A 、M 、B 在平面内,点N 在平面外判断;B.平面,11ABC D 11ABC D AD ⊥11CDD C 再利用面面垂直的判定定理判断;C.取CD 的中点E ,连接BE ,NE ,由,得到为1//BE B M EBN ∠异面直线与所成的角判断;D.利用反证法判断.BN 1B M【详解】A.点A 、M 、B 在平面内,点N 在平面外,故错误;11ABC D 11ABC DB.在正方体中,平面,又平面ADM ,所以平面平面,故正确;AD ⊥11CDD C AD ⊂ADM ⊥11CDD CC.如图所示:取CD 的中点E ,连接BE ,NE ,得,则 为异面直线与所成的角,易知1//BE B M EBN ∠BN 1B M 是等边三角形,则 ,所以直线与所成角的为,故正确;EBN △60EBN ∠= BN 1B M 60︒D. 若平面,又 平面ADM ,又,所以平面 平面ADM ,//BN ADM //BC BC BN B = 11//BCC B 而平面平面,矛盾,故错误;11//BCC B 11ADD A 故选:BC10.在4件产品中,有一等品2件,二等品1件(一等品与二等品都是正品),次品1件,现从中任取2件,则下列说法正确的是( )A .两件都是一等品的概率是13B .两件中有1件是次品的概率是12C .两件都是正品的概率是13D .两件中至少有1件是一等品的概率是56【答案】BD【分析】由题意给产品编号,列出所有基本情况,逐项列出满足要求的情况,由古典概型概率公式逐项判断即可得解.【详解】由题意设一等品编号为、,二等品编号为,次品编号为,a b c d 从中任取2件的基本情况有:、、、、、,共6种;(),a b (),a c (),a d (),b c (),b d (),c d 对于A ,两件都是一等品的基本情况有,共1种,故两件都是一等品的概率,故A 错(),a b 116P =误;对于B ,两件中有1件是次品的基本情况有、、,共3种,故两件中有1件是次(),a d (),b d (),c d品的概率,故B 正确;23162P ==对于C ,两件都是正品的基本情况有、、,共3种,故两件都是正品的概率(),a b (),a c (),b c ,故C 错误;33162P ==对于D ,两件中至少有1件是一等品的基本情况有、、、、,共5种,(),a b (),a c (),a d (),b c (),b d 故两件中至少有1件是一等品的概率,故D 正确.456P =故选:BD.【点睛】本题考查了列举法解决古典概型概率问题,考查了运算求解能力,列出基本情况是解题关键,属于中档题.11.下列四个命题中,正确命题有( )A .当a 为任意实数时,直线恒过定点P ,则过点P 且焦点在y 轴上的抛物线()1210a x y a --++=的标准方程是243x y =B .已知双曲线的右焦点为,一条渐近线方程为,则双曲线的标准方程是()5,020x y -=221520x y -=C .抛物线的准线方程为()20y ax a =≠14y a =-D .已知双曲线,其离心率,则m 的取值范围是2214x y m +=()1,2e ∈()12,0-【答案】ABCD【分析】对于A ,求出点的坐标即可判断,对于B ,根据条件可得P ,a b ==对于C ,根据抛物线的知识可判断,对于D ,得到,然后可判断.22222244c a b me a a +-===【详解】对于A ,当a 为任意实数时,直线恒过定点P ,()1210a x y a --++=因为方程可化为()1210a x y a --++=()210a x x y +--+=所以,而过点,故A 正确;()2,3P -243x y=()2,3P -对于B ,由双曲线的右焦点为,一条渐近线方程为,()5,020x y -=则, , ,解得,故双曲线的标准方程是,故B 正5c =2ba =222c ab =+,a b ==221520x y -=确;对于C ,抛物线的准线方程为,故C 正确;()20y ax a =≠14y a =-对于D ,根据题意,双曲线,其离心率,2214x y m -=-()1,2e ∈即,则,故D 正确.22222244c a b m e a a +-===4141204m m -<<⇒-<<故选:ABCD.12.南宋数学家杨辉所著的《详解九章算法·商功》中出现了如图所示的形状,后人称为“三角垛”(下图所示的是一个4层的三角跺).“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,…,设第n 层有个球,从上往下n 层球的球的总数为,则( )n a n S A .B .11(2)n n a a n n --=+≥784S =C .D .9898992a ⨯=1232022111140442023a a a a +++⋅⋅⋅+=【答案】BCD 【分析】根据题意求得,进而可得,利用累加法求出即可判断选项123a a a 、、1n n a a n --=n a A 、C ;计算前7项的和即可判断B ;利用裂项相消求和法即可判断D.【详解】由题意得,,121321=1=2=3n n a a a a a a a n ----= ,,,,以上n 个式子累加可得,(1)=12(2)2n n n a n n ++++=≥ 又满足上式,所以,故A 错误;11a =(1)=2n n n a +则,2345673610152128a a a a a a ======,,,,,得,故B 正确;7127==1+3+6+10+15+21+28=84S a a a +++ 有,故C 正确;9898992a ⨯=由,1211=2((1)1n a n n n n =-++得,12202211111111140442(1)2(1)2232022202320232023a a a +++=-+-++-=-=故D 正确.故选:BCD.三、填空题13.已知函数,则________.3log (1)2,0()(3),0x x f x f x x +-≥⎧=⎨+<⎩(2020)f -=【答案】1-【解析】根据题意,由函数解析式可得,进而计算得到答案.(2020)(23674)(2)f f f -=-⨯=【详解】根据题意,当时,,0x <()(3)f x f x =+所以,(2020)(23674)(2)f f f -=-⨯=当时,,0x ≥3()log (1)2f x x =+-所以.3log (21)(22)1f +-=-=故答案为:.1-【点睛】本题主要考查函数值的计算,涉及分段函数的应用和对数计算,属于基础题.14.若数列,都等差数列,且有,则__________.{}n a {}n b 1212532n n a a a n b b b n ++++=++++ 77a b =【答案】6815【分析】根据题意,由等差数列的前项和公式,代入计算,即可得到结果.n 【详解】设等差数列、的前项和分别为{}n a {}n b n n nS T 、由1131137711312131131977113121313()25133682213()21321522a a a a a a a a a a a b b b b b b b b b b b++++++⨯+=======+++++++ 故答案为:681515.棱长为3的正方体内有一个球,与正方体的12条棱都相切,则该球的体积为_____________;【答案】【分析】一个球与一个正方体的每条棱都相切,则这个球的半径为正方体的面对角线一半,从而R求出这个球的体积【详解】解:一个球与一个正方体的每条棱都相切,则这个球的半径为正方体的面对角线一半,R 即解得2R =R=则其体积,343V Rπ===故答案为:.16.中心在原点、焦点在轴上的椭圆与双曲线有公共焦点,左右焦点分别为、,且它们在第x 1F 2F 一象限的交点为,是以为底边的等腰三角形.若,双曲线离心率的取值范P 12PF F △2PF 210PF =围为,则椭圆离心率的取值范围是_____.()1,2【答案】2,13⎛⎫ ⎪⎝⎭【详解】试题分析:由题意得:,因此椭圆离心率(1,2)102102cc c ∈⇒>-521(,1).2105532c c c c c ==-∈+++【解析】椭圆离心率四、解答题17.已知函数.()πsin sin 3f x x x ⎛⎫=+ ⎪⎝⎭(1)求的最小正周期;()f x (2)在中,角所对的边分别为,若,且的面积为ABC ,,A B C ,,a b c ()3,24f C a ==ABC 的值.c【答案】(1)π(2)c =【分析】(1)根据三角恒等变换公式化简函数的解析式,即可得到结果;()f x (2)根据条件求出,由三角形面积公式求出,再由余弦定理求出c 即可.C b 【详解】(1),π111cos 21π1()sin sin()sin sin 2sin(2)3222264x f x x x x x x x x ⎛⎫-=+==⨯=-+ ⎪ ⎪⎝⎭故最小正周期为.2ππ2T ==(2),即,1π13()sin(22644f C C =-+=πsin 216C ⎛⎫-= ⎪⎝⎭所以,所以,ππ22,62C k k π-=+∈Z ,3C k k ππ=+∈Z 因为,所以,()0,C π∈π3C =由三角形面积公式,且,解得,1sin 2S ab C ==2a =4b =由余弦定理,22212cos 416224122c a b ab C =+-=+-⨯⨯⨯=解得.c =18.若数列满足,.{}n a 11a =-121(N ,2)n n a a n n *-=-∈≥(1)求证:数列是等比数列,并求数列的通项公式;{}1n a -{}n a (2)设,若数列的前项和为,求证:.2log (1)n n b a =-11(N )n n n b b *+⎧⎫∈⎨⎬⎩⎭n n T 1n T <【答案】(1)证明见解析,12n n a =-(2)证明见解析【分析】(1)由变形得,可得数列为等比数列,通过求该数列121n n a a -=-()1121n n a a --=-{}1n a -的通项公式,可得数列的通项公式.{}n a (2)由(1)可得,故,利用裂项相消法求和即可.n b n =11111n n b b n n +=-+【详解】(1)证明:∵,121n n a a -=-()2n ≥∴,()1121n n a a --=-又,1120a -=-≠∴数列是首项为,公比为的等比数列,{}1n a -2-2∴, ()11222n nn a --=-⋅=-∴.12n n a =-(2)解:由(1)知,()22log 1log 2n n n b a n =-==∴,()1111111n n b b n n n n +==-++∴.11111111122311n T n n n ⎛⎫⎛⎫⎛⎫=-+-++-=-< ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭ 19.某学校团委组织了“文明出行,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(单位:分)整理后,得到如下频率分布直方图(其中分组区间为).[)[)[]4050506090100 ,,,,,,(1)求成绩在的频率,并补全此频率分布直方图;[)7080,(2)求这次考试平均分的估计值;(3)若从成绩在和的学生中任选两人,求他们的成绩在同一分组区间的概率.[)4050,[]90100,【答案】(1),频率分布直方图见解析;(2);(3).0.2572.50.4【详解】试题分析:(1)根据频率分布直方图的意义可得第四小组的频率:;(2)根据频率分布直方图的意义可得这次考试()10.0050.0150.0200.0300.005100.25-++++⨯=平均分的估计值为:;(3)450.05550.15650.20750.25850.30950.0572.5x =⨯+⨯+⨯+⨯+⨯+⨯=成绩在和的人数分别为,将成绩在的人分别记为,成绩在[)40,50[]90,1003,3[)40,503,,a b c的人分别记为,从成绩在和的学生中任选两人的结果共种,成[]90,1003,,A B C [)40,50[]90,10015绩在同一分组区间的结果共种,利用古典概率计算公式即可得出所求概率.6试题解析:(1)由题意得成绩在的频率为[)70,80,频率分布直方图如图所示;()10.0050.0150.0200.0300.005100.25-++++⨯=(2)由题意可得这次考试平均分的估计值为:;450.05550.15650.20750.25850.30950.0572.5x =⨯+⨯+⨯+⨯+⨯+⨯=(3)由题意可得,成绩在的人数为,记他们分别是,成绩在[)40,50600.005103⨯⨯=,,a b c 的人数为,记他们分别是,则从成绩在和的学生[]90,100600.005103⨯⨯=,,A B C [)40,50[]90,100中任选两人的结果分别是,共()()()()()()()()()()()()()()(),,,,,,,,,,,,,,,,,,,,,,,,,,,,A B A C A a A b A c B C B a B b B c C a C b C c a b a c b c 15种,他们的成绩在同一分组区间的结果是,共6种.()()()()()(),,,,,,,,,,,A B A C B C a b a c b c 所以他们的成绩在同一分组区间的概率为.60.415P ==【解析】1、频率分布直方图;2、古典概率.【方法点睛】由样本频率分布直方图,分别估计总体的众数、中位数和平均数的方法:(1)众数:最高矩形下端中点的横坐标;(2)中位数:直方图面积平分线与横轴交点的横坐标;(3)平均数:每个小矩形的面积与小矩形底边中点的横坐标的乘积之和.利用直方图求众数、中位数、平均数均为近似值,往往与实际数据得出的不一致.但它们能粗略估计其众数、中位数和平均数.本题主要考查由样本频率分布直方图估计总体的平均数以及古典概率,属于基础题.20.如图,三棱柱ABC -A 1B 1C 1中,侧面BCC 1B 1是菱形,AC =BC =2,∠CBB 1=,点A 在平面3πBCC 1B 1上的投影为棱BB 1的中点E .(1)求证:四边形ACC 1A 1为矩形;(2)求二面角E -B 1C -A 1的平面角的余弦值.【答案】(1)见解析(2)【分析】(1)通过勾股定理得出,又,进而可得平面,则可得到1CE BB ⊥1AE BB ⊥1BB ⊥AEC ,问题得证;1AA AC ⊥(2)如图,以为原点,,,所在直线分别为轴,轴,轴,求出平面的法E EC 1EB EA x y z 1EB C 向量和平面的法向量,利用空间向量的夹角公式可得答案.11A B C 【详解】(1)因为平面,所以,⊥AE 11BB C C 1AE BB ⊥又因为,,,所以1112BE BB ==2BC =3EBC π∠=CE 因此,所以, 222BE CE BC +=1CE BB ⊥因此平面,所以,1BB ⊥AEC 1BB AC ⊥从而,又四边形为平行四边形,1AA AC ⊥11ACC A 则四边形为矩形;11ACC A (2)如图,以为原点,,,所在直线分别为轴,轴,轴,所以E EC 1EB EA x y z,11(0,0,1),(0,2,1),(0,1,0),A A B C 平面的法向量,设平面的法向量,1EB C (0,0,1)m = 11A B C (,,)n x y z =由,1(,,)(0n CB x y z y ⊥⇒⋅=⇒= 由,11(,,)(0,1,1)00n B A x y z y z ⊥⇒⋅=⇒+=令,1x y z =⇒==n =所以,cos ,m n <>== 所以,所求二面角的余弦值是【点睛】本题考查空间垂直关系的证明,考查向量法求二面角的大小,考查学生计算能力,是中档题.21.为了保护某库区的生态环境,凡是坡度在以上的坡荒地都要绿化造林.经初步统计,在该25︒库区内坡度大于的坡荒地面积约有万亩.若从年年初开始绿化造林,第一年绿化25︒ 2 6402016万亩,以后每一年比上一年多绿化万亩.12060(1)若所有被绿化造林的坡荒地全都绿化成功,则到哪一年年底可使该库区的坡荒地全部绿化?(2)若每万亩绿化造林所植树苗的木材量平均为万立方米,每年树木木材量的自然生长率为,0.120%那么当整个库区以上坡荒地全部绿化完成的那一年年底,一共有木材多少万立方米?(结果保留25︒1位小数,,)91.2 5.16≈81.2 4.30≈【答案】(1)年2023(2)万立方米543.6【分析】(1)根据题意,由等差数列的前项和公式,代入计算,即可得到结果;n (2)根据题意,由错位相减法即可得到结果.【详解】(1)设各年造林的亩数依次构成数列,{}n a 由题意知数列是等差数列,且首项,公差.{}n a 1120a =60d =设第n 年后可以使绿化任务完成,则有,解得.(1)12060 2 6402n n n S n -=+⨯≥8n ≥所以到年年底可使该库区的坡荒地全部绿化.2023(2)因为年造林数量为,20238120760540a =+⨯=设到年年底木材总量为万立方米,2023S由题意得876120 1.2180 1.2240 1.2540 1.0(.)21S =⨯+⨯+⨯++⨯⨯ .8762 1.23 1.2)9 1.2(=⨯⨯+⨯++⨯ 令①,872 1.23 1.29 1.2S'=⨯+⨯++⨯ 两边同乘以,得②.1.29821.22 1.23 1.29 1.2S'=⨯+⨯++⨯ ②①,得-98720.22 1.2 1.2 1.2(1).29 1.2S'=⨯++++-⨯ 2791.2(1 1.2)2 1.210.81 1.2-=--⨯⨯+.97 1.218=⨯-所以,所以.957 1.218(90).6S'=⨯⨯-≈690.6543.6S =⨯=故到年年底共有木材万立方米.2023543.622.已知点与点的距离比它的直线的距离小2.M ()4,0F :60l x +=(1)求点的轨迹方程;M (2)是点轨迹上互相垂直的两条弦,问:直线是否经过轴上一定点,若经过,求出,OA OB M AB x 该点坐标;若不经过,说明理由.【答案】(1)216y x=(2)直线过定点.()16,0【分析】(1)利用抛物线的定义进行求解;(2)法一:设出直线方程,联立直线和抛物线的方程,得到关于的一元二次方程,利用根与系y 数的关系和平面向量的数量积为0进行求解;法二:设出定点坐标为,根据、、三()0,0P x A B P 点共线,结合向量共线定理,即可求解.【详解】(1)(1)由题意知动点到的距离比它到直线的距离小2,M ()4,0:6l x =-即动点到的距离与它到直线的距离相等,M ()4,04x =-由抛物线定义可知动点的轨迹为以为焦点的抛物线,M ()4,0则点的轨迹方程为;M 216y x =(2)(2)法一:由题意知直线的斜率显然不能为0,AB设直线的方程为,,AB ()0x ty m m =+≠()()1122,,,A x y B x y 联立方程,消去,可得,即,216y x x ty m ⎧=⎨=+⎩x 216160y ty m --=0∆>240t m +>,,121216,16y y t y y m +==-22212121616y y x x m =⨯=由题意知,即,则,OA OB ⊥OA OB ⊥ 12120x x y y +=故, ,,直线的方程为,2160m m -=0m ≠16m =AB 16x ty =+故直线过定点,且定点坐标为;AB ()16,0法二:假设存在定点,设定点,()()()()0112212,0,,,,0P x A x y B x y y y ≠, , 故,OA OB ⊥OA OB ⊥ 12120x x y y +=在抛物线上,即代入上式,可得,A B 、221212,1616y y x x ==()212120256y y y y +=故,三点共线, ,,12256y y =-A B P 、、PA PB ∥2221121212120121216161616y y y y y x x y y y x y y y y --===-=--假设成立,直线经过轴的定点,坐标为.AB x ()16,0【点睛】本题考查了根据定义求抛物线轨迹,直线过定点问题,意在考查学生的计算能力,转化能力和综合应用能力,其中将直线垂直转化为向量垂直计算是解题的关键.。

2022-2023学年河南省信阳市信阳高级中学高二上学期期末考试数学试题(解析版)

2022-2023学年河南省信阳市信阳高级中学高二上学期期末考试数学试题(解析版)

2022-2023学年河南省信阳市信阳高级中学高二上学期期末考试数学试题一、单选题1.双曲线22132x y -=的渐近线方程是( )A .23y x =± B .32y x =±C .y =D .y = 【答案】D【分析】根据焦点在横轴上双曲线的渐近线方程直接求解即可.【详解】由题得双曲线的方程为22132x y -=,所以a b =,所以渐近线方程为b y x a =±=. 故选:D2.若平面α的法向量为μ,直线l 的方向向量为v ,直线l 与平面α的夹角为θ,则下列关系式成立的是( ) A .cos ||||v v μθμ⋅=B .||cos ||||v v μθμ⋅=C .sin |||vv μθμ⋅=∣D .||sin ||||v v μθμ⋅=【答案】D【分析】由线面角的向量求法判断 【详解】由题意得||sin ||||v v μθμ⋅=, 故选:D3.若抛物线C :22x py =的焦点坐标为()0,1,则抛物线C 的方程为( ) A .22x y =- B .22x y =C .24x y =-D .24x y =【答案】D【分析】由已知条件可得12p=,求出p ,从而可求出抛物线的方程. 【详解】因为抛物线C :22x py =的焦点坐标为()0,1,所以12p=,得2p =, 所以抛物线方程为24x y =, 故选:D4.函数()f x 的定义域为R ,导函数()f x '的图象如图所示,则函数()f x ( )A .无极大值点、有四个极小值点B .有三个极大值点、一个极小值点C .有两个极大值点、两个极小值点D .有四个极大值点、无极小值点 【答案】C【分析】设()f x '的图象与x 轴的4个交点的横坐标从左至右依次为1234,,,x x x x ,根据导函数的图象写出函数的单调区间,再根据极值点的定义即可得出答案.【详解】解:设()f x '的图象与x 轴的4个交点的横坐标从左至右依次为1234,,,x x x x , 当1x x <或23x x x <<或4x x >时,0fx,当12x x x <<或34x x x <<时,()0f x '<,所以函数()f x 在()1,x -∞,()23,x x 和()4,x +∞上递增, 在()12,x x 和()34,x x 上递减,所以函数()f x 的极小值点为24,x x ,极大值点为13,x x , 所以函数()f x 有两个极大值点、两个极小值点. 故选:C .5.已知点1,0A ,直线l :30x y -+=,则点A 到直线l 的距离为( )A .1B .2C D .【答案】D【分析】利用点到直线的距离公式计算即可.【详解】已知点(1,0)A ,直线:30l x y -+=,则点A 到直线l =故选:D .6.已知A ,B ,C ,D ,E 是空间中的五个点,其中点A ,B ,C 不共线,则“存在实数x ,y ,使得DE x AB y AC =+是“//DE 平面ABC ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B【分析】利用存在实数x ,y ,使得DE xAB y AC =+⇔//DE 平面ABC 或DE ⊂平面ABC ,结合充分必要条件的定义即可求解.【详解】若//DE 平面ABC ,则,,DE AB AC 共面,故存在实数x ,y ,使得DE x AB y AC =+,所以必要性成立;若存在实数x ,y ,使得DE x AB y AC =+,则,,DE AB AC 共面,则//DE 平面ABC 或DE ⊂平面ABC ,所以充分性不成立;所以 “存在实数x ,y ,使得DE x AB y AC =+是“//DE 平面ABC ”的必要不充分条件, 故选:B【点睛】关键点点睛:本题考查空间向量共面的问题,理清存在实数x ,y ,使得DE xAB y AC =+⇔//DE 平面ABC 或DE ⊂平面ABC 是解题的关键,属于基础题.7.已知双曲线22221x y a b -=(a >0,b >0)与直线y =2x 有交点,则双曲线离心率的取值范围为( )A .(1B .(1C .∞)D .,+∞)【答案】C【分析】根据渐近线的斜率的范围可求离心率的范围. 【详解】因为双曲线的一条渐近线方程为by x a=,由题意得2b a >,所以双曲线的离心率c e a ==故选:C.8.已知()f x 是定义在R 上的偶函数,当0x >时,()()0xf x f x '-<,且()20f -=,则不等式()0f x x>的解集是( ). A .()()2,00,2-⋃ B .()(),22,∞∞--⋃+ C .()()2,02,-+∞ D .()(),20,2-∞-【答案】D 【分析】记()()(),0f x g x x x=≠.判断出()g x 的奇偶性和单调性,即可解不等式. 【详解】记()()(),0f x g x x x=≠.因为()f x 是定义在R 上的偶函数,所以()()f x f x -= 因为()()()()f x f x g x g x x x --==-=--,所以()g x 为奇函数,所以()()()()222222f fg g --==-=--. 因为()20f -=,所以()()220g g -==. 当0x >时,()()()20xf x f x g x x'-'=<,所以()g x 在()0,∞+上单减.因为()g x 为奇函数,图像关于原点对称,所以()g x 在(),0∞-上单减. 不等式()0f x x>即为()0g x >.当0x >时, ()g x 在()0,∞+上单减,且()20g =,所以()0g x >的解集为()0,2; 当0x <时, ()g x 在(),0∞-上单减,且()20g -=,所以()0g x >的解集为(),2-∞-. 综上所述:()0f x x>的解集为()(),20,2-∞-.故选:D二、多选题9.下列导数运算正确的有( )A .211x x '⎛⎫= ⎪⎝⎭B .()(1)x x xe x e '=+C .()222x x e e '=D .()2ln 2x x'=【答案】BC【分析】根据导数的运算法则逐项运算排除可得答案.【详解】对于A ,()12211x x x x --'⎛⎫'==-=- ⎪⎝⎭,故错误;对于B , ()()(1)x x x x xe x e x e x e '''==++,故正确; 对于C , ()()22222x x x e x e e ''==,故正确; 对于D , ()()''11ln 222x x x x==,故错误. 故选:BC.10.设等差数列{}n a 的前n 项和为n S ,其公差1d >,且7916+=a a ,则( ). A .88a = B .15120S = C .11a < D .22a >【答案】ABC【分析】利用等差数列基本量代换,对四个选项一一验证.【详解】对于A :因为7916+=a a ,所以978216a a a +==,解得:88a =.故A 正确; 对于B :()1158151521581512022a a a S +⨯⨯===⨯=.故B 正确;对于C :因为88a =,所以178a d +=,所以187a d =-. 因为1d >,所以11a <.故C 正确;对于D :因为88a =,所以268a d +=,所以286a d =-. 因为1d >,所以22a <.故D 错误. 故选:ABC11.已知曲线1C :函数()nx m f x x m+=-的图像,曲线()()2222:12C x y r -+-=,若1C 的所有对称轴平分2C ,且1C 与2C 有公共点,则r 的值可以等于( ).ABCD .3【答案】BD【分析】先将()f x 整理成()nm mf x n x m+=+-可得()f x 的所有对称轴都经过(),m n ,故可求得1,2m n ==,再计算()f x 上的点到圆心()1,2M 的最短距离即可求得答案【详解】因为()nx m nm mf x n x m x m++==+--,且()f x 是由nm m y x +=向右平移m 个单位长度,向上平移n 个单位长度得到,nm my x+=的所有对称轴都经过()0,0, 所以()nx m nm mf x n x m x m++==+--的所有对称轴都经过(),m n , 因为1C 的所有对称轴平分2C ,所以1C 的所有对称轴经过2C 的圆心()1,2M , 所以1,2m n ==,所以()321f x x =+-, 设函数()f x 图象上的动点3,21P x x ⎛⎫+ ⎪-⎝⎭,则()()2233121611MP x x x x ⎛⎫⎛⎫=-+≥-= ⎪ ⎪--⎝⎭⎝⎭,当且仅当311x x -=-时,取等号, 所以()f x 上的点到圆心()1,2M 的最短距离为6, 若1C 与2C 有公共点,则6r ≥ 故选:BD12.我国知名品牌小米公司今年启用了具备“超椭圆”数学之美的全新Logo .新Logo 将原本方正的边框换成了圆角边框(如图),这种由方到圆的弧度变化,为小米融入了东方哲学的思想,赋予了品牌生命的律动感.设计师的灵感来源于数学中的曲线:1nnC x y +=,则下列有关曲线C 的说法中正.确.的是( ).A .对任意的n ∈R ,曲线C 总关于原点成中心对称B .当0n >时,曲线C 上总过四个整点(横、纵坐标都为整数的点) C .当01n <<时,曲线C 围成的图形面积可以为2D .当1n =-时,曲线C 上的点到原点最近距离为22【答案】ABD【分析】对于A :利用代数法验证;对于B :直接求出曲线C 过四个整点()()()()1,0,1,0,0,1,0,1--,即可判断;对于C :先判断出||||1x y +=与坐标轴围成的面积为2,再判断出1n nx y +=在||||1x y +=内部,即可判断;对于D :表示出距离222221x d x y x x ⎛⎫=+=+ ⎪-⎝⎭.令()11x t t -=>-,利用基本不等式求出最小值.【详解】对于A :在曲线:1nnC x y +=中,以x -替换x ,以y -替换y ,方程不变,则曲线C 关于原点成中心对称.故A 正确;对于B,当0n >时,令0x =,得1y =±;令0y =,得1x =±.曲线C 总过四个整点()()()()1,0,1,0,0,1,0,1--.故B 正确;对于C :当01n <<时,由1n nx y +=,得:1,1x y ≤≤,且等号不同时成立. ∴||||||||1n n x y x y +>+=.又||||1x y +=与坐标轴围成的面积为2222⨯=,且1n nx y +=在||||1x y +=内部,则曲线C 围成图形的面积小于2.故C 错误.对于D :当1n =-时,曲线C 的方程为:11||||1x y --+=.不妨令,x y 均大于0,曲线化为111x y +=,即1x y x =-,则222221x d x y x x ⎛⎫=+=+ ⎪-⎝⎭. 令()11x t t -=>-,则2222222112(1)2228t t d t t t t t t ++=++=++++≥=,当且仅当221t t =且22t t=,即1t =时等号成立.结合对称性可知,曲线C上点到原点距离的最小值为故D 正确.故选:ABD.三、填空题13.已知{}n a 是公比为2的等比数列,则1234a a a a ++的值为______. 【答案】14##0.25【分析】利用等比数列的通项公式计算即可. 【详解】{}n a 是公比为2的等比数列,121113411123148124a a a a a a a a a a ++∴===++ 故答案为:14.14.设点P是曲线32y x =+上的任意一点,P 点处切线倾斜角为α,则角α的取值范围是______.【答案】20,,23πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭【分析】求出23'=y xtan α≥α的范围可得答案. 【详解】∵23y x '=≥∴tan α≥ 又∵0απ≤≤, ∴02πα≤<或23a ππ≤< 则角α的取值范围是20,,23πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭.故答案为:20,,23πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭.15.已知数列{}n a 满足()21n a n m n =--,若满足123456a a a a a a <<<<<且对任意[)9,n ∈+∞,都有1n n a a +>,则实数m 的取值范围是______.【答案】1016,1117⎛⎫⎪⎝⎭【分析】由123456a a a a a a <<<<<解出1111m -<,由对任意[)9,n ∈+∞,都有1n n a a +>,解出1117m ->,即可求出实数m 的取值范围. 【详解】因为()21n a n m n =--,若满足123456a a a a a a <<<<<,所以()()()()()()222222111212313414515616m m m m m m --⨯<--⨯<--⨯<--⨯<--⨯<--⨯,解得:1111m -<. 因为对任意[)9,n ∈+∞,都有1n n a a +>,由二次函数的性质可得:()()101910212m m ⎧--<⎪+⎨-<⎪--⎩,解得:1117m ->. 所以1111711m <-<,解得:10161117m <<. 所以实数m 的取值范围为1016,1117⎛⎫⎪⎝⎭.故答案为:1016,1117⎛⎫⎪⎝⎭16.若方程2l e n 1x x ax x -=--存在唯一实根,则实数a 的取值范围是_____.【答案】(]1,01e ⎧⎫-∞+⎨⎬⎩⎭【分析】方程2l en 1xx ax x -=--存在唯一实根,则2ln 1e x x a x x-++=存在唯一实根,则函数y a =与函数()()2ln 1ln 10e ,e x x f x x x x x x x x-+++==+>有唯一的交点,利用导数分析()f x 的单调性,并在同一坐标系中做出y a =与函数()e ln 1x f x xx x +=+的图象,即可求解【详解】方程2l e n 1x x ax x -=--存在唯一实根, 则2ln 1e x x a x x-++=存在唯一实根,令()()2ln 10e ,x x x x xf x -++=>,则()()2221e n e e 2l 1x x x x x x x x x x f x ---⎛⎫-+⋅- +⎪⎭+⎝'= ()222231l e l e n e n x x x x x x x x xx x ----+==-⋅-- 令()()()2211ln e e ln xxx x h x x x x x --⋅=-++⋅=,注意到()10h =,则()10f '=,且当()0,1x ∈时,210,ln 0,0,e 0x x x x >-<><, 所以()()22110,n e el 0x xx x x x x ⋅⋅--<+<,即()0h x <; 当()1,x ∈+∞时,210,ln 0,0,e 0x x x x >->>>, 所以()()22110,n e el 0x xx x x x x ⋅⋅-->+>,即()0h x >; 所以当()0,1x ∈时,0fx,()f x 单调递增;当()1,x ∈+∞时,()0f x '<,()f x 单调递减; 又()()2ln 1ln 10e ,e x x f x x x x x x x x-+++==+>, 当()1,x ∈+∞时,()0f x >恒成立; 当0x →时,()f x →-∞;所以()()2ln 1ln 10e ,e x x f x x x x x x x x-+++==+>的大致图象为:由2ln 1e xx a x x-++=存在唯一实根,则函数y a =与函数()()2ln 1ln 10e ,e x x f x x x x x x x x-+++==+>有唯一的交点,由图象可知0a ≤或11ea =+时满足条件,所以方程2l e n 1x x ax x -=--存在唯一实根时, 实数a 的取值范围是(]1,01e a ⎧⎫∈-∞⋃+⎨⎬⎩⎭故答案为:(]1,01e ⎧⎫-∞⋃+⎨⎬⎩⎭四、解答题17.已知函数321()213f x x x =-++.(1)求()f x 的单调区间;(2)求函数()f x 在区间[]1,2-上的最大值与最小值.【答案】(1)单调递增区间为[]0,4;单调减区间为(),0∞-和()4,+∞;(2)()min 1f x =;()max 193f x =. 【解析】(1)求出导函数,令0fx,求出单调递增区间;令()0f x '<,求出单调递减区间.(2)求出函数的单调区间,利用函数的单调性即可求解. 【详解】(1)函数()f x 的定义域是R , 2()4f x x x '=-+,令()0f x '≥,解得04x ≤≤ 令()0f x '<,解得>4x 或0x <, 所以()f x 的单调递增区间为[]0,4, 单调减区间为(),0∞-和()4,+∞; (2)由()()1f x 在[)1,0-单调递减,在[]0,2单调递增,所以()()min 01f x f ==,而()81928133f =-++=,()11012133f -=++=, 故最大值是()9231f =. 18.已知抛物线2:2(0)C y px p =>的准线与x 轴交于点()1,0M -.(1)求抛物线C 的方程;(2)若过点M 的直线l 与抛物线C 相切,求直线l 的方程.【答案】(1)24y x =;(2)10x y -+=或10x y ++=【解析】(1)利用准线方程2p x =-求解 (2)设出直线方程,与抛物线方程联立,利用0∆=求解.【详解】(1)2:2(0)C y px p =>的准线2p x =-过()1,0M - 故12p -=-,则2p = 抛物线方程为24y x =(2)设切线方程为1x my =-与抛物线方程联立有2440y my -+=()24160m ∆=-=故1m =±故直线l 的方程为:10x y -+=或10x y ++=【点睛】求抛物线的切线方程的方法:方法一:将抛物线转化为二次函数,然后利用导数求解切线方程,这在开口朝上的抛物线中经常用到。

河南省高二上学期期末考试数学试题(解析版)

河南省高二上学期期末考试数学试题(解析版)

一、单选题1.直线的倾斜角为( ) 50x +=A . B .C .D .30︒60︒120︒150︒【答案】D【分析】求出直线的斜率,然后根据斜率的定义即可求得倾斜角.【详解】直线可化为 50x +=y x =则斜率,满足, tan k α==α0180α≤<︒所以倾斜角为. 150︒故选:D2.下列有关数列的说法正确的是( )A .数列1,0,,与数列,,0,1是相同的数列 1-2-2-1-B .如果一个数列不是递增数列,那么它一定是递减数列C .数列0,2,4,6,8,…的一个通项公式为 2n a n =D ,…的一个通项公式为n a =【答案】D【分析】根据数列的定义和表示方法,逐一判断,即可得到本题答案.【详解】对于选项A ,数列1,0,-1,-2与数列-2,-1,0,1中的数字排列顺序不同,不是同一个数列,故A 错误;对于选项B ,常数数列既不是递增数列,也不是递减数列,故B 错误; 对于选项C ,当时,,故C 错误;1n =120a =≠对于选项D ,因为123a a a =====4a ==…,所以数列的一个通项公式为D 正确. n a =故选:D3.已知直线l 过点且方向向量为,则l 在x 轴上的截距为( ) ()3,4-()1,2-A . B .1C .D .51-5-【答案】A【分析】先根据方向向量求得直线的斜率,然后利用点斜式可求得直线方程,再令,即2k =-0y =可得到本题答案.【详解】因为直线的方向向量为,所以直线斜率, l ()1,2-2k =-又直线过点,所以直线方程为,即, l ()3,4-42(3)y x -=-+220x y ++=令,得,所以在x 轴上的截距为-1. 0y ==1x -l 故选:A4.已知,“直线与平行”是“”的( )m ∈R 1:0l mx y +=22:910l x my m +--=3m =±A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C【分析】根据平行的成比例运算即可求解.【详解】直线与平行1:0l mx y +=22:910l x my m +--=则, 210=91m m m ≠--所以, 29m =解得,3m =±经检验,均符合题意, 3m =±故选:C.5.已知等差数列中,,是函数的两个零点,则{}n a 5a 14a 232()=--x x x f 381116a a a a +++=( ) A .3 B .6C .8D .9【答案】B【分析】由等差数列的性质进行计算即可.【详解】由已知,函数的两个零点,即方程的两根,, 232()=--x x x f 2320x x --=1x 2x ∴, 51412331a a x x -+=+=-=∵数列为等差数列, {}n a ∴, 3168115143a a a a a a +=+=+=∴. 3811166a a a a +++=故选:B.6.已知圆关于y 轴对称的圆与直线相切,则m 的值为( )221:230C x y x ++-=2C x m =A .B .3C .或3D .1或1-1-3-【答案】C【分析】先求出关于y 轴对称的圆的标准方程,然后利用圆心到切线的距离等于半径,列出方2C 程求解,即可得到本题答案.【详解】由圆,可得标准方程,圆心为,半径, 221:230C x y x ++-=22(1)4x y ++=(1,0)-2r =故关于轴对称的圆的圆心为,半径,则其标准方程为, y 2C (1,0)2r =22(1)4x y -+=又因为圆与直线相切,所以圆心到切线的距离等于半径, 2C x m =即,解得或. 12m -=1m =-3m =故选:C7.已知数列满足,且,则数列的前项和为( ) {}n a 13n n a a +=11a =-{}2n a n +5A . B . C . D .151-91-91151【答案】B【分析】由等比数列的定义判断出数列为等比数列,再使用分组求和法求解即可. {}n a 【详解】∵数列满足,且, {}n a 13n n a a +=11a =-∴数列是首项为,公比为的等比数列,{}n a 1-3∴,11133n n n a --=-⨯=-∴数列的前项和为,{}2n a n +5()()()()()01234532343638310S =-++-++-++-++-+()()0123433333246810=-----+++++()()51132105132-⨯-+⨯=+-12130=-+.91=-故选:B.8.已知椭圆过点且与双曲线有相同焦点,则椭圆的离心率22221(0)x y a b a b +=>>()3,2-22132x y -=为( )A B C D 【答案】C【分析】由题可得,,联立方程可求得,然后代入公式,即225a b -=22941a b +=22,a b e =可求得本题答案.【详解】因为椭圆与双曲线有相同焦点,所以椭圆两个焦点分别为22132x y -=12(F F ,则①, 2225c a b =-=又椭圆过点,所以②, ()3,2P -22941a b +=结合①,②得,,2215,10a b ==所以, e ==故选:C9.已知圆与圆的公共弦长为2,则m 的值为221:2220C x y x y +-+-=222:20(0)C x y mx m +-=>( )A B .C D .332【答案】A【分析】根据圆的圆心和半径公式以及点到直线的距离公式,以及公共线弦方程的求法即可求解. 【详解】联立和, 222220x y x y +-+-=2220x y mx +-=得,由题得两圆公共弦长,(1)10m x y -+-=2l =圆的圆心为,半径, 221:2220C x y x y +-+-=(1,1)-r 2=圆心到直线(1,1)-(1)10m x y -+-=,===平方后整理得,, 2230m -=所以 m m =故选:A.10.“斐波那契数列”又称黄金分割数列,指的是这样一个数列:1,1,2,3,5,8,13,…,即斐波那契数列满足,,设其前n 项和为,若,则{}n a 121a a ==21++=+n n n a a a n S 2021S m =2023a =( ) A . B .mC .D .1m -1m +2m 【答案】C【分析】由斐波那契数列满足,归纳可得,令{}n a 12121,1,n n n a a a a a --===+21m m a S +=+2021m =,即可求得本题答案.【详解】因为斐波那契数列满足, {}n a 12121,1,n n n a a a a a --===+所以,321a a a =+, 432211a a a a a =+=++, 5433211a a a a a a =+=+++……, 21122111m m m m m m m a a a a a a a a S ++--=+=++++++=+ 则. 2023202111a S m =+=+故选:C11.如图,在直四棱柱中,底面ABCD 是边长为2的正方形,,M ,N 分1111ABCD A B C D -13D D =别是,AB 的中点,设点P 是线段DN 上的动点,则MP 的最小值为( )11B CA B C D 【答案】D【分析】建立空间直角坐标系,设出点的坐标,根据两点距离公式表示,利用二次函数求值P MP 域,即可得到本题答案.【详解】以点为坐标原点,分别以所在直线为轴,轴,轴,建立如图所示的空D 1,,DA DC DD x y z 间直角坐标系.因为底面ABCD 是边长为2的正方形,,所以, 13D D =(1,2,3)M ∵点在平面上,∴设点的坐标为,P xOy P ()[],,0,0,1x y y ∈∵在上运动,∴,∴,∴点的坐标为, P DN 2AD x y AN==2x y =P (2,,0)y y==∵,∴当时, 取得最小值. []0,1y ∈45y =MP 故选:D12.已知双曲线C :l 与C 相交于A ,B 两2221(0)y x b b-=>点,若线段的中点为,则直线l 的斜率为( ) AB ()1,2NA .B .1CD .21-【答案】B【分析】先利用题目条件求出双曲线的标准方程,然后利用点差法即可求出直线的斜率.l 【详解】因为双曲线的标准方程为,2221(0)y x b b-=>所以它的一个焦点为,一条渐近线方程为, (,0)c 0bx y -=所以焦点到渐近线的距离,化简得,解得,d =2222(1)b c b =+22b =所以双曲线的标准方程为,2212y x -=设,所以①,②, 1122(,),(,)A x y B x y 221112y x -=222212y x -=①-②得,,222212121()()02x x y y ---=化简得③,121212121()()()()02x x x x y y y y +--+-=因为线段的中点为,所以, AB ()1,2N 12122,4x x y y +=+=代入③,整理得, 1212x x y y -=-显然,所以直线的斜率. 1212,x x y y ≠≠l 12121y y k x x -==-故选:B二、填空题13.已知A (1,-2,11)、B (4,2,3)、C (x ,y ,15)三点共线,则xy=___________. 【答案】2.【详解】试题分析:由三点共线得向量与共线,即,,AB AC ABk AC = (3,4,8)(1,2,4)k x y -=-+,解得,,∴. 124348x y -+==-12x =-4y =-2xy =【解析】空间三点共线.14.已知抛物线的焦点为F ,直线与抛物线交于点M ,且,则22(0)x py p =>2x =2MF =p =_______. 【答案】2【分析】先求点的纵坐标,然后根据抛物线的定义,列出方程,即可求得的值.M p 【详解】把代入抛物线标准方程,得,2x =22(0)x py p =>2(2,)M p 根据抛物线的定义有,,化简得,,解得. 222p MF MH p==+=244p p +=2p =故答案为:215.已知点,点为圆上的任意一点,点在直线上,其中为坐标原(1,1)--P M 22:1C x y +=N OP O点,若恒成立,则点的坐标为______.|||MP MN =N【答案】11,22⎛⎫-- ⎪⎝⎭【分析】设和的坐标,由,列等式,利用点在圆上,点在直线上,NM |||MP MN =M N OP 化简得恒成立的条件,求得点的坐标.N 【详解】易知直线的方程为,由题意可设,OP 0x y -=00(,)N x x 设,则可得,由,可得(,)M x y ''221x y ''+=||||MP MN 22222200||(1)(1)||()()MP x y MN x x y x ''+++==''-+-, 2002()322()12x y x x y x ''++=''-+++则,化简得,2002()322()12x y x x y x ''''⎡⎤++=-+++⎣⎦200(24)()41x x y x ''++=-即,[]00(12)2()(12)0x x y x ''+++-=若恒成立,则,解得,故.|||MP MN =0120x +=012x =-11,22N ⎛⎫-- ⎪⎝⎭故答案为:11,22⎛⎫-- ⎪⎝⎭16.已知双曲线C :的左、右焦点分别为,,其中与抛物线的22221(0,0)x y a b a b-=>>1F 2F 2F 28y x =焦点重合,点P 在双曲线C 的右支上,若,且,则的面积为122PF PF -=1260F PF ∠=︒12F PF △_______. 【答案】【分析】结合题目条件与余弦定理,先算出的值,然后代入三角形的面积公式12PF PF ⋅,即可得到本题答案. 1212121sin 2F PF S PF PF F PF =⋅∠A 【详解】由双曲线右焦点与抛物线的焦点重合,可得,所以, 2F 28y x =2(2,0)F 124F F =设,则,1122,PF r PF r ==122r r -=因为,所以, 22212121212||||2cos F F PF PF PF PF F PF =+-⋅⋅∠22121212162r r r r +-⨯=则,解得,21212()16r r r r -+=1212r r =所以,. 12121sin 602F PF S r r =︒=A故答案为:三、解答题17.已知数列满足,且点在直线上.{}n a 11a =111,n n a a +⎛⎫⎪⎝⎭2y x =+(1)求数列的通项公式;{}n a (2)设,求数列的前n 项和. 1n n n b a a +={}n b n T 【答案】(1) 121n a n =-(2) 21nn + 【分析】(1)先求出数列的通项公式,从而可得到数列的通项公式;1n a ⎧⎫⎨⎬⎩⎭{}n a (2)根据(1)中数列的通项公式,可写出数列的通项公式,再利用裂项相消的方法即可{}n a {}n b 求得前n 项和.n T 【详解】(1)由题意得,即, 1112n n a a +=+1112n n a a +-=所以数列是首项为,公差为2的等差数列,1n a ⎧⎫⎨⎬⎩⎭111a =故,即. 1112(1)21n n n a a =+-=-121n a n =-(2)由(1)知,11111(21)(21)22121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭所以1111111112323522121n T n n ⎛⎫⎛⎫⎛⎫=⨯-+⨯-++⨯- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭ 111111123352121n n ⎛⎫=⨯-+-++- ⎪-+⎝⎭. 111221n ⎛⎫=- ⎪+⎝⎭21n n =+18.已知的顶点坐标分别是,,. ABC A ()3,0A ()1,2B ()1,0C -(1)求外接圆的方程;ABC A (2)若直线l :与的外接圆相交于M ,N 两点,求. 3480x y +-=ABC A MCN ∠【答案】(1) 22(1)4x y -+=(2) 60MCN ∠=︒【分析】(1)设出圆的一般方程,代入点,求出方程组的解,即可得到本题答案; ,,A B C (2)先求出圆心到直线的距离,即可得到,然后求出,即可得到本题答MN 30PMN ∠=︒MPN ∠案.【详解】(1)设圆的一般方程为:,, 220x y Dx Ey F ++++=22(40)D E F +->代入点得,(3,0),(1,2),(1,0)A B C -,解得,9+30142010D F DEF D F +=⎧⎪++++=⎨⎪-+=⎩203D E F =-⎧⎪=⎨⎪=-⎩所以圆的一般方程为:, 22230x y x +--=标准方程为:.22(1)4x y -+=(2)圆心到直线的距离,(1,0)P :3480l x y +-=d 又因为,在等腰中,, 2PM =PMN A 30PMN ∠=︒所以圆心角,则.260120MPN ∠=⨯︒=︒60MCN ∠=︒19.如图所示,在四棱锥中,平面ABCD ,,,且P ABCD -PA ⊥AD BC ∥AB BC ⊥,.1AB AP BC ===2AD =(1)求证:平面;CD ⊥PAC (2)若E 为PC 的中点,求与平面所成角的正弦值.PD AED 【答案】(1)证明见解析【分析】(1)先证,,由此即可证得平面; AC CD ⊥PA CD ⊥CD ⊥PAC (2)建立空间直角坐标系,求出,平面的一个法向量为,然后利用公(0,2,1)PD =- AED ()1,0,1n =- 式,即可求得本题答案. sin cos ,n PD n PD n PDθ⋅==⋅ 【详解】(1)作,垂足为,易证,四边形为正方形.CF AD ⊥F ABCF 所以,又1CF AF DF ===CD ==AC ==因为,所以.222AC CD AD +=AC CD ⊥因为平面,平面,所以.PA ⊥ABCD CD ⊂ABCD PA CD ⊥又,平面,平面,所以平面.AC PA A ⋂=AC ⊂PAC PA ⊂PAC CD ⊥PAC(2)以点为坐标原点,以所在的直线分别为x 轴,y 轴,z 轴,建立如图所示的空间A ,,AB AD AP 直角坐标系,则,,,,. ()0,0,0A ()0,0,1P ()1,1,0C ()0,2,0D 111,,222E ⎛⎫ ⎪⎝⎭则,,. (0,2,0)AD = (0,2,1)PD =- 111(,,)222AE = 设平面的法向量为,AED (),,n x y z = 由,得, 00n AE n AD ⎧⋅=⎪⎨⋅=⎪⎩ 11102220x y z y ⎧++=⎪⎨⎪=⎩令,可得平面的一个法向量为.1z =AED ()1,0,1n =- 设与平面所成角为,PD AED θ则sin cos ,n PD n PD n PDθ⋅====⋅ 20.已知抛物线:()的焦点为,过上一点向抛物线的准线作垂线,垂足C 22y px =0p >F C P 为,是面积为.Q PQF △(1)求抛物线的方程;C (2)过点作直线交于,两点,记直线,的斜率分别为,,证明:()1,0M -l C A B FA FB 1k 2k .120k k +=【答案】(1)24y x =(2)证明见解析【分析】(1)由等边三角形的面积可以求出边的长,再求出中的长,即可求出QF Rt FQN A FN 的值,从而求出抛物线的标准方程;p (2)设过的直线方程,与抛物线方程联立,借助,坐标表示,化简证明即可.M A B 12k k +【详解】(1)如图所示,的面积 PQF △1sin 602PQF S PQ PF =︒A ∴, 4PF PQ QF ===设准线与轴交于点,则在中,, x N Rt FQN A 906030FQN ∠=︒-︒=︒∴, 122p FN QF ===∴抛物线的方程为.C 24y x =(2)由题意知,过点的直线l 的斜率存在且不为,()1,0M -0∴设直线的方程为:(),l l ()1y k x =+0k ≠直线的方程与抛物线的方程联立,得,消去y 整理得, l C 2(1)4y k x y x=+⎧⎨=⎩,()2222240k x k x k +-+=当,即时,设,, ()2242440k k ∆=-->()()1,00,1k ∈-⋃()11,A x y ()22,B x y 则,, 212224k x x k =-+-121=x x 由第(1)问知,,()1,0F ∴直线的斜率,直线的斜率, FA 1111y k x =-FB 2221y k x =-∴. ()()()()()()()()()12112121212121221121011111111x x k x x y y k x k x x k k x x x x x -++--+=+===------+∴原命题得证.21.已知数列满足,且.{}n a 12n n a a +=12314++=a a a (1)求的通项公式;{}n a (2)设,数列的前n 项和为,若对任意的,不等式2n n b n a =⋅{}n b n T n *∈N ()2224844n n T n n λ++-≥-恒成立,求实数λ的取值范围.【答案】(1)2n n a =(2) 3,128⎡⎫+∞⎪⎢⎣⎭【分析】(1)由,可得数列为等比数列,公比,代入到,算出12n n a a +={}n a 2q =12314++=a a a ,即可得到本题答案;1a (2)根据错位相减的方法求得,然后将不等式,逐步等价转化为n T ()2224844n n T n n λ++-≥-,再利用单调性求出的最大值,即可得到本题答案. 2112n n λ-≥2112n nn c -=【详解】(1)因为,所以是公比为2的等比数列, 12n n a a +={}n a 所以,故,1231112414a a a a a a ++=++=12a =故.2n n a =(2),1222n n n b n n +=⋅=⋅则,23411222322n n T n +=⨯+⨯+⨯++⨯ 所以,()345121222321222n n n n n T ++⨯+⨯+⨯++-⨯+⨯= 两式相减得,,()()2234122221222222212412n n n n n n T n n n ++++--=++++-⋅=-⋅=-⋅-- 因此. 2(1)24n n T n +=-⋅+由,可得,所以, ()2224844n n T n n λ++-≥-222844n n n n λ+⋅≥-2112nn λ-≥该式对任意的恒成立,则. n *∈N max2112n n λ-⎛⎫≥ ⎪⎝⎭令,则, 2112n n n c -=()1112111211132222n n n n n n n n c c ++++----=-=当时,,即数列递增,当时,,即数列递减,6n ≤10n n c c +->{}n c 7n ≥10n n c c +-<{}n c所以当时,, 7n =()max 3128n c =所以实数λ的取值范围是. 3,128⎡⎫+∞⎪⎢⎣⎭22.已知椭圆M :的短轴长为. 22221(0)x y a b a b +=>>(1)求椭圆M 的方程;(2)若过点的两条直线分别与椭圆M 交于点A ,C 和B ,D ,且共线,求直线AB 的()1,1Q -,AB CD 斜率.【答案】(1)22193x y +=(2) 13【分析】(1)由短轴长可求出可求出,由此即可求得本题答案; 23b =29a =(2)设点,因为共线,可设()()()()11223344,,,,,,,A x y B x y C x y D x y ,AB CD ,AQ QC BQ QD λλ== ,可得,,代入椭圆方程,然后相减,即可得到本题答案. 13131(1)x x y y λλλλ+-⎧=⎪⎪⎨-+-⎪=⎪⎩24241(1)xx y y λλλλ+-⎧=⎪⎪⎨-+-⎪=⎪⎩【详解】(1)因为短轴长为,b =23b =因为离心率,所以,可得, e 2222213c b a a =-=2213b a =29a =所以椭圆M 的方程为. 22193x y +=(2)设.()()()()11223344,,,,,,,A x y B x y C x y D x y 设,则,即, AQ QC λ= 13131(1)1(1)x x y y λλ-=-⎧⎨--=+⎩13131(1)x x y y λλλλ+-⎧=⎪⎪⎨-+-⎪=⎪⎩代入椭圆方程,得, ()()22112211193x y λλλλ+-++⎡⎤⎡⎤⎣⎦⎣⎦+=即① ()()221141211993x y λλλ+⎛⎫-+-=- ⎪⎝⎭同理可得② ()()222241211993x y λλλ+⎛⎫-+-=- ⎪⎝⎭由②-①,得, 11229393x y x y -=-所以,()12123y y x x -=-所以直线AB 的斜率. 121213y y k x x -==-【点睛】思路点睛:把共线这个条件,转化为,是解决此题的关键. ,AB CD ,AQ QC BQ QD λλ==。

2023-2024学年北京市房山区高二上学期期末考试数学试卷+答案解析

2023-2024学年北京市房山区高二上学期期末考试数学试卷+答案解析

2023-2024学年北京市房山区高二上学期期末考试数学试卷一、单选题:本题共10小题,每小题5分,共50分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.在复平面内,复数z对应的点的坐标是,则z的共轭复数()A. B. C. D.2.在三棱柱中,D为棱的中点.设,用基底表示向量,则()A. B. C. D.3.两条直线与之间的距离是()A.5B.1C.D.4.设直线l的方向向量为,两个不同的平面的法向量分别为,则下列说法中错误的是()A.若,则B.若,则C.若,则D.若,则5.如图,四棱锥中,底面ABCD是矩形,,平面ABCD,下列叙述中错误的是()A.平面PCDB.C. D.平面平面ABCD6.已知M为抛物线上一点,M到C的焦点F的距离为6,到x轴的距离为4,则()A.6B.4C.2D.17.下列双曲线中以为渐近线的是()A. B. C.D.8.已知点,若直线上存在点P ,使得,则实数k 的取值范围是()A. B.C.D.9.已知双曲线Q 与椭圆有公共焦点,且左、右焦点分别为,,这两条曲线在第一象限的交点为P ,是以为底边的等腰三角形,则双曲线Q 的标准方程为()A.B.C.D.10.如图,在棱长为2的正方体中,P 为线段的中点,Q 为线段上的动点,则下列结论正确的是()A.存在点Q ,使得B.存在点Q ,使得平面C.三棱锥的体积是定值D.存在点Q ,使得PQ 与AD 所成的角为二、填空题:本题共6小题,每小题5分,共30分。

11.若直线与直线垂直,则a 的值为__________.12.复数的实部为__________.13.已知圆则圆的圆心坐标为__________;若圆与圆内切,则__________.14.如图,在正方体中,直线与直线所成角的大小为__________;平面ABCD 与平面夹角的余弦值为__________.15.已知直线,则与的交点坐标为__________;若直线不能围成三角形,写出一个符合要求的实数a的值__________.16.已知曲线,给出下列四个命题:①曲线关于x轴、y轴和原点对称;②当时,曲线共有四个交点;②当时,③当时,曲线围成的区域内含边界两点之间的距离的最大值是3;④当时,曲线围成的区域面积大于曲线围成的区域面积.其中所有真命题的序号是__________.三、解答题:本题共5小题,共60分。

2022-2023学年山东省郓城第一中学高二上学期期末考试数学试题(含解析)

2022-2023学年山东省郓城第一中学高二上学期期末考试数学试题(含解析)

郓城第一中学2022-2023学年高二上学期期末考试数学试题考试时间120分钟,满分150分一、选择题(每题5分,共40分)1、设等差数列{}n a 的前n 项和为n S ,若2S ,3S ,5S 成等差数列,且110a =,则{}n a 的公差d =( ) A.2B.1C.-1D.-22、在空间直角坐标系中,已知(1,2,3)A ,()2,1,6B --,(3,2,1)C ,(4,3,0)D ,则直线AB 与CD 的位置关系是( ) A.垂直B.平行C.异面D.相交但不垂直3、已知直线()1:220l ax a y +++=与2:10l x ay ++=平行,则实数a 的值为( ) A.1-或2B.0或2C.2D.1-4、设AB 是椭圆22221x y a b +=(0a b >>)的长轴,若把AB 一百等分,过每个分点作AB的垂线,交椭圆的上半部分于1P ,2P ,…,99P ,1F 为椭圆的左焦点,则111121991F A F P F P F P F B +++++的值是( ) A.98aB.99aC.100aD.101a5、若异面直线1l ,2l 的方向向量分别是()0,2,1=--a ,()2,0,4=b ,则异面直线1l 与2l 所成角的余弦值等于()A.25-B.25C.6、在正数等比数列{}n a 中,若2a =418=,则该数列的前10项和为( )A.2-1112-7、已知数列{}n a 满足2123...=2n n a a a a ⋅⋅⋅⋅*()n ∈N ,且对任意*n ∈N 都有12111...n t a a a +++<,则t 的取值范围为( ) A.1,3⎛⎫+∞ ⎪⎝⎭B.1,3⎡⎫+∞⎪⎢⎣⎭C.2,3⎛⎫+∞ ⎪⎝⎭D.2,3⎡⎫+∞⎪⎢⎣⎭8、设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=︒,则C 的离心率为()B.13C.12二、多项选择题(每题5分,共20分,部分选对得2分,有选错的不得分)9、已知直线2:0l ax by r +-=与圆222:C x y r +=,点,()A a b ,则下列说法正确的是() A.若点A 在圆C 上,则直线l 与圆C 相切 B.若点A 在圆C 内,则直线l 与圆C 相离 C.若点A 在圆C 外,则直线l 与圆C 相离D.若点A 在直线l 上,则直线l 与圆C 相切10、己知点P 是平行四边形ABCD 所在的平面外一点,如果(2,1,4)AB =--,(4,2,0)AD =,(1,2,1)AP =--,则下列结论正确的是( )A.AP AB ⊥B.AP AD ⊥C.AP 是平面ABCD 的一个法向量D.AP BD ∥11、抛物线有如下光学性质:由焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射山.已知抛物线24y x =的焦点为F ,一束平行于x 轴的光线1l 从点(3,1)M 射入,经过抛物线上的点()11,P x y 反射后,再经抛物线上另一点()22,Q x y 反射后,沿直线2l 射出,则下列结论中正确的是() A.121x x = B.43PQ k =-C.25||4PQ =D.1l 与2l 之间的距离为412、素数(大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做素数,否则称为合数)在密码学、生物学、金融学等方面应用十分广泛。

北京市海淀区2023-2024学年高二上学期期末练习数学试卷含答案

北京市海淀区2023-2024学年高二上学期期末练习数学试卷含答案

海淀区高二年级练习数学(答案在最后)2024.01考生须知1.本试卷共7页,共3道大题,19道小题.满分100分.考试时间90分钟.2.在试卷上准确填写学校名称、班级名称、姓名.3.答案一律填涂或书写在试卷上,用黑色字迹签字笔作答.4.考试结束,请将本试卷交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.椭圆C :2222x y +=的焦点坐标为()A.(1,0)-,(1,0) B.(0,1)-,(0,1)C.(),)D.(0,,(【答案】B 【解析】【分析】先化为标准方程2212y x +=,求得222,1,1a b c ====,判断焦点位置,写焦点坐标.【详解】因为椭圆C :2222x y +=,所以标准方程为2212y x +=,解得222,1,1a b c ===,因为焦点在y 轴上,所以焦点坐标为(0,1)-,(0,1).故选:B【点睛】本题主要考查椭圆的几何性质,还考查了理解辨析的能力,属于基础题.2.抛物线2y x =的准线方程是()A.12x =-B.14x =-C.12y =-D.14y =-【答案】B 【解析】【分析】由抛物线的标准方程及性质,直接求解.【详解】由抛物线方程2y x =可知1212p p ==,,故准线方程为:124p x =-=-.故选:B.3.直线310x ++=的倾斜角是()A.30°B.60°C.120°D.150°【答案】C 【解析】【分析】先求解出直线的斜率,然后根据倾斜角与斜率的关系求解出倾斜角的大小.【详解】因为直线方程为310x +=,所以斜率k ==设倾斜角为θ,所以tan θ=,所以120θ=°,故选:C.4.已知点P 与(0,2),(1,0)A B -共线,则点P 的坐标可以为()A.(1,1)- B.(1,4)C.1,12⎛⎫-- ⎪⎝⎭D.(2,1)-【答案】B 【解析】【分析】三点共线转化为向量共线,利用共线条件逐个判断即可.【详解】设(,)P x y ,则(,2),(1,2)AP x y AB =-=--,由,,P A B 三点共线,则//AP AB,所以2(2)0x y -+-=,则220x y -+=.选项A ,21(1)250⨯--+=≠,不满足220x y -+=,故A 错误;选项B ,21420⨯-+=,满足220x y -+=,故B 正确;选项C ,12(1)2202⎛⎫⨯---+=≠ ⎪⎝⎭,不满足220x y -+=,故C 错误;选项D ,2(2)1230⨯--+=-≠,不满足220x y -+=,故D 错误.故选:B.5.已知P 为椭圆222:14x y C b+=上的动点.(1,0),(1,0)A B -,且||||4PA PB +=,则2b =()A.1B.2C.3D.4【答案】C 【解析】【分析】根据题意,结合椭圆的定义,得到点P 的轨迹表示以,A B 为焦点的椭圆,进而求得2b 的值.【详解】因为(1,0),(1,0)A B -,可得2AB =,则||||42A PA PB B +>==,由椭圆的定义,可得点P 的轨迹表示以,A B 为焦点的椭圆,其中24,21a c ==,可得2,1a c ==,所以2223b a c =-=,又因为点P 在椭圆222:14x y C b+=,所以23b =.故选:C.6.已知三棱柱111ABC A B C -中,侧面11ABB A ⊥底面ABC ,则“1CB BB ⊥”是“CB AB ⊥”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】由面面垂直的性质定理可证明“1CB BB ⊥”是“CB AB ⊥”的必要条件,由底面为正三角形的直三棱柱模型,可知“1CB BB ⊥”不是“CB AB ⊥”的充分条件.【详解】①已知侧面11ABB A ⊥底面ABC ,且侧面11ABB A 底面ABC AB =,又BC ⊂平面ABC ,若BC AB ⊥,则由面面垂直的性质定理可得BC ⊥平面11ABB A ,1BB ⊂平面11ABB A ,则1CB BB ⊥,所以则“1CB BB ⊥”是“CB AB ⊥”的必要条件;②若三棱柱111ABC A B C -是直三棱柱,底面ABC 是正三角形,则1BB ⊥底面ABC ,1BB ⊂平面11ABB A ,则满足条件侧面11ABB A ⊥底面ABC .又BC ⊂平面ABC ,则1CB BB ⊥,但BC 与AB 不垂直.所以“1CB BB ⊥”不是“CB AB ⊥”的充分条件.综上所述,“1CB BB ⊥”是“CB AB ⊥”的必要不充分条件.故选:B.7.在空间直角坐标系O xyz -中,点(2,3,1)-P 到x 轴的距离为()A.2B.3C.D.【答案】D 【解析】【分析】结合空间直角坐标系,数形结合利用勾股定理求解点(2,3,1)-P 到x 轴的距离.【详解】在空间直角坐标系O xyz -中,过P 作PH ⊥平面xOy ,垂足为H ,则PH x ⊥轴,在坐标平面xOy 内,过H 作1HP x ⊥轴,与x 轴交于1P ,由(2,3,1)-P ,则1(2,0,0)P -,(2,3,0)H -,由1PH HP H = ,PH ⊂平面1PHP ,1HP ⊂平面1PHP ,则x 轴⊥平面1PHP ,1PP ⊂平面1PHP ,则x 轴1PP ⊥,故1PP即点(2,3,1)-P 到x 轴的距离,则1PP ==故选:D.8.已知双曲线222:1y C x b-=的左右顶点分别为12,A A ,右焦点为F ,以1A F 为直径作圆,与双曲线C 的右支交于两点,P Q .若线段PF 的垂直平分线过2A ,则2b 的数值为()A.3B.4C.8D.9【答案】C 【解析】【分析】由双曲线方程得1a =,结合圆的性质及线段垂直平分线的性质得2A 是1A F 的中点,得到,a c 关系求c ,进而求出2b .【详解】由双曲线222:1y C x b-=,得1a =,12(1,0),(1,0),(,0)A A F c -,由题意,点P 在以1A F 为直径的圆上,则1A P PF ⊥,取PF 的中点M ,由线段PF 的垂直平分线过2A ,则2A M PF ⊥,则12//A P A M ,故2A 是1A F 的中点,122A A A F=且12222,1A A a A F c a c ===-=-,所以12c -=,解得3c =,故222918b c a =-=-=.故选:C.9.设动直线l 与()22:15C x y ++= 交于,A B 两点.若弦长AB 既存在最大值又存在最小值,则在下列所给的方程中,直线l 的方程可以是()A.2x y a +=B.2ax y a +=C.2ax y +=D.x ay a+=【答案】D 【解析】【分析】由动直线恒与圆相交得直线过圆内一定点,再验证弦长取最值即可.【详解】()22:15C x y ++= ,圆心(1,0)C -,半径5r =,选项A ,由直线2x y a +=斜率为12-,可得动直线为为平行直线系,圆心(1,0)C -到直线20x y a +-=的距离15a d --=当6a ≤-或4a ≥时,5d ≥A 错误;选项B ,由直线2ax y a +=可化为(2)0a x y -+=,则直线恒过(2,0),因为()2215+>,点(2,0)在圆外,故直线不一定与圆相交,故B 错误;选项C ,由直线2ax y +=恒过(0,2),点(0,2)在圆上,当12a =时,直线方程可化为240x y +-=,此时圆心(1,0)C -到直线240x y +-=的距离1455d r --===,圆与直线相切,不满足题意,故C 错误;选项D ,由直线方程x ay a +=可化为(1)0x a y +-=,则直线恒过(0,1)M ,且点M 在圆C 内,故直线恒与圆C 相交,当直线过圆心C 时,弦长最长,由(1,0)-在直线(1)0x a y +-=上,可得1a =-,AB 取到最大值;如图,取AB 中点T ,则CT AB ⊥,圆心到直线的距离d CT CM=≤AB ==,当d 取最大值CM 时,弦长最短,即当直线与CM 垂直时,弦长最短,由CM 的斜率为01110CM k -==--此时直线斜率为11k a==,即当1a =时,AB 取到最小值.故D 正确.故选:D.10.如图,已知菱形ABCD 的边长为2,且60,,A E F ∠=︒分别为棱,AB DC 中点.将BCF △和ADE V 分别沿,BF DE 折叠,若满足//AC 平面DEBF ,则线段AC 的取值范围为()A. B. C.2,⎡⎣ D.2,⎡⎣【答案】A 【解析】【分析】借助空间直观想象,折叠前在平面图形中求出AC 的长度,折叠过程中证明平面//EAB 平面FDC ,面面距离即为AC 的最小值,由此得到AC 的范围.【详解】折叠前,连接,AC BD .由题意,在菱形ABCD 中,2AB BC ==,18060120ABC ∠=-= ,则由余弦定理得,22212cos 44222122AC AB BC AB BC ABC ⎛⎫=+-⋅∠=+-⨯⨯⨯-= ⎪⎝⎭,所以,AC =,故在折叠过程中,AC ≤.折叠后,若//AC 平面DEBF ,则AC ⊄平面DEBF ,则AC <BD 项错误;折叠前,在菱形ABCD 中,2BA BD ==,60DAB ∠= ,则ABD △是正三角形,由,E F 分别为棱,AB DC 中点,则,,//DE AB BF DC AB DC ⊥⊥,所以//DE BF .折叠后,,,DE AE DE EB AE EB E ⊥⊥= ,又AE ⊂平面EAB ,且EB ⊂平面EAB ,则DE ⊥平面EAB ,同理BF ⊥平面FDC ,所以平面//EAB 平面FDC ,则平面EAB 与平面FDC 的距离即为22DE =⨯=,由点A ∈平面EAB ,点C ∈平面FDC ,则AC ≥.在折叠过程中,当60DFC AEB ∠=∠= 时,由,AE EB DF FC ==,则,EBA DFC 均为正三角形,可构成如图所示的正三棱柱DFC EBA -,满足//AC 平面DEBF ,此时AC DE ==.所以AC A 正确,C 项错误.故选:A.第二部分(非选择题共60分)二、填空题共5小题,每小题4分,共20分.11.双曲线22:14y C x -=的渐近线方程为_________.【答案】2y x =±【解析】【分析】利用双曲线的性质即可求得渐近线方程.【详解】由双曲线的相关知识可知:1a =,2b =所以焦点在x 轴双曲线的渐近线方程为:2by x x a=±=±故答案为:2y x=±12.如图,已知E ,F 分别为三棱锥D ABC -的棱,AB DC 的中点,则直线DE 与BF 的位置关系是__________(填“平行”,“异面”,“相交”).【答案】异面【解析】【分析】假设共面推出矛盾.【详解】假设直线,DE BF 共面,EB ⊂平面DEBF ,由A EB ∈,则AB ⊂平面DEBF ,同理,DC ⊂平面DEBF ,故,AB CD 共面,这与D ABC -是三棱锥矛盾,故假设错误,故直线,DE BF 异面.故答案为:异面.13.经过点(0,1)A 且与直线:210l x y +-=垂直的直线方程为_______________.【答案】210x y -+=【解析】【分析】求出所求直线的斜率,利用点斜式方程可得出所求直线的方程.【详解】直线:210l x y +-=的斜率为12-,则与直线:210l x y +-=垂直的直线的斜率为2,则直线方程为12(0)y x -=-,即210x y -+=.故答案为:210x y -+=14.作为我国古代称量粮食的量器,米斗有着吉祥的寓意,是丰饶富足的象征,带有浓郁的民间文化韵味.右图是一件清代老木米斗,可以近似看作正四棱台,测量得其内高为12cm ,两个底面内棱长分别为18cm 和9cm ,则估计该米斗的容积为__________3cm .【答案】2268【解析】【分析】先画出正四棱台的直观图,再利用台体的体积公式即可求解.【详解】根据题意,正四棱台的直观图如下:由题意可知,高112cm OO h ==,下底面正方形的变长9cm AB =,其面积()219981cmS =⨯=,上底面正方形的变长18cm AB =,其面积()221818324cm S =⨯=,由台体的体积公式可得,该正四面体的体积:()()()3121181324122268cm 33V S S h =++=⨯++⨯=.故该米斗的容积为32268cm .故答案为:2268.15.已知四边形ABCD 是椭圆22:12x M y +=的内接四边形,其对角线AC 和BD 交于原点O ,且斜率之积为13-.给出下列四个结论:①四边形ABCD 是平行四边形;②存在四边形ABCD 是菱形;③存在四边形ABCD 使得91AOD ∠=︒;④存在四边形ABCD 使得2264||||5AC BD +=.其中所有正确结论的序号为__________.【答案】①③④【解析】【分析】利用椭圆的对称性判断①;利用菱形的对角线互相垂直可判断②;利用正切函数的和差公式与性质判断③;利用斜率关系得到22||||OA OB +的表达式,然后利用基本不等式求22||||AC BD +的最大值,可判断④.【详解】因为四边形ABCD 是椭圆22:12x M y +=的内接四边形,AC 和BD 交于原点O ,由椭圆的对称性可知OA OC =且OB OD =,所以四边形ABCD 是平行四边形,故①正确;假设对角线AC 和BD 的斜率分别为12,k k ,若四边形ABCD 是菱形,则其对角线互相垂直,即121k k ×=-,而这与1213k k ⋅=-矛盾,所以不存在四边形ABCD 是菱形,故②错误;不妨设直线AC 的倾斜角为α,直线BD 的倾斜角为β,且αβ>,则12tan ,tan 0k k αβ==>,又1213k k ⋅=-,则1213k k =-,则()122122tan tan 31tan tan 1tan tan 123k k AOD k k k k αβαβαβ⎛⎫--∠=-===-- ⎪++⎝⎭3tan1202≤-⨯=︒,又0180AOD ︒<∠<︒,则90120AOD ︒<∠<︒,所以存在四边形ABCD 使得91AOD ∠=︒,故③正确;直线AC 的方程1y k x =,直线BD 的方程2y k x =,由12212y k xx y =⎧⎪⎨+=⎪⎩,得()22122x k x +=,即122122k x =+,可得1222212A C x k x =+=,同理可得2222212B D x k x =+=,则()()22122222221212212111||221212121k kOA OB k k k k +++=+=++++++,由1213k k ⋅=-,得222119k k =,令()22121,09k t k t t==>,则22211119||||222221199t t t ttOA OB +=+++++=+++()()()92221123321922192t t t t t t +-+-=++=+++++2552181321813116333355t t t t t ++++=+=+≤++=,当且仅当218t t =,即221211,33t k k ===时,等号成立;于是()()()22222264||224||5AC BD OA OB OA OB +=+=+≤,当且仅当221213k k ==,即四边形ABCD 矩形时,等号成立,所以存在四边形ABCD 使得2264||||5AC BD +=,故④正确.故答案为:①③④.【点睛】关键点睛:本题结论④的解决关键是利用弦长公式得到22||||AC BD +关于t 的表达式,从而利用基本不等式即可得解.三、解答题共4小题,共40分.解答应写出文字说明、演算步骤或证明过程.16.已知圆222:(2)(0)C x y r r -+=>与y 轴相切.(1)直接写出圆心C 的坐标及r 的值;(2)直线:3410l x y --=与圆C 交于两点,A B ,求||AB .【答案】(1)圆心(2,0)C ,2r =(2)【解析】【分析】(1)由圆的方程得圆心坐标,结合图形,圆与y 轴相切得半径;(2)法一由弦长公式求解;法二利用几何法勾股定理求解.【小问1详解】圆222:(2)(0)C x y r r -+=>,则圆心(2,0)C ,因为圆222:(2)(0)C x y r r -+=>与y 轴相切,则半径2r =.【小问2详解】由(1)知,圆的方程为22:(2)4C x y -+=,圆心(2,0)C ,半径为2.法一:设()()1122,,,A x y B x y ,联立()22341024x y x y --=⎧⎪⎨-+=⎪⎩,得2257010x x -+=,2(70)42548000∆=--⨯=>,则1212141,525x x x x +==,所以12AB x=-===法二:圆心(2,0)C到直线:3410l x y--=的距离12d==<,则AB===故AB=.17.已知直线:1l y kx=+经过抛物线2:2C x py=的焦点F,且与C的两个交点为P,Q.(1)求C的方程;(2)将l向上平移5个单位得到,l l''与C交于两点M,N.若24MN=,求k值.【答案】(1)24x y=(2)k=【解析】【分析】(1)由直线l与y轴交点得焦点F,待定p可得方程;(2)联立直线l'与抛物线C的方程,由已知弦长利用弦长公式建立关于k的方程,求解可得.【小问1详解】抛物线2:2C x py=的焦点F在y轴上,直线:1l y kx=+,令0x=,得1y=,则焦点(1,0)F,所以12p=,即2p=,所以抛物线C的方程为24x y=;【小问2详解】直线:1l y kx=+向上平移5个单位得到:6l y kx'=+,由246x y y kx ⎧=⎨=+⎩,消y 得24240x kx --=,设直线l '与C 交于两点1122(,),(,)M x y N x y ,则216960k ∆=+>,且12124,24x x k x x +==-,MN =====,由24MN =,化简整理得427300k k +-=,解得210k =-(舍)或23k =,所以k =.18.如图,四棱锥E ABCD -中,⊥AE 平面,,,2,1ABCD AD AB AD BC AE AB BC AD ⊥====∥,过AD 的平面分别与棱,EB EC 交于点M ,N .(1)求证:AD MN ∥;(2)记二面角A DN E --的大小为θ,求cos θ的最大值.【答案】(1)证明见解析(2)33【解析】【分析】(1)由线面平行判定定理与性质定理可证;(2)建立空间直角坐标系,设[],0,1BM BE λλ=∈,利用法向量方法,用λ表示两平面法向量夹角的余弦,再由向量夹角与二面角大小关系求cos θ最大值.【小问1详解】因为//AD BC ,AD ⊄平面BCE ,BC ⊂平面BCE ,所以//AD 平面BCE .因为过AD 的平面分别与棱,EB EC 交于,M N ,所以//AD MN ;【小问2详解】因为⊥AE 平面ABCD ,AB ⊂平面ABCD ,AD ⊂平面ABCD ,所以,AE AB AE AD ⊥⊥,又因为AB AD ⊥,如图,建立空间直角坐标系A xyz -,则(2,0,0),(2,0,2),(0,2,0),(0,0,1)B C E D ,所以(0,2,1),(2,2,2),(2,2,0),(0,0,1)ED EC BE AD =-=-=-=,设[],0,1BM BE λλ=∈,则(2,0,0)(2,2,0)(22,2,0)AM AB BM λλλ=+=+-=-,设平面AND 即平面AMND 的法向量为111(,,)m x y z =,则1110(22)20m AD z m AM x y λλ⎧⋅==⎪⎨⋅=-+=⎪⎩ ,令1x λ=,则11y λ=-,于是(,1,0)m λλ=-;设平面END 即平面ECD 的法向量为222(,,)n x y z =,则22222202220n ED y z n EC x y z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令21y =,则222,1z x ==-,于是(1,1,2)n =-,所以cos ,m nm n m n ⋅===⋅,因为[]0,1λ∈,所以cos ,,36m n ⎡∈--⎢⎣⎦,由二面角A DN E --的大小为θ,根据(,1,0),(1,1,2)m n λλ=-=- 的方向判断可得π,m n θ=-,所以,当12λ=时,cos θ的最大值为33.19.已知椭圆2222:1(0)x y E a b a b +=>>的两个顶点分别为(2,0),(2,0)A B -,离心率()()0001,,02e P x y y =≠为椭圆上的动点,直线,PA PB 分别交动直线x t =于点C ,D ,过点C 作PB 的垂线交x 轴于点H .(1)求椭圆E 的方程;(2)HC HD ⋅是否存在最大值?若存在,求出最大值;若不存在,说明理由.【答案】19.22143x y +=20.存在;12【解析】【分析】(1)由离心率及顶点坐标结合222b c a +=即可求解;(2)结合两点式得直线,PA PB 方程,进而得到点,C D 坐标,由直线CH 与直线PB 垂直得到直线CH 的斜率,结合点斜式得直线CH 的方程,进而的到点H 坐标,结合数量积的坐标运算及二次函数的最值即可求解.【小问1详解】由12ce a==,又两个顶点分别为(2,0),(2,0)A B -,则2,1a c ==,2223b a c =-=,故椭圆E 的方程为22143x y +=;【小问2详解】()()000,0P x y y ≠为椭圆上的动点,则02x ≠±,故直线,PA PB 的斜率存在且不为0,则直线PA :0022y x y x +=+,即00(2)2y y x x =++,则点00(,(2))2y C t t x ++,则直线PB :0022y x y x -=-,即00(2)2y y x x =--,则点00(,(2))2y D t t x --,则直线CH 的斜率为002x y -,故直线CH :00002(2)()2y x y t x t x y --+=-+,令0y =,得2020(2)4H t y x t x +=+-,又()00,P x y 在椭圆上,则2200143x y +=,整理得()2020344x y -=,所以36(2)44H t x t t -=-+=,则6,04t H -⎛⎫⎪⎝⎭,所以()22200020004(2)(2)3636(36),,4242164t y t y t y t t t HC HD x x x -⎛⎫⎛⎫+-+++⋅=⋅=+ ⎪ ⎪+--⎝⎭⎝⎭ ()22234(36)3(6)1216416t t t -+-=-=-+综上,存在6t =,使得HC HD ⋅有最大值12.确,运算要细心,是中档题.。

高二上学期的数学期末考试题目及答案

高二上学期的数学期末考试题目及答案

高二上学期的数学期末考试题目及答案一、选择题(共10题,每题2分,共20分)1. 以下哪个是等差数列?- A. 2, 4, 6, 8- B. 3, 6, 9, 12- C. 1, 3, 9, 27- D. 2, 5, 8, 11答案:A2. 函数y = x^2 + 3x + 2的图像是一个什么形状?- A. 抛物线- B. 直线- C. 双曲线- D. 圆答案:A3. 若a + b = 7,且a^2 + b^2 = 37,则a和b的值分别为多少?- A. a = 4, b = 3- B. a = 3, b = 4- C. a = 5, b = 2- D. a = 2, b = 5答案:B4. 在一个等边三角形中,每个内角是多少度?- A. 60°- B. 90°- C. 120°- D. 180°答案:A5. 已知一个正方形的边长为2cm,那么它的周长是多少?- A. 4cm- B. 6cm- C. 8cm- D. 12cm答案:C6. 若sinθ = 0.5,那么θ的值是多少?- A. 30°- B. 45°- C. 60°- D. 90°答案:B7. 以下哪个是素数?- A. 12- B. 17- C. 20- D. 25答案:B8. 一辆汽车以每小时60公里的速度行驶,行驶了2小时30分钟,那么它行驶的距离是多少公里?- A. 75公里- B. 100公里- C. 125公里- D. 150公里答案:C9. 若a:b = 3:5,且b:c = 4:7,则a:c的比值是多少?- A. 12:20- B. 9:20- C. 3:7- D. 12:35答案:B10. 一个扇形的半径为5cm,弧长为10πcm,那么它的圆心角是多少度?- A. 36°- B. 54°- C. 72°- D. 90°答案:C二、填空题(共5题,每题4分,共20分)1. 当x = 2时,函数y = 2x^2 + 3x - 1的值为 \_\_\_。

浙江省金华市2023-2024学年高二上学期期末数学试题含答案

浙江省金华市2023-2024学年高二上学期期末数学试题含答案

金华2023学年高二第一学期期末考试数学试卷(答案在最后)一、单选题:本题共8小题,每小题5分,共40分.1.空间直角坐标系中,点B 是点()345A ,,在坐标平面Oxy 内的射影,则OB =()A.5B.25C.D.【答案】A 【解析】【分析】求出B 点坐标,然后直接用距离公式计算即可.【详解】由点B 是点()345A ,,在坐标平面Oxy 内的射影可得()340B ,,,则5OB == .故选:A.2.椭圆C :221169x y +=的左焦点为F ,椭圆上的点1P 与2P 关于坐标原点对称,则12||||PF P F +的值是()A.3B.4C.6D.8【答案】D 【解析】【分析】令椭圆C 的右焦点F ',由已知条件可得四边形12PFP F '为平行四边形,再利用椭圆定义计算作答.【详解】令椭圆C 的右焦点F ',依题意,线段12PP 与FF '互相平分,于是得四边形12PFPF '为平行四边形,因此21||||P F PF '=,而椭圆C :221169x y +=的长半轴长4a =,所以1211||||||||28PF P F PF PF a '+=+==.故选:D3.等比数列{}n a 的前n 项和为n S ,若313S a =,则63a a =()A.8- B.8C.1或8- D.1-或8【答案】C 【解析】【分析】根据等比数列的前n 项和公式及等比数列通项公式即可求解.【详解】设等比数列{}n a 的公比为q ,则因为313S a =,所以12313a a a a ++=,即220q q +-=,解得1q =或2q =-,所以3631a q a==或8-.故选:C.4.攒(cuán )尖是我国古代建筑中屋顶的一种结构样式,多见于亭阁或园林式建筑.下图是一顶圆形攒尖,其屋顶可近似看作一个圆锥,其轴截面(过圆锥轴的截面)是底边长为6,顶角为2π3的等腰三角形,则该屋顶的面积约为()A.B.C. D.6π【答案】B 【解析】【分析】由轴截面三角形,根据已知可得圆锥底面半径和母线长,然后可解.【详解】轴截面如图,其中6AB =,23ACB π∠=,所以,36CAB AO π∠==,所以3cos6AO AC π===,所以圆锥的侧面积3S rl ππ==⨯=.故选:B5.已知圆C :222x y +=,点(,3)A m m -,则点A 到圆C 上点的最小距离为()A.1B.2C.2D.2【答案】C 【解析】【分析】写出圆C 的圆心和半径,求出AC 距离的最小值,再结合圆外一点到圆上点的距离最小值的方法即可求解.【详解】由圆C :222x y +=,得圆()0,0C ,半径r,所以AC ===≥所以点A 到圆C上点的最小距离为32222=.故选:C.6.直线12y xt =+与曲线y =相切,且与圆()2220x y r r +=>相切,则r =()A.15B.C.3D.3【答案】B 【解析】【分析】先由直线与曲线y =求出t ,再由直线与圆相切即可求出r【详解】设直线12yx t=+在曲线y=上的切点为(0x ,则()012f x '==,解得01x =,故切点坐标为()1,1,将()1,1代入直线12y x t =+中,解得12t =,所以直线方程为1122y x =+,即210x y -+=,又210x y -+=与圆()2220x y r r +=>相切,则55r ==,故选:B7.在数列{}n a 中,11n n na na a +=+,若46n a =,11a =,则n 的值为()A.9B.10C.11D.12【答案】B 【解析】【分析】根据题意可得1n n n a a +-=,利用累加法可得(1)12n n n a -=+,结合46n a =即可求出n 的值.【详解】由11n n na na a +=+,得1n n n a a +-=,所以21321121(2)n n a a a a a a n n --=-=-=-≥ ,,,,所以112(1)n a a n -=+++- ,又11a =,所以(1)1(2)2n n n a n -=+≥,又11a =满足,所以(1)12n n n a -=+由46n a =,解得10n =.故选:B8.已知1F ,2F 是双曲线()2222:10,0x yC a b a b-=>>的左、右焦点,点A 是C 的左顶点,O 为坐标原点,以2OF 为直径的圆交C 的一条渐近线于O 、P 两点,以OP 为直径的圆与x 轴交于,O M 两点,且PO 平分APM ∠,则双曲线C 的离心率为()A.B.2C.D.3【答案】B 【解析】【分析】由直径所对圆周角是直角,结合双曲线的几何性质和角平分线定义可解.【详解】由圆的性质可知,2F P OP ⊥,OM PM ⊥,所以2F P b =,OP a =因为OA a =,所以PAO APO∠=∠又因为PO 平分APM ∠,所以2APM PAO ∠=∠,由90APM PAO ∠+∠=︒,得30PAO ∠=︒,所以260POM PAO ∠=∠=︒,即tan 60ba=︒=所以2e ==故选:B二、多项题:本题共4小题,每小题5分,共20分.9.已知点M 椭圆22:4936C x y +=上一点,椭圆C 的焦点是12,F F ,则下列说法中正确的是()A.椭圆C 的长轴长是9B.椭圆C 焦距是C.存在M 使得1290F MF ∠=D.三角形12MF F 的面积的最大值是【答案】BCD 【解析】【分析】根据椭圆的几何性质逐个判断即可.【详解】22224936194x y x y +=⇒+=,所以229,43,2,a b a b c ==⇒===,对于A :因为3a =,所以长轴为26a =,A 错误;对于B :因为c =,所以焦距为2c =B 正确;对于C :当M 取到上顶点时此时12F MF ∠取到最大值,此时123MF MF a ===,122F F c ==所以(22212331cos 02339F MF +-∠==-<⨯⨯,所以此时12F MF ∠为钝角,所以存在M 使得1290F MF ∠= ,C 正确;对于D :当M 取到上顶点时此时三角形12MF F 的面积取到最大值,此时122S c b =⨯⨯=D 正确,故选:BCD10.等差数列{}n a 的前n 项和为n S ,10a <,613S S =,则()A.数列{}n a 是递减数列B.100a =C.9S 是n S 中最小项D.216S S <【答案】BC 【解析】【分析】根据等差数列的性质和前n 项求和公式可得19a d =-、0d >,结合通项公式和前n 项求和公式计算,依次判断选项即可.【详解】设等差数列{}n a 的公差为d ,由613S S =,得1165131261322a d a d ⨯⨯+=+,解得19a d =-,因为10a <,所以0d >.A :由0d >,得等差数列{}n a 为递增数列,故A 错误;B :1019990a a a d d =+=-+=,故B 正确;C :221(1)9(19)2222n n n n n dS na d nd d d n n -=+=-+-=-,因为00d n >>,,由二次函数的性质可知当9n =或10n =时,n S 取到最小值,即9S 为n S 中最小项,故C 正确;D :2122(9)17S a d d d d =+=⨯-+=-,161161516242S a d d ⨯=+=-,由0d >,得216S S >,故D 错误.故选:B C11.如图,正方体1111ABCD A B C D -的棱长为2,,,E F G 分别为11,,BC CC BB 的中点.则下列结论正确的是()A.直线1DB 与平面AEF 垂直B.直线1A G 与平面AEF 平行C.三棱锥D AEF -的体积为23D.点D 到平面AEF 的距离为43【答案】BCD 【解析】【分析】建立空间直角坐标系,求出相关各点坐标,求出平面AEF 的法向量,利用向量的数量积的计算,可判断A,B ;根据等体积法可求得三棱锥D AEF -的体积,可判断C ;利用空间距离的向量计算公式,可判断D .【详解】如图,以D 点为坐标原点,以DA 为x 轴,以DC 为y 轴,以1DD 为z轴,建立空间直角坐标系,则11(0,0,0),(2,2,2),(2,0,0),(1,2,0),(0,2,1),(2,0,2),(2,2,1)D B A E F A G ,对于A,1(2,2,2),(1,2,0),(2,2,1)DB AE AF ==-=-,设平面AEF 的法向量为(,,)n x y z =,则20220n AE x y n AF x y z ⎧⋅=-+=⎨⋅=-++=⎩,可取(2,1,2)n =,而1(2,2,2)DB = ,与(2,1,2)n =不平行,故直线1DB 与平面AEF 不垂直,故A 错;对于B ,1(0,2,1)AG =- ,平面AEF 的法向量为(2,1,2)n =,()()10,2,12,1,20A G n ⋅=-⋅=,1A G 不在平面AEF 内,故直线1A G 与平面AEF 平行,故B 正确;对于C ,11122213323D AEF F DAE DAE V V S FC --==⨯=⨯⨯⨯⨯= ,故C 正确;对于D ,(2,0,0)DA = ,平面AEF 的法向量为(2,1,2)n =,,故点D 到平面AEF 的距离为||23||n DA d n ⋅===,故D 正确,故选:BCD12.已知抛物线2:4C y x =,点(2,0)M -,(2,0)P ,过点P 的直线l 交抛物线C 与,A B 两点,设11(,)A x y ,22(,)B x y ,下列说法正确的有()A.128y y =-B.AB的最小值为C.11AP BP +=D.AMP BMP∠=∠【答案】ABD 【解析】【分析】首先设直线l 的方程为2x my =+,与抛物线方程联立,消去x ,得2480y my --=,分别写出12y y +,12y y 式子,然后逐项验证,对于A 直接得出,对于B 利用弦长公式再结合二次函数求最值即可,对于C ,直接利用两点间的距离公式计算即可,对于D ,利用0AM BM k k +=即可验证.【详解】设直线l 的方程为2x my =+,则由224x my y x=+⎧⎨=⎩,消去x 整理,得2480y my --=,因为直线l 交抛物线C 与,A B 两点,设11(,)A x y ,22(,)B x y ,则所以124y y m +=,128y y =-,故A 正确.AB ===≥,m =0时等号成立,故B 正确.AP ==1,同理,可得BP y =2,则AP BP +=11===≠2,故C 不正确.()()()()AM BM y x y x y yk k x x x x ++++=+=++++1221121212212222()()()()()()()y my y my my y y y x x x x +++++==++++12211212121244242222.()()()m mx x -+⨯==++122844022,即AMP BMP ∠=∠,故D 正确.故选:ABD.【点睛】解决本题的关键就是设出直线l 的方程为2x my =+,这样很大程度减小了运算量,联立直线方程与抛物线,进而利用韦达定理写出交点纵坐标之间的关系,在逐项验证即可.三、填空题:本题共4小题,每小题5分,共20分.13.直线20x y ++=的倾斜角的是______.【答案】3π4【解析】【分析】根据直线的斜率与倾斜角的关系即可求解.【详解】因为直线20x y ++=的斜率1-,设直线20x y ++=的倾斜角为α,则tan 1α=-,因为[0,π)α∈,所以3π4α=,故答案为:3π4.14.已知函数()()sin 20f x x xf '=-,则π2f ⎛⎫'= ⎪⎝⎭___________.【答案】3-【解析】【分析】先求函数()()sin 20f x x xf '=-的导数,利用赋值法求出(0)f ',即可得函数解析式,从而求得π2f ⎛⎫' ⎪⎝⎭的值.【详解】由于()()2cos 20f x x f ''=-,所以(0)2cos0(0)f f =-'',解得(0)1f '=,所以()sin 2f x x x =-,则()2cos21f x x '=-,所以π32f ⎛⎫'=- ⎪⎝⎭.故答案为:3-15.九连环是我国古代流传至今的一种益智游戏,它由九个铁丝圆环相连成串,按一定规则移动圆环,移动圆环的次数决定解开圆环的个数.在某种玩法中,推广到m 连环,用n a 表示解下()n n m ≤个圆环所需的最少移动次数,若数列{}n a 满足:11a =,且1121,22,n n n a n a a n ---⎧=⎨+⎩为偶数为奇数,则解下n (n 为偶数)个圆环所需的最少移动次数n a =___________.(用含n 的式子表示)【答案】121n --【解析】【分析】根据通项公式得到243n n a a -=+,构造出等比数列,进而求出121n n a -=-.【详解】因为n 为偶数,当4n ≥时,()12221222143n n n n a a a a ---=-=+-=+,即()2141n n a a -+=+,又2121211a a =-=-=,所以{}1n a +是以212a +=为首项,4为公比的等比数列,故1121242n n n a -+=⨯=,所以121n n a -=-,故答案为:121n --16.已知在平面直角坐标系xOy 中,(3,0),(3,0)A B -,动点P 满足2PA PB=,则P 点的轨迹Γ为圆_______,过点A 的直线交圆Γ于两点C ,D ,且AC CD = ,则CD =______.【答案】①.()22516x y -+=②.【解析】【分析】设(),P x y ,根据2PA PB =可得圆的方程,利用垂径定理可求CD =【详解】设(),P x y2=,整理得到221090x y x +-+=,即22(5)16x y -+=.因为AC CD = ,故C 为AD 的中点,过圆心()5,0作AD 的垂线,垂足为M ,则M 为CD的中点,则32AM CD ==解得CD =故答案为:22(5)16x y -+=,四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 中,11a =,且122(*)n n n a a n N +=+∈(1)求证:数列2n n a ⎧⎫⎨⎬⎩⎭是等差数列,并求出n a ;(2)数列{}n a 前n 项和为n S ,求n S .【答案】(1)证明见解析,12n n a n -=⋅(2)()121n n S n =-+ 【解析】【分析】(1)利用等差数列的定义可证2n n a ⎧⎫⎨⎬⎩⎭是等差数列,利用等差数列的通项公式可求n a .(2)利用错位相减法可求n S .【小问1详解】因为122(*)n n n a a n N +=+∈,111222n n n n a a ++∴-=∴2n n a ⎧⎫⎨⎬⎩⎭是以12为首项,12为公差的等差数列,11(1)2222n n a n n ∴=+-⨯=,12n n a n -∴=⋅.【小问2详解】0111·22·22n n S n -=+++⋅ ,2n S =()1112122n n n n -⋅++-⋅+⋅ ,12112222n n n S n -∴-=++++-⋅ ()121n n =-⋅-,()121n n S n ∴=-⋅+.18.如图,直三棱柱111ABC A B C -中,11AB AC AA ===,AB AC ⊥,D 是棱BC 的中点,(1)求异面直线11,AB DC 所成角的余弦值;(2)求二面角11B AD C --的余弦值.【答案】(1)6(2)13【解析】【分析】(1)建立空间直角坐标系,求出相关各点的坐标,求出11,AB DC ,利用向量的夹角公式求得答案;(2)求出平面平面1B AD 和平面1ADC 的一个法向量,利用向量夹角公式求得答案.【小问1详解】以1{,,}AB AC AA 为正交基底,建立如图所示的空间直角坐标系A xyz -,则1111(0,0,0),(1,0,0),(1,0,1),(0,1,0),(,,0)(0,1,1)22A B B C D C ,,1111(1,0,1),(,,1)22AB DC ==- ,所以111111cos ,6AB DC AB DC AB DC <>== ,所以直线11AB DC ,所成角的余弦值为6;【小问2详解】设(,,)m x y z = 为平面1B AD 的一个法向量,111(,,0),(1,0,1)22AD AB == ,则⋅A =12+12=0 ·B 1 =+=0,∴+=0+=0,1,1,1(1,1,1)x y z m ==-=-∴=-- 令则,,同理111(,,0),(0,1,1)22AD AC == ,则11100,220·0x y n AD x y y z n AC y z ⎧+=⋅=+=⎧⎪∴⎨⎨+=⎩⎪=+=⎩,可取平面1ADC 的一个法向量为(1,1,1)n =- ,则1cos ,3m n m n m n<>== ,由图可知二面角11B AD C --为锐角,所以二面角11B AD C --的余弦值为13.19.已知椭圆()2222:10x y C a b a b +=>>经过点21,2M ⎛ ⎪⎝⎭,N .(1)求椭圆C 的方程;(2)已知直线l 的倾斜角为锐角,l 与圆2212x y +=相切,与椭圆C 交于A 、B 两点,且AOB 的面积为23,求直线l 的方程.【答案】(1)2212x y +=(2)1y x =±【解析】【分析】(1)将点M 、N 的坐标代入椭圆方程计算,求出a 、b 的值即可;(2)设l 的方程为:(0)y kx m k =+>,1122,,()()A x y B x y ,,根据直线与圆的位置关系可得2221m k =+,直线方程联立椭圆方程并消去y ,利用韦达定理表示出1212+、x x x x ,根据弦长公式求出AB ,进而列出关于k 的方程,解之即可.【小问1详解】椭圆()2222:10x y C a b a b +=>>经过点1,2M ⎛⎫ ⎪ ⎪⎝⎭,N .则221112a ab ⎧=⎪⎨+=⎪⎩,解得1a b ==,2212x C y ∴+=椭圆的方程为【小问2详解】设l 的方程为:(0)y kx m k =+>l 与圆2212x y +=相切22212m k =∴=+,设点1122,,()()A x y B x y ,2212y kx m x y =+⎧⎪⎨+=⎪⎩由,∴(1+22)2+4B +22−2=0,则Δ>01+2=−4B 1+2212=22−21+22,12223AOB S AB =⨯=,12AB x ∴==-,3,3=,2221m k =+又,425410k k ∴--=,21k =∴,0k > ,1k ∴=,故211m m =⇒=±,1l y x ∴=±的方程为20.如图,在四棱锥S−ABCD 中,底面ABCD 为矩形,4=AD ,AB =2,AC BD O = ,SO ⊥平面ABCD ,SO =13BF FC =uu u r uu u r ,E 是SA 的中点.(1)求直线EF 与平面SCD 所成角的正弦值;(2)在直线SC 上是否存在点M ,使得平面MEF ⊥平面SCD ?若存在,求出点M 的位置;若不存在,请说明理由.【答案】(1)7(2)存在,M 与S 重合【解析】【分析】(1)分别取AB ,BC 中点M ,N ,易证,,SO OM ON 两两互相垂直,以{,,}OM ON OS 为正交基底,建立空间直角坐标系,先求得平面SCD 的一个法向量(,,)m x y z = ,再由cos ,m EF m EF m EF⋅<>=⋅ 求解;(2)假设存在点M ,使得平面MEF ⊥平面SCD ,再求得平面MEF 的一个法向量(,,)n x y z = ,然后由0m n ⋅= 求解.【小问1详解】解:分别取AB ,BC 中点M ,N ,则OM ON ⊥,又SO ⊥平面ABCD ,则,,SO OM ON 两两互相垂直,以{,,}OM ON OS 为正交基底,建立如图所示的空间直角坐标系O xyz -,1(2,1,0),(2,1,0)22A D ---则,),F(1,1,0),所以3(0,,),(0,2,0),(2,1,22EF DC SC =-==- ,设平面SCD 的一个法向量为(,,)m x y z =,2020m SC x y m DC y ⎧⋅=-+-=⎪⎨⋅==⎪⎩ 则,200x y y ⎧-+=⎪∴⎨=⎪⎩,22)x z m ==-∴=- 令则cos ,7m EF m EF m EF⋅<>==⋅ ,,m EF EF SCD <> 与与平面所成角互余,直线EF 与平面SBC所成角的正弦值为7.【小问2详解】假设存在点M ,使得平面MEF ⊥平面SCD,(2,1,(2,,)SM SC λλλλ==-=- 设,1(12,,)22EM ES SM λλ=+=--+ 则,设平面MEF 的一个法向量(,,)n x y z =,()30221312022n EF y z n EM x y z λλ⎧⋅=-=⎪⎪⎨⎛⎫⎛⎫⎪⋅=--+++= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎩则,令1y =,则111(,1,2121z x n λλλλ--==∴=++ , 平面MEF ⊥平面SCD,22021m n λλ-∴⋅=-=+ ,0λ∴=,∴存在点,M MEF SCD ⊥使得平面平面,此时M 与S 重合.21.已知数列{}n a 的前n 项和为n S ,且1342n n S n a -=-.(1)证明:数列{}1n a -是等比数列,并求数列{}n a 的通项公式;(2)若()3(1)log 1nn n n b a a =+--,数列{}n b 的前n 项和为n T ,求使得22024n T >的最小正整数n .【答案】(1)证明见解析,131n n a -=+(2)4【解析】【分析】(1)利用n S 与n a 的关系式化简出132n n a a -=-,再构造成()1311n n a a -=--即可证明为等比数列同时求出通项公式;(2)化简可得()(1)1n n n b a n =+--,再通过分组求和可得2n T ,判断2n T 的单调性即可求出22024n T >的最小正整数n .【小问1详解】因为1342n n S n a -=-,所以322n n S a n =+-①当1n =时,1113122a S a ==+-,所以12a =;当2n ≥时,()113122n n S a n --=+--②①-②得133122n n n a a a -=-+,即132n n a a -=-,则()1311n n a a -=--,而110a -≠,所以数列{}1n a -构成以1为首项,3为公比的等比数列,则113n n a --=,所以131n n a -=+.【小问2详解】131n n a -=+,()()13(1)log 131(1)1n n n n n n b a a n -∴=+--=++--,{}n a 的前2n 项和22133122132n n n n --+=+-(){}(1)1nn --的前2n 项和()0123421n -+-+-+⋯+-()()()()01232221n n n⎡⎤=-++-++⋯+--+-=⎣⎦223132n n T n -∴=+2n T 单调递增且66313337320242T -=⨯+=<,883134329220242T -=⨯+=>所以使得22024n T >最小正整数n 为4.22.已知双曲线()2222:100x y a b a b Γ-=>>,过点P ,且Γ的渐近线方程为y =.(1)求Γ的方程;(2)如图,过原点O 作互相垂直的直线1l ,2l 分别交双曲线于A ,B 两点和C ,D 两点,A ,D 在x 轴同侧.①求四边形ACBD 面积的取值范围;②设直线AD 与两渐近线分别交于M ,N 两点,是否存在直线AD 使M ,N 为线段AD 的三等分点,若存在,求出直线AD 的方程;若不存在,请说明理由.【答案】(1)2213y x -=(2)①[)6+∞,;②不存在,理由见解析【解析】【分析】(1)根据题意求得22,a b ,即可得解;(2)①易知直线1l ,2l 的斜率均存在且不为0,设11233442(,),(),(,),(,)A x y B x y C x y D x y ',1l 的方程为y kx =,则2l 的方程为1=-y x k ,联立2213y kx y x =⎧⎪⎨-=⎪⎩,消元,则0∆>,利用韦达定理求得1212,x x x x +,再根据弦长公式可求得AB ,同理可求得2k 的范围及CD ,再根据12ACBD S AB CD =⋅整理即可得出答案;②设直线AD 的方程为y kx m =+,5566(,),(,)A x y D x y ,联立2213y tx m y x =+⎧⎪⎨-=⎪⎩,消元,根据0∆>求得,t m 的关系,利用韦达定理求得5656,x x x x +,再利用弦长公式求得AD ,易求得,M N 的坐标,即可求出MN ,再根据M ,N 为线段AD 的三等分点,可得3AD MN =,结合AB CD ⊥,可得两个等量关系,从而可得出结论.【小问1详解】解:由题意有b a =b =①,将点P 代入双曲线方程得22361a b -=②,联立①②解得2213a b ⎧=⎨=⎩,故Γ的方程为2213y x -=;【小问2详解】解:①,易知直线1l ,2l 的斜率均存在且不为0,设11233442(,),(),(,),(,)A x y B x y C x y D x y ',1l 的方程为y kx =,则2l 的方程为1=-y x k,联立2213y kx y x =⎧⎪⎨-=⎪⎩,消y 整理得()22330k x --=,直线1l 与双曲线Γ交于两点,故230k -≠且()21230k ∆=->,则23k <,则1212230,3x x x x k +==--,则AB ==,联立22113y x k y x ⎧=-⎪⎪⎨⎪-=⎪⎩,消y 整理得()2223130k x k --=,直线2l 与双曲线Γ交于两点,故2310k -≠且()2212310k k ∆=->,解得213k >,则23434230,31k x x x x k +==--,则CD =,根据对称性可知四边形ACBD 为菱形,其面积12ACBD S AB CD =⋅====2133k << ,∴22116243k k ⎡⎫++∈⎪⎢⎣⎭,,∴(]222221616341(1)2k k k k =∈+++,,∴(]22216301(1)k k -∈+,,[)6ACBD S ∴∈+∞,;②,假设满足题意的直线AD 存在,易知直线AD 斜率存在,设直线AD 的方程为y tx m =+,5566(,),(,)A x y D x y ,联立2213y tx m y x =+⎧⎪⎨-=⎪⎩,整理得()2223230t x tmx m ----=,则()230t -≠且()()222244330t m m t ∆=++->,解得23≠t 且223t m <+,由韦达定理有56225622333km x x k m x x k ⎧+=⎪⎪-⎨--⎪=⎪-⎩,则AD ===,不妨设M 为直线AD 与渐近线y =的交点,联立y tx m y =+⎧⎪⎨=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩,M ⎛⎫∴,同理可得N点的坐标为⎛⎫,则MN ==,因为M ,N 为线段AD 的三等分点,3AD MN =,=,整理得22830t m +-=,①AB CD ⊥ ,AO DO ∴⊥,则0AO DO ⋅=,即56560x x y y +=,()()56565656x x y y x x tx m tx m +=+++()()()222225656223211033m tm t x x tm x x m t tm m t t --=++++=++=--,整理得223230t m -+-=,②联立①②得2913t =-,无解,故没有满足条件的直线AD .。

2022-2023学年贵州省贵阳市普通中学高二上学期期末监测考试数学试题(解析版)

2022-2023学年贵州省贵阳市普通中学高二上学期期末监测考试数学试题(解析版)

2022-2023学年贵州省贵阳市普通中学高二上学期期末监测考试数学试题一、单选题1.已知两个空间向量(),4,2a m =-,()1,2,1b =-,且a b ,则实数m 的值为( )A .2B .12C .12-D .2-【答案】D【分析】根据空间向量平行的坐标运算得出答案. 【详解】a b ∥,(),4,2a m =-,()1,2,1b =-, 42121m -∴==-,解得2m =-, 故选:D.2.在等比数列{}n a 中,24a =,42a =,则6a =( )A .1-B .1C .1或1-D 【答案】B【分析】根据等比数列基本量的计算即可求解.【详解】设公比为,q 则由24a =,42a =得222421422a a q q q ===⇒=,故226421a a q q ===, 故选:B3.已知直线l :0Ax By C ++=,如果0AC <,0BC <,那么直线l 不经过的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】C【分析】根据题意,求出直线在坐标轴上的截距,即可求解. 【详解】当0x =时,Cy B =-,由0BC <得0C B->, 即点(0,)CB -在y 轴的正半轴;当0y =时,Cx A =-,由0AC <得0C A->, 即点(,0)CA-在x 轴的正半轴, 又直线l 过点(0,)C B -和点(,0)CA -,所以直线l 不经过第三象限.4.以下四个命题,正确的是( )A .若直线l 的斜率为1,则其倾斜角为45°或135°B .经过()()101,3A B -,,两点的直线的倾斜角为锐角 C .若直线的倾斜角存在,则必有斜率与之对应 D .若直线的斜率存在,则必有倾斜角与之对应 【答案】D【分析】根据直线的倾斜角和斜率的概念依次判断选项即可. 【详解】A :直线的斜率为1,则直线的倾斜角为45︒,故A 错误; B :过点A 、B 的直线的斜率为3030112k -==-<--, 即3tan 02α=-<(α为直线的倾斜角),则α为钝角,故B 错误;C :当直线的倾斜角为90︒时,该直线的斜率不存在,故C 错误;D :若直线的斜率存在,则必存在对应的倾斜角,故D 正确. 故选:D.5.如图,在三棱柱111ABC A B C 中,M ,N 分别是1BB 和11A C 的中点,且1MN xAB y AC z AA =++,则实数x ,y ,z 的值分别为( )A .111,,22-B .111,,22--C .111,,22---D .111,,22-【答案】A【分析】根据题意用空间基底向量表示向量,结合空间向量的线性运算求解. 【详解】由题意可得:()11111111112222MN MB B C C N AA AC AB AC AB AC AA =++=+--=-++, 故111,,22x y z =-==.故选:A.6.等差数列{}n a 的前n 项和记为n S ,且510S =,1050S =,则15S =( ) A .70B .90C .100D .120【分析】根据等差数列前n 项和的性质可得51051510,,S S S S S --成等差数列,即可求得15S 的值. 【详解】在等差数列{}n a 中,51051510,,S S S S S --成等差数列,所以()051051512S S S S S -=-+,则()152********S ⨯-=+-,即15120S =. 故选:D.7.设1F ,2F 分别是双曲线C :2212y x -=的左、右焦点,P 为C 上一点且在第一象限若122PF PF =,则点P 的纵坐标为( ) A .1 B .3C .2D .23【答案】C【分析】根据双曲线的定义可得124,2PF PF ==,进而根据长度关系判断212PF F F ⊥,代入3x =即可求解.【详解】根据题意可知:1,2,3a b c === ,由122PF PF =以及1222PF PF a -==可得124,2PF PF ==,又12223F F c ==,由于2221212PF PF F F =+,故212PF F F ⊥,即三角形12PF F 为直角三角形,将3x =代入2212y x -=得2y =,由于P 为C 在第一象限,故点P 的纵坐标为2, 故选:C8.已知直线l :210x y --=是圆C :22610()x y x ay a +-++=∈R 的对称轴,过点()4,P a -作圆的一条切线,切点为A ,则PA =( ) A .10 B .7 C .3D .2【答案】B【分析】根据题意分析可得直线l 过圆心C ,可求得2a =-,再根据圆的切线长公式运算求解. 【详解】由题意可知:直线l :210x y --=过圆心3,2a C ⎛⎫- ⎪⎝⎭,则32102a ⎛⎫-⨯--= ⎪⎝⎭,解得2a =-,故圆C :226210x y x y +--+=的圆心为()3,1C ,半径3r =,且点()4,2P --, ∵()()22432158PC =--+--=,∴227PA PC r =-=.故选:B.二、多选题9.斐波那刻螺旋线被骨为自然界最完美的“黄金螺旋”,自然界存在很多斐波那契螺旋线的图案,例如向日葵,鹦鹉螺等.如图,小正方形的边长分别为斐波那契数1,1,2,3,5,8....,从内到外依次连接通过小正方形的14圆弧,就得到了一条被称为“斐波那契螺旋”的弧线,现将每一段“斐波那契螺旋”弧线所在的正方形边长设为(N )n a n *∈,数列{}n a 满足11a =,21a =,21(N )n n n a a a n *++=+∈,每一段“斐波那契螺旋”弧线与其所在的正方形围成的扇形面积设为(N )n b n *∈,则下列说法正确的有( )A .13578a a a a α+++=B .62984a a a a a +++=C .()54364πb b a a -=D .()67544b b b +=【答案】AC【分析】由题意可得{}n a 的前9项分别为1,1,2,3,5,8,13,21,34,根据运算即可判断AB,根据2π4n n b a =,利用平方差公式以及12n n n a a a --=+即可判断选项C,代入计算即可判断D.【详解】根据11a =,21a =,21(N )n n n a a a n *++=+∈得数列的前9项分别为1,1,2,3,5,8,13,21,34,所以135781251321a a a a α=+++=+++=,629841382133a a a a a =+++=+++≠,故A 正确,B 错误,由题意可得2π4n n b a =,即24πn n b a =,所以2254545454364()π()π()()πb b a a a a a a a a -=-=-+=,故C 正确, ()222256564()π()π5889πb b a a =+=+=+,22774ππ13169πb a ==⨯=,所以()67544b b b +≠,故D 错误, 故选:AC.10.如图,在正方线ABCD -A 1B 1C 1D 1中,E ,F ,G ,H ,K ,L 分别是AB ,BB 1,B 1C 1,C 1D 1,D 1D 1,DA 各棱的中点,则下列选项正确的有( )A .向量EA ,EK ,EF 共面B .A 1C ⊥平面EFGHKL C .BC 与平面EFGHKL 3D .∠KEF =90°【答案】BCD【分析】建系,利用空间向量判断向量共面和线、面关系以及求线面夹角. 【详解】如图,以D 为坐标原点建立空间直角坐标系,设2AD =, 则()()()()()()()()12,0,0,2,2,0,0,2,0,2,0,2,2,1,0,2,2,1,0,0,1,0,2,1A B C A E F K H ,可得()()()()()()10,1,0,2,1,1,0,1,1,2,2,2,2,0,0,0,1,1EA EK EF A C BC KH =-=--==--=-=, 对A :若向量EA ,EK ,EF 共面,则存在实数,λμ,使得EA EK EF λμ=+成立,∵()()0,1,0,2,,EA EK EF λμλλμλμ=-+=+-+,可得2010λλμλμ=⎧⎪+=-⎨⎪-+=⎩,无解,∴不存在实数,λμ,使得EA EK EF λμ=+成立, 故向量EA ,EK ,EF 不共面,A 错误; 对B :由题意可得:EF KH =,则EF KH ,同理可得:ELGH ,KL GF ,故,,,,,E F G H K L 六点共面,∵()()()1122212102021210AC EK ACEF ⎧⋅=-⨯+⨯+-⨯-=⎪⎨⋅=-⨯+⨯+-⨯=⎪⎩,则11,A C EK A C EF ⊥⊥, EKEF E =,,EK EF ⊂平面EFGHKL ,∴1A C ⊥平面EFGHKL ,B 正确;对C :由B 可得()12,2,2AC =--是平面EFGHKL 的法向量, ∵11143cos ,3223BC A C BC A C BC A C⋅===⨯,∴BC 与平面EFGHKL 所成角的正弦值为33,C 正确; 对D :∵()2011110EK EF ⋅=⨯+⨯+-⨯=,则EK EF ⊥, ∴90KEF ∠=︒,D 正确. 故选:BCD.【点睛】方法点睛:利用空间向量处理立体几何问题的一般步骤:(1)建立恰当的空间直角坐标系;(2)求出相关点的坐标,写出相关向量的坐标; (3)结合公式进行论证、计算; (4)转化为几何结论.三、填空题11.直线l 1:10x y +-=与直线l 2:30x y ++=间的距离是___________. 【答案】2【分析】根据两平行线间距离公式运算求解.【详解】由题意可得:直线l 1:10x y +-=与直线l 2:30x y ++=间的距离22132211d --=+.故答案为:22.12.已知空间向量(1,2,2)a =-,()1,0,1b =,则2a ab -⋅=___________. 【答案】6【分析】利用空间向量数量积运算法则计算即可.【详解】()()()21441,2,21,0,19126a a b -⋅=++--⋅=-+=. 故答案为:613.已知a ,b ,c 成等比数列,则二次函数22y ax bx c =++的图像与x 轴的交点个数是___________. 【答案】1【分析】根据题意有2b ac =,再借助二次函数的判别式判断交点个数 【详解】a ,b ,c 成等比数列,则2b ac =, ()224440b ac ac ac ∆=-=-=,则二次函数的图像与x 轴有1个交点, 故答案为:1.14.已知抛物线2:4C y x =的准线是直线l ,M 为C 上一点,MN l ⊥,垂足为N ,点P 的坐标是()0,2,则PM MN +的最小值为___________. 【答案】5【分析】由抛物线的定义可得出MN MF =,当M 为线段PF 与抛物线C 的交点时,PM MN +取最小值可得结果.【详解】抛物线C 的焦点为()1,0F ,准线为:1l x =-,如图所示:由抛物线的定义可得MN MF =,所以,()()2201205PM MN PM MF PF +=+≥=-+-= 当且仅当M 为线段PF 与抛物线C 的交点时,等号成立,因此,PM MN +的最小值为5. 故答案为:5.15.若直线y x b =+与曲线214x y y =+-有公共点,则b 的取值范围是___________.【答案】122,3⎡⎤-⎣⎦【分析】由题意可得:该曲线为以()1,2为圆心,半径2r =的右半圆,根据图象结合直线与圆的位置关系运算求解.【详解】∵2141x y y =+-≥,整理得()()()221241x y x -+-=≥, ∴该曲线为以()1,2为圆心,半径2r =的右半圆, 直线y x b =+的斜率1k =,如图所示: 当直线0x y b -+=与圆相切时,则()2212211b -+=+-,解得122b =-或122b =+(舍去);当直线y x b =+过点()1,4A 时,则41b =+,解得3b =; 综上所述:b 的取值范围是122,3⎡⎤-⎣⎦. 故答案为:122,3⎡⎤-⎣⎦.【点睛】方法点睛:直线与圆位置关系问题的求解思路:研究直线与圆的位置关系主要通过圆心到直线的距离和半径的比较实现,结合图象分析相应的性质与关系,列式求解.四、解答题16.如图,四棱柱1111ABCD A B C D -的底面是菱形,1AA ⊥底面ABCD ,AB =BD =2,13AA =,E ,F 分别是棱BB 1,DD 1上的动点(不含端点),且1BE D F =.(1)求四棱锥A BEFD -的体积;(2)当BE =1时,求平面AEF 与平面11BB D D 夹角的余弦值. 【答案】(1)3 (2)64【分析】(1)作出辅助线,得到AO 是四棱锥A BEFD -的高,求出各边的长,利用锥体体积公式求出答案;(2)建立空间直角坐标系,利用空间向量求解两平面的夹角的余弦值.【详解】(1)如图,连接AC 交BD 于点O ,因为底面ABCD 是菱形,所以AO BD ⊥,因为点E ,F 分别在1BB ,1DD 上, 所以1AA //BE //DF , 又1AA ⊥底面ABCD ,AO ⊂底面ABCD ,BD ⊂底面ABCD ,所以BE ⊥BD ,BE ⊥AO ,所以四边形BEFD 是直角梯形, 且因为13AA =,1BE D F =,所以3BE DF +=, 又因为BD BE B ⋂=,,BD BE ⊂平面BEFD ,所以AO ⊥平面BEFD ,即AO 是四棱锥A BEFD -的高, 因为AB =BD =2,底面ABCD 是菱形,所以ABD △是等边三角形,故1OB =,33AO OB ==, 所以()1332A BEFD BE DF BDV AO -+⋅=⋅=,所以四棱锥A BEFD -的体积为3(2)以O 为原点,分别以OA ,OB 所在直线为x 轴,y 轴,建立如图所示的空间直角坐标系, 则()3,0,0A,()0,1,1E ,()0,1,2F -,所以()3,1,1AE =-,()3,1,2AF =--. 设(),,n x y z =是平面AEF 的法向量,则()()()(),,3,1,130,,3,1,2320n AE x y z x y z n AF x y z x y z ⎧⋅=⋅=++=⎪⎨⋅=⋅--=--+=⎪⎩, 取1y =,则3x =2z =. 所以,()3,1,2n =是平面AEF 的一个法向量,由(1)可知,OA ⊥平面BEFD ,即OA ⊥平面11BB D D , 所以()3,0,0OA =是平面11BB D D 的一个法向量,而(3,1,23,0,06cos ,3143n OA n OA n OA⋅⋅<>===++⨯ 所以平面AEF 与平面11BB D D 617.设直线()2R x my m =+∈与抛物线22(0)y px p =>相交于,A B 两点,且OA OB ⊥. (1)求抛物线方程;(2)求AOB 面积的最小值. 【答案】(1)22y x = (2)4【分析】(1)联立直线与抛物线方程,消元得出韦达定理,将OA OB ⊥表示为坐标形式,列方程化简计算,可得抛物线方程;(2)利用三角形的面积公式,结合韦达定理,根据m 的取值,得出面积的最小值. 【详解】(1)设直线与抛物线交于点()()1122,,,A x y B x y ,联立222(0)x my y px p =+⎧⎨=>⎩得2240y pmy p --=,显然0∆>,所以121224y y pm y y p +=⎧⎨=-⎩,因为OA OB ⊥,所以12120x x y y +=,即()()1212220my my y y +++=,化简得()()212121240m y y m y y ++++=,代入得()2241440p m pm -+++=解得1p =,所以抛物线方程为22y x =(2)因为直线2x my =+过定点()2,0, 所以12121242AOBSy y y y =⨯⨯-=-==,当且仅当0m =时,AOB 的面积取得最小值为418.已知圆O :224x y +=,过定点()1,1A 作两条互相垂直的直线1l ,2l ,且1l 交圆O 于()()111333,,,P x y P x y 两点,2l 交圆O 于()()222444,,,P x y P x y 两点. (1)若13PP =1l 的方程;(2)求证:1234x x x x +++为定值. 【答案】(1)20x y +-= (2)证明见解析【分析】(1)根据题意分析可得()0,0O 到直线1l 的距离为d =点到直线的距离运算求解;(2)讨论直线是否与坐标轴垂直,结合韦达定理证明结论. 【详解】(1)由题设可知圆O 的圆心为()0,0O ,半径为2r =,由13PP =()0,0O 到直线1l 的距离为d == 因为直线1l 经过点()1,1A ,则有:当直线1l 的斜率不存在时,则1:1l x =,此时()0,0O 到直线1l 的距离为1d =,不合题意; 当直线1l 的斜率存在时,设直线1l 的方程为()11y k x -=-,即10kx y k --+=,=1k =-,所以直线1l 的方程为()11y x -=--,即20x y +-=.(2)∵2OA r ==<,即定点()1,1A 在圆O 内, ∴直线12,l l 与圆O 均相交,当直线1l 与x 轴垂直时,直线2l 与x 轴平行,此时132x x +=,240x x +=, 所以12342x x x x +++=;当直线2l 与x 轴垂直时,直线1l 与x 轴平行,此时130x x +=,242x x +=, 所以12342x x x x +++=;当直线1l 与不坐标轴垂直时,设直线1l 的方程为()()110y k x k =-+≠, 则直线2l 的方程为()()1110y x k k=--+≠, 联立方程()22114y k x x y ⎧=-+⎨+=⎩,消去y 得()()2222122230k x k k x k k ++-+--=, 所以2132221k kx x k-+=+, 同理可得242221kx x k ++=+, 所以12342x x x x +++=,综上所述:1234x x x x +++为定值2. 19.设数列{}n a 满足()123212n a a n a n +++-=.(1)求1a ,2a ,3a ,试猜想{}n a 的通项公式,并证明;(2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和.【答案】(1)12a =,223a =,325a =,221n a n =-,证明见解析 (2)()3223nn +-【分析】(1)根据已知求出1a ,2a ,3a ,猜想数列{}n a 的通项公式为221n a n =-,当2n ≥时,()()12132321n a a n a n -+++-=-,结合已知式子两式相减即可得出当2n ≥时,221n a n =-,再验证1n =成立即可;(2)结合第一问结论得出数列2n n a ⎧⎫⎨⎬⎩⎭的通项,利用错位相减法得出答案.【详解】(1)因为()123212n a a n a n+++-=①,当1n =时,12a =当2n =时,1234a a +=,可得223a =, 当3n =时,123356a a a ++=,可得325a =, 所以猜想数列{}n a 的通项公式为221n a n =-,证明如下: 由题意,当2n ≥时,()()12132321n a a n a n -+++-=-②,-①②,得()212n n a -=,所以221n a n =-, 当1n =时,上式为12a =,这就是说,当1n =时,上式也成立. 因此,数列{}n a 的通项公式为221n a n =-; (2)由(1)知()12221n n n n a -=-,记2n n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则()0112123221n n S n -=⨯+⨯++-③,故()()12122123223221n n n S n n -=⨯+⨯++-+-④,-④③,得()()12122222211n n n S n -=-++++--,()()()121222211322312n nnn n --=-⨯+--=+--,所以数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和为()3223nn +-.20.阅读材料:(一)极点与极线的代数定义;已知圆锥曲线G :22220Ax Cy Dx Ey F ++++=,则称点P (0x ,0y )和直线l :()()00000Ax x Cy y D x x E y y F ++++++=是圆锥曲线G 的一对极点和极线.事实上,在圆锥曲线方程中,以0x x 替换2x ,以02x x+替换x (另一变量y 也是如此),即可得到点P (0x ,0y )对应的极线方程.特别地,对于椭圆22221x y a b+=,与点P (0x ,0y )对应的极线方程为00221x x y y a b +=;对于双曲线22221x y b b-=,与点P (0x ,0y )对应的极线方程为00221x x y y a b -=;对于抛物线22y px =,与点P (0x ,0y )对应的极线方程为()00y y p x x =+.即对于确定的圆锥曲线,每一对极点与极线是一一对应的关系. (二)极点与极线的基本性质、定理①当P 在圆锥曲线G 上时,其极线l 是曲线G 在点P 处的切线;②当P 在G 外时,其极线l 是曲线G 从点P 所引两条切线的切点所确定的直线(即切点弦所在直线); ③当P 在G 内时,其极线l 是曲线G 过点P 的割线两端点处的切线交点的轨迹. 结合阅读材料回答下面的问题:(1)已知椭圆C :22221(0)x y a b a b +=>>经过点P (4,0)C 的方程并写出与点P对应的极线方程;(2)已知Q 是直线l :142y x =-+上的一个动点,过点Q 向(1)中椭圆C 引两条切线,切点分别为M ,N ,是否存在定点T 恒在直线MN 上,若存在,当MT TN =时,求直线MN 的方程;若不存在,请说明理由.【答案】(1)221164x y +=,40x -= (2)存在,240x y +-=【分析】(1)根据题意和离心率求出a 、b ,即可求解;(2)利用代数法证明点Q 在椭圆C 外,则点Q 和直线MN 是椭圆C 的一对极点和极线.根据题意中的概念求出点Q 对应的极线MN 方程,可得该直线恒过定点T (2,1),利用点差法求出直线的斜率,即可求解.【详解】(1)因为椭圆22221(0)x y a b a b +=>>过点P (4,0),则2222140a b +=,得4a =,又c e a ==,所以c =,所以2224b a c =-=, 所以椭圆C 的方程为221164x y +=. 根据阅读材料,与点P 对应的极线方程为401164x y ⨯+=,即40x -=; (2)由题意,设点Q 的坐标为(0x ,0y ),因为点Q 在直线142y x =-+上运动,所以00142y x =-+,联立221164142x y y x ⎧+=⎪⎪⎨⎪=-+⎪⎩,得28240x x -+=,Δ64424320=-⨯=-<,该方程无实数根,所以直线142y x =-+与椭圆C 相离,即点Q 在椭圆C 外,又QM ,QN 都与椭圆C 相切,所以点Q 和直线MN 是椭圆C 的一对极点和极线.对于椭圆221164x y +=,与点Q (0x ,0y )对应的极线方程为001164x x y y +=, 将00142y x =-+代入001164x x y y +=,整理得()0216160x x y y -+-=,又因为定点T 的坐标与0x 的取值无关,所以2016160x y y -=⎧⎨-=⎩,解得21x y =⎧⎨=⎩,所以存在定点T (2,1)恒在直线MN 上. 当MT TN =时,T 是线段MN 的中点,设()()1122,,M x y N x y ,,直线MN 的斜率为k ,则2211222211641164x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减,整理得21122112442211616212y y x x x x y y -+⨯=-⋅=-⋅=--+⨯,即12k =-, 所以当MT TN =时,直线MN 的方程为()1122y x -=--,即240x y +-=.。

2022-2023学年北京市西城区高二上学期期末考试数学试题(解析版)

2022-2023学年北京市西城区高二上学期期末考试数学试题(解析版)

2022-2023学年北京市西城区高二上学期期末考试数学试题一、单选题1.直线的倾斜角等于( ) 0x y +=A . B . C . D .45 90 120 135 【答案】D【分析】由得.0x y +==-+y x【详解】由得,则倾斜角为. 0x y +==-+y x 1-135 故选:D2.抛物线的准线方程为( ) 24x y =A . B . C . D .1x ==1x -1y =1y =-【答案】D【分析】根据抛物线方程求出,进而可得焦点坐标以及准线方程. 2p =【详解】由可得,所以焦点坐标为,准线方程为:, 24x y =2p =()0,11y =-故选:D.3.在空间直角坐标系中,点,则( ) O xyz -()()1,3,0,0,3,1A B -A .直线坐标平面 B .直线坐标平面 AB xOy AB ⊥xOy C .直线坐标平面 D .直线坐标平面AB xOz AB ⊥xOz 【答案】C【分析】求出及三个坐标平面的法向量,根据与法向量的关系判断.ABAB【详解】,坐标平面的一个法向量是,坐标平面的一个法向量是(1,0,1)AB =--xOy (0,0,1)xOz ,坐标平面的一个法向量是,这三个法向量与都不平行,(0,1,0)yOz (1,0,0)AB但,点均不在坐标平面上,因此与坐标平面平行,(0,1,0)0AB ⋅=,A B xOz AB xOz 故选:C .4.在的展开式中,的系数为( ) 4(21)x +2x A .6 B .12C .24D .36【答案】C【分析】先求二项式展开式的通项公式,然后根据通项公式计算求解即可.【详解】展开式的通项公式, 4(21)x +444144C (2)12C k kk k k kk T x x---+=⋅=令,得,42k -=2k =所以在的展开式中,的系数为,4(21)x +2x 42242C 4624-=⨯=故选:C5.在长方体中,,则二面角的余弦值为( ) 1111ABCD A B C D -13,2,1AB BC AA ===1D BC D --ABCD【答案】D【分析】画出长方体,为二面角所成的平面角,求出1111ABCD A B C D -1D CD ∠1D BC D --的值即可得出答案.1cosD CD ∠【详解】长方体中,,,1111ABCD A B C D -13,2,1AB BC AA ===1CD ∴=,平面,平面,,BC CD ∴⊥BC ⊥ 11DCC D 1CD ⊂11DCC D 1BC CD ∴⊥又平面平面,1D BCBCD BC =为二面角所成的平面角,∴1D CD ∠1D BC D --11cos CD D CD CD ∠===所以二面角1D BC D --故选:D.6.若直线与圆相离,则实数的取值范围是( ) 340x y m ++=22(1)1x y ++=m A . B . ()(),82,∞∞--⋃+()(),28,∞∞--⋃+C . D .()(),22,∞∞--⋃+()(),88,∞∞--⋃+【答案】B【分析】根据直线与圆相离则圆心到直线的距离大于圆的半径即可求解.【详解】因为直线与圆相离,所以圆心到直线的距离,(1,0)-340x y m ++=1d r =解得或, 2m <-8m >故选:B.7.2名辅导教师与3名获奖学生站成一排照相,要求2名教师分别站在两侧,则不同的站法共有( ) A .种 B .种C .种D .种33A 332A 5353A A -35A 【答案】B【分析】先排好教师再排学生即可.【详解】2名教师排在两边有种排法,3名学生排在中间有 种排法,22A 2=33A 所以共有 种排法; 332A 故选:B.8.设,则“”是“直线与直线平行”的( ) a R ∈1a =1:20l ax y +=()2140+++=:l x a y A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】计算直线平行等价于或,根据范围大小关系得到答案.1a =2a =-【详解】直线与直线平行,则,或, 1:20l ax y +=()2140+++=:l x a y ()12a a +=1a =2a =-验证均不重合,满足.故“”是“直线与直线平行”的充分不必要条件. 1a =1:20l ax y +=()2140+++=:l x a y 故选:A.【点睛】本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.9.如图是一个椭圆形拱桥,当水面在处时,在如图所示的截面里,桥洞与其倒影恰好构成一个椭l 圆.此时拱顶离水面,水面宽,那么当水位上升时,水面宽度为( )2m 6m 1mA .BC .D 【答案】A【分析】根据题意可得桥洞与其倒影恰好构成的椭圆方程为:,求直线被椭圆所截22194x y +=1y =得的弦长,代入椭圆方程即可求解.【详解】以图中水面所在的直线为轴,水面的垂直平分线所在直线为轴,建立平面直角坐标x y 系,根据已知条件可知:桥洞与其倒影恰好构成的椭圆方程为:,22194x y +=当水位上升时,水面的宽度也即当时,直线被椭圆所截的弦长. 1m 1y =1y =把代入椭圆方程可得: 1y =x =所以当水位上升时,水面的宽度为, 1m 故选:.A 10.设点,,直线,于点,则的最大值为( ) ()1,0A ()2,3N -:210l x ay a ++-=AM l ⊥M MNA B .6C .4D .1【答案】B【分析】依题意可得直线的方程,再联立直线的方程,消后可得到的轨迹方程为AM l a M ,则所求的最大值为圆心到点的距离加上半径,由此即可求解.()()22111x y -++=MN ()2,3N -【详解】依题意可得直线的方程为,AM ()1y a x =-联立,消整理得,()2101x ay a y a x ++-=⎧⎨=-⎩a ()()22111x y -++=所以点的轨迹是以为圆心,1为半径的圆, M ()1,1-故的最大值为,MN 16=故选:B .二、填空题11.设,则过线段的中点,且与垂直的直线方程为__________. ()()3,2,1,4A B --AB AB 【答案】2310x y --=【分析】求出线段的中点坐标和斜率,利用点斜式写出直线方程.AB【详解】因为,所以线段的中点,且.()()3,2,1,4A B --AB ()1,1C --()423132AB k --==---所以与垂直的直线的斜率为, AB 112332ABk k =-=-=-所以过线段的中点,与垂直的直线方程为,即. AB AB ()2113y x +=+2310x y --=故答案为:2310x y --=12.在的展开式中,常数项为_____.61x x ⎛⎫+ ⎪⎝⎭【答案】20【分析】根据展开式的通项公式求解即可.【详解】在的展开式的通项公式为,61x x ⎛⎫+ ⎪⎝⎭6621661kk k k k k T C x C x x --+⎛⎫== ⎪⎝⎭所以令,解得,620k -=3k =所以常数项为3620C =故答案为:.2013.设为抛物线的焦点,点在抛物线上,点,且,则F 2:4C y x =A C ()3,0B AF BF =AB =__________.【答案】【分析】由题意可设,且满足,因为,由两点间的距离公式代入可求(),A x y 24y x ==2AF BF =出,即可求出.()1,2A ±AB 【详解】由题意可得,,,设, ()1,0F 2BF =(),A x y 且满足,此时, 24y x =0x >则,2AF ===解得:,此时,所以, 1x =2y =±()1,2A ±故AB ==故答案为:14.记双曲线的离心率为e ,写出满足条件“直线与C 无公共点”的e 2222:1(0,0)x y C a b a b -=>>2y x =的一个值______________.【答案】2(满足1e <≤【分析】根据题干信息,只需双曲线渐近线中即可求得满足要求的e 值. by x a =±02b a<≤【详解】解:,所以C 的渐近线方程为,2222:1(0,0)x y C a b a b -=>>b y x a=±结合渐近线的特点,只需,即,02b a <≤224b a ≤可满足条件“直线与C 无公共点”2y x =所以===c e a又因为,所以, 1e >1e <≤故答案为:2(满足 1e <≤15.如图,在正方体中,为棱的中点,是正方形内部(含1111ABCD A B C D -2,AB E =1DD F 11CDD C 边界)的一个动点,且平面.给出下列四个结论:1//B F 1A BE①动点的轨迹是一段圆弧;F ②存在符合条件的点,使得; F 11B F A B ⊥③三棱锥的体积的最大值为;11B D EF -23④设直线与平面所成角为,则的取值范围是. 1B F 11CDD C θtan θ2,⎡⎣其中所有正确结论的序号是__________. 【答案】②③④【分析】对于①,利用线线平行可证得平面平面,进而知动点的轨迹; 1//A BE 1MNB F 对于②,利用垂直的性质的可判断; 对于③,利用三棱锥的体积公式可求得;对于④,利用线面角的定义结合三角形可求解;【详解】对于①,分别取和的中点,连接,,,1CC 11D C ,N M MN 1MB 1NB 由正方体性质知,,平面,平面,所以1//MN A B 11//NB EA 1,MN NB ⊂/1A BE 11,A B EA ⊂1A BE 平面,又平面,,所以平面平面,1,//MN NB 1A BE 1,MN NB ⊂1MNB 1MN NB N = 1//A BE 1MNB 当在上运动时,有平面,故动点的轨迹是线段,故①错误; F MN 1//B F 1A BE F MN 对于②,当为线段中点时,,, F MN 11MB NB = 1B F MN ∴⊥又,,故②正确;1//MN A B 11B F A B ∴⊥对于③,三棱锥的体积,11B D EF -11111233D EF D EF V S B C S =⋅=又所以三棱锥的体积的最大值为,故③正确;1max 12112D EF S =⨯⨯=23对于④,连接,则与平面所成角,则, 11,B F C F 1B F 11CDD C 11FC Bθ=∠12tan C Fθ=,所以的取值范围是,故④正确; 11C F≤tan θ2,⎡⎣故正确结论的序号是①③④, 故答案为:②③④三、解答题16.从4男3女共7名志愿者中,选出3人参加社区义务劳动. (1)共有多少种不同的选择方法?(2)若要求选中的3人性别不能都相同,求共有多少种不同的选择方法? 【答案】(1)35 (2)30【分析】(1)7名志愿者中选出3人共有种;37C(2)选中的3人性别不能都相同,即为1男2女或2男1女,即.12214343C C C C +【详解】(1)7名志愿者中选出3人共有种; 37765C 353´´==!(2)选中的3人性别不能都相同,即为1男2女或2男1女,则有12214343C C C C 436330+=´+´=种.17.如图,在四棱锥中,平面,底面为正方形,为线段的中P ABCD -PA ⊥ABCD ABCD E AB 点,.2PA AB ==(1)求证:;BC PE ⊥(2)求平面与平面夹角的余弦值. PAB PBD 【答案】(1)证明见解析【分析】(1)根据线面垂直的性质定理可得,再根据底面是正方形可证明线面垂直,即可PA BC ⊥得;(2)建立空间直角坐标系,利用空间向量求得平面与平面的法向量,即可BC PE ⊥PAB PBD 求得二面角的余弦值【详解】(1)由平面,根据线面垂直的性质定理可知, PA ⊥ABCD PA BC ⊥又因为底面为正方形,所以,ABCD AB BC ⊥又因为,且PA,BA 含于平面PAB,所以平面;PA BA A = BC ⊥PAB 为线段的中点,平面, E AB PE ⊂PAB 所以,BC PE ⊥(2)根据题意可知,以A 点为坐标原点,分别以AB 、AD 、AP 所在直线为轴、轴、轴建立x y z 空间直角坐标系,如下图所示:则;(0,0,0),(2,0,0),(0,2,0),(0,0,2)A B D P 则,(2,0,2),(0,2,2)PB PD =-=-设平面的一个法向量为,PBD (,,)n x y z =得,令可得,,即;·220·220n PB x z n PD y z ⎧=-=⎪⎨=-=⎪⎩ 1z =1,1x y ==(1,1,1)n = 易知,是平面的一个法向量, (0,2,0)AD =PAB 设平面与平面的夹角为,PAB PBD θ则cos cos ,n AD n AD n AD θ==== 所以,平面与平面PAB PBD 18.在平面直角坐标系中,,曲线是由满足直线与的斜率之积等于定值()()1,0,1,0A B -C PA PB 的点组成的集合.()λλ∈R P (1)若曲线是一个圆(或圆的一部分),求的值;C λ(2)若曲线是一个双曲线(或双曲线的一部分),且该双曲线的离心率,求的取值范围. C e ≥λ【答案】(1)1-(2) [)1+∞,【分析】(1)由题意知,的斜率存在,设代入斜率公式,再由斜率之积为定值,化,PA PB (),P x y 简满足圆的条件即可求得的值.λ(2)由题意知,的斜率存在,设代入斜率公式,再由斜率之积为定值,化简满足双,PA PB (),Px y 曲线的条件及离心率的取值范围.e ≥λ【详解】(1)设且,,由题意知,的斜率存在, (),P x y 1x ≠±()()1,0,1,0A B -,PA PB 则即, ()0011PA PBy y k k x x λ--⋅=⋅=---()()211y x x λ=-+可化为,()()2211y x x x λλλ=+-=-()1x ≠±因为曲线是一个圆(或圆的一部分),所以,C ()()2211y x x x λλλ=+-=-可化为,220x y λλ-++=所以解得.140λλ-=⎧⎨->⎩1λ=-(2)设且,,由题意知,的斜率存在, (),P x y 1x ≠±()()1,0,1,0A B -,PA PB 则即, ()0011PA PBy y k k x x λ--⋅=⋅=---()()211y x x λ=-+可化为,()()2211y x x x λλλ=+-=-()1x ≠±因为曲线是一个双曲线(或双曲线的一部分),所以,C ()()2211y x x x λλλ=+-=-可化为,()210yx λλ-=≠所以, 222221,,1a b c a b λλ===+=+因为 ce a=≥所以,22211c e a λ+==≥1λ≥所以的取值范围为. λ[)1+∞,19.已知椭圆的一个焦点为,其长轴长是短轴长的2倍.2222:1(0)x y C a b a b +=>>)F(1)求椭圆的方程;C (2)记斜率为1且过点的直线为,判断椭圆上是否存在关于直线对称的两点?若存在,F l C l ,A B 求直线的方程;若不存在,说明理由.AB 【答案】(1)2214x y +=(2)不存在【分析】(1)由及,根据,解得,写出方程.c 2a b =222a b c =+,a b(2)先假设存在,设出直线的方程,与椭圆方程联立,求得中点坐标,代入,求得,验证AB l m ,得结论不存在关于直线对称的两点.Δ0<l 【详解】(1)2222244()c a b a b a c ==∴==-24,2,1a a b ∴===椭圆的方程 C 2214x y +=(2)假设存在关于对称的两点l ,A B的方程为:l y x = AB y x m =-+直线与椭圆的方程联立得 AB C 2214y x m x y =-+⎧⎪⎨+=⎪⎩2258440x mx m -+-=设1122(,),(,)A x y B x y 则, 12121282,()255m m x x y y x x m +=+=-++=的中点代入AB 4(,55mm y x =解得 m =此时,216800m ∆=-+<所以椭圆上不存在关于直线对称的两点.C l ,A B 20.如图,在四棱柱中,平面,1111ABCD A B C D -1AA ⊥1,,ABCD AB CD AD CD ==∥为线段的中点,再从下列两个条件中选择一个作为已知.12,AA AB E ==1AA 条件①:;条件②:AD BE ⊥BC =(1)求直线与所成角的余弦值;CE 11B D (2)求点到平面的距离;1C BCE (3)已知点在线段上,直线与平面的长. M 1CC EM 11BCCB CM 【答案】(3)的长为或. CM 1232【分析】选①或②,都能得到,,后如图以为原点建立空间直角坐标系.则可利用向量DA AB ⊥A 方法求线线角,点面距离,面面角解决问题.【详解】(1)若选择①,因平面ABCD ,平面ABCD ,则,1AA ⊥DA ⊂1DA AA ⊥又,平面,平面,,则AD BE ⊥1AA ⊂11ABB A EB ⊂11ABB A 1∩AA EB E =DA ⊥平面,又平面,则;11ABB A AB ⊂11ABB A DA AB ⊥若选择②,做,交AB 于F ,又,则四边形DCFA 是平行四边形,则CF AD ∥AB CD ,又,则.1CD CF AD AF ====2AB =1FB =则在中,,得,又,则.CFB 222CF FB BC +=CF AB ⊥CF AD ∥AD AB ⊥故,则如图建立以A 为原点的空间直角坐标系.11,,DA AA DA AB AA AB ⊥⊥⊥则,()()()()11110001102022,,,,,,,,,,,C E D B 得,则直线与所成角的余弦值为: ()()11111120,,,,,CE B D =--=-CE 11B D(2)因,()()()()1020110001112,,,,,,,,,,,B C E C 则. ()()()1110111002,,,,,,,,CB CE CC =-=--=设平面的法向量为,则, BCE ()111,,x n y z = 111110000x y z n CE x y n CB ⎧--+=⋅=⎧⎪⇒⎨⎨-+=⋅=⎩⎪⎩ 取,则求点到平面的距离()1,1,2n = 1C BCE d (3)因点在线段上,则设,其中. M 1CC ()11,,M t []0,2t ∈又,则.又, ()0,0,1E ()111,,EM t =-()()11,1,00,0,2CB CC =-= ,设平面法向量为,则, 11BCC B ()222,,m x y z = 222100200x y m CB z m CC ⎧-+=⎧⋅=⎪⇒⎨⎨=⋅=⎪⎩⎩取,则直线与平面所成角的正弦值为: ()1,1,0m =u r EM 11BCC B或.12EM mtEM m⋅==⇒=⋅32t=得线段的长为或.CM123221.已知椭圆的焦点在轴上,且离心率为.22:116x yCt t+=+-x12(1)求实数的值;t(2)若过点可作两条互相垂直的直线,且均与椭圆相切.证明:动点组成的集合(),P m n12,l l12,l l C P是一个圆.【答案】(1)3t=(2)见解析【分析】(1)根据椭圆的离心率即可求解,(2)联立直线与椭圆的方程,根据相切得判别式为0,进而代入切线中的,化简k k,km n b¢=-+=即可求解.【详解】(1)椭圆的焦点在轴上,且离心率为,所以,解22:116x yCt t+=+-x12()216114t tet+--==+得,3t=(2)当时,椭圆方程为,3t=22143x y+=设与椭圆相切,且斜率存在的直线方程为,y k x b'=+所以,()222223484120143y k x bk x k bx bx y''=+⎧⎪⇒+++-=⎨+=⎪⎩'由于相切,所以,化简得—①,()()()222=84344120k b k b¢¢D-+->22430k b¢-+=设过点且斜率为的直线方程为,即,(),P m n0k'≠()y k x m n¢=-+y kx km n=-+所以将代入①得,k k,km n b¢=-+=()22430k km n--++=化简得—②,22224230k n kmn k m -+-+=将代入②得,化简得—③, 1k -22221114230n mn m k k k æöç÷-+--+=ç÷èø22224230n k kmn m k ---+=由②③相加得, ()()()2222227117k k m n m n +=++Þ+=当其中一条切线无斜率时,此时,也满足,12,l l (2P ,±227m n +=综上可知:动点组成的集合是一个圆,且圆的方程为(),P m n 227m n +=【点睛】根据直线与曲线相切,转化成判别式为0,进而得到等量关系式,可将关系式进行适当的变形,根据弦长公式,或者利用向量共线等方式,化简运算即可求解.。

张家口市2022-2023学年度高二年级第一学期期末考试高二数学答案

张家口市2022-2023学年度高二年级第一学期期末考试高二数学答案

张家口市2022-2023学年度高二年级第一学期期末考试数学参考答案及评分标准一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.D 【解析】由l 1⊥l 2,可得5a -6=0,所以a =65,故选D. 2.B 【解析】将点(2,4)代入y 2=2px ,则4p =16,得p =4,故准线方程为x =-2,故选B.3.A 【解析】由题意椭圆C 的长半轴长为a =50=52,短半轴长为b =30,又a 2=b 2+c 2,所以半焦距c =20=25,所以椭圆C 的离心率e =c a =105,故选A. 4.B 【解析】圆C 1的标准方程为(x -2)2+()y -32=4,所以圆心为(2,3),半径为2.圆C 2是以(-1,-1)为圆心,半径为3的圆,故||C 1C 2=()2+12+()3+12=5=2+3,所以两圆外切,故选B.公众号高中僧试题下载5.A 【解析】如图,以D 为坐标原点,建立空间直角坐标系,所以D (0,0,0),A ()3,0,0,B ()3,3,0,B 1()3,3,3.又BE →=2ED →,AF →=2FB →1,所以E ()1,1,0,F ()3,2,2,故||EF =()3-12+()2-12+()2-02=3.故选A. 6.B 【解析】设首项为第1组,接下来两项为第2组,再接下来三项为第3组,以此类推.设第k 组的项数为k ,则前k 组的项的个数之和为k (k +1)2.又13×(13+1)2=91,14×(14+1)2=105,所以第100项为第14组的第9项,所以a 100=38.故选B. 7.C 【解析】设点P (x ,y )为直线x +y =0上的动点,又x 2+y 2-2x -2y +2+(x -2)2+y 2=(x -1)2+(y -1)2+(x -2)2+y 2. 设点M (1,1),N (2,0),则点M ′(-1,-1)为点M (1,1)关于直线x +y =0的对称点,故|PM |=|PM ′|,且|M ′N |=(2+1)2+(0+1)2=10,所以|PM |+|PN |=(x -1)2+(y -1)2+(x -2)2+y 2=|PM ′|+|PN |≥|M ′N |=10, 所以x 2+y 2-2x -2y +2+(x -2)2+y 2的最小值为10.故选C.8.C 【解析】由题意,得a 5a 8=a 6a 7=-18.又a 5+a 8=-3,所以联立⎩⎨⎧a 5a 8=-18,a 5+a 8=-3,解得⎩⎪⎨⎪⎧a 5=3,a 8=-6或⎩⎪⎨⎪⎧a 5=-6,a 8=3. 当a 5=3,a 8=-6时,a 8a 5=-2=q 3,所以a 2=a 5q 3=-32,a 11=a 8q 3=12, 所以a 2+a 11=212; 当a 5=-6,a 8=3时,a 8a 5=-12=q 3,所以a 2=a 5q 3=12,a 11=a 8q 3=-32, 所以a 2+a 11=212.故选C. 二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.BCD 【解析】由x -x 0y -y 0=2可知y ≠y 0,所以x -x 0y -y 0=2不过点P ()x 0,y 0且斜率为12,所以A 错误;直线x -2y -4=0过点A ()4,0,B ()0,-2,a =12BA →,所以a =()2,1是直线x -2y -4=0的方向向量,所以B 正确;设以A ()4,1,B ()1,-2为直径的圆上的任意点为P ()x ,y ,则P A →⊥PB →,所以P A →·PB →=0,即()x -4(x -1)+()y -1()y +2=0,所以C 正确;因为()m +1×2+()2m -1×1-1-4m =0,所以D 正确.10.BC 【解析】设{a n }的公差为d .因为a 9+a 10+a 11=3a 10>0,所以a 10>0.又a 9+a 12=a 10+a 11<0,所以a 11=a 10+d <0,故d <0,所以A 错误;因为d <0,所以a 1>a 2>a 3>a 4>a 5>a 6>a 7>a 8>a 9>a 10>0>a 11>…>a n ,所以当n =10时,S n 最大,所以B 正确;因为S 19=19(a 1+a 19)2=19×2a 102>0,S 20=20(a 1+a 20)2=20(a 10+a 11)2<0, S 21=21(a 1+a 21)2=21×2a 112<0, 所以C 正确,D 错误.c a=34,△F1PF2的周长为||PF1+||PF2+||F1F211.ABD【解析】设焦距为2c,由题意,得=2a +2c =14,解得a =4,c =3.又a 2=b 2+c 2,所以b =7,故椭圆C 的方程为x 216+y 27=1,所以A 正确;因为||PF 1+||PF 2=2a =8,所以8=||PF 1+||PF 2≥2||PF 1·||PF 2,当且仅当|PF 1|=|PF 2|=4时等号成立,所以||PF 1·||PF 2≤16,所以B 正确;设△F 1PF 2内切圆的半径为r ,则S △F 1PF 2=12||F 1F 2||y p =12r ()||PF 1+||PF 2+||F 1F 2, 所以r =3||y p 7.又||y p ≤7,所以r ≤377,所以S ≤9π7,所以C 错误; 因为cos ∠F 1PF 2=||PF 12+||PF 22-||F 1F 222||PF 1·||PF 2 =()||PF 1+||PF 22-2||PF 1·||PF 2-||F 1F 222||PF 1·||PF 2=-1+14||PF 1·||PF 2. 又||PF 1·||PF 2≤16,所以-1+14||PF 1·||PF 2≥-18,所以D 正确. 12.AB 【解析】如图,以点D 为坐标原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系D -xyz .由题意可得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,0),C 1(0,2,22),D 1(0,0,22),B 1(2,2,22),所以BC →=(-2,0,0),BB 1→=(0,0,22),D 1C →=(0,2,-22),AB →=(0,2,0),D 1B →=(2,2,-22),DB 1→=(2,2,22),MC 1→=(0,1,22),所以BP →=λBC →+μBB 1→=λ(-2,0,0)+μ(0,0,22)=(-2λ,0,22μ).当λ=12,μ=12时,AP →=AB →+BP →=(0,2,0)+(-1,0,2)=(-1,2,2), 所以异面直线AP 与DB 1所成角的余弦值为||cos 〈AP →,DB 1→〉=|AP →·DB 1→||AP →|·|DB 1→|=|-2+4+4|1+4+2·4+4+8=3714,所以A 正确; 当μ=12时,BP →=(-2λ,0,2), AP →=AB →+BP →=(0,2,0)+(-2λ,0,2)=(-2λ,2,2),故AP →·D 1C →=(-2λ,2,2)·(0,2,-22)=0,所以B 正确;当λ=12时,BP →=(-1,0,22μ),AP →=AB →+BP →=(0,2,0)+(-1,0,22μ)=(-1,2,22μ),D 1P →=D 1B →+BP →=(2,2,-22)+(-1,0,22μ)=(1,2,-22+22μ),故AP →·D 1P →=(-1,2,22μ)·(1,2,-22+22μ)=0,得8μ2-8μ+3=0无解,所以C 错误;当λ=1时,BP →=(-2,0,22μ),AP →=AB →+BP →=(0,2,0)+(-2,0,22μ)=(-2,2,22μ),故MC 1→·AP →=2+8μ=0,解得μ=-14∉[0,1],所以D 错误. 三、填空题:本题共4小题,每小题5分,共20分. 13.-58 【解析】由a ∥b ,得3λ-2=2λ=λ8,所以λ=-4,故a =(3,2,-4),b =(-6,-4,8),故a ·b =3×()-6+2×()-4+()-4×8=-58.14.x 216-y 248=1 【解析】直线l 与双曲线C 有唯一交点P ,则直线l 与双曲线C 的渐近线平行,所以b a=tan 60°=3, 故b =3a ,所以c 2=a 2+b 2=4a 2.又|FP |=6,所以P (3-c ,33),所以(3-c )2a 2-(33)2b 2=(3-2a )2a 2-(33)23a 2=1,解得a =4,所以b =43,所以双曲线C 的方程为x 216-y 248=1. 15.43【解析】当n =1时,S n =S 1=1, 又当n ≥2时,a n =1n 2+3n +2=1()n +1()n +2=1n +1-1n +2, 所以S n =1+13-14+14-15+…+1n +1-1n +2=43-1n +2<43,所以λ≥43,故λ的最小值为43. 16.x -3y -1=0 【解析】圆E 的标准方程为(x -1)2+(y -2)2=6,所以E ()1,2.由题意,得P A ⊥AE ,PB ⊥BE ,所以P ,A ,E ,B 四点在以PE 为直径的圆上,且直线AB 为该圆与圆E 的交线,以PE 为直径的圆的方程为(x -1)(x -2)+(y -2)()y +1=0,化简得x 2+y 2-3x -y =0,所以直线AB 的方程为x 2+y 2-2x -4y -1-()x 2+y 2-3x -y =0,即x -3y -1=0. 另解:圆E 的标准方程为(x -1)2+(y -2)2=6,由切点弦方程可知,直线AB 的方程为()2-1(x -1)+()-1-2(y -2)=6,化简得x -3y -1=0.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)解:(1)设数列{a n }的首项为a 1,公差为d .由S 21=21a 1+21×202d =0,得a 1+10d =0.………………………………………………2分 又a 8=a 1+7d =6,所以d =-2,a 1=20,………………………………………………3分 所以a n =20+()n -1×()-2=-2n +22.…………………………………………………4分(2)由a n =-2n +22≥0,解得n ≤11,……………………………………………………5分所以数列||a n =⎩⎨⎧a n ,n ≤11,-a n ,n >11,………………………………………………………………6分 故T 50=a 1+a 2+…+a 11-a 12-a 13-…-a 50………………………………………………7分 =-()a 1+a 2+…+a 11+a 12+a 13+…+a 50+2()a 1+a 2+…+a 11=-S 50+2S 11…………………………………………………………………………………9分=-⎣⎡⎦⎤50×20+50×492×(-2)+2×⎣⎡⎦⎤11×20+11×102×(-2) =1450+220=1670.…………………………………………………………………………10分18.(本小题满分12分)(1)解:圆E 是以E (2,3)为圆心,3为半径的圆,…………………………………………1分 当直线l 过圆E 的圆心时,||AB 最大,………………………………………………………2分 所以3=2k -1,解得k =2,…………………………………………………………………3分 所以当||AB 最大时,直线l 的方程为y =2x -1. ……………………………………………4分(2)证明:设A ()x 1,y 1,B ()x 2,y 2,由题意知k 存在,联立⎩⎪⎨⎪⎧y =kx -1,(x -2)2+()y -32=9,得()k 2+1x 2-()8k +4x +11=0,………………………6分 所以x 1+x 2=8k +4k 2+1,x 1x 2=11k 2+1,且()8k +42-44()k 2+1>0.……………………………8分 因为DA →·DB →=()x 1,y 1+1·()x 2,y 2+1=x 1x 2+()y 1+1()y 2+1,…………………………10分 y 1=kx 1-1,y 2=kx 2-1,所以DA →·DB →=()k 2+1x 1x 2=11,即DA →·DB →为定值.…………………………………………12分19.(本小题满分12分)解:(1)以该桥抛物线拱形部分对应抛物线的顶点为原点,建立直角坐标系.设对应抛物线的方程为x 2=2py (p <0).………………………………………………………1分 又点(32,-32)在抛物线上,所以322=2p ×()-32,……………………………………3分 所以p =-16,即||p =16,故抛物线的焦准距为16米.……………………………………4分(2)由题意,得|OF |=8米,|FP |=16米,……………………………………………………5分所以tan ∠POF =|FP ||OF |=168=2.………………………………………………………………6分 又PO ⊥PQ ,所以tan ∠QPF =tan ∠POF =2,……………………………………………8分所以tan ∠QPF =|QF ||PF |=|QF |16=2,所以|QF |=32米.………………………………………10分 又拱形最高点与桥面距离为32米,所以桥面与水面的距离d =|OF |=8米,所以桥面与水面的距离为8米.……………………………………………………………12分20.(本小题满分12分)解:(1)由b n =a 2n -1,得b 1=a 1=2,b n +1=a 2n +1.…………………………………………1分 又a 2k =a 2k -1+2,a 2k +1=2a 2k ,k ∈N *,……………………………………………………2分故a 2k +1=2()a 2k -1+2=2a 2k -1+4,…………………………………………………………3分所以b n +1=2b n +4,故b n +1+4b n +4=2.…………………………………………………………4分 又b 1+4=6,…………………………………………………………………………………5分 所以数列{}b n +4是以6为首项,2为公比的等比数列,所以b n +4=6×2n -1=3×2n ,故b n =3×2n -4.……………………………………………6分(2)nb n =3n ·2n -4n .……………………………………………………………………………7分 设c n =n ·2n ,其前n 项和为T n ,则T n =1×2+2×22+…+n ·2n ,…………………………………………………………8分 2T n =1×22+2×23+…+n ·2n +1,所以-T n =2+22+23+…+2n -n ·2n +1=-2+2n +1-n ·2n +1,…………………………9分 所以T n =()n -12n +1+2,…………………………………………………………………10分 所以S n =3T n -4()1+2+…+n =3()n -12n +1+6-4×n ()n +12=()3n -32n +1-2n 2-2n +6. ………………………………………………………………………………………………12分21.(本小题满分12分)(1)证明:如图,以点D 为坐标原点,DA 为x 轴,DC 为y 轴,过D 垂直于平面ABCD 的直线为z 轴,建立空间直角坐标系D -xyz ,故D ()0,0,0,A ()4,0,0,B ()4,4,0,C ()0,4,0.…………………………………1分因为平面ADP ⊥平面ABCD ,设P ()a ,0,c ,所以PD =a 2+c 2=2,PB =()a -42+()0-42+c 2=27, ………………………2分 所以a 2+c 2=4,a 2+c 2-8a +32=28,所以a =1,c =±3,由图可得c >0,所以c =3,所以P ()1,0,3,………………………………………3分所以AP →=()-3,0,3,DP →=()1,0,3.又DC →=()0,4,0,所以AP →·DP →=-3+3=0,AP →·DC →=0,………………………………4分所以AP →⊥DP →,AP →⊥DC →,又CD ∩PD =D ,且CD ⊂平面CDP ,PD ⊂平面CDP ,故AP ⊥平面CDP .……………………………………………………………………………5分(2)解:设AE →=λAC →,0≤λ≤1,则E ()4-4λ,4λ,0,…………………………………6分 所以PE →=()3-4λ,4λ,-3.又直线PE 与直线DC 所成的角为π4,所以||cos 〈PE →,DC →〉=16λ4()3-4λ2+()4λ2+3=22, 解得λ=12,……………………………………………………………………………………7分 故E ()2,2,0,所以DE →=()2,2,0.设m =(x 1,y 1,z 1)为平面PDE 的法向量,则有⎩⎪⎨⎪⎧m ·DE →=0,m ·DP →=0,即⎩⎨⎧2x 1+2y 1=0,x 1+3z 1=0,可取m =(1,-1,-33).………………………………………………8分 设n =(x 2,y 2,z 2)为平面P AC 的法向量,则有⎩⎪⎨⎪⎧n ·AC →=0,n ·AP →=0,即⎩⎨⎧-4x 2+4y 2=0,-3x 2+3z 2=0,可取n =(1,1,3),………………………………………………10分 ∴|cos 〈m ,n 〉|=⎪⎪⎪⎪m ·n ||m ||n =10535,所以平面PDE 与平面P AC 夹角的余弦值为10535.………………………………………12分 22.(本小题满分12分)解:(1)设动圆的圆心为M ()x ,y ,半径为r ,则||ME =r +32,||MF =r -2,所以||ME -||MF =42<||EF =6.……………………………………………………………2分 由双曲线定义可知,M 的轨迹是以E ,F 为焦点,实轴长为42的双曲线的右支, 所以2a =42,2c =6,即a =22,c =3,所以b 2=c 2-a 2=1,所以曲线C 的方程为x 28-y 2=1,x ≥2 2.…………………………………………………4分 (2)选择①②⇒③:设直线l :y =kx +m ,A ()x 1,y 1,B ()x 2,y 2,联立⎩⎪⎨⎪⎧y =kx +m ,x 28-y 2=1,得()1-8k 2x 2-16mkx -8m 2-8=0,……………………………………5分 所以x 1+x 2=-16mk 8k 2-1,x 1x 2=8m 2+88k 2-1.………………………………………………………6分 因为P (4,1),k 1+k 2=0,所以y 2-1x 2-4+y 1-1x 1-4=0, 即()x 1-4()kx 2+m -1+()x 2-4()kx 1+m -1=0, ………………………………………7分 即2kx 1x 2+()m -1-4k ()x 1+x 2-8()m -1=0,所以2k ×8m 2+88k 2-1+()m -1-4k ⎝⎛⎭⎫-16mk 8k 2-1-8()m -1=0,………………………………8分 化简得8k 2+2k -1+m ()2k +1=0,即()2k +1()4k -1+m =0,所以k =-12或m =1-4k .…………………………………………………………………10分 当m =1-4k 时,直线l :y =kx +m =k ()x -4+1过点P ()4,1,与题意不符,舍去,故k =-12,所以③成立. ……………………………………………………………………12分 选择①③⇒②:设直线l :y =-12x +m ,A ()x 1,y 1,B ()x 2,y 2, 联立⎩⎨⎧y =-12x +m ,x 28-y 2=1,得x 2-8mx +8m 2+8=0,……………………………………………5分所以x 1+x 2=8m ,x 1x 2=8m 2+8,…………………………………………………………6分所以k 1+k 2=y 2-1x 2-4+y 1-1x 1-4……………………………………………………………………7分 =-12x 2+m -1x 2-4+-12x 1+m -1x 1-4………………………………………………………………8分 =-1+m -3x 2-4+m -3x 1-4=-1+()m -3()x 1+x 2-8x 1x 2-4()x 1+x 2+16…………………………………………………………………10分 =-1+()m -3()8m -88m 2+8-4×8m +16=0,高二数学参考答案及评分标准 第 页(共10页) 10 所以②成立.…………………………………………………………………………………12分 选择②③⇒①:设直线l :y =-12x +m ,A ()x 1,y 1,B ()x 2,y 2,P (x 0,y 0), 联立⎩⎨⎧y =-12x +m ,x 28-y 2=1,得x 2-8mx +8m 2+8=0,……………………………………………5分 所以x 1+x 2=8m ,x 1x 2=8m 2+8.……………………………………………………………6分由k 1+k 2=y 2-y 0x 2-x 0+y 1-y 0x 1-x 0=-12x 2+m -y 0x 2-x 0+-12x 1+m -y 0x 1-x 0=0,…………………………7分 得()x 1-x 0⎝⎛⎭⎫-12x 2+m -y 0+()x 2-x 0⎝⎛⎭⎫-12x 1+m -y 0=0, 即-x 1x 2+⎝⎛⎭⎫m -y 0+12x 0()x 1+x 2-2x 0()m -y 0=0,………………………………………8分 所以-8m 2-8+8m ×⎝⎛⎭⎫m -y 0+12x 0-2x 0()m -y 0=0, 故2m ()x 0-4y 0+2x 0y 0-8=0,……………………………………………………………9分 所以00002200402801.8x y x y x y ⎧⎪-=⎪⎪-=⎨⎪⎪-=⎪⎩,,………………………………………………………………………10分 又x 0>0,解得⎩⎨⎧x 0=4,y 0=1,所以P ()4,1,①成立.……………………………………………12分。

高二数学期末考试题及答案

高二数学期末考试题及答案

高二数学期末考试题及答案一、选择题1. 设集合$A=\{x \mid x\text{是正整数},1\leqslant x\leqslant 10\}$,若集合$B$表示$A$中能除以5但不能除以4,且单位数为偶数的数所构成的集合,则集合$B$的元素个数是()。

A. 1B. 2C. 3D. 42. 已知实数$x$满足$x+\frac{1}{x}=3$,则$x^n+\frac{1}{x^n}$的值为()。

A. $n$B. $3n$C. $3^n$D. $2^n$3. 已知函数$f(x)=\log_2(x-a)+\log_2(x-b)$,其中$a>b$,则函数的定义域为()。

A. $[a,+\infty)$B. $[b,a]$C. $[a,+\infty)\backslash [b,+\infty)$D. $(-\infty,a)\backslash [b,a]$4. 摩天轮在运行过程中,以正比例的方式将载客量从40人逐渐增加到80人,然后又逐渐减少到40人。

从摩天轮开始运行到载客量减半,共用去了旋转的$\frac{1}{4}$的时间。

假设摩天轮的一次旋转用时不变,那么完成一个旋转用时是()。

A. 8分钟B. 10分钟C. 12分钟D. 16分钟5. 已知数列$\{a_n\}$满足$a_1=1$,$a_n=\frac{a_{n-1}}{n}+\frac{1}{n(n+1)}$,则数列$\{a_n\}$的极限值为()。

A. 0B. 1C. $\frac{1}{2}$D. $\frac{2}{3}$二、填空题6. 若直线$2x+y-3=0$与圆$x^2+y^2-4x-2y+4=0$相切,则切点坐标为()。

7. 已知函数$f(x)=(x^2-2x)e^{-mx}+c$,若曲线$y=f(x)$过点$(0,1)$且切线斜率为1,则$m$的值为()。

8. 设$A$,$B$是两个$n$阶矩阵,且$AB=BA$,则$|AB-BA|$的值为()。

高二数学上学期期末考试试题(及答案)

高二数学上学期期末考试试题(及答案)

高二数学上学期期末考试试题(及答案)高二数学上学期期末考试试题及答案第I卷(选择题)1.在三角形ABC中,已知a+b=c-2ab,则C=()。

A。

2π/3 B。

π/3 C。

π D。

3π/4改写:在三角形ABC中,已知a+b=c-2ab,求C的大小。

答案:B2.在三角形ABC中,已知cosAcosB=p,求以下条件p的充要条件。

A。

充要条件B。

充分不必要条件C。

必要不充分条件D。

既非充分也非必要条件改写:在三角形ABC中,已知cosAcosB=p,求p的充要条件。

答案:B3.已知等比数列{an}中,a2a10=6a6,等差数列{bn}中,b4+b6=a6,则数列{bn}的前9项和为()。

A。

9 B。

27 C。

54 D。

72改写:已知等比数列{an}和等差数列{bn}的一些条件,求{bn}的前9项和。

答案:C4.已知数列{an}的前n项和Sn=n+2n,则数列{a1}的前n 项和为()。

A。

n^2/(n-1) B。

n(n+1)/(2n+1) C。

3(2n+3)/(2n+1) D。

3(n+1)/(n-1)改写:已知数列{an}的前n项和Sn=n+2n,求数列{a1}的前n项和。

答案:B5.设 2x-2y-5≤2,3x+y-10≥3,则z=x+y的最小值为()。

A。

10 B。

8 C。

5 D。

2改写:已知不等式2x-2y-5≤2和3x+y-10≥3,求z=x+y的最小值。

答案:C6.对于曲线C:x^2/4+y^2/k^2=1,给出下面四个命题:①曲线C不可能表示椭圆;②“14”的必要不充分条件;④“曲线C表示焦点在x轴上的椭圆”是“1<k<5”的充要条件。

其中真命题的个数为()。

A。

0个 B。

1个 C。

2个 D。

3个改写:对于曲线C:x^2/4+y^2/k^2=1,判断下列命题的真假,并统计真命题的个数。

答案:C7.对于曲线C:x^2+y^2=1与直线y=k(x+3)交于点A,B,则三角形ABM的周长为()。

浙江省杭州2023-2024学年高二上学期期末考试数学试题含答案

浙江省杭州2023-2024学年高二上学期期末考试数学试题含答案

杭州2023学年第一学期高二年级期末数学试卷(答案在最后)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线24x y =的准线方程为()A. 1x =-B. 1x = C. 1y =- D. 1y =【答案】C 【解析】【分析】根据抛物线标准方程即可求解.【详解】由题知,抛物线方程为24x y =,则其准线方程为1y =-.故选:C2.圆2240x y x +-=上的点到直线3490x y -+=的距离的最小值为()A.1 B.2C.4D.5【答案】A 【解析】【分析】求出圆的圆心和半径,利用点到直线的距离以及半径关系,求解即可.【详解】由2240x y x +-=,得22(2)4x y -+=,圆心为(2,0),半径2r =,圆心到直线3490x y -+=的距离3d ==,故圆上的点到直线3490x y -+=的距离的最小值为1d r -=.故选:A3.设平面α内不共线的三点A ,B ,C 以及平面外一点P ,若平面α内存在一点D 满足()2PD xPA x =+- 3PB xPC +,则x 的值为()A.0B.19-C.13-D.23-【答案】C【解析】【分析】由空间向量共面定理构造方程求得结果.【详解】 空间A B C D 、、、四点共面,但任意三点不共线,231x x x ∴+-+=,解得:13x=-.故选:C4.已知ABC 的三个顶点分别为()1,0,0A ,()0,2,0B ,()2,0,2C ,则BC 边上的中线长为()A.1B.C.D.2【答案】B 【解析】【分析】利用中点坐标公式与空间两点的距离公式即可得解.【详解】因为()0,2,0B ,()2,0,2C ,所以BC 的中点为()1,1,1,又()1,0,0A ,则BC =.故选:B.5.设{}n a 是公差为d 的等差数列,n S 是其前n 项和,且10a <,48S S =,则()A.0d <B.70a = C.120S = D.7n S S ≥【答案】C 【解析】【分析】根据等差数列的通项公式和前n 项求和公式,结合选项计算依次判断即可.【详解】A :由48S S =,得1143874822a d a d ⨯⨯+=+,则1112a d =-,又10a <,所以11102a d =-<,得0d >,故A 错误;B :7111166022a a d d d d =+=-+=>,故B 错误;C :121121111121266022S a d d d ⨯=+=-⨯+=,故C 正确;D :7177711135()()22222S a a d d d -=+=-+=,21(1)1222n n n n nS na d d --=+=,由21235n n -≥-,得15n ≤≤或7n ≥,即当15n ≤≤或7n ≥时,有7n S S ≥,故D 错误.故选:C6.用数学归纳法证明:()111212322n n f n +=++++≥ (*n ∈N )的过程中,从n k =到1n k =+时,()1f k +比()f k 共增加了()A.1项B.21k -项C.12k +项D.2k 项【答案】D 【解析】【分析】分别计算出()1f k +和()f k 的项数,进而作差即得结论.【详解】因为()1111232n f n =++++ ,所以()1111232k f k =++++ ,共2k 项,则()11111112321221k k k f k +++++++++=+ 共12k +项,所以()1f k +比()f k 共增加了1222k k k +-=项,故选:D7.若数列{}n a 满足递推关系式122nn n a a a +=+,且12a =,则2024a =()A.11012B.22023C.11011D.22021【答案】A 【解析】【分析】利用取倒数法可得11112n n a a +-=,结合等差数列的定义和通项公式即可求解.【详解】因为122n n n a a a +=+,所以1211122n n n n a a a a ++==+,所以11112n n a a +-=,又12a =,所以1112=a ,故数列1{}na 是以12为首项,以12为公差的等差数列,则1111(1)222n n n a =+-=,得2n a n=,所以20242120241012a ==.故选:A8.设双曲线Γ的中心为O ,右焦点为F ,点B 满足2FB OF =,若在双曲线Γ的右支上存在一点A ,使得OA OF =,且3OAB OBA ∠≥∠,则Γ的离心率的取值范围是()A.22,77⎡⎤-⎢⎥⎣⎦ B.21,7⎛⎤+ ⎥ ⎝⎦C.31,7⎛⎤+ ⎥ ⎝⎦D.33,77⎡⎤-+⎢⎥⎣⎦【答案】B 【解析】【分析】因为OA OF =,所以A 是以O 为圆心,为OF 半径的圆O 与Γ的交点,根据条件结合双曲线的定义得27480e e --≤求解即可.【详解】不妨设A 在第一象限.因为OA OF =,所以A 是以O 为圆心,为OF 半径的圆O 与Γ的交点.设Γ的左焦点为X ,则4XOA OAB OBA OBA ∠=∠+∠≥∠,122AFO XOA OBA ∠=∠≥∠,即A FAB FB ≥∠∠,FA BF ≤在圆O 上上取一点C ,使FC B F =,则FC FA ≥由双曲线的定义知2CX FC a -≤(a 是实半轴长),即()222224FC aC c C X F +≥=-(c 是半焦距),由2FB OF = ,得212c FB FO ==,得22222242c c c Xa C ⎛⎫+≥=⎭⎛⎫⎪⎝ ⎪⎭-⎝2274202a ac c +-≥,又离心率ce a =,所以27480e e --≤,又1e >,所以21,7e ⎛⎤⎝∈⎥⎦,故选:B二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知()f x ,()g x 在R 上连续且可导,且()00'≠f x ,下列关于导数与极限的说法中正确的是()A.()()()000Δ0ΔlimΔx f x x f x f x x→--'= B.()()()Δ0ΔΔlim2Δh f t h f t h f t h→+--'=C.()()()000Δ03Δlim3Δx f x x f x f x x→+-'= D.()()()()()()000Δ0000Δlim Δx g x x g x g x f x x f x f x →'+-='+-【答案】BCD 【解析】【分析】利用导数的定义逐个求解.【详解】()()()()()000000limlimx x f x x f x f x x f x f x xx∆→∆→+⎡⎤-∆--∆-'=-=-∆-∆⎣⎦,故A 错;()()()()()02limlim22h h f t h f t h f t h f t f t hh∆→∆→+∆--∆+∆-'==∆∆,故B 对;()()()00003lim3x f x x f x f x x∆→+∆-'=∆,由导数的定义知C 对;()()()()()()()()()()0000000000000limlimlim x x x g x x g x g x x g x g x x f x x f x f x x f x f x x ∆→∆→∆→+∆-'+∆-∆==+∆-'+∆-∆,故D 对;故选:BCD10.已知等差数列{}n a 的前n 项和为n S ,正项等比数列{}n b 的前n 项积为n T ,则()A.数列n S n ⎧⎫⎨⎬⎩⎭是等差数列 B.数列{}3na 是等比数列C.数列{}ln n T 是等差数列D.数列2n n T T +⎧⎫⎨⎬⎩⎭是等比数列【答案】ABD 【解析】【分析】根据等差数列与等比数列的定义及等差数列前n 项和公式为计算即可.【详解】设{}n a 的公差为d ,{}n b 的公比为q ,则2112222n n S d d d d S n a n n a n ⎛⎫⎛⎫=+-⇒=+- ⎪ ⎪⎝⎭⎝⎭,所以()1212n n S S d n n n --=≥-是常数,故A 正确;易知()1133323nn n n a a a d a n ---==≥是常数,故B 正确;由()1ln ln ln 2n n n T T b n --=≥不是常数,故C 错误;()221212n n n n n nT T b q n T T b +++-÷==≥是常数,故D 正确.故选:ABD11.已知O 为抛物线()2:20C y px p =>的顶点,直线l 交抛物线于,M N 两点,过点,M N 分别向准线2px =-作垂线,垂足分别为,P Q ,则下列说法正确的是()A.若直线l 过焦点F ,则以MN 为直径的圆与y 轴相切B.若直线l 过焦点F ,则PF QF⊥C.若,M N 两点的纵坐标之积为28p -,则直线l 过定点()4,0pD.若OM ON ⊥,则直线l 恒过点()2,0p 【答案】BCD 【解析】【分析】根据抛物线的焦半径公式结合条件判断AB ,设直线l 方程为x my b =+,与抛物线方程联立,利用韦达定理结合条件判断CD.【详解】设()()1122,,,M x y N x y ,选项A :MN 中点H 即以MN 为直径的圆的圆心横坐标为122x x +,则由抛物线的定义可知12MN MP NQ x x p =+=++,所以梯形PMNQ 的中位线122x x pGH ++=,所以点H 到y 轴的距离为1222x x p GH +-=不等于半径1222x x pMN ++=,A 说法错误;选项B :由抛物线的定义可知MP MF =,NF NQ =,又根据平行线的性质可得1MPF PFO MFP ∠=∠=∠=∠,2NQF QFO NFQ ∠=∠=∠=∠,因为()212π∠+∠=,所以π122∠+∠=,即PF QF ⊥,B 说法正确;选项C :由题意可知直线l 斜率不为0,设直线l 方程为x my b =+,联立22x my b y px=+⎧⎨=⎩得2220y pmy pb --=,22480p m pb ∆=+>,所以122y y pb =-,由21228y y pb p =-=-解得4b p =,满足0∆>,所以直线:4l x my p =+过定点()4,0p ,C 说法正确;选项D :因为OM ON ⊥,所以由0OM ON ⋅= 可得12110x x y y +=,所以221212022y y y y p p⋅+=①,将122y y pb =-,代入①得2b p =,满足0∆>,所以直线:2l x my p =+过定点()2,0p ,D 说法正确;故选:BCD12.布达佩斯的伊帕姆维泽蒂博物馆收藏的达·芬奇方砖是在正六边形上画了具有视觉效果的正方体图案(如图1),把三片这样的达·芬奇方砖拼成图2的组合,这个组合再转化成图3所示的几何体,若图3中每个正方体的棱长为1,则()A.122QC AD AB AA =+- B.若M 为线段CQ 上的一个动点,则BM BD ⋅的最小值为1C.点F 到直线CQ 的距离是3D.异面直线CQ 与1AD 【答案】ABD 【解析】【分析】根据空间向量线性运算法则判断A ,以1A 为坐标原点,1A F 所在直线为x 轴,11A B 所在直线为y 轴建立空间直角坐标系,利用空间向量法计算B 、C 、D .【详解】因为()1112222CQ CB BQ AD BA AD AA AB AB AD AA =+=-+=-+-=--+,所以()112222QC CQ AB AD AA AD AB AA =-=---+=+-,故A 正确;如图以1A为坐标原点,建立空间直角坐标系,则()0,1,1B -,()11,0,0D -,()1,0,1D --,()0,1,1Q -,()1,1,1C --,()0,0,1A -,()1,0,0F ,()1,1,0BD =-- ,()1,2,2CQ =- ,()11,0,1AD =- ,()2,1,1CF =-,对于B :因为M 为线段CQ 上的一个动点,设CM CQ λ=,[]0,1λ∈,则()()()1,0,01,2,21,2,2BM BC CM λλλλ=+=-+-=--,所以()121BM BD λλλ⋅=--+=+,所以当0λ=时()min1BM BD ⋅= ,故B 正确;对于C :CF ==63CF CQ CQ ⨯+-⨯-+⨯⋅==,所以点F到直线CQ的距离d ==,故C 错误;对于D:因为111cos ,6CQ AD CQ AD CQ AD ⋅===⋅ ,所以1sin ,6CQ AD ==,所以1tan ,CQ AD =,即异面直线CQ 与1AD ,故D 正确;故选:ABD .第Ⅱ卷(非选择题)三、填空题:本题共4小题,每小题5分,共20分.13.已知()sin exf x =,则()f x '=_____________.【答案】sin e cos x x ⋅【解析】【分析】利用复合函数求导函数方法求解即可.【详解】由()()()sin sin sin c e e e sin os x x x x x x f '=⋅=⋅''=,故答案为:sin e cos x x⋅14.若平面内两定点A ,B 间的距离为3,动点P 满足2PA PB=,则△PAB 面积的最大值为_____________.【答案】3【解析】【分析】首先求点P 的轨迹方程,再利用数形结合求PAB 面积的最大值.【详解】以AB 所在直线为x 轴,以线段AB 的中垂线为y 轴建立平面直角坐标系,设33(,),(,0),(,0)22P x y A B -,因为2PA PB=,即2PA PB =,=,整理为:22542x y ⎛⎫-+= ⎪⎝⎭,则点P 的轨迹是以点5,02⎛⎫⎪⎝⎭为圆心,半径为2的圆,所以点P 到AB 距离的最大值是2,所以PAB 面积的最大值是13232⨯⨯=.故答案为:315.已知点P 是抛物线24y x =上动点,F 是抛物线的焦点,点A 的坐标为()1,0-,则PFPA的最小值为________.【答案】2【解析】【分析】过P 做准线的垂线,根据定义可得PF PM =,将所求PFPA最小,转化为sin PM PAM PA =∠的最小,结合图像分析出,当PA 与抛物线相切时,PAM ∠最小,联立直线与抛物线方程,根据判别式求出PA 斜率k ,进而可得PAM ∠的值,代入所求即可。

2022-2023学年新疆乌鲁木齐市第八中学高二上学期期末考试数学试题(解析版)

2022-2023学年新疆乌鲁木齐市第八中学高二上学期期末考试数学试题(解析版)

2022-2023学年新疆乌鲁木齐市第八中学高二上学期期末考试数学试题一、单选题1.数列2,46,8--,,的通项公式可能为( ) A .1(1)2n n a n +=- B .(1)2n n a n =- C .1(1)2n n n a +=- D .(1)2n n n a =-【答案】B【分析】观察数列的特点,即可得到其通项公式.【详解】根据题意数列2,46,8--,,其中()1112a =-⨯⨯,2122a =⨯⨯,()3132a =-⨯⨯, 4142a =⨯⨯,则其通项公式可以为()12nn a n =-故选:B.2.已知椭圆与双曲线22142x y -=)A .2213630x y +=B .2213036x y +=C .221366x y +=D .221636x y +=【答案】A【分析】根据椭圆与双曲线22142x y -=有共同的焦点,求出椭圆的半焦距c 率求出a ,由222a c b -=求出b ,可得结果.【详解】由双曲线22142x y -=可知,焦点为(、0),所以椭圆的焦点为(、0),半焦距c 设椭圆的标准方程为22221x y a b+=(0)a b >>,则2226a b c c a ⎧-==⎪⎨=⎪⎩,得2236,30a b ==, 所以椭圆的标准方程为2213630x y +=. 故选:A.3.设n S 是等差数列{}n a 的前n 项和,53950a a -=,则95S S 等于( )A .1B .-1C .2D .12【答案】A【分析】根据53950a a -=列方程求出1,a d ,然后化简计算95S S 即可. 【详解】设等差数列{}n a 的公差为d , 由53950a a -=,得119(4)5(2)0a d a d +-+=, 化简得1132a d =-,由题意得0d ≠, 所以1915111398936993611772452215413510652045551022d d a dS a d d d d S a d d d d a d d d ⎛⎫⨯⨯-++⎪+-+-⎝⎭======⨯+-+-⎛⎫+⨯-+ ⎪⎝⎭, 故选:A4.一动圆P 过定点()0,6M ,且与已知圆N :()22636x y ++=相切,则动圆圆心P 的轨迹方程是( )A .221927x y +=B .221927y x +=C .221927x y -=D .221927y x -=【答案】D【分析】根据两圆相切,得||||6PN PM -=,结合6||12MN <=,得动点P 的轨迹是以(0,6)M 、(0,6)N -为焦点的双曲线,再根据,a c 求出b ,可得结果.【详解】圆N :()22636x y ++=的圆心(0,6)N -,半径为6, 当动圆P 与圆N 相外切时, 则||||6PN PM =+,即||||6PN PM -=当动圆P 与圆N 相内切时,因为定点()0,6M 在圆N 外,所以只能是圆N 内切于动圆P ,所以||||6PM PN =+,即||||6PN PM -=-综上所述:||||6PN PM -=,又6||12MN <=,所以动点P 的轨迹是以(0,6)M 、(0,6)N -为焦点的双曲线, 因为26a =,212c =,所以3a =,6c =, 所以22236927b c a =-=-=,所以动圆圆心P 的轨迹方程是221927y x -=. 故选:D5.记n S 为等比数列{}n a 的前n 项和.若22S =, 46S =,则8S =( ) A .22B .24C .28D .30【答案】D【分析】设公比为q ,先判断出1q ≠,再根据等比数列的求和公式求出22q =,再根据等比数列的求和公式可求出结果. 【详解】设公比为q ,若1q =,则414S a =,212S a =,42S S =2,不符合题意;所以1q ≠,由22S =, 46S =,得2141(1)21(1)61a q q a q q ⎧-=⎪-⎪⎨-⎪=⎪-⎩,得213q +=,得22q =, 所以122211a q q ==---, 所以818(1)1a S q q-=-=42(12)30--=. 故选:D6.我国古代数学典籍《九章算术》第七章“盈不足”中有一道两鼠穿墙问题:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何”,翻译过来就是:有五尺厚的墙,两只老鼠从墙的两边相对分别打洞穿墙,大、小鼠第一天都进一尺,以后每天,大鼠加倍,小鼠减半,则几天后两鼠相遇,这个问题体现了古代对数列问题的研究,现将墙的厚度改为15尺,则需要几天时间才能打穿(结果取整数)( ) A .3 B .4 C .5 D .6【答案】B【分析】设需在n 天时间才能打穿,则112121512112nn ⎛⎫- ⎪-⎝⎭+≥--,化简后构造函数,利用函数零点存在性定理与函数的单调性即可求得结果.【详解】设需在n 天时间才能打穿,则112121512112nn ⎛⎫- ⎪-⎝⎭+≥--,化简得221402nn--≥, 令2()2142nnf n =--, 因为3321(3)2146024f =--=--<,4421(4)2142028f =--=->, 所以()f n 在(3,4)上存在零点,因为2n y =和22ny =-在[1,)+∞上均单调递增, 所以2()2142nn f n =--在[1,)+∞上单调递增, 所以()f n 在(3,4)内存在唯一零点, 所以需要4天时间才能打穿, 故选:B 7.已知点()2,0Q ,点P 在抛物线24x y =上,则点P 到x 轴的距离与到点Q 的距离之和的最小值是( ) A .31+ B .3C .31-D .23【答案】C【分析】由题可知抛物线焦点为()0,1F ,准线为=1x -,过点P 做准线垂线,垂足为N ,由抛物线定义可知,PN PF =.点P 到x 轴的距离与到点Q 的距离为11PN PQ PF PQ +-=+-. 【详解】由题可得抛物线焦点为()0,1F ,准线为=1x -,如图过点P 做准线垂线,垂足为N , 由抛物线定义可知,PN PF =.点P 到x 轴的距离与到点Q 的距离为11PN PQ PF PQ +-=+-. 当,,F P Q 三点共线时,距离之和最小,则()21121131PF PQ FQ +-≥-=+-=-.故选:C8.已知数列{}n a 是递增数列,且()538,5,5n n t n n a t n -⎧--≤=⎨>⎩*()N n ∈,则实数t 的取值范围是( ) A .7,36⎛⎫ ⎪⎝⎭B .6,35⎡⎫⎪⎢⎣⎭C .10,37⎛⎫ ⎪⎝⎭D .()1,3【答案】A【分析】根据数列的单调性,列式可求出结果.【详解】因为数列{}n a 是递增数列,且()538,5,5n n t n n a t n -⎧--≤=⎨>⎩*()N n ∈,所以65301t t a a->⎧⎪>⎨⎪>⎩,即()65301538t t t t -⎧->⎪>⎨⎪>--⎩,解得736t <<.故选:A二、多选题9.下面四个结论正确的是( )A .数列1,2,3,4和数列1,3,4,2是相同的数列B .数列可以看作是一个定义在正整数集(或它的有限子集{}1,2,3,,n ⋅⋅⋅)上的函数C .数列若用图象表示,从图象上看都是一群孤立的点D .常数列既是等差数列又是等比数列 【答案】BC【分析】根据数列的概念可判断A 不正确;数列是特殊的函数可判断BC 正确;根据等差和等比数列的定义可判断D 不正确.【详解】对于A ,数列1,2,3,4和数列1,3,4,2是不相同的数列,故A 不正确;对于B ,根据函数的定义可知,数列可以看作是一个定义在正整数集(或它的有限子集{}1,2,3,,n ⋅⋅⋅)上的函数,故B 正确;对于C ,因为数列的定义域是正整数集(或它的有限子集{}1,2,3,,n ⋅⋅⋅)所以数列若用图象表示,从图象上看都是一群孤立的点,故C 正确; 对于D ,常数列0,0,0,0,,只是等差数列,不是等比数列,故D 不正确.故选:BC10.已知数列{}n a 满足()123212n a a n a n ++⋅⋅⋅+-=,()N n *∈,则下列四个结论中,正确的是( )A .12a =B .数列{}n a 的通项公式为221n a n =+ C .34615S =D .数列{}n a 为递减数列【答案】ACD【分析】对于A ,令1n =可求出1a ,对于B ,当2n ≥时,由()123212n a a n a n ++⋅⋅⋅+-=,得()12132322n a a n a n -++⋅⋅⋅+-=-,两式相减可求出n a ,对于C ,由选B ,直接求解3S 即可,对于D ,通过计算1n n a a +-判断.【详解】对于A ,令1n =,则1212a =⨯=,所以A 正确,对于B ,当2n ≥时,由()123212n a a n a n ++⋅⋅⋅+-=,得()12132322n a a n a n -++⋅⋅⋅+-=-, 两式相减得,(21)2n n a -=,所以221n a n =-,12a =满足此式, 所以221n a n =-,所以B 错误, 对于C ,因为221n a n =-,所以3123224623515S a a a =++=++=,所以C 正确, 对于D ,因为*12211420(N )2(1)1212121(21)(21)n n a a n n n n n n n +-⎛⎫-=-=-=<∈ ⎪+--+-+-⎝⎭, 所以1n n a a +<,所以数列{}n a 为递减数列,所以D 正确, 故选:ACD11.已知椭圆C :221259x y +=,1F ,2F 分别为它的左右焦点,若点P 是椭圆上异于长轴端点的一个动点,()1,1M ,下列结论中正确的有( ) A .12F PF △的周长为15B .过椭圆C 上一点94,5⎛⎫⎪⎝⎭的切线方程为45250x y +-=C .1PM PF 的最大值为12D .若M 是直线l 与椭圆C 相交弦AB 的中点,则l 方程为:925340x y +-= 【答案】BD【分析】A. 由12F PF △的周长为22a c +求解判断;B.利用验证法判断; C.122PMPF PMPF a 求解判断;D.利用点差法求解判断;【详解】由椭圆C :221259x y +=,得a =5,b =3,c =4, A. 12F PF △的周长为11222218PF PF F F a c +==++,故错误; B.易知点94,5⎛⎫ ⎪⎝⎭在直线45250x y +-=上,也在椭圆C :221259x y +=上,联立,消去y 得 28160x x -+=,因为Δ0=,所以直线与椭圆相切,故正确; C. 122221010PMPF PMPF aMF a 当2,,P M F 共线时,等号成立,故错误;D.设直线l 与椭圆C 相交于()()1122,,,A x y B x y ,联立2211222212591259x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得()()12121212992525x x y y k x x y y +-==-=--+,则直线方程为91(1)25y x -=--,即925340x y +-=,故正确; 故选:BD12.已知12,F F 分别是双曲线()222210,0x y a b a b-=>>的左、右焦点,A 为左顶点,P 为双曲线右支上一点,若126PF PF a +=,且12PF F △的最小内角为30°,则( ) AB .245PAF ∠=︒C.双曲线渐近线方程为y = D .直线220x y --=与双曲线有两个交点【答案】CD【分析】对于A ,由题意结合双曲线的定义可求得124,2PF a PF a ==,1230PF F ∠=︒,在12PF F △中利用余弦定理列方程可求出c ,从而可求得离心率,对于B ,可判断12PF F △为直角三角形,然后求出22,PF AF 的长进行判断,对于C,由c =结合222c a b =+可得,a b 的关系,从而可求出渐近线方程,对于D ,将直线方程与双曲线方程联立方程组可判断. 【详解】对于A ,因为P 为双曲线右支上一点,所以122PF PF a -=, 因为126PF PF a +=,所以124,2PF a PF a ==,因为22,42c a a a >>,所以12PF F △中的最小内角为1230PF F ∠=︒, 在12PF F △中由余弦这理得2222221122121121644cos 2242PF F F PF a c a PF F PF F F a c +-+-∠===⋅⋅⋅,化简得2230a c -+=,解得c,所以离心率为==ce aA 错误, 对于B,由c =,得2c =,所以2221122PF F F PF =+,所以2190PF F ∠=︒,因为21)AF a c a =+=,22PF a =,所以22PF AF ≠,所以245PAF ∠≠︒,所以B 错误,对于C,因为c =,222c a b =+,所以2223a a b =+,得b =,所以双曲线渐近线方程为by x a=±=,所以C 正确,对于D ,由222222012x y x y a a--=⎧⎪⎨-=⎪⎩,得()2222222y y a +-=,化简得22716820y y a ++-=,所以222Δ1647(82)32560a a =-⨯⨯-=+>,所以直线220x y --=与双曲线有两个交点,所以D 正确, 故选:CD三、填空题13.已知双曲线C :()222210,0x y a b a b-=>>的右焦点()5,0F 到渐近线的距离为3,则双曲线方程为______.【答案】221169x y -=【分析】先写出双曲线的渐近线方程,利用点到直线的距离公式得到3b =,再利用焦点坐标为()5,0F 即可求解.【详解】双曲线C :()222210,0x y a b a b-=>>的渐近线方程为:0bx ay ±=,因为右焦点()5,0F 到渐近线的距离为3,即53bd b c====, 又因为222c a b =+,也即2259a =+,所以216a =,所以双曲线方程为221169x y -=,故答案为:221169x y -=.14.已知各项均为正数且单调递减的等比数列{}n a 满足3a ,43a ,55a 成等差数列,则6789a a a a +=+______. 【答案】25【分析】设等比数列{}n a 的公比为q ,则01q <<,根据等差中项和等比数列的通项公式列式求出q ,再根据等比数列的通项公式可求出结果.【详解】设等比数列{}n a 的公比为q ,则01q <<, 因为3a ,43a ,55a 成等差数列,所以435235a a a ⨯=+,所以32411165a q a q a q =+,所以25610q q -+=,解得15q =或1q =(舍),所以6789a a a a +=+662286(1)11251(1)25a q a a q a q q +=====+. 故答案为:25.15.设椭圆C :()222210x y a b a b+=>>的上顶点为A ,左,右焦点分别为1F ,2F ,连接1AF 并延长交椭圆C 于点P ,若232PA PF =,则该椭圆的离心率为______. 【答案】13【分析】由题设条件得2132PF PF a -=,结合椭圆的定义求得145PF a =,265PF a =,从而利用余弦定理得到关于a ,c 的齐次式,由此求得该椭圆的离心率. 【详解】依题意,得1AF a =,由232PA PF =,得21132PF PF AF a -==, 又212PF PF a +=,所以145PF a =,265PF a =, 因为1FO c =,所以1cos cAFO a ∠=,则12cos c aPF F =-∠,如图,在12PF F △中,由余弦定理得2222112112122cos PF F P F F F P F F PF F =+-∠,即()222644222555c a a c a c a ⎛⎫⎛⎫⎛⎫=+-⨯⨯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,整理得229a c =,因此22219c e a ==,解得13e =,所以椭圆的离心率为13.故答案为:13.16.观察下面数阵:则该数阵中第8行,从左往右数的第16个数是______.【答案】285【分析】用等比数列的求和公式求出该数阵中前7行共有127项,确定该数阵中第8行,从左往右数的第16个数是等差数列1,3,5,7,,的第143项,再根据等差数列的通项公式可求出结果.【详解】该数阵中前7行共有7026(12)222212712-++++==-个数,所以该数阵中第8行,从左往右数的第16个数是等差数列1,3,5,7,,的第12716143+=项,所以该数为1(1431)2285+-⨯=. 故答案为:285.四、解答题17.已知圆C :()()22234x y -+-=.(1)圆外有一点()4,1P -,过点P 作直线l 与圆C 相切,求直线l 的方程;(2)已知直线0x y m ++=与圆C 相交所截得的弦长为m 的值. 【答案】(1)4x =或3480x y +-= (2)3m =-或7m =-【分析】(1)当斜率不存在时,直线l 的方程为4x =;当斜率存在时,设直线l 的方程为410kx y k ---=,由圆心到直线的距离等于圆的半径,列式求得k ,则直线方程可求.(2)利用点到直线的距离公式表示出弦心距,再由弦长的一半、弦心距和半径构成的勾股定理,即可求得m .【详解】(1)由题意,圆C 的圆心为()2,3C ,半径为2r =. 当斜率不存在时,直线l 的方程为4x =, 圆心到直线4x =的距离为2,符合题意.当斜率存在时,设直线l 的方程为410kx y k ---=,2=,解得34k =-,所以l 的方程为3480x y +-=.综上,直线l 的方程为4x =或3480x y +-=. (2)由已知得,圆心到直线l 的距离d ===3m ∴=-或7m =-. 18.已知数列{}n a 的前n 项和为n S ,122n n a S +=+,()n *∈N ,11a =,求数列{}n a 的通项公式及前7项的和.【答案】21,143,2n n n a n -=⎧=⎨⨯≥⎩,前7项的和为1457. 【分析】根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩可求出n a ,根据等比数列求和公式可求出前7项的和. 【详解】由122n n a S +=+,11a =,得21224a a =+=,因为122n n a S +=+,所以2n ≥时,122n n a S -=+,所以112()n n n n a a S S +--=-2n a =(2)n ≥,所以13(2)n n a a n +=≥,1n =时,214a a =不适合上式所以2n ≥时,222343n n n a a --=⋅=⨯,所以21,143,2n n n a n -=⎧=⎨⨯≥⎩, 627127(13)113a S a a a -=+++=+-64(13)113-=+-1457=. 综上所述:数列{}n a 的通项公式为21,143,2n n n a n -=⎧=⎨⨯≥⎩,前7项的和为1457. 19.已知抛物线C 的顶点在坐标原点,焦点在y 轴上,且抛物线上有一点(),2M m 到焦点的距离为3.(1)求抛物线C 的方程;(2)已知直线l 交抛物线C 于A ,B 两点,且线段AB 中点的纵坐标为2,则AB 的最大值为多少?【答案】(1)24x y =(2)6【分析】(1)方法1:由题分析设抛物线的标准式,由抛物线的定义将抛物线上的点到焦点的距离转化成此点到准线的距离列式可得结果.方法2:设出抛物线焦点在y 轴上的一般式方程,由抛物线的定义将抛物线上的点到焦点的距离转化成此点到准线的距离列式可得结果.(2)设出直线方程y kx n =+,联立直线方程与抛物线的方程,再联系已知可得k 与n 的关系式,再由弦长公式得到弦长关于k 的函数,转化为求关于k 的函数在固定区间上的最大值(方法1:应用基本不等式求最大值,方法2:换元法转化为二次函数在固定区间上的最大值).【详解】(1)方法1:∵抛物线的焦点在y 轴上且过点(,2)M m ,点M 的纵坐标为正数, ∴设抛物线的方程为22x py =,(0)p >,∴焦点(0,)2p F ,准线方程为2p y =-, 由抛物线的定义知,||2()2322p p MF =--=+=,解得:2p = ∴抛物线C 的方程为24x y =.方法2:∵抛物线的焦点在y 轴上,∴设抛物线的方程为2x ay =,(0)a ≠,∴焦点(0,)4a F ,准线方程为4a y =-, ∴由抛物线的定义知,2242()34m a a a m ⎧==⎧⎪⎪⇒⎨⎨--==±⎪⎩⎪⎩∴抛物线C 的方程为24x y =.(2)设直线l 方程为:y kx n =+,11(,)A x y ,22(,)B x y ,224404y kx n x kx n x y=+⎧⇒--=⎨=⎩ 则216160k n ∆=+>,124x x k +=,124x x n =-,∴21212()242y y k x x n k n +=++=+, ①又∵AB 中点的纵坐标为2,∴124y y +=, ②∴由①②得:222n k =-,∴22216161616(22)0k n k k ∆=+=+->,解得:k <221244(22)88x x n k k =-=--=-,∴12|||AB x x -===方法1:∵k < ∴22222129(1)(2)()24k k k k ++-+-≤=,当且仅当2212k k +=-即k =时去等号,∴||46AB ≤=,当且仅当k = ∴||AB 的最大值为6.方法2:令2t k =,∵k <,∴02t ≤<,则||AB ==02t ≤<,设2()2h t t t =-++,02t ≤<,则对称轴为12t =, ∴()h t 在1[0,)2上单增,在1(,2)2上单减, ∴max 19()()24h t h ==,此时k =,∴||46AB ≤=,当且仅当k = ∴||AB 的最大值为6.20.已知等差数列{}n a 为递增数列,n S 为数列{}n a 的前n 项和,5699a a =,10100S =.(1)求{}n a 的通项公式;(2)若数列{}n b 满足()12n n n a b n *+=∈N ,求{}n b 的前n 项和n T . 【答案】(1)21n a n =-,n *∈N (2)132322n n n T ++=-【分析】(1) 设等差数列{}n a 的公差为(0)d d >,首项为1a ,根据条件列出方程组,解之即可求解;(2)结合(1)的结论得出1212n n n b +-=,利用错位相减法求和即可得出结果. 【详解】(1)设等差数列{}n a 的公差为(0)d d >,首项为1a ,因为5699a a =且10100S =,所以111(4)(5)991045100a d a d a d ++=⎧⎨+=⎩,解得:112a d =⎧⎨=⎩,所以数列{}n a 的通项公式为21,*n a n n =-∈N .(2)由(1)可知:21,*n a n n =-∈N , 所以112122n n n n a n b ++-==, 则2341135232122222n n n n n T +--=+++++ ① 3451211352321222222n n n n n T ++--=+++++ ② ①-②可得: 234121122221()222222n n n n T ++-=++++-, 也即22321111121()222222n n n n T +-=++++- 1211[1()]1214214212n n n -+--=+-- 232342n n ++=-, 所以132322n n n T ++=-. 21.已知数列{}n a 首项()*12111,2,22,N n n n a a a a a n n -+===+≥∈.(1)求{}n a 的通项公式;(2)令21n n n b a a +=,数列{}n b 的前n 项和为n S ,计算n S 的取值范围. 【答案】(1)n a n =,n *∈N(2)13,34⎡⎫⎪⎢⎣⎭【分析】(1)判断出{}n a 为等差数列,直接求出通项公式;(2)利用裂项相消法求和,即可求解.【详解】(1)因为()*12111,2,22,N n n n a a a a a n n -+===+≥∈所以数列{}n a 为等差数列,首项数列11a =,公差21211d a a -==-=.所以通项公式为()1111n a a n d n n =+-=+-=.(2)()211111222n n n b a a n n n n +⎛⎫===- ⎪++⎝⎭.所以数列{}n b 的前n 项和121n n n S b b b b -=++++1111111111111111112132242352221122n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1111121212n n ⎛⎫=+-- ⎪++⎝⎭31114212n n ⎛⎫=-+ ⎪++⎝⎭因为*N n ∈,所以3111342124⎛⎫=-+< ⎪++⎝⎭n S n n . 又31114212n S n n ⎛⎫=-+ ⎪++⎝⎭为单增函数,所以131********n S S ⎛⎫≥=-+= ⎪⎝⎭ 即1334n S ≤<. 所以n S 的取值范围为13,34⎡⎫⎪⎢⎣⎭. 22.已知椭圆C :()222210x y a b a b+=>>,椭圆C 上任意一点M 到椭圆左、右焦点12,F F 的距离之和为12cos F MF ∠的最小值为13. (1)求椭圆方程;(2)已知坐标原点为O ,过右焦点2F 的直线l 与椭圆C 相交于A ,B 两点.椭圆C 上是否存在点P ,使得当l 绕2F 转到某一位置时,有OP OA OB =+成立?若存在,求出所有点P 的坐标与l 的方程;若不存在,说明理由.【答案】(1)22132x y +=(2)存在,32⎛ ⎝⎭0y +=或者3,2⎛ ⎝⎭0y -【分析】(1)利用待定系数法求出椭圆方程;(2)假设椭圆C 上存在点P 符合题意.设()()1122,,,A x y B x y .先判断出直线l 垂直于x 轴时不存在点P 符合题意.再用“设而不求法”求出直线l 不垂直于x 轴时对应的直线方程及点P .【详解】(1)在12F MF △中,设12,m F M n MF ==,则有:122,2m n a F F c +==.由余弦定理得:()()()22222222212222424424cos 122222m n c m n mn c a mn c b mn b F MF mn mn mn mn mn+-+-----∠=====-因为2m n a +=,所以222m n mn a +⎛⎫≤= ⎪⎝⎭,(当且仅当m n =时等号成立). 所以222113b a -=.由题意可得:2222222113a b ab ac ⎧=⎪⎪-=⎨⎪=-⎪⎩,解得:1a b c ⎧=⎪⎪=⎨⎪=⎪⎩所以椭圆方程为22132x y +=. (2)假设椭圆C 上存在点P 符合题意.设()()1122,,,A x y B x y .当直线l 垂直于x 轴时,由()2,0OA OB +=知,C 上不存在点P 满足OP OA OB =+成立.当直线l 不垂直于x 轴时,可设():1l y k x =-,与椭圆方程22132x y +=联立,消去y 得: ()2222236360k x k x k +-+-=,于是22121222636,2323k k x x x x k k -+==++. 设()00,P x y .因为OP OA OB =+,由向量中线定理可得:012012x x x y y y =+⎧⎨=+⎩,所以2002264,2323k k x y k k -==++. 因为点P 在椭圆C 上,所以将00,x y 代入椭圆方程,整理化简得:423440k k --=,解得:22,k k ==当k =32P ⎛ ⎝⎭,l0y +=.当k =3,22P ⎛- ⎝⎭,l0y -=. 综上所述:椭圆C 上存在点P 满足OP OA OB =+.当32P ⎛ ⎝⎭时,直线l0y +=;当3,2P ⎛ ⎝⎭时,直线l0y -=;。

高二数学上学期期末考试题精选及答案

高二数学上学期期末考试题精选及答案

!高二数学上学期期末考试题第I 卷(试题) 一、 选择题:(每题5分,共60分)2、若a,b 为实数,且a+b=2,则3a +3b 的最小值为( )(A )18, (B )6, (C )23, (D )243 3、与不等式xx --23≥0同解的不等式是 ( ) (A )(x-3)(2-x)≥0, (B)0<x-2≤1, (C)32--x x≥0, (D)(x-3)(2-x)>06、已知L 1:x –3y+7=0, L 2:x+2y+4=0, 下列说法正确的是 ( ) (A )L 1到L 2的角为π43, (B )L 1到L 2的角为4π :(C )L 2到L 1的角为43π, (D )L 1到L 2的夹角为π437、和直线3x –4y+5=0关于x 轴对称的直线方程是 ( )(A )3x+4y –5=0, (B)3x+4y+5=0, (C)-3x+4y –5=0, (D)-3x+4y+5=08、直线y=x+23被曲线y=21x 2截得线段的中点到原点的距离是 ( )(A )29 (B )29 (C )429 (D )22911、双曲线: 的准线方程是191622=-x y ( ) (A)y=±716 (B)x=±516 (C)X=±716 (D)Y=±516/12、抛物线:y=4ax 2的焦点坐标为 ( ) (A )(a 41,0) (B )(0, a 161) (C)(0, -a 161) (D) (a161,0)二、填空题:(每题4分,共16分) 13、若不等式ax 2+bx+2>0的解集是(–21,31),则a-b= . 14、由x ≥0,y ≥0及x+y ≤4所围成的平面区域的面积为 . 15、已知圆的方程⎩⎨⎧-=+=θθsin 43cos 45y x 为(θ为参数),则其标准方程为 .16、已知双曲线162x -92y =1,椭圆的焦点恰好为双曲线的两个顶点,椭圆与双曲线的离心率互为倒数,则椭圆的方程为 .¥三、 解答题:(74分)17、如果a ,b +∈R ,且a ≠b ,求证: 422466b a b a b a +>+(12分)…19、已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作线段PP 1,求线段PP 1中点M 的轨迹方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学上学期期末考试题
一、 选择题:(每题5分,共60分)
2、若a,b 为实数,且a+b=2,则3a +3b 的最小值为( )
(A )18, (B )6, (C )23, (D )243
3、与不等式x
x --23≥0同解的不等式是 ( ) (A )(x-3)(2-x)≥0, (B)0<x-2≤1, (C)
32--x x ≥0,
678、1112(A )(a 4,0) (B )(0, a 16) (C)(0, -a 16) (D) (a
16,0) 二、填空题:(每题4分,共16分) 13、若不等式ax 2+bx+2>0的解集是(–21,3
1),则a-b= . 14、由x ≥0,y ≥0及x+y ≤4所围成的平面区域的面积为 .
15、已知圆的方程⎩⎨
⎧-=+=θθsin 43cos 45y x 为(θ为参数),则其标准方程为 .
16、已知双曲线162x -9
2
y =1,椭圆的焦点恰好为双曲线的两个顶点,椭圆与双曲线的离心率互为倒数,则椭圆的方程为 .
三、 解答题:(74分)
17、如果a ,b +∈R ,且a ≠b ,求证: 4
22466b a b a b a +>+(12分)
19、已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作线段PP 1,求线段PP 1中点M 的轨迹方程。

(12分)
21、某工厂要建造一个长方体无盖贮水池,其容积为4800m 3,深为3m ,如果池
222、131719x=x 2
000000将 x 44)1(2,2200=+==y x y y x 得代入方程
即14
22
=+y x ,所以点M 的轨迹是一个椭圆。

21、解:设水池底面一边的长度为x 米,则另一边的长度为米x
34800, 又设水池总造价为L 元,根据题意,得
答:当水池的底面是边长为40米的正方形时,水池的总造价最低,
最低总造价是297600元。

22、解:设生产书桌x 张,书橱y 张,由题意得 ,0
6002902.01.0⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+y o
x y x y x 求Z=80x+120y 的最大值最优解为两直线 ⎩
⎨⎧=+=+6002902.01.0y x y x 的交点A (100,400)。

答:生产书桌100张,书橱400张时,可使生产利润最大。

相关文档
最新文档