高二数学期中考试试题
四川省成都市树德中学2024-2025学年高二上学期11月期中考试数学试题
四川省成都市树德中学2024-2025学年高二上学期11月期中考试数学试题一、单选题1.在平行六面体1111ABCD A B C D -中,M 为AC 与BD 的交点,若11A B a = ,11A D b = ,1A A c =,则下列向量中与1B M相等的向量是().A .1122a b c-++B .1122++a b cC .1122-+ a b cD .1122--+ a b c2.若直线经过(1,0),A B 两点,则直线AB 的倾斜角是()A .135︒B .120︒C .60︒D .45︒3.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为()A B C .5-D 4.某年1月25日至2月12日某旅游景区A 及其里面的特色景点a 累计参观人次的折线图如图所示,则下列判断正确的是()A .1月29日景区A 累计参观人次中特色景点a 占比超过了13.B .2月4日至2月10日特色景点a 累计参观人次增加了9800人次.C .2月4日至2月6日特色景点a 的累计参观人次的增长率和2月6日至2月8日特色景点a 累计参观人次的增长率相等.D .2月8日至2月10日景区A 累计参观人次的增长率小于2月6日至2月8日的增长率.5.如图,修水坝时,为了使水坝坚固耐用,必须使水坝面与水平面成适当的角度.甲站在水库底面上的点A 处,乙站在水坝斜面上的点B 处,从A ,B 到直线(水库底面与水坝的交线)的距离AC 和B 分别为3m 和4m ,B 的长为2m ,则水库底面与水坝所成二面角的大小为().A .30︒B .60︒C .120︒D .150︒6.《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”,四个面均为直角三角形的四面体称为“鳖臑”.如图在堑堵111ABC A B C -中AC BC ⊥.过A 点分别作1AE A B ⊥于点E ,1AF AC ⊥于点F .下列说法正确的是()A .四棱锥11C AB BA -为“阳马”B .四面体111A CC B 为“鳖臑”C .1EF AC ⊥D .1EF A B⊥7.阅读下面材料:在空间直角坐标系Oxyz 中,过点()000,,P x y z 且一个法向量为(),,m a b c =的平面α的方程为()()()0000a x x b y y c z z -+-+-=,过点()000,,P x y z 且方向向量为()()0n u v w uvw =≠ ,,的直线l 的方程为000.x x y y z z uvw---==根据上述材料,解决下面问题:直线l 是两个平面220x y -+=与210x z -+=的交线,则()是l 的一个方向向量.A .()2,1,4B .()1,3,5C .()1,2,0-D .()2,0,1-8.设直线系:cos sin 1m n M x y θθ+=(其中,,m n θ均为参数,{}02π,,1,2m n θ≤≤∈),则下列命题中是假命题...的是()A .当1m n ==时,存在一个点与直线系M 中所有直线的距离都相等.B .当2m n ==时,直线系M 中所有直线恒过定点,且不过第三象限.C .当m n =时,坐标原点到直线系M 中所有直线的距离最大值为1.D .当2,1m n ==时,若0a ≤,则点(),0A a 到直线系M 中所有直线的距离不小于1.二、多选题9.我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准:用水量不超过a 的部分按照平价收费,超过a 的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了40位居民某年的月均用水量(单位:吨),按照分组[)[)[)0,0.50.5,13,3.5 ,,,,制作了频率分布直方图,下列命题正确的有().A .设该市有60万居民,则全市居民中月均用水量不低于3吨的人数恰好有3万人.B .如果希望86%的居民每月的用水量不超出标准,则月均用水量a (吨)的最低标准的估计值为2.7.C .该市居民月均用水量的平均数的估计值为1.875吨.D .在该样本中月均用水量少于1吨的居民中随机抽取两人,其中两人月均用水量都不低于0.5吨的概率为0.4.10.以下四个命题为真命题的是()A .过点(10,10)-且在x 轴上的截距是在y 轴上截距的4倍的直线的方程为11542y x =-+B .已知直线10kx y --=和以(3,1)M -,(3,2)N 为端点的线段相交,则实数k 的取值范围为213k -≤≤C .直线10x y +-=与直线2210x y ++=D .点P 在直线:10l x y --=上运动,(2,3),(2,0)A B ,则||||PA PB -11.在棱长为2的正方体1111ABCD A B C D -中,M 为棱CD 的中点,N 为线段BM 上的动点(含端点),则下列选项正确的有()A .若直线1A M 与直线AN 所成角为α,则cos α的最大值为23.B .若点N 到平面11ABCD 的距离为d ,则d CN +的最小值为5.C .若在该正方体内放入一个半径为12的小球,则小球在正方体内不能达到的空间体积是π22-.D .点T 从B 点出发匀速朝1D 移动,点S 从A 点出发匀速朝1A 移动.现,S T 同时出发,当S 到达1A 时,T 恰好在1BD 的中点处.则在此过程中,,S T .三、填空题12.一条光线经过点(2,3)A 射到直线10x y ++=上,被反射后经过点(1,1)B ,则入射光线所在直线的一般式方程为.13.已知三棱锥P ABC -,如图所示,G 为ABC V 重心,点M ,F 为PG ,PC 中点,点D ,E 分别在PA ,PB 上,PD mPA= ,()0PE nPB mn =≠ ,若M D E F ,,,四点共面,则11m n+=.14.甲、乙、丙、丁4名棋手进行象棋比赛,赛程如下,其中编号为i 的方框表示第i 场比赛,方框中是进行该场比赛的两名棋手,第i 场比赛的胜者称为“i 的胜者”,负者称为“i 的负者”,第6场为决赛,获胜的人是冠军,已知甲每场比赛获胜的概率均为34,而乙、丙、丁相互之间胜负的可能性相同.则乙进入决赛,且乙与其决赛对手是第二次相遇的概率为.四、解答题15.如图,已知平行六面体1111—ABCD A B C D 的底面ABCD 是菱形,1AB =,且11C CB C CD BCD ∠=∠=∠.(1)证明:1C C BD ⊥;(2)若1CA ⊥平面1C BD ,求1CC 的长.16.班级新年晚会设置抽奖环节.不透明纸箱中有大小、质地相同的红球3个,黄球2个.(1)如下两种方案,哪种方案获得奖品的可能性更大?并说明理由.方案一:依次无放回地抽取2个球,若颜色相同,则获得奖品;方案二:依次有放回地抽取2个球,若颜色相同,则获得奖品.(2)还剩最后一个奖品时,甲乙两位同学都想获得.于是他们约定:轮流从纸箱中有放回地抽取一球,谁先抽到黄球,谁获得奖品;如果3轮之后都两人都没有抽到黄球,则后抽的同学获得奖品.如果甲先抽,求甲获得奖品的概率.17.已知,如图四棱锥P ABCD -中,底面ABCD 是平行四边形,PG ⊥平面ABCD ,垂足为G ,G 在AD 上,且13AG GD =,BG GC ⊥,2GB GC ==,E 是BC 的中点,四面体P BCG -的体积为83.(1)求异面直线GE 与PC 所成角的余弦;(2)求点D 到平面PBG 的距离;(3)若F 点是棱PC 上一点,且DF GC ⊥,求PFFC的值.18.男子10米气步枪和女子10米气步枪在1984年被列为奥运会比赛项目.根据国际射联的要求,10米气步枪靶纸为总边长80毫米的正方形,直径最大的1环,直径为45.5mm ,而最高10.9环的靶心点,直径仅有0.5mm .为了了解某校射击选手甲的训练水平,甲按照比赛要求进行了15次射击训练,命中的环数如下:射击序号123456789101112131415命中环数9.49.510.29.19.28.910.19.39.49.69.39.310.19.5 5.0(1)如果命中10环及以上的环数,我们称之为“命中靶心”.①用以上数据估计甲每次射击“命中靶心”的概率;②现发现一架小型无人机悬停在训练区域的上空(训练区域禁止无人机飞行),甲准备将其击落.假设甲每次射击能击中该无人机的概率为①中所求其“命中靶心”的概率,每次射击互不影响.则甲至少需要进行几次射击,才能有90%以上的概率能击落该无人机(该无人机被击中一次即被击落)?(2)经计算得甲这次训练命中环数的平均数15119.2015i i x x ===∑,标准差1.18s =,其中i x 为第i 次射击命中的环数,1i =,2,L ,15.第15次射击时,由于甲受到了明显的干扰,导致结果偏差较大.为了数据分析更加客观准确,教练剔除了这次的成绩.求剔除数据后,甲命中环数的平均数和方差(精确到0.01).(参考数据lg20.3010=,lg30.4771=)19.如图①所示,矩形ABCD 中,1AD =,2AB =,点M 是边CD 的中点,将ADM △沿AM 翻折到PAM △,连接PB ,PC ,得到图②的四棱锥P ABCM -,N 为PB 中点.(1)求证://NC 平面PAM ;(2)若平面PAM ⊥平面ABCD ,求直线BC 与平面PMB 所成角的大小;(3)设P AM D --的大小为θ,若π(0,]2θ∈,求平面PAM 和平面PBC 夹角余弦值的最小值.。
高二数学期中考试试卷
高二数学期中考试试卷一、选择题(每题3分,共30分)1. 若函数f(x)=x^2-4x+3,则f(1)的值为:A. 0B. 1C. 2D. 32. 已知向量a=(3,-1),向量b=(2,1),则向量a与向量b的点积为:A. 4B. 3C. 2D. 13. 若方程x^2-6x+8=0的两个根为x1和x2,则x1+x2的值为:A. 4B. 6C. 8D. 104. 函数y=2^x的反函数为:A. y=log2xB. y=2^(1/x)C. y=1/(2^x)D. y=2^(-x)5. 已知三角形ABC的三边长分别为a、b、c,且a^2+b^2=c^2,该三角形为:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形6. 若函数f(x)=x^3-3x+1,则f'(x)的值为:A. 3x^2-3B. x^2-3xC. 3x^2-3x+1D. x^3-3x^2+17. 已知集合A={1,2,3},B={2,3,4},则A∩B的元素个数为:A. 1B. 2C. 3D. 48. 若直线l的方程为y=2x+1,则该直线的斜率为:A. 1B. 2C. 3D. 49. 函数y=sin(x)的周期为:A. πB. 2πC. 3πD. 4π10. 已知等比数列{an}的首项a1=2,公比q=3,则a3的值为:A. 6B. 18C. 54D. 162二、填空题(每题4分,共20分)11. 已知数列{an}的通项公式为an=2n-1,则a5的值为______。
12. 若函数f(x)=x^2-6x+8,则f(x)的最小值为______。
13. 已知向量a=(1,2),向量b=(3,-1),则向量a与向量b的叉积为______。
14. 函数y=x^2+2x+1的顶点坐标为______。
15. 已知双曲线x^2/a^2-y^2/b^2=1的焦点在x轴上,则a和b的关系为______。
三、解答题(每题10分,共50分)16. 已知函数f(x)=x^3-3x^2+2,求f(x)的导数f'(x),并求出f'(x)=0的解。
高二期中考试试卷数学
高二期中考试试卷数学一、选择题(每题4分,共40分)1. 若函数\( f(x) = 2x^2 - 3x + 1 \),则\( f(-1) \)的值为:A. 6B. 4C. 2D. -22. 已知等差数列\( \{a_n\} \)的首项为2,公差为3,求第10项的值:A. 37B. 38C. 39D. 403. 圆的方程为\( (x-3)^2 + (y-4)^2 = 25 \),求圆心坐标:A. (3, 4)B. (-3, 4)C. (3, -4)D. (-3, -4)4. 若\( \sin \alpha + \cos \alpha = \sqrt{2} \),求\( \tan \alpha \)的值:A. 1B. -1C. 0D. 无法确定5. 已知\( \log_{10} 100 = 2 \),求\( \log_{10} 0.01 \)的值:A. -1B. -2C. 1D. 26. 函数\( y = \ln(x) \)的图像在点(1,0)处的切线斜率是:A. 0B. 1C. 2D. -17. 已知\( \cos \theta = \frac{1}{3} \),求\( \sin \theta \)的值(假设\( \theta \)在第一象限):A. \( \frac{2\sqrt{2}}{3} \)B. \( \frac{2\sqrt{2}}{9} \)C. \( -\frac{2\sqrt{2}}{3} \)D. \( -\frac{2\sqrt{2}}{9} \)8. 抛物线\( y^2 = 4x \)的焦点坐标是:A. (1, 0)B. (2, 0)C. (0, 2)D. (0, -2)9. 根据题目所给的二元一次方程组\( \begin{cases} x + y = 3 \\ 2x - y = 1 \end{cases} \),求\( x \)的值:A. 1B. 2C. 3D. 无法确定10. 已知\( \frac{1}{x} + \frac{1}{y} = 5 \),且\( xy = 6 \),求\( x + y \)的值:A. 3B. 6C. 8D. 10二、填空题(每题3分,共15分)11. 若\( a \),\( b \),\( c \)成等差数列,且\( a + b + c = 6 \),则\( b \)的值为______。
2024-2025学年湖北省“金太阳联考”高二(上)期中考试数学试题(含答案)
2024-2025学年湖北省“金太阳联考”高二(上)期中考试数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.(8+i)(1−i)=( )A. 7−9iB. 9−9iC. 7−7iD. 9−7i2.已知角α的终边不在坐标轴上,且2sin 2α=sin α,则cos 2α=( )A. −78B. 78C. −78或1D. −15163.一艘轮船北偏西65∘方向上有一灯塔,此时二者之间的距离为16海里,该轮船以20海里/时的速度沿南偏西55∘的方向直线航行,行驶半小时后,轮船与灯塔之间的距离为( )A. 18海里B. 16海里C. 14海里D. 12海里4.已知某圆台的上、下底面半径分别为2和5,母线长为5,则该圆台的体积为( )A. 63πB. 39πC. 52πD. 42π5.设函数f(x)={ax−2,x⩽1ln x,x >1.若f(x)在R 上单调递增,则a 的取值范围为( )A. (0,+∞)B. (0,2]C. (−∞,2]D. (0,3]6.已知点P(2,1),Q(1,0),H 在直线x−y +1=0上,则|HP|+|HQ|的最小值为( )A. 2 3B. 11C. 10D. 37.金秋十月,某校举行运动会,甲、乙两名同学均从跳高、跳远、100米跑和200米跑这四个项目中选择两个项目参加.设事件A =“甲、乙两人所选项目恰有一个相同”,事件B =“甲、乙两人所选项目完全不同”,事件C =“甲、乙两人所选项目完全相同”,事件D =“甲、乙两人均未选择100米跑项目”,则( )A. A 与C 是对立事件B. C 与D 相互独立C. A 与D 相互独立D. B 与D 不互斥8.已知A(2,0),B(10,0),若直线tx−4y +2=0上存在点P ,使得PA ⋅PB =0,则t 的取值范围为( )A. [−3,215]B. [−215.3]C. (−∞,−215]∪[3,+∞) D. (−∞,−7]∪[95,+∞)二、多选题:本题共3小题,共18分。
2024-2025学年酒泉市高二数学上学期期中考试卷附答案解析
2024-2025学年酒泉市高二数学上学期期中考试卷考试时间120分钟,满分150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知数列1,3,……,则该数列的第25项是()A.7B.C. D.52.已知数列{}n a 的前n 项和()22n S n =+,则567a a a ++的值为()A.81B.36C.45D.333.在等差数列{}n a 中,67821a a a ++=,则59a a +的值为()A.7B.14C.21D.284.20y -+=的倾斜角为()A.π6B.π 3 C.2π3D.5π65.设n S 为数列{}n a 的前n 项和,若21n n S a =-,则791012a a a a ++的值为()A.8B.4C.14D.186.若点()1,2P -在圆22:0C x y x y m ++++=的外部,则m 的取值一定不是()A.4- B.1- C.0D.27.已知等差数列{}n a 的前n 项和为n S ,10a >,且316=S S ,则下列说法正确的是()A.公差0d >B.190S >C.使0nS <成立的n 的最小值为20D.110a >8.已知,A B 是圆224x y +=上的两个动点,且AB =,点()00,M x y 是线段AB 的中点,则004x y +-的最大值为()A.12B. C.6D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线l 过点()0,4,40y -+=及x 轴围成等腰三角形,则直线l 的方程可能为()A.40y +-=B.40y -+=C.30y -+=D.3120y -+=10.已知数列{}n a 的前n 项和为n S ,则下列说法中正确的是()A.若2n S n =,则{}n a 是等差数列B.若2nn S =,则{}n a 是等比数列C.若{}n a 是等差数列,则202510132025S a =D.若{}n a 是等比数列,且0n a >,则221212n n nS S S -+⋅>11.已知圆221:20x y x O +-=和圆222:240O x y x y ++-=,则下列结论中正确的是()A.圆1O 与圆2O 相交B.圆1O 与圆2O 的公共弦AB 所在的直线方程为0x y -=C.圆1O 与圆2O 的公共弦AB 的垂直平分线方程为10x y +-=D.若AB 为圆1O 与圆2O 的公共弦,P 为圆1O 上的一个动点,则△PAB面积的最大值为1+三、填空题:本题共3小题,每小题5分,共15分.12.已知直线l 的方向向量为()1,2,且直线l 经过点()2,3-,则直线l 的一般式方程为________.13.圆C :22650x y x +-+=,0,0为圆C 上任意一点,则y x 的最大值为______.14.已知等比数列{}n a 的前n 项和2n n S a =-,N n +∈,则a =________;设数列{}n a 的前n 项和为n T ,若5n T n λ>+对N n +∈恒成立,则实数λ的取值范围为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知直线()1:220l x m y +-=,2:220l mx y +-=,且满足12l l ⊥,垂足为C .(1)求m 的值及点C 的坐标.(2)设直线1l 与x 轴交于点A ,直线2l 与x 轴交于点B ,求ABC V 的外接圆方程.16.设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=.(1)求{}n a ,{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和n S .17.已知圆C :2244100x y x y m +----=,点()1,0P .(1)若17m =-,过P 的直线l 与C 相切,求l 的方程;(2)若C 上存在到P 的距离为1的点,求m 的取值范围.18.已知数列{}n a 满足:()*312232222n na a a a n n +++⋅⋅⋅+=∈N ,数列{}nb 满足5012n nb a =+.(1)求数列{}n a 的通项公式;(2)求100n n b b -+的值;(3)求12399b b b b +++⋅⋅⋅+的值.19.已知等差数列{}n a 的前n 项和为n S ,11a =,410S =,数列{}n b 满足13b =,121n n b b +=-.(1)证明:数列{}1n b -是等比数列;(2)证明:2112n n n n S b S b ++⋅>⋅;(3)若()421nn n a c b =-,求数列{}n c 的前n 项和nT 2024-2025学年酒泉市高二数学上学期期中考试卷考试时间120分钟,满分150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知数列1,3,……,则该数列的第25项是()A.7B.C. D.5【答案】A 【解析】【分析】根据数列的规律及通项可得数列的项.【详解】由已知数列1,,3,……,,……,则数列的第n第257=,故选:A.2.已知数列{}n a 的前n 项和()22n S n =+,则567a a a ++的值为()A.81B.36C.45D.33【答案】C 【解析】【分析】根据数列的前n 项和,可得数列的项,进而可得值.【详解】由已知数列{}n a 的前n 项和()22n S n =+,则75746a a a S S ++=-()()227242=+-+45=,故选:C.3.在等差数列{}n a 中,67821a a a ++=,则59a a +的值为()A.7B.14C.21D.28【答案】B 【解析】【分析】由等差中项的性质计算即可;【详解】因为在等差数列{}n a 中,67821a a a ++=,所以678773217a a a a a ++==⇒=,所以759214a a a ==+,故选:B.4.20y -+=的倾斜角为()A.π6B.π 3 C.2π3D.5π6【答案】B 【解析】【分析】先由直线方程得到斜率,进而可得其倾斜角.【详解】由题意可得直线的斜率为k =设其倾斜角为α,则tan α=,又[)0,πα∈,所以π3α=,故选:B5.设n S 为数列{}n a 的前n 项和,若21n n S a =-,则791012a a a a ++的值为()A.8B.4C.14D.18【答案】D 【解析】【分析】易知数列前n 和求出通项公式,再由等比数列的性质化简求得结果.【详解】当1n =时,11121a S a ==-,∴11a =,当2n ≥时,1121n n S a --=-,则1122n n n n n a S S a a --=-=-,∴12n n a a -=,即数列{}n a 是首项11a =,公比2q =的等比数列,即12n n a -=,∴()()27793210121011181a q a a a a q a q ++===++故选:D.6.若点()1,2P -在圆22:0C x y x y m ++++=的外部,则m 的取值一定不是()A.4-B.1- C.0D.2【答案】D 【解析】【分析】根据点在圆外及方程表示圆求出m 的范围得解.【详解】因为点()1,2P -在圆C :220x y x y m ++++=的外部,所以22(1)2120m -+-++>,解得6m >-,又方程表示圆,则1140m +->,即12m <,所以162m -<<,结合选项可知,m 的取值一定不是2.故选:D.7.已知等差数列{}n a 的前n 项和为n S ,10a >,且316=S S ,则下列说法正确的是()A.公差0d >B.190S >C.使0nS <成立的n 的最小值为20D.110a >【答案】C 【解析】【分析】根据等差数列的通项公式,前n 项和公式,结合条件10a >,逐项进行判断即可求解.【详解】设等差数列{}n a 的公差为d ,由316=S S ,得113316120a d a d +=+,即1131170a d +=,即11090a d a +==,又10a >,所以0d <,所以110a <;故AD 错,()1191910191902a a S a +===,故B 错因为190S =,0d <,所以180S >,200S <,所以0nS <成立的n 的最小值为20.故C 正确.故选:C8.已知,A B 是圆224x y +=上的两个动点,且AB =,点()00,M x y 是线段AB 的中点,则004x y +-的最大值为()A.12 B.C.6D.【答案】C 【解析】【分析】先根据题意求出M 的轨迹方程为222x y +=,设()00,M x y 到直线40x y +-=的距离为d ,由此可得004x y +-=,将问题转化为求圆222x y +=上的点到直线40x y +-=距离的最大值,先求圆心到直线的距离再加半径即可求解.【详解】根据已知有,圆心0,0,半径2r =,因为弦AB =,所以圆心到AB 所在直线的距离d ==又因为M 为AB 的中点,所以有OM =,所以M 的轨迹为圆心为0,0,半径为1r =的圆,M 的轨迹方程为222x y +=;令直线为40x y +-=,则()00,M x y 到直线40x y +-=的距离为d ,则d =,即004x y +-=,所以当d 最大时,004x y +-=也取得最大值,由此可将问题转化为求圆222x y +=上的点到直线40x y +-=距离的最大值的2倍,设圆心0,0到直线的距离为0d ,则0d ==,所以max 0d d =+=所以004x y +-的最大值为6.故选:C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线l 过点()0,4,40y -+=及x 轴围成等腰三角形,则直线l 的方程可能为()A.40y +-=B.40y -+=C.30y -+= D.3120y -+=【答案】AD 【解析】【分析】由题意知直线l 过点()0,4,所以根据直线l 是否存在斜率进行分类讨论,结合等腰三角形等知识,即可求解.【详解】设()0,4为点A ,易知点()0,4A 40y -+=上,直线40y -+=与x轴的交点,03B ⎛⎫- ⎪ ⎪⎝⎭,当直线l 的斜率不存在时,因为直线l 过点()0,4,所以直线l 的方程为0x =,与x 轴的交点为()0,0O ;此时4OA =,3OB =,3AB =,所以AOB V 不是等腰三角形,故直线l 存在斜率;设B 关于y轴的对称点为C ⎫⎪⎭,当直线l 过A ,C 两点时,AB AC =,ABC V 是等腰三角形,同时直线ABπ3,所以ABC V 是等边三角形,所以AC BC =,此时直线l 的方程为144x y +=40y +-=,设直线l 与x 轴相交于点D,如图所示,若AB BD =,则π6ADB ∠=,所以直线AD ,即直线l的斜率为3,此时方程为343y x =+3120y -+=;所以直线l40y +-=3120y -+=故选:AD.10.已知数列{}n a 的前n 项和为n S ,则下列说法中正确的是()A.若2n S n =,则{}n a 是等差数列B.若2nn S =,则{}n a 是等比数列C.若{}n a 是等差数列,则202510132025S a =D.若{}n a 是等比数列,且0n a >,则221212n n nS S S -+⋅>【答案】AC 【解析】【分析】利用n S 和n a 的关系即可判断A ,B 选项;利用等差数列的求和公式即可判断C 选项;通过举例即可判断D 选项.【详解】对于A ,若2n S n =,则当1n >时,121n n n a S S n -=-=-,当1n =时,111a S ==,符合21n a n =-,故21n a n =-,则{}n a 是等差数列,故A 正确;对于B ,若2nn S =,则112a S ==,2212a S S =-=,3324a S S =-=,故a a a a ≠2312,{}n a 不是等比数列,故B 错误;对于C ,若{}n a 是等差数列,则()1202520251013202520252a a S a +==,故C 正确;对于D ,若1n a =,符合{}n a 是等比数列,且0n a >,此时()()22121212141n n S S n n n -+⋅-+==-,2224n S n =,不满足221212n n n S S S -+⋅>,故D 错误.故选:AC11.已知圆221:20x y x O +-=和圆222:240O x y x y ++-=,则下列结论中正确的是()A.圆1O 与圆2O 相交B.圆1O 与圆2O 的公共弦AB 所在的直线方程为0x y -=C.圆1O 与圆2O 的公共弦AB 的垂直平分线方程为10x y +-=D.若AB 为圆1O 与圆2O 的公共弦,P 为圆1O 上的一个动点,则△PAB 面积的最大值为1+【答案】ABC 【解析】【分析】根据圆的一般方程确定圆心、半径,判断1212||,,O O r r 的关系判断A ,两圆方程相减求相交线方程判断B ;应用点斜式写出公共弦AB 的垂直平分线方程判断C ;数形结合判断使△PAB 面积最大时P 点的位置,进而求最大面积判断D.【详解】由题设2121)1:(x O y -+=,则1(1,0)O ,半径11r =,222:(1)(2)5O x y ++-=,则2(1,2)O -,半径2r =,所以12||1,1)O O =,两圆相交,A 对;两圆方程相减,得公共弦AB 所在直线为0x y -=,B 对;公共弦AB 的垂直平分线方程为20(1)(1)11y x x -=⋅-=----,即10x y +-=,C 对;如下图,若O 与B 重合,而1O 到0x y -=的距离d =,且||2AB ==,要使△PAB 面积最大,只需P 到AB 的距离最远为11d r +=,所以最大面积为1121)22+=,D 错.故选:ABC三、填空题:本题共3小题,每小题5分,共15分.12.已知直线l 的方向向量为()1,2,且直线l 经过点()2,3-,则直线l 的一般式方程为________.【答案】270x y --=【解析】【分析】根据点斜式求得直线方程,并化为一般式.【详解】直线l 的方向向量为()1,2,所以直线l 的斜率为2,所以直线方程为()32224,270y x x x y +=-=---=.故答案为:270x y --=13.圆C :22650x y x +-+=,0,0为圆C 上任意一点,则0y x 的最大值为______.【答案】5【解析】【分析】设0y k x =,则直线00y kx =与圆有公共点,联立方程消元后,利用判别式即可得解.【详解】设y k x =,则00y kx =,联立0022000650y kx x y x =⎧⎨+-+=⎩,消元得()22001650k x x +-+=,由()2Δ362010k=-+≥,解得252555k -≤≤,所以00y x 的最大值为5.故答案为:514.已知等比数列{}n a 的前n 项和2n n S a =-,N n +∈,则a =________;设数列{}n a 的前n 项和为n T ,若5n T n λ>+对N n +∈恒成立,则实数λ的取值范围为________.【答案】①.1②.9λ<-【解析】【分析】根据等比数列的性质,结合2n n S a =-,有(2)(21)2n n a a --=-,即可求a 值,进而有12n n a -=即(1)l 2n n =-,结合5n T n λ>+对N n +∈恒成立求λ的范围即可.【详解】由等比数列的前n 项和2n n S a =-知,1q ≠,所以1(1)21n n n a q S a q-==--,所以2q =,而112a S a ==-,2q =,∴(2)(21)2n n a a --=-,即1a =,由上知:12nn a -=,则(1)l 2n n =-,∴==2−>5+,即226(3)9,N n n n n λ+<-=--∈,当3n =时,2(3)9,N n n +--∈的最小值为9-,所以9λ<-.故答案为:1;9λ<-四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知直线()1:220l x m y +-=,2:220l mx y +-=,且满足12l l ⊥,垂足为C .(1)求m 的值及点C 的坐标.(2)设直线1l 与x 轴交于点A ,直线2l 与x 轴交于点B ,求ABC V 的外接圆方程.【答案】(1)12m =;()1,1C .(2)()2211x y -+=【解析】【分析】(1)根据题意,求得两直线的斜率,结合121k k ×=-,求得12m =,得出直线的方程,联立方程组,求得交点坐标.(2)由(1)中的直线方程,求得()0,0A ,()2,0B ,得到ABC V 的外接圆是以AB 为直径的圆,求得圆心坐标和半径,即可求解.【小问1详解】解:显然1m ≠,可得1122k m =--,22k m =-,由12l l ⊥,可得121k k ×=-,即()12122m m ⎛⎫-⋅-=- ⎪-⎝⎭,解得12m =,所以直线1l :0x y -=,直线2l :20x y +-=,联立方程组020x y x y -=⎧⎨+-=⎩,解得11x y =⎧⎨=⎩,所以点()1,1C .【小问2详解】解:由直线1l :0x y -=,直线2l :20x y +-=,可得()0,0A ,()2,0B ,所以ABC V 的外接圆是以AB 为直径的圆,可得圆心1,0,半径112r AB ==,所以ABC V 的外接圆方程是()2211x y -+=.16.设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=.(1)求{}n a ,{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和n S .【答案】(1)21n a n =-,12n n b -=;(2)221nn S n =+-.【解析】【分析】(1)设公差为d ,公比为q ()0q >,根据已知列出方程可求出2=d ,2q =,代入通项公式,即可求出结果;(2)分组求和,分别求出{}n a 和{}n b 的前n 项和,加起来即可求出结果.【小问1详解】设{}n a 公差为d ,{}n b 公比为q ()0q >,因为111a b ==,则由3521a b +=可得,41221d q ++=,即4202q d =-,由5313a b +=可得,21413d q ++=,解得2124q d =-,则3d <.所以有()24202124q d d =-=-,整理可得2847620d d -+=,解得2=d 或3138d =>(舍去).所以2=d ,则212424q =-⨯=,解得2q =±(舍去负值),所以2q =.所以有()12121n a n n =+-=-,11122n n n b --=⨯=.【小问2详解】由(1)知,21n a n =-,12n n b -=,则1212n n n a b n -+=-+.()()()1122n n n S a b a b a b =++++++L 1212n n a a a b b b =+++++++ ()()112112212n n n n ⨯--=⨯++-221n n =+-.17.已知圆C :2244100x y x y m +----=,点()1,0P .(1)若17m =-,过P 的直线l 与C 相切,求l 的方程;(2)若C 上存在到P 的距离为1的点,求m 的取值范围.【答案】(1)1x =或3430x y --=(2)1212⎡---+⎣【解析】【分析】(1)对直线l 的斜率是否存在讨论,根据直线与圆的位置关系列式运算;(2)要使圆C 上存在到点P 的距离为1的点,则圆心C 到()1,0P 的距离d 满足,11180r d r m -≤≤+⎧⎨+>⎩,运算得解.【小问1详解】因为17m =-,所以圆C 的方程为()()22221x y -+-=①当l 的斜率不存在时,l 的方程为1x =,与圆C 相切,符合题意;②当l 的斜率存在时,设l 的方程为()1y k x =-,即kx y k 0--=,圆心C 到l 的距离1d =,解得34k =,则l 的方程为()314y x =-,即3430x y --=,综上可得,l 的方程为1x =或3430x y --=.【小问2详解】由题意可得圆C :()()222218x y m -+-=+,圆心()2,2C ,半径r =,则圆心C 到()1,0P 的距离d ==要使C 上存在到P 的距离为1的点,则11180r d r m -≤≤+⎧⎨+>⎩,即11180m -≤+>⎪⎩,解得1212m ---+≤≤,所以m 的取值范围为1212⎡---+⎣.18.已知数列{}n a 满足:()*312232222n n a a a a n n +++⋅⋅⋅+=∈N ,数列{}n b 满足5012n n b a =+.(1)求数列{}n a 的通项公式;(2)求100n n b b -+的值;(3)求12399b b b b +++⋅⋅⋅+的值.【答案】(1)2nn a =(2)5012(3)51992【解析】【分析】(1)根据题意,当2n ≥时,可得311223112222n n a a a a n --+++⋅⋅⋅+=-,两式相减,求得2n n a =,再由1n =,得到12a =,即可求得数列的通项公式.(2)由(1)得50122n n b =+,结合指数幂的运算法则,即可求得100n n b b -+的值;.(3)由(2)知1005012n n b b -+=,结合倒序相加法,即可求解.【小问1详解】由数列满足:()*312232222n n a a a a n n +++⋅⋅⋅+=∈N ,当2n ≥时,可得311223112222n n a a a a n --+++⋅⋅⋅+=-,两式相减,可得12n n a=,所以2n n a =,当1n =,可得112a =,所以12a =,适合上式,所以数列的通项公式为2n n a =.【小问2详解】由数列满足505011222n n n b a ==++,则100100505010050502222211122222nn n nn nn b b --+++++++==⋅5050505505005022+212(2+2)(222)21+22n n n n n =+==+.【小问3详解】由(2)知1005012n n b b -+=,可得123995050129509111222222b b b b +++⋅⋅⋅+++++++=,则999899997150580510211122222b b b b +++⋅⋅⋅++++++=+ ,两式相加可得123995099(2)2b b b b +++⋅⋅=⋅+,所以1239951992b b b b +++⋅⋅⋅=+.19.已知等差数列{}n a 的前n 项和为n S ,11a =,410S =,数列{}n b 满足13b =,121n n b b +=-.(1)证明:数列{}1n b -是等比数列;(2)证明:2112n n n n S b S b ++⋅>⋅;(3)若()421nn n a c b =-,求数列{}n c 的前n 项和n T .【答案】(1)证明见解析;(2)证明见解析;(3)11634994n n n T -+=-⋅.【解析】【分析】(1)由递推关系得112(1)n n b b +-=-,结合等比数列定义证明;(2)由等差数列前n 项和求基本量,结合(1)结论,写出等差、等比数列通项公式、前n 项和公式,再应用作差法比较大小即可;(3)应用错位相减、等比数列前n 项和求结果.【小问1详解】由题设112112(1)n n n n b b b b ++=-⇒-=-,而112b -=,所以{}1n b -是首项、公比均为2的等比数列,得证.【小问2详解】令数列{}n a 的公差为d ,而414646101S a d d d =+=+=⇒=,所以(1)(1)22n n n n n S n -+=+=,又12nn b -=,则2111(21)()222(1)22222n n n n n n n S b n n b n S ++++++=⨯-⨯⋅⋅-⨯(21)(1)22(1)2n n n n n n =++⨯-+⨯(1)20n n =+⨯>恒成立,所以2112n n n n S b S b ++⋅>⋅,得证.【小问3详解】由上知n a n =,则()4214441nn n n n a n nc b -===-,则21231444n n n T -=++++L ,即2311231444444n n n T n n --=+++++ ,所以2311131111411444444414n n n n n T n n --=+++++-=-- ,即11634994n n n T -+=-⋅。
福建省福州高级中学2023-2024学年高二上学期期中考试数学试题
福建省福州高级中学2023-2024学年高二上学期期中考试
数学试题
学校:___________姓名:___________班级:___________考号:___________
三、解答题
7.已知圆C的方程22240
+-+-=.
x y x y m
(1)若点()
A m-在圆C的内部,求m的取值范围;
,2
六、填空题
(2)当4m =时,圆C 的方程即而()()
2242x y -+-表示圆C 由于()()
24122HC =
-++故()()2242x y -+-的最小值为.(1)2
21
2
x y +=(2)33y x =-或3+y x =-【分析】(1)根据椭圆的几何性质列等式可解得;
(2)设直线l 的方程为
y k =
12.A
【分析】设()()
0000M x y N y ,,,,最大值即可求OMN S V 的最大值,由此可求()1
|2
OMN r ON MN OM =
××++V ∣即可求内切圆半径【详解】设()0
00080M x y x <<,,,,,
【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22
,x y ;
(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算D ;(3)列出韦达定理;
(4)将所求问题或题中的关系转化为12x x +、12x x 的形式;
(5)代入韦达定理求解.。
2024-2025学年高二上学期期中模拟考试数学试题含解析
2024-2025学年高二数学上学期期中模拟卷(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:沪教版2020必修第三册第十~十一章。
5.难度系数:0.72。
一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.不重合的两个平面最多有条公共直线【答案】1【解析】根据平面的位置关系可知,不重合两平面平行或相交,当相交时,有且只有一条公共直线.故答案为:12.已知球的表面积是16π,则该球的体积为.3.空间中一个角∠A的两边和另一个角∠B的两边分别平行,若∠A=,则∠B=;【答案】【解析】如图,若角∠A 的两边和角∠B 的两边分别平行,且方向相同,则∠A 与∠B 相等此时70B A ∠=∠=︒;②当角∠A 的两边和角∠B 的两边分别平行,且一边方向相同另一边方向相反,则∠A 与∠B 互补,此时180110B A ∠=︒-∠=︒.故答案为70︒或110︒.4.如图,正三棱柱的底面边长为2,高为1,则直线1B C 与底面ABC 所成的角的大小为(结果用反三角函数值表示).5.在空间中,给出下面四个命题,其中真命题为.(填序号)①过平面α外的两点,有且只有一个平面与平面α垂直;②若平面β内有不共线三点到平面α的距离都相等,则αβ∥;③若直线l 与平面α内的任意一条直线垂直,则l α⊥;④两条异面直线在同一平面内的射影一定是两条相交直线.【答案】③【解析】①过平面α外两点可确定一条直线,当这条直线垂直于平面α时,有无数个平面垂直于平面α,故①错误;②若三点在平面α同侧,则αβ∥;若三点在平面α两侧,则α与β相交,故②错误;③直线l 与平面α内的任意一条直线垂直,则l 垂直于平面α内两条相交直线,由线面垂直的判定定理可得l α⊥,故③正确;④两条异面直线在同一个平面内的射影有可能是两条相交直线,也可能是两条平行直线,还可能是一个点和一条直线,故④错误;故答案为:③6.正四棱锥P -ABCD 的所有棱长均相等,E 是PC 的中点,那么异面直线BE 与P A 所成角的余弦值为.连接AC 交BD 于O 点,连接OE ,则OE 因为⊥PO 面ABCD ,所以PO DB ⊥,又因为所以直在角三角形EOB 中,设PA a =,则故答案为:33.7.如图,有一圆锥形粮堆,其轴截面是边长为6m 的正ABC V ,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程是m .【答案】35【解析】解:由题意得:圆锥的底面周长是6π,则66180n ππ=,解得:180n ︒=可知圆锥侧面展开图的圆心角是180︒,如图所示:则圆锥的侧面展开图中:()3m AP =,6(m)AB =,90BAP ︒∠=所以在圆锥侧面展开图中:()223635m BP =+=故答案为:358.已知一球体刚好和圆台的上、下底面及侧面都相切,且圆台上底面的半径为2,下底面的半径为1,则该圆台的侧面积为.【答案】9π【解析】圆台的轴截面如下图示:截面中圆为内切球的最大圆,且2AF DF AG DH ====,1BE CE BG CH ====,所以3AB CD ==,而上下底面周长分别为4π、2π,故该圆台的侧面积为13(2π4π)9π2⨯⨯+=.故答案为:9π9.如图,已知三棱柱111ABC A B C -的体积为3,P ,Q ,R 分别为侧棱1AA ,1BB ,1CC 上的点,且1AP CR AA +=,则Q ACRP V -=.则111332Q ACRP V d S d -=⋅⋅=⋅⋅⋅设三棱柱111ABC A B C -的体积故答案为:1.10.已知大小为π6的二面角的一个面内有一点,它到二面角的棱的距离为6,则这个点到另一个面的距离为.11.正方形ABCD 中,E ,F 分别为线段AB ,BC 的中点,连接DE ,DF ,EF ,将ADE V ,CDF V ,BEF △分别沿DE ,DF ,EF 折起,使A ,B ,C 三点重合,得到三棱锥O DEF -,则该三棱锥外接球半径R 与内切球半径r 的比值为.【答案】26【解析】在正方形ABCD 中,,AD AE CD ⊥12.空间给定不共面的A,B,C,D四个点,其中任意两点间的距离都不相同,考虑具有如下性质的平面α:A,B,C,D中有三个点到的距离相同,另一个点到α的距离是前三个点到α的距离的2倍,这样的平面α的个数是___________个【答案】32【解析】首先取3个点相等,不相等的那个点由4种取法;然后分3分个点到平面α的距离相等,有以下两种可能性:(1)全同侧,这样的平面有2个;(2)不同侧,必然2个点在一侧,另一个点在一侧,1个点的取法有3种,并且平面过三角形两个点边上的中位线,考虑不相等的点与单侧点是否同侧有两种可能,每种情况下都唯一确定一个平面,故共有6个,⨯=个,所有这两种情况共有8个,综上满足条件的这样的平面共有4832故答案为:32二、选择题(本题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分;每题有且只有一个正确选项)13.下列几何体中,多面体是()A.B.C.D.【答案】B【解析】A选项中的几何体是球,是旋转体;B选项中的几何体是三棱柱,是多面体;C 选项中的几何体是圆柱,旋转体;D 选项中的几何体是圆锥,是旋转体.故选B.14.已知两个平面α、β,在下列条件下,可以判定平面α与平面β平行的是().A .α、β都垂直于一个平面γB .平面α内有无数条直线与平面β平行C .l 、m 是α内两条直线,且l ∥β,m ∥βD .l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β【答案】D【解析】对于A ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B 都与平面ABCD 垂直,但这两个平面不平行,所以A 错误,对于B ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,平面11AAC C 中所有平行于交线1AA 的直线都与平面11AA B B 平行,但这两个平面不平行,所以B 错误,对于C ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,,M N 分别为11,A B AB 的中点,则1,MN BB 在平面11AA B B 内,且都与平面11AAC C 平行,但这两个平面不平行,所以C 错误.对于D ,因为l 、m 是两条异面直线,所以将这两条直线平移到共面α时,一定在α内形成两条相交直线,由面面平行的判定定理可知,该结论正确.故选:D15.将3个1212⨯的正方形沿邻边的中点剪开分成两部分(如图1);将这6部分接于一个边长为六边形边上(如图2),若拼接后的图形是一个多面体的表面展开图,则该多面体的体积是()A .17282B .864C .576D .2【答案】B【解析】折成的多面体如图①所示,将其补形为正方体,如图②,所求多面体体积为正方体的一半,又依题易求得正方体的边长为12,故3112864,2V =⨯=故选:B.16.如图,在正方体1111ABCD A B C D -中,E 是棱BC 的中点,F 是侧面11BCC B 上的动点,且1A F ∥平面1AD E .设1A F 与平面11BCC B 所成的角为1,A F α与1AD 所成的角为β,那么下列结论正确的是()A .α的最小值为arctan2,β的最小值为arctan3B .α的最小值为arctan3,β的最大值为2πC .α的最小值大于arctan2,β的最小值大于arctan3D .α的最大值小于arctan3,β的最大值小于2π设正方体的棱长为2,因为MN GE ∥,且MN ⊄MN ∴∥平面1AEGD ;同理1A N ∥平面1AEGD ,且∴平面1A MN ∥平面AEGD ∵11A B ⊥面11BB C C ,所以又1AD MN ,所以1A F 与1AD 所成的角为111tan A B B Fα∴=;当F 为MN 中点时,此时当F 与M 或N 重合时,此时2tan 22α∴≤≤,arctan2对于β,当F 为MN 中点时,当F 与M 或N 重合时,β()221252A F ⎛⎫∴=-= ⎪ ⎪⎝⎭tan 3β∴=,tan 3β∴≥,arctan 3β≤≤又arctan3 1.4≈,arctan2故选:A.三、解答题(本大题共有5题,满分78分,第17-19题每题14分,第20、21题每题18分.)17.如图,长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为1DD 的中点.(1)求证:直线1BD //平面PAC ;(2)求异面直线1BD 与AP 所成角的大小.【解析】(1)设AC 和BD 交于点O ,则O 为BD 的中点,连接PO ,(1分)∵P 是1DD 的中点,∴1//PO BD ,(3分)又∵PO ⊂平面PAC ,1⊄BD 平面PAC ,∴直线1BD //平面PAC ;(6分)(2)由(1)知,1//PO BD ,∴APO ∠即为异面直线1BD 与AP 所成的角,(8分)∵PA PC =12AO AC ==且PO AO ⊥,∴1sin2AO APO AP ∠==.又(0,90]APO ∠∈︒︒,∴30APO ∠=︒故异面直线1BD 与AP 所成角的大小为30︒.(14分)18.如图,在圆柱中,底面直径AB 等于母线AD ,点E 在底面的圆周上,且AF D E ⊥,F 是垂足.(1)求证:AF DB ⊥;(2)若圆柱与三棱锥D ABE -的体积的比等于3π,求直线DE 与平面ABD 所成角的大小.【解析】(1)证明:根据圆柱性质,DA ⊥平面ABE ,因为EB ⊂平面ABE ,所以DA EB ⊥,又因为AB 是圆柱底面的直径,点E 在圆周上,所以AE EB ⊥,因为AE DA A ⋂=且,AE DA ⊂平面DAE ,所以EB ⊥平面DAE ,(2分)又因为AF ⊂平面DAE ,所以EB AF ⊥,因为AF D E ⊥,且EB DE E =I ,且,EB DE ⊂平面DEB ,所以AF ⊥平面DEB ,又因为DB ⊂平面DEB ,所以AF DB ⊥.(6分)(2)解:过点E 作EH AB ⊥,H 是垂足,连接DH ,根据圆柱性质,平面ABD ⊥平面ABE ,且平面ABD ⋂平面ABE AB =,且EH ⊂平面ABE ,所以EH ⊥平面ABD ,因为DH ⊂平面ABD ,所以DH 是ED 在平面ABD 上的射影,从而EDH ∠是DE 与平面ABD 所成的角,(8分)设圆柱的底面半径为R ,则2DA AB R ==,所以圆柱的体积为32πV R =,且21233D ABEABE R V AD S EH -=⋅=⋅ ,由:3πD ABE V V -=,可得EH R =,可知H 是圆柱底面的圆心,且AH R =,且DH =,在直角EDH 中,可得tan EH EDH DH ∠==EDH ∠=(14分)19.如图,将边长为2的正方形ABCD 沿对角线BD 折叠,使得平面ABD ⊥平面CBD ,AE ⊥平面ABD ,且2AE(1)求证:直线EC 与平面ABD 没有公共点;(2)求点C 到平面BED 的距离.【解析】(1)取BD 的中点F ,连接CF 、AF ,如图,依题意,在BCD △中,,BC CD BC CD =⊥,则CF BD ⊥,而平面ABD ⊥平面CBD ,平面ABD ⋂平面CBD BD =,CF ⊂平面CBD ,于是得CF ⊥平面ABD ,且2CF =因为AE ⊥平面ABD ,且2AE =//AE CF ,且AE CF =,从而得四边形AFCE 为平行四边形,//EC AF ,(4分)又AF ⊂平面ABD ,EC ⊂/平面ABD ,则//EC 平面ABD ,所以直线EC 与平面ABD 没有公共点;(6分)(2)因为CF ⊥平面ABD ,AF ⊂平面ABD ,所以CF AF ⊥,因为BD AF ⊥,BD CF F = ,,BD CF ⊂平面,CBD 所以AF ⊥平面,CBD 因为//,EC AF ,于是得EC ⊥平面CBD ,因为AE ⊥平面ABD ,,AB AD ⊂平面ABD ,所以,AE AB AE AD ⊥⊥,(8分)因为EC AF ==EB ED =,则等腰BED 底边BD 上的高2h ==,12BED S BD h =⋅= ,而2BCD S =,设点C 到平面BED 的距离为d ,由C BED E BCD V V --=得1133BED BCD S d S EC ⋅=⋅ ,即2=,解得1d =,所以点C 到平面BED 的距离为1(14分)20.如图所示,在四棱锥P ABCD -中,底面四边形ABCD 是菱形,底面,AC BD O PAC = △是边长为2的等边三角形,PB =PD ,AP =4AF(1)求证:PO ⊥底面ABCD (2)求直线CP 与OF 所成角的大小.(3)在线段PB 上是否存在点M ,使得//CM 平面BDF ?如果存在,求BMBP的值;如果不存在,请说明理由.【解析】(1)因为底面ABCD 是菱形,且AC BD O = ,所以O 为AC ,BD 中点,在PBD △中,PB =PD ,可得PO ⊥BD ,因为在PAC 中,PA =PC ,O 为AC ,BD 中点,所以PO ⊥AC ,(3分)又因为AC ⋂BD =O ,所以PO ⊥底面ABCD .(4分)(2)连接OF ,取AP 中点为E ,连接OE ,因为底面ABCD 是菱形,AC ⋂BD =O ,由O 为AC 中点,且E 为AP 中点,AP =4AF ,所以F 为AE 中点,所以CP //OE .,故∠EOF 为直线CP 与OF 所成的角,(8分)又由PAC 为等边三角形,且E 为中点,所以∠EOF =30o .(10分)(3)存在,13BM BP =,连接CE ,ME ,因为AP =4AF ,E 为AP 中点,所以13EF FP =,又因为13BM BP =,所以在PFB △中,EF BMFP BP =,即EM //BF ,(12分)因为EM ⊄平面BDF ,BF ⊂平面BDF ,所以EM //平面BDF ,由(2)知EC //OF ,因为EC ⊄平面BDF ,OF ⊂平面BDF ,所以EC //平面BDF ,因为EC ⋂EM =E ,所以平面EMC //平面BDF ,因为CM ⊂平面EMC ,所以CM //平面BDF .(18分)21.在棱长均为2的正三棱柱111ABC A B C -中,E 为11B C 的中点.过AE 的截面与棱111,BB AC 分别交于点F ,G.(1)若F 为1BB 的中点,试确定点G 的位置,并说明理由;(2)在(1)的条件下,求截面AGEF 与底面ABC 所成锐二面角的正切值;(3)设截面AFEG 的面积为0S ,AEG △面积为1S ,AEF △面积为2S ,当点F 在棱1BB 上变动时,求2012S S S 的取值范围.【解析】(1)在平面11BCC B 内延长1CC ,FE 相交于点P ,则P ∈平面AGEF ,又1P CC ∈⊂平面11ACC A ,则有平面AGEF 平面11ACC A AG =,P AG ∈,即A ,G ,P 三点共线.(2分)因为E 为11B C 的中点,F 为1BB 的中点,所以11112PC B F CC ==,所以113PC PC =,又因为1//GC AC ,所以1113GC PC AC PC ==,所以111112333GC AC A C ===,即点G 为棱11AC 上靠近点1C 的三等分点.(4分)(2)在平面11BCC B 内延长CB ,EF 相交于点Q ,连接AQ ,则平面AGEF 平面ABC AQ =,在平面11ACC A 内作GM AC ⊥于点M ,则GM ⊥平面ABC ,又AQ ⊂平面ABC ,所以G M AQ ⊥,在平面ABC 内作MN AQ ⊥于点N ,连接GN ,又,GM MN ⊂平面GMN ,GM MN M ⋂=,所以AQ ⊥平面GMN ,GN ⊂平面GMN ,所以AQ GN ⊥,所以GNM ∠为截面AGEF 与底面ABC 所成锐二面角的平面角.(6分)在AQC 中,作CH AQ ⊥于点H ,11BQ C E ==,2AC =,3CQ =,60AC B ∠= ,12222ABC S =⨯⨯⨯=△AQC S =由余弦定理2222cos 4967AQ AC CQ AC CQ ACQ =+-⋅⋅∠=+-=,则AQ122AQC S AQ CH ==⋅ ,可得3217CH =,所以237MN CH ==,又22G M AA ==,所以21tan 3GM GNM MN ∠==,故截面AGEF 与底面ABC (10分)(3)设1GC m =,则[]0,1m ∈,2PG mGA m=-.设PGE 的面积为S ,所以12S m S m=-,又因为21S S S =+,所以1222S m S -=,且1221,122S m S -⎡⎤=∈⎢⎥⎣⎦,故()22120121212212S S S S SS S S S S S +==++,令12S t S =,则1,12t ⎡⎤∈⎢⎥⎣⎦,(11分)设()112,12g t t t t ⎛⎫⎡⎤=++∈ ⎪⎢⎥⎣⎦⎝⎭,当12112t t ≤<≤时,()()()()121212121212111t t g t g t t t t t t t t t --=+--=-,120t t -<,120t t >,1210t t -<,则()()120g t g t ->,即()()12g t g t >,所以()12g t t t =++在1,12t ⎡⎤∈⎢⎥⎣⎦上单调递减,所以()()min 14g t g ==,()max 1922g t g ⎛⎫== ⎪,所以()94,2g t ⎡⎤∈⎢⎥,。
高二期中考试(数学)试卷含答案
高二期中考试(数学)(考试总分:100 分)一、 单选题 (本题共计10小题,总分40分)1.(4分)1.已知集合{}34,5A =,,{}4,5,6B =,则AB =A .{}3B .{}4,5C .{}34,5,D .{}34,5,6,2.(4分)2.圆22240x y x y +-+=的圆心坐标是A .(1,2)B .(1-,2)C .(1,2-)D .(1-,2-)3.(4分)3.已知向量(,1)a x =-,(4,2)b =,且a b ,则x 的值是A .2B .12 C .12- D . 2- 4.(4分)4.若运行右图的程序,则输出的结果是A .15B .4C .11D .75.(4分)5.函数()(1)x f x a =-在R 上是减函数,则a 的取值范围是A .a >1B .0<a <1C .1<a <2D .·a >26.(4分)6.某学校高一、高二、高三年级的学生人数分别为300,200.400,为了了解学生的课业负担情况,该校采用分层抽样的方法,从这三个年级中抽取18名学生进行座谈,则高一、高二、高三年级抽取人数分别是A .6.4.8B .6,6,6C .5,6,7 D·4,6,87.(4分)7.如图4所示,正方形的面积为1.在正方形内随机撒1000粒豆子,恰好有600粒豆子落在阴影部分内,则用随机模拟方法计算得阴影部分的面积为( ) A 、54 B 、53 C 、21 D 、528.(4分)8.不等式(1)(2)x x --≥0的解集是A .{}12x x ≤≤B .{}12x x <<C .{}12x x x ≤≥或D .{}12x x x <>或9.(4分)9.如果一个几何体的正视图是矩形,则这个几何体不可能是A .正方体B .正三棱柱C .圆柱D .圆锥10.(4分)10.已知实数x ,y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则目标函数2z x y =+的最大值为A .0B .4C .3D .5二、 填空题 (本题共计5小题,总分20分) 11.(4分)11.已知cos (0,)2παα=∈,则sin(2)______πα+=· 12.(4分)12.直线l 过点(0,2)且与直线1x =垂直,则l 的方程为____________。
高二期中考试(数学)试卷含答案
高二期中考试(数学)(考试总分:150 分)一、 单选题 (本题共计8小题,总分40分) 1.(5分)1.化简 ()i 23i +=( )A .32i -B .32i +C .32i --D .32i -+2.(5分)2.曲线324y x x =-+在点(1,3)处的切线的斜率为 ( )A .1B .1-C .2-D .23.(5分)3.有5名同学去听同时举行的3个课外知识讲座,每名同学可自由选择听其中的1个讲座,不同的选择的种数为 ( ) A .35 B .53 C .35CD .35A4.(5分)4.若函数32()39f x x ax x =++-在3x =-时取得极值,则a =( )A .2B .3C .4D .55.(5分)5.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ) A .60种B .70种C .75种D .150种6.(5分)6.已知曲线3()=2f x x x +-在点P 处的切线平行与直线41y x =-,则点P的坐标为( ). A .(1,0)B .(1,4)--C .(1,4)-D .(1,0)或(1,4)--7.(5分)7.已知函数()21ln 2f x x x =-,则()f x 的单调减区间是( ) A .[)1,+∞B .(],1-∞-C .(]0,1D .[]1,1-8.(5分)8.设函数)('x f 是偶函数)(x f 的导函数,满足0)2(=f ,且0>x 时,满足0)()('<-x f x xf ,则使得0)(<xx f 时,x 的取值范围是( ) A.)2,2-( B .),()(∞+-20,2 C .)1,1-( D .),()(200,2 - 二、 多选题 (本题共计4小题,总分20分)9.(5分)9.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .2z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限10.(5分)10.将4个不同的小球放入三个分别标有1、2、3号的盒子中,不允许有空盒子,则不同的放法种数是( ) A .11114323C C C CB .2343C AC .3143A CD .21342322C C A A ⋅ 11.(5分)11.已知函数()y f x =,其导函数()y f x '=的图象如下图所示,则()y f x =( )A .在1-=x 处取极小值B .在3=x 处取极小值C .在)2,1-(上为增函数 D .在)2,1(上为减函数 12.(5分)12.下列关于函数ln ()xf x x=的说法,正确的有( )A .x e =为函数()f x 的极大值点B .x e =为函数()f x 的极小值点C .函数()f x 在(0,)e 上单调递增D .函数()f x 在(,)e +∞上单调递增三、 填空题 (本题共计4小题,总分20分) 13.(5分)13.i 是虚数单位,计算12i2i-+ 的结果为_____________. 14.(5分)14.曲线321y x x =+-在点(1,(1))f 处的切线方程为______________. 15.(5分)15.为了更好地进行新冠肺炎的疫情防控,某社区安排6名工作人员到A ,B ,C 三个小区讲解疫情防控的注意事项,若每个小区安排两名工作人员,则不同的安排方式的种数为_________(.数字作答).16.(5分)16.已知函数x a e x f x ln )(-=在[]41,上单调递增,则a 的取值范围为_________.四、 解答题 (本题共计6小题,总分70分)17.(10分)17、(10分)若复数()()2262z m m m m i =+-+--,当实数m 为何值时?(1)z 是实数;(2)z 是纯虚数.18.(12分)18、(12分)在广外佛山外校某次颁奖典礼上,需要合影留念,现有3名女生和4名男生排成一排,问:(1)如果女生全排在一起,有多少种不同排法? (2)如果女生都不相邻,有多少种排法? (3)如果女生不站两端,有多少种排法?19.(12分)19、(12分)已知函数13)(3+-=x x x f .(1)求()f x 的单调区间;(2)求函数的极值;(要列表).20.(12分)20、(12分)为了参加广外佛山外校第一届“辩论赛”,现在要从报名的5名男生和4名女生中再选出4人去参加比赛,问: (1)如果4人中男生和女生各选2人,有多少种选法? (2)如果4人中既要有男生,也有女生,有多少种选法?(2)如果男生中的甲与女生中的乙至少要有1人在内,有多少种选法?21.(12分)21、(12分)已知函数()ln ),(f x x x ax b a b R =++∈在点()()1,1f 处的切线为320x y --=. (1)求函数()f x 的解析式:(2)若对于∀x 1,14⎡⎤∈⎢⎥⎣⎦,都有xx f m m )(12>--恒成立,求m 的取值范围. 22.(12分)22、(12分)某企业生产一种机器的固定成本(即固定投入)为0.5万元,但每生产1百台时又需可变成本(即需另增加投入)0.25万元,市场对此商品的需求量为5百台,销售收入(单位:万元)的函数为)50(2152≤≤-=x x x R ,其中x 是产品生产并售出的数量(单位:百台). (1)把利润表示为年产量的函数.(2)年产量为多少时,企业所得利润最大?(不需求出利润最大值)答案一、 单选题 (本题共计8小题,总分40分) 1.(5分) D 2.(5分) A 3.(5分)B 4.(5分)D 5.(5分)C 6.(5分)D 7.(5分)A 8.(5分)B二、 多选题 (本题共计4小题,总分20分) 9.(5分)BCD 10.(5分) CD 11.(5分) AC 12.(5分) AC三、 填空题 (本题共计4小题,总分20分) 13.(5分)13.i -14.(5分) 14. 035=--y x 15.(5分) 15.9016.(5分) 16.],e ∞-(四、 解答题 (本题共计6小题,总分70分)17.(10分)17.(1)当z 是实数时,220m m --=,解得2m =或1m =-,所以,所求的m 值为2或1-........5分.(2)当z 是纯虚数时,222060m m m m ⎧--≠⎨+-=⎩,解得3m =-,所以,所求的m 值为3-............................10分18.(12分)18.解:(1)(捆绑法)由于女生排在一起,可把她们看成一个整体,这样同五个男生合在一起有5个元素,排成一排有55A 种排法,而其中每一种排法中,三个女生间又有33A 种排法,因此共有55A ·33A =720(种)不同排法.............................................................................4分(2)(插空法)先排4个男生,有44A 种排法,这4个男生之间和两端有6个位置,从中选取3个位置排女生,有35A 种排法,因此共有44A ·35A =1440(种)不同排法....................................8分(3)因为两端不排女生,只能从4个男生中选2人排列,有24A 种排法,剩余的位置没有特殊要求,有55A 种排法,因此共有24A ·55A =1440(种)不同排法...........................................12分19.(12分)19.解:(1)3()31=-+f x x x ,/2()333(1)(1)∴=-=-+f x x x x ...............................................2分由'()0f x =可得1x =或1x =-..................................................................................................................4分①当/()0f x >时,1x >或1x <-;②当/()0f x <时,11x -<<,所以()f x 的单调增区间为()(),1,1,-∞-+∞,单调减区间为:()1,1-....................................................6分(2)由(1)可得,当x 变化时,/()f x ,()f x 的变化情况如下表:...........................................10分当1x =-时,()f x 有极大值,并且极大值为(1)3f -= 当1x =时,()f x 有极小值,并且极小值为(1)1f =-..............................................................................12分20.(12分)20.解:(1)根据题意,从5名男生中选出2人,有2510C =种选法,从4名女生中选出2人,有246C =种选法,则4人中男生和女生各选2人的选法有10660⨯=种;............................................................4分(2)先在9人中任选4人,共有49126C =种选法,4人都是男生的有545=C 种选法,4人都是女生的有144=C 种选法,则4人中既要有男生,也有女生,有12015126=--种选法..................................8分(3)先在9人中任选4人,有49126C =种选法,其中甲乙都没有入选,即从其他7人中任选4人的选法有4735C =种,则甲与女生中的乙至少要有1人在内的选法有1263591-=种;...........................12分21.(12分)21.(1)由题意知:()f x 的定义域为(0,)+∞...........................................................................................1分∵()ln 1'=++f x x a ∴(1)13(1)1f a f a b =+=⎧⎨=+='⎩,解得21a b =⎧⎨=-⎩......................................................................5分 故()ln 21f x x x x =+-............................................................................................................................6分 (2)令()1()ln 2f x h x x x x==-+,则22'111)(xxx x x h +=+=...........................................................8分 0)(1,41'>∴⎥⎦⎤⎢⎣⎡∈x h x , ,即函数)(x h 在⎥⎦⎤⎢⎣⎡∈1,41x 上单调递增.所以要使得⎥⎦⎤⎢⎣⎡∈∀>--1,41)(12x x x f m m ,恒成立...............................................................................10分 只要1)1()(1max 2==>--f xx f m m )(即可,解得:2,1>-<m m 或...........................................12分22.(12分)22.(1)设利润为y 万元,得⎪⎩⎪⎨⎧>--⨯-⨯≤≤---=)5(25.05.05215550(25.05.021522x x x x x x y )即⎪⎩⎪⎨⎧>-≤≤-+-=)5(25.01250(5.04.75212x x x x x y )...........................6分(2)显然当05x ≤≤时,企业会获得最大利润,此时,21( 4.75)10.781252y x =--+, 4.75x ∴=,即年产量为475台时,企业所得利润最.....12分.。
黑龙江省牡丹江市第二高级中学2024-2025学年高二上学期期中考试(11月)数学试题(含解析)
牡丹江二中2024-2025学年度第一学期高二学年期中考试数学考生注意:1.本试卷分选择题和非选择题两部分。
满分150分,考试时间120分钟。
2.答题前,考生务必将密封线内项目填写清楚。
考生作答时,请将答案答在答题卡上。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。
3.本试卷主要命题范围:选择性必修第一册(第二章第三章)。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.在平面直角坐标系中,原点(0,0)到直线的距离为C.2D.32.抛物线的准线方程为A. B. C. D.3.若直线与圆交于,两点,则A. B.12C. D.4.已知双曲线的左、右焦点分别为,,焦距为.若以线段为直径的圆与直线有交点,则双曲线的离心率取值范围为A.(1,2)B. C. D.5.已知椭圆,,是椭圆的左、右焦点,焦距为,是椭圆上一点,是的外角平分线,过作的垂线,垂足为,则A. B. C. D.6.已知圆与圆相切,则的最小值为A.5B.3C.27.若直线与曲线有两个交点,则实数的取值范围是~20x y +-=28y x =132y =132y =-116y =116y =-34130x y --=()()222336x y -++=A B AB =()2222:10,0x y C a b a b-=>>1F 2F 2c 12F F 20ax by ac -+=C ()2,+∞(]1,2[)2,+∞()2222:10x y C a b a b +=>>1F 2F C 2c M C l 12F MF ∠2F l P OP =abc2a()()221:29O x m y -++=()()222:21O x n y +++=22m n +:20l kx y --=:1C x =-kA. B. C. D.8.法国数学家、化学家和物理学家加斯帕尔-蒙日被称为“画法几何之父”,他创立的画法几何学推动了空间解析几何的发展,被广泛应用于工程制图当中.如过椭圆外的一点作椭圆的两为半径的圆,这个圆叫做椭圆的蒙日圆.若椭圆的蒙日圆为,过圆上的动点作椭圆的两条切线,分别与圆交于,两点,直线与椭圆相交于,两点,则下列结论不正确的是A.椭圆的离心率为B.到椭圆C.若动点在椭圆上,记直线,的斜率分别为,,则D.面积的最大值为二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6,部分选对的得部分分,有选错的得0分.9.点,为椭圆的两个焦点,点为椭圆内部的动点,则周长的取值可以为A.4B. C.D.610.设有一组圆,下列命题正确的是A.不论如何变化,圆心始终在一条直线上B.所有圆均不经过点(3,0)C.经过点(2,2)的圆有且只有一个D.所有圆的面积均为411.在平面直角坐标系中,凸四边形的4个顶点均在抛物线上,则A.四边形不可能为平行四边形B.存在四边形,满足4,43⎛⎫⎪⎝⎭4,23⎛⎤⎥⎝⎦442,,233⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦4,3⎛⎫+∞⎪⎝⎭2222:10x y D a b a b+=>>()()22:1044x y C m m +=<<22:7E x y +=E M C E P Q PQ C A B C 12M C 1+N C AN BN 1k 2k 1234k k =-MPQ △721F 2F 22:143x y C +=P C 12PF F △()()()22:4k C x k y k k -+-=∈R k C k C k C xOy ABCD 2:2E y x =ABCD ABCD A C∠∠=C.若过抛物线的焦点,则直线,斜率之积恒为一2D.若为正三角形,则该三角形的面积为三、填空题:本大题共3小题,每小题5分,共15分.12.过点且与直线平行的直线方程为__________.13.曲线与恰有四条公切线,则实数的取值范围为__________.14.椭圆的一个焦点是,为坐标原点,过的直线交椭圆于,两点.若恒有,则椭圆离心率的取值范围为__________.四、解答题:本大题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.(13分)已知直线,直线.(1)若,求实数的值;(2)若,求实数的值.16.(15分)(1)已知双曲线的顶点在轴上,两顶点间的距离是8,离心率,求双曲线的标准方程;(2)斜率为1的直线经过抛物线的焦点,且与抛物线相交于,两点.求线段的长.17.(15分)已知圆与圆的公共弦所在的直线是,且圆的圆心在轴上.(1)求圆的方程;(2)若直线与圆相切,且在两条坐标轴上的截距相等,求直线的方程.18.(17分)已知抛物线的焦点为,抛物线上一点横坐标为3,且点到焦点的距离为4.(1)求抛物线的方程;(2)过点(2,0)作直线交抛物线于点,,求面积的最小值(其中为坐标原点).19.(17分)已知椭圆的一个顶点为.(1)求椭圆的方程;AB E F OA OB OAC △()3,4P 210x y -+=221:20C x y x ++=222:480C x y x y m +--+=m ()222210x y a b a b+=>>()1,0F O F l A B 222OA OB AB +<()()1:21210l a x a y ---+=()2:1210l a x y +--=12l l ∥a 12l l ⊥a C x 54e =C l 24y x =F A B AB 22:2830M x y x y ++--=C :10l x y --=C x C m C m ()2:20C y px p =>F P P F C A B ABO △O ()2222:10x y C a b a b +=>>()0,1P C(2)直线与椭圆交于、两点,且,求的值.:l y x m =+C A B PA PB ⊥m牡丹江二中2024-2025学年度第一学期高二学年期中考试・数学参考答案、提示及评分细则1.A 原点(0,0)到直线2.B 由化得,故物物线的标准方程为,所以,则,所以抛物线的准线方程为.3.C 由圆的方程为可知圆心为(2,-3),半径,则圆心到直线的距离,根据圆的弦长公式可得.4.D 以线段为直径的圆的方程是,与直线有交点,则圆心到直线的距离,所以双曲线的离心率.5.A 延长交的延长线于点,如图所示.平分,且,为等腰三角形,,且为的中点,又,,为的中点,为的中点,6.C 由题,圆的圆心为,半径为3,圆的圆心为,半径为1.若圆与圆外,即,则,即,当且仅当时等号成立.若圆与圆内切,则,即,则20x y +-==28y x =218x y =218x y =128p =116p =28y x =1232p x =-=-()()222336x y -++=6r =34130x y --=1d AB ==12F F 222x y c +=20ax by ac -+=2d a c ==≤2ce a=≥2F P 1F M N PM 2NMF ∠2MP F N ⊥2MNF ∴△2MF MN =P 2F N 122MF MF a += 112MF MN F N a ∴+==P 2F N O 12F F 11.2OP F N a ∴==1O ()1,2O m -2O ()2,2O n --1O 2O 314=+=()216m n +=222422m n m n ++⎛⎫≥= ⎪⎝⎭228m n +≥m n =1O 2O 312=-=()24m n +=,即,当且仅当时等号成立.综上,的最小值为2.7.B直线恒过定点,曲线即:,,曲线表示以(1,1)为圆心,1为半径的的那部分圆,如图所示,直线与曲线有两个交点,当过点的直线与图中这部分圆相切时有1个交点,此时,解得;当过点的直线也过点时有2个交点,此时,.8.D 椭圆的蒙日圆为,根据蒙日圆的定义,,得,椭圆,,,则,椭圆的离心率,故A 正确;点是圆上的动点,椭圆的右焦点,则的最大值是,故B 正确;根据蒙日圆的定义可知,则为圆的直径,与椭圆交于两点,,点,关于原点对称,设,,,,故C 正确;因为为圆的直径,,当点到直线的距离为时,的面积最大,此时最大值是,故D 错误.9.BC 由椭圆,得:,,当点在椭圆上时,周长最大,为;当点在轴上时,去最小值,为.又因点为椭圆内部的动点,所以周222122m n m n ++⎛⎫≥= ⎪⎝⎭222m n +≥m n =22m n + :20l kx y --=()0,2M -:1C x =-()()22111x y -+-=1x ≥∴C ()1x ≥ l C ∴M 1143k =M ()1,0A ()202210k --==-423k ∴<≤ ()22:1044x y C m m+=<<22:7E x y +=47m +=3m =∴22:143x y C +=24a =23b =21c =∴12c e a ==M 22:7E x y +=()1,0F MF 1MP MQ ⊥PQ E PQ A B A B ()11,A x y ()11,B x y --()00,N x y ()2222010101012222010101013344AN BNx x y y y y y yk k x x x x x x x x ---+-⋅=⋅===--+--D PQ PQ =M PQ r =PQM △172⨯=22:143x y C +=2a =1c =P 12PF F △226a c +=P x 44c =P C 12PF F △长的取值范围为(4,6),故选BC.10.AB 由题意可知:圆的圆心,半径.对于A ,不论如何变化,圆心始终在直线上,故正确;对于,令,整理得,因为,可知方程无解,所以所有圆均不经过点(3,0),故B正确;对于C ,令,整理得,因为,可知方程有两个不同的解,所以经过点(2,2)的圆有且只有两个,故C错误;对于D ,因为半径,所以所有圆的面积均为,故D 错误.故选AB.11.ABD 对于A ,构成平行四边形的条件是对边平行且相等,而水平直线与至多只有一个交点,因此,四边形不可能为平行四边形,故A 正确;对于B ,如图1所示,在抛物线上任取,两点(,分居轴两侧)连接,作的垂直平分线交抛物线于,两点,连接,,,,则,故B 正确;对于C ,设,,,,解得,所以,故C 错误;对于D ,设若为正三角形,如图2所示,由抛物线的对称性可知,线,则,解得,,,D 正确.故选ABD.12. 设与直线平行的直线方程为,把点的坐标代入直线方程,求得,所以所求直线方程为.13.(4,20) 圆,即,其圆心,半径,圆,即,其圆心,半径,则必有,即,两圆圆心的距离,若两圆有4条公切线,则两圆外()()()22:4k C x k y k k -+-=∈R (),C k k 2r =k (),C k k y x =A B ()()22304k k -+-=22650k k -+=()2642540=--⨯⨯=-<△k C ()()22224k k -+-=2420k k -+=()2441280=--⨯⨯=>△k C 2r =224ππ⨯=22y x =ABCD A C A C x AC AC B D AB AD CB CD A C ∠∠=211,2y A y ⎛⎫ ⎪⎝⎭222,2y B y ⎛⎫ ⎪⎝⎭12221212422OA OB y y k k y y y y ⋅=⋅=12112222121121022112222AB AF y y y y k k y y y y y y --=⇒=⇒=+---121y y =-4OA OB k k ⋅=-OAC △30AOx ∠=OA k =OA y x =:2,2,y x y x ⎧=⎪⎨⎪=⎩6A x =A y =OA ===1sin602OAC S OA OC =⋅= △220x y --=210x y -+=20x y m -+=()3,4P 2342m =-⨯+=-220x y --=221:20C x y x ++=()2211x y ++=()11,0C -11r =222:480C x y x y m +--+=()()222420x y m -+-=-()22,4C 2r =200m ->20m <125C C ==离,必有,解得,则的取值范围为(4,20).14. 设过点的直线的直线方程为与椭圆交于,两点,设点,,,联立方程得,整理为,,,,,是钝角,,,,,整理为恒成立,,即,,解得或,,离心率.15.解:(1),, (2)分整理得,解得或,……5分当时,与重合,舍去,故. (7)分(2)解:,,……9分,或.……13分16.解:(1)①由题意,解得,,则,……4分所以双曲线的标准方程为.……6分(2)由题意,抛物线的焦点,,则直线的方程为,……8分51>+4m >m ⎛ ⎝F l 1x my =+A B ()11,A x y (2B x )2y ()2222221b my a y a b ++=()2222222220b m a y mb y b a b +++-=212222mb y y b m a ∴+=-+22212222b a b y y b m a -=+222OA OB AB +< 222cos 02OA OB ABAOB OA OB∠+-∴=<⨯AOB ∠∴12120x x y y ∴+<()()1212110my my y y ∴+++<()()21212110m y y m y y ∴++++<()2222222222222110b a b m b m b m a b m a -∴+⋅-+<++222221a b m a b ++>22221a b a b+∴<()222211a a a a +-<-42310a a ∴-+>2a >2a <a ∴>∴1c e a a ⎛==∈ ⎝12l l ∥()()()()21221a a a ∴-⋅-=-⋅+250a a -=0a =5a =0a =1l 2l 5a =12l l ⊥ ()()()()211220a a a ∴-⋅++-⋅-=22350a a ∴+-=1a ∴=52a =-28,5,4a c e a =⎧⎪⎨==⎪⎩4a =5c =2229b c a =-=221169x y -=24y x =()1,0F 2p =l 1y x =-设,,联立得,所以,……12分所以.……15分17.解:(1)由已知可设圆的方程为:,①圆②①一②可得:,即为的方程,……3分所以有,,所以圆的方程为.……6分(2)由(1)知圆心的坐标为(3,0),半径为2,由已知当直线不过原点时可设的方程为,……7分因为直线与圆所以直线的方程为.……10分又因为过原点的直线若与圆相切,截距相等且为0,所以又可设直线的方程为所以直线的方程为.……14分综上直线的方程为或.……15分18.解:(1)由题意知,,所以.……5分(2)由(1)知,抛物线,直线过(2,0),可设直线的方程为,联立.……9分设,,不妨设,,……12分()11,A x y ()22,B x y 21,4,y x y x =-⎧⎨=⎩2610x x -+=126x x +=12628AB x x p =++=+=C 220x y Dx F +++=22:2830,M x y x y ++--=()2830D x y F -+++=l 2836111D F D -+==⇒=---5F ⇒=C 22650x y x +-+=C m m 0x y a ++=m C 23a ⇒=-±m 30x y +-±=m y kx =2k =⇒=m y x =m 30x y +-±=y x =1342p +=2p ∴=24y x =2:4C y x =AB AB 2x ty =+224,4802y x y ty x ty ⎧=⇒--=⎨=+⎩()11,A x y ()22,B x y 10y >128y y ∴=-当且仅当,即时取等号,的最小值为.……17分19.解:(1)设椭圆的半焦距为.由题意得……1分解得,所以椭圆的方程为.……3分(2)由得.……4分由,解得.……5分设,,则,,所以,……8分,,.……11分因为,所以,则,则,则,解得或.……15分当时,直线过点,则不满足,所以.……17分12111118822AOB S y y y y y y -∴=⨯⨯-=-=+≥=△118y y =1y =AOB S ∴△c 2221,,b ca abc =⎧⎪⎪=⎨⎪=+⎪⎩2a =C 2214x y +=22,1,4y x m x y =+⎧⎪⎨+=⎪⎩()2258410x mx m ++-=()()22845410m m =-⨯⨯->△m <<()11,A x y ()22,B x y 1285mx x +=-()212415m x x -⋅=1212822255m y y x x m m m +=++=-+=()()()()2222121212124184555m m m y y x m x m x x m x x m m m--⎛⎫⋅=+⋅+=+++=+-+=⎪⎝⎭()111PA x y =- ,()22,1PB x y =-PA PB ⊥0PA PB ⋅=()()1212110x x y y +--=()12121210x x y y y y +-++=()22414210555m mm --+-+=35m =-1m =1m =:1l y x =+P PA PB ⊥35m =-。
高二期中考试(数学)试卷含答案解析
高二期中考试(数学)(考试总分:150 分)一、单选题(本题共计12小题,总分60分)1.(5分)1.2i12i-=+()A.1 B.−1 C.i D.−i2.(5分)2.函数f(x)=x4﹣2x3的图象在点(1,f(1))处的切线方程为()A.y=﹣2x﹣1B.y=﹣2x+1C.y=2x﹣3D.y=2x+13.(5分)3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种4.(5分)4.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62% B.56%C.46% D.42%5.(5分)5.设一组样本数据x1,x2,…,x n的方差为0.01,则数据10x1,10x2,…,10x n的方差为()A.0.01B.0.1C.1D.106.(5分)6.从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[)[)[)[]5.31,5.33,5.33,5.35,,5.45,5.47,5.47,5.49,并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为()A.10B.18C .20D .367.(5分)7.在5(2)x -的展开式中,2x 的系数为( ).A .5-B .5C .10-D .108.(5分)8.要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( ) A .2种B .3种C .6种D .8种9.(5分)9.北京2022年冬奥会和冬残奥会色彩系统的主色包括霞光红、迎春黄、天霁蓝、长城灰、瑞雪白;间色包括天青、梅红、竹绿、冰蓝、吉柿;辅助色包括墨、金、银.若各赛事纪念品的色彩设计要求:主色至少一种、至多两种,间色两种、辅助色一种,则某个纪念品的色彩搭配中包含有瑞雪白、冰蓝、银色这三种颜色的概率为( ) A .8225B .245C .115D .21510.(5分)10.如图,将钢琴上的12个键依次记为a 1,a 2,…,a 12.设1≤i <j <k ≤12.若k –j =3且j –i =4,则称a i ,a j ,a k 为原位大三和弦;若k –j =4且j –i =3,则称a i ,a j ,a k 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为( ) A .5B .8C .10D .1511.(5分)11.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A .10名B .18名C .24名D .32名12.(5分)12.已知定义在(0,+∞)上的连续函数()y f x =满足:()()x xf x f x xe '-=且(1)3f =-,(2)0f =.则函数()y f x =( )A .有极小值,无极大值B .有极大值,无极小值C .既有极小值又有极大值D .既无极小值又无极大值二、 填空题 (本题共计4小题,总分20分)13.(5分)13.设函数e ()xf x x a =+.若(1)4e f '=,则a =_________.14.(5分)14.262()x x+的展开式中常数项是__________(用数字作答).15.(5分)15.设复数1z ,2z 满足12||=||=2z z ,12i z z +=,则12||z z -=__________.16.(5分)16.已知22451(,)x y y x y R +=∈,则22x y +的最小值是_______.三、 解答题 (本题共计6小题,总分70分)17.(10分)17.(10分)已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ,求a 的取值范围.18.(12分)18.(12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i i y ==∑,2021)80i i x x =-=∑(,2021)9000i iy y =-=∑(,201))800i i i x y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))ni iiiin ni i x y x x y y y x ===----∑∑∑((((,≈1.414.19.(12分)19.(12分)已知函数3()6ln f x x x =+,()'f x 为()f x 的导函数.(Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅰ)求函数9()()()g x f x f x x'=-+的单调区间和极值; 20.(12分)20.(12分)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n . (1)求p 1、q 1和p 2、q 2;(2)求X 2的分布列和数学期望E (X 2) .21.(12分)21.(12分)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率;(2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,22.(12分)22.(12分)已知12a <≤,函数()e xf x x a =--,其中e =2.71828…为自然对数的底数.(Ⅰ)证明:函数()y f x =在(0)+∞,上有唯一零点; (Ⅰ)记x 0为函数()y f x =在(0)+∞,上的零点,证明:(Ⅰ0x ≤≤; (Ⅰ)00(e )(e 1)(1)x x f a a ≥--.答案一、 单选题 (本题共计12小题,总分60分) 1.(5分)1D 2.(5分) 2B 3.(5分) 3 C 4.(5分) 4C 5.(5分) 5C 6.(5分)6B 7.(5分) 7C 8.(5分) 8 C 9.(5分) 9 B 10.(5分) 10C 11.(5分) 11 B 12.(5分) 12 A二、 填空题 (本题共计4小题,总分20分) 13.(5分)13.1 14.(5分) 14. 24015.(5分) 15. 16.(5分) 16.45三、 解答题 (本题共计6小题,总分70分)17.(10分)17.(10分)【解】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.……(5分)(2)()()()()22222121211f x x a x a x a x a aa a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞.……(10分)18.(12分)18.(12分)【答案】(1)12000;(2)0.94;(3)详见解析【解】(1)样区野生动物平均数为201111200602020i i y ==⨯=∑, 地块数为200,该地区这种野生动物的估计值为2006012000⨯=……(4分) (2)样本(,)i i x y (i =1,2,…,20)的相关系数为20()()0.943iix x y y r --===≈∑……(4分)(3)由(2)知各样区的这种野生动物的数量与植物覆盖面积有很强的正相关性, 由于各地块间植物覆盖面积差异很大,从俄各地块间这种野生动物的数量差异很大, 采用分层抽样的方法较好地保持了样本结构与总体结构得以执行,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计. ……(4分)19.(12分)19.(12分) 【答案】(Ⅰ)98y x =-;(Ⅰ)()g x 的极小值为(1)1g =,无极大值;【解】(Ⅰ) ∵()36ln f x x x =+,()26'3f x x x=+.可得()11f =,()'19f =, ∴曲线()y f x =在点()()1,1f 处的切线方程为()191y x -=-,即98y x =-.…4分 (Ⅰ) 依题意,()()32336ln ,0,g x x x x x x=-++∈+∞. 从而可得()2263'36g x x x x x =-+-,整理可得:323(1)(1)()x x g x x '-+=,令()'0g x =,解得1x =.当x 变化时,()()',g x g x 的变化情况如下表:,+∞); g (x )的极小值为g (1)=1,无极大值. ……(12分)20.(12分)20.(12分)【答案】(1)112212716,,332727p q p q ====;;(2);详见解析【解】(1)11131232,333333p q ⨯⨯====⨯⨯, 211131211227++3333333927p p q ⨯⨯=⨯⨯=⨯⨯=⨯⨯, 211231122222516+0+3333333927q p q ⨯⨯+⨯=⨯⨯+=⨯⨯=⨯⨯.……(8分) (2)227(2)27P X p ===;2216(1)27P X q ===;22124(0)33327P X ==⨯⨯=;∴2X 的分布列为故210()9E X =.;……(12分) 21.(12分)21.(12分)【答案】(1)0.64;(2)答案见解析;(3)有.【解】(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的概率为640.64100=;……(4分) (2)由所给数据,可得22⨯列联表为:(3)根据22⨯列联表中的数据可得222()100(64101610)()()()()80207426n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>,因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关. ……(12分)22.(12分)22.(12分)【答案】(I )证明见解析,(II )(i )证明见解析,(ii )证明见解析. 【解】(I )()1,0,1,()0,()x x f x e x e f x f x ''=->∴>∴>∴在(0,)+∞上单调递增,2212,(2)240,(0)10a f e a e f a <≤∴=--≥->=-<,所以由零点存在定理得()f x 在(0,)+∞上有唯一零点;……(4分) (II )(i )000()0,0xf x e x a =∴--=,002000012(1)xxx e x x e x ≤⇔--≤≤--,令22()1(02),()1(02),2xxx g x e x x x h x e x x =---<<=---<<一方面:1()1(),xh x e x h x '=--= 1()10x h x e '=->,()(0)0,()h x h h x ''∴>=∴在(0,2)单调递增,()(0)0h x h ∴>=,2210,2(1)2xx x e x e x x ∴--->-->,另一方面:1211a a <≤∴-≤,所以当01x ≥0x ≤成立,因此只需证明当01x <<时2()10x g x e x x =---≤,因为11()12()()20ln 2x x g x e x g x g x e x ''=--==-=⇒=, 当(0,ln 2)x ∈时,1()0g x '<,当(ln 2,1)x ∈时,1()0g x '>, 所以()max{(0),(1)},(0)0,(1)30,()0g x g g g g e g x ''''''<==-<∴<,()g x ∴在(0,1)单调递减,()(0)0g x g ∴<=,21x e x x ∴--<,综上,002000012(1),x xex x e x x ∴--≤≤--≤≤(8分)(ii )0000000()()()[(1)(2)]xa a t x x f e x f x a x e x a e ==+=-+-,00()2(1)(2)0a a t x e x a e '=-+->0x ≤,0()(2)](1)(1)2)a a a a t x t e a e e a e ∴≥=--=--+-,因为12a <≤,所以,2(1)ae e a a >≥-,0()(1)(1)2(2)a t x e a a e ∴≥--+--,只需证明22(2)(1)(1)a a e e a --≥--, 即只需证明224(2)(1)(1)ae e a -≥--, 令22()4(2)(1)(1),(12)as a e e a a =----<≤, 则22()8(2)(1)8(2)(1)0aas a e e e e e e '=---≥--->,2()(1)4(2)0s a s e ∴>=->,即224(2)(1)(1)a e e a -≥--成立,因此()0x 0e (e 1)(1)x f a a≥--.……(12分)。
2024-2025学年河南省南阳市六校高二上学期10月期中考试数学试题(含答案)
2024-2025学年河南省南阳市六校高二上学期10月期中考试数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知直线l 的斜率为− 3,则直线l 的一个方向向量的坐标为( )A. (−1,− 3)B. ( 3,−1)C. (− 3,−1)D. ( 3,−3)2.抛物线C :y = 2x 2的焦点坐标为( )A. ( 22,0)B. ( 24,0)C. (0, 28)D. (0, 24)3.已知▵ABC 三个顶点的坐标分别为A (3,−1),B (−5,2),C (7,4),则BC 边上的中线所在直线的方程为( )A. x +2y−1=0B. 2x +y−5=0C. 2x−y−7=0D. x−2y−5=04.已知双曲线C 以两个坐标轴为对称轴,且经过点(2, 3)和(− 5,−2),则C 的渐近线方程为( )A. y =± 22xB. y =±xC. y =± 2xD. y =±2x5.“a =−3”是“直线ax +2ay−3=0与(a−1)x−(a +1)y +13=0垂直”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.已知直线l 经过点P (2,1),且与圆C :(x +1)2+(y−2)2=9相交于A ,B 两点,若|AB |=4 2,则直线l 的方程为( )A. y =1或3x +4y−10=0B. y =1或4x +3y−11=0C. 4x +3y−11=0或3x +4y−10=0D. 4x−3y−5=0或3x−4y−2=07.如图是某抛物线形拱桥的示意图,当水面处于l 位置时,拱顶离水面的高度为2.5m ,水面宽度为8m ,当水面上涨0.9m 后,水面的宽度为( )A. 6.4mB. 6mC. 3.2mD. 3m 8.已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 为双曲线上一点,若P 与F 1恰好关于C 的一条渐近线y =2x 对称,且|PF 2|=2,则▵PF 1F 2的面积为( )A. 2B. 22C. 23D. 4二、多选题:本题共3小题,共18分。
安徽省蚌埠市2023-2024学年高二上学期期中数学试题含解析
蚌埠2023-2024学年第一学期期中检测试卷高二数学(答案在最后)一、单选题(本大题共8小题,共40.0分.在每小题列出的选项中,选出符合题目的一项)1.若直线l 的一个方向向量为(-,求直线的倾斜角()A.π3B.π6C.2π3D.5π6【答案】C 【解析】【分析】求出直线斜率,进而求出直线倾斜角即得.【详解】直线l 的一个方向向量为(-,则直线l 斜率为,所以直线l 的倾斜角为2π3.故选:C2.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,已知PA a = ,PB b = ,PC c = ,12PE PD = ,则BE = ()A.131222a b c -+B.111222a b c-+C.131222a b c ++D.113222a b c -+【答案】A 【解析】【分析】利用空间向量加法法则直接求解.【详解】连接BD ,如图,则()()()1111122222BE BP BD PB BA BC PB PA PB PC PB =+=-++=-+-+-()11131131222222222PB PA PB PC PA PB PC a b c=-+-+=-+=-+故选:A .3.已知点A 与点(1,2)B 关于直线30x y ++=对称,则点A 的坐标为A.(3,4) B.(4,5)C.(4,3)-- D.(5,4)--【答案】D 【解析】【分析】根据对称列式求解.【详解】设(),A x y ,则123052224(1)11x y x y y x ++⎧++=⎪=-⎧⎪∴⎨⎨-=-⎩⎪⋅-=-⎪-⎩,选D.【点睛】本题考查关于直线对称点问题,考查基本分析求解能力,属基础题.4.在一平面直角坐标系中,已知()1,6A -,()2,6B -,现沿x 轴将坐标平面折成60°的二面角,则折叠后A ,B 两点间的距离为()A.27 B.41C.17 D.35【答案】D 【解析】【分析】平面直角坐标系中已知()1,6A -,()2,6B -,现沿x 轴将坐标平面折成60°的二面角后,通过向量的数量积转化求解距离即可.【详解】解:平面直角坐标系中已知()1,6A -,()2,6B -,沿x 轴将坐标平面折成60°的二面角后,作AC ⊥x 轴,交x 轴于C 点,作BD ⊥x 轴,交x 轴于D 点,则6,3,6,AC CD DB === ,AC CD CD DB ⊥⊥ ,,AC DB的夹角为120°∴AB AC CD DB =++ ,222222212+2+2=6+3+6266452AB AC CD DB AC CD CD DB AC DB =+++⋅⋅⋅-⨯⨯⨯= 35AB ∴=,即折叠后A ,B 两点间的距离为35.故选:D .【点睛】本题考查与二面角有关的立体几何综合题,解题时要认真审题,注意数形结合思想的合理运用.5.如果实数x ,y 满足()2222x y -+=,则yx的范围是()A.()1,1- B.[]1,1- C.()(),11,-∞-⋃+∞ D.(][),11,-∞-⋃+∞【答案】B 【解析】【分析】设yk x =,求y x的范围救等价于求同时经过原点和圆上的点(),x y 的直线中斜率的范围,结合图象,易得取值范围.【详解】解:设yk x=,则y kx =表示经过原点的直线,k 为直线的斜率.如果实数x ,y 满足22(2)2x y -+=和yk x=,即直线y kx =同时经过原点和圆上的点(),x y .其中圆心()2,0C ,半径2r =从图中可知,斜率取最大值时对应的直线斜率为正且刚好与圆相切,设此时切点为E则直线的斜率就是其倾斜角EOC ∠的正切值,易得2OC =,CE r ==可由勾股定理求得OE ==,于是可得到tan 1CEk EOC OE =∠==为y x的最大值;同理,yx的最小值为-1.则yx的范围是[]1,1-.故选:B.6.抛物线214x y =的焦点到双曲线22221(0,0)x y a b a b -=>>的渐近线的距离是2,则该双曲线的离心率为()A.B.C.2D.233【答案】A 【解析】【分析】先求得抛物线的焦点,根据点到直线的距离公式列方程,求得22b a =,由此求得双曲线的离心率.【详解】抛物线214x y =即24y x =的焦点坐标为()1,0,双曲线22221(0,0)x y a b a b-=>>的渐近线方程为b y x a =±,即0bx ay ±=,所以点()1,0到直线0bx ay ±=的距离为22=,则22b a =,则双曲线的离心率为c e a =====故选:A7.直线()2200ax by a b a b +--=+≠与圆2220x y +-=的位置关系为()A.相离 B.相切C.相交或相切D.相交【答案】C 【解析】【分析】利用几何法,判断圆心到直线的距离与半径的关系,判断直线与圆的位置关系即可.【详解】由已知得,圆2220x y +-=的圆心为(0,0),所以圆心到直线()2200ax by a b a b +--=+≠.因为222ab a b ≤+,所以()()2222a b a b+≤+≤,所以直线与圆相交或相切;故选:C .8.在正方体1111ABCD A B C D -中,点P 在1AC 上运动(包括端点),则BP 与1AD 所成角的取值范围是()A.ππ,43⎡⎤⎢⎥⎣⎦ B.π0,2⎡⎤⎢⎥⎣⎦C.ππ,62⎡⎤⎢⎥⎣⎦D.ππ,63⎡⎤⎢⎥⎣⎦【答案】B 【解析】【分析】建立空间直角坐标系,设1AB =,则,01λ≤≤,利用1c s o BC BP =,,即可得出答案.【详解】设BP 与1AD 所成角为θ,如图所示,不妨设1AB =,则()0,0,0B ,()0,1,0A ,()10,1,1A ,()11,0,1C ,()111,0,1AD BC == ,()1,0,0BC = ,()11,1,1AC =-.设1AP AC λ= ,则()1,1,BP BA AC λλλλ=+=-,01λ≤≤.所以111c ·o s BC BPBC BP BC BP==⋅,当0λ=时,10cos BC BP = ,,此时BP 与1AD 所成角为π2,当0λ≠时,1c os BC BP =,,此时10cos 1BC BP <≤,,当且仅当1λ=时等号成立,因为cos y x =在π02x ⎡⎤∈⎢⎥⎣⎦,上单调递减,所以1π0,2BC BP ⎡⎫∈⎪⎢⎣⎭ ,,综上,π0,2θ⎡⎤∈⎢⎥⎣⎦.故选:B .二、多选题(本大题共4小题,共20.0分.在每小题有多项符合题目要求)9.下列说法正确的有()A.若直线y kx b =+经过第一、二、四象限,则()k b ,在第二象限B.直线32y ax a =-+过定点()32,C.过点()21-,斜率为的点斜式方程为)12y x +=-D.斜率为2-,在y 轴截距为3的直线方程为23y x =-±.【答案】ABC 【解析】【分析】由直线y kx b =+过一、二、四象限,得到斜率0k <,截距0b >,可判定A 正确;由把直线方程化简为()()320a x y -+-+=,得到点()32,都满足方程,可判定B 正确;由点斜式方程,可判定C 正确;由斜截式直线方程可判定D 错误.【详解】对于A 中,由直线y kx b =+过一、二、四象限,所以直线的斜率0k <,截距0b >,故点()k b ,在第二象限,所以A 正确;对于B 中,由直线方程32y ax a =-+,整理得()()320a x y -+-+=,所以无论a 取何值点()32,都满足方程,所以B 正确;对于C 中,由点斜式方程,可知过点()21-,斜率为的点斜式方程为)12y x +=-,所以C 正确;由斜截式直线方程得到斜率为2-,在y 轴上的截距为3的直线方程为23y x =-+,所以D 错误.故选:ABC .【点睛】本题主要考查了直线的方程的形式,以及直线方程的应用,其中解答中熟记直线的点斜式的概念及形式,以及直线的斜率与截距的概念是解答的关键,着重考查推理与运算能力,属于基础题.10.关于空间向量,以下说法正确的是()A.若直线l 的方向向量为()1,0,3e = ,平面α的法向量为22,0,3n ⎛⎫=- ⎪⎝⎭ ,则直线l α∥B.已知{},,a b c 为空间的一个基底,若m a c =+,则{},,a b m 也是空间的基底C.若对空间中任意一点O ,有111632OP OA OB OC =++,则P ,A ,B ,C 四点共面D.两个非零向量与任何一个向量都不能构成空间的一个基底,则这两个向量共线【答案】BCD 【解析】【分析】计算得到e n ⊥,l α∥或l ⊂α,A 错误,若,,a b a c +r r r r 共面,则,,a b c 共面,不成立,故B 正确,化简得到23PA PB PC =--,C 正确,若这两个向量不共线,则存在向量与其构成空间的一个基底,故D 正确,得到答案.【详解】()22,0,22031,0,3e n ⎛⎫=-=-+= ⎪⎝⎭⋅⋅ ,故e n ⊥ ,故l α∥或l ⊂α,A 错误;若,,a b a c +r r r r共面,设()()b a a c a c λμλμμ=++=++ ,则,,a b c 共面,不成立,故{},,a b m 也是空间的基底,B 正确;111632OP OA OB OC =++ ,则()()()111632OA OP OB OP OC OP -+-+- 1110632PA PB PC =++=,即23PA PB PC =--,故P ,A ,B ,C 四点共面,C 正确;若这两个向量不共线,则存在向量与其构成空间的一个基底,故D 正确.故选:BCD.11.已知平面α的法向量为()1,2,2n =-- ,点()2,21,2A x x +为α内一点,若点()0,1,2P 到平面α的距离为4,则x 的值为()A.2 B.1C.3- D.6-【答案】AD【解析】【分析】利用向量法可知,点P 到平面α的距离公式为||||AP n d n →→→⋅=,代入相关数值,通过解方程即可求解.【详解】解:由向量法可知,点P 到平面α的距离公式为||||AP n d n →→→⋅=,又 ()()22,(,20,2,0)122,1,x x AP x x →+--==-,()1,2,2n =--24AP n x x →→∴⋅=+,||3n ==由点()0,1,2P 到平面α的距离为4,有2443x x+=解得2x =或6x =-故选:AD【点睛】本题考查的是点面距离的计算问题,核心是会利用向量法中点到平面的距离公式,考查运算求解能力,属于基础题.12.已知双曲线C 经过点6,12⎛⎫ ⎪ ⎪⎝⎭,且与椭圆22Γ:12x y +=有公共的焦点12,F F ,点M 为椭圆Γ的上顶点,点P 为C 上一动点,则()A.双曲线CB.sin 3MOP ∠>C.当P 为C 与Γ的交点时,121cos 3F PF ∠= D.||PM 的最小值为1【答案】ACD 【解析】【分析】根据题意中的点求出双曲线方程,结合离心率的定义即可判断A ;根据双曲线的渐近线,结合图形即可判断B ;根据椭圆与双曲线的定义,结合余弦定理计算即可判断C ;由两点距离公式,结合二次函数的性质即可判断D.【详解】A :由题意,12(1,0),(1,0)F F -,设双曲线的标准方程为222221,11x y a a a-=<-,将点,1)2代入得212a =,所以双曲线方程为2211122x y -=,得其离心率为22c e a ===,故A 正确;B :由A 选项的分析知,双曲线的渐近线方程为y x =±,如图,π4MON ∠=,所以π3π44MOP <∠<,得sin 12MOP <∠≤,故B 错误;C :当P为双曲线和椭圆在第一象限的交点时,由椭圆和双曲线的定义知,1212PF PF PF PF +=-=12,22PF PF ==,又122F F =,在12F PF △中,由余弦定理得222121212121cos 23PF PF F F F PF PF PF +-∠==⋅,故C 正确;D :设00(,)P x y ,则22001,(0,1)2x y M -=,所以PM ==,当012y =时,min1PM =,故D 正确.故选:ACD.三、填空题(本大题共4小题,共20.0分)13.若空间向量(,2,2)a x =和(1,1,1)b = 的夹角为锐角,则x 的取值范围是________【答案】4x >-且2x ≠【解析】【分析】结合向量夹角公式、向量共线列不等式来求得x 的取值范围.【详解】依题意04211a b a bx x ⎧⋅=>⎪⋅⎪⇒>-⎨⎪≠⎪⎩ 且2x ≠.故答案为:4x >-且2x ≠14.已知0a >,0b >,直线1l :()110a x y -+-=,2l :210x by ++=,且12l l ⊥,则21a b+的最小值为__________.【答案】8【解析】【分析】根据两条直线的一般式方程及垂直关系,求出a ,b 满足的条件,再由基本不等式求出最小值即可.【详解】因为12l l ⊥,所以()11120a b -⨯+⨯=,即21a b +=,因为0a >,0b >,所以()2121422248b a a b a b a b a b ⎛⎫+=++=+++≥+ ⎪⎝⎭,当且仅当4b a a b =,即12a =,14b =时等号成立,所以21a b+的最小值为8.故答案为:8.15.直线30x y ++=分别与x 轴,y 轴交于,A B 两点,点P 在圆()2232x y -+=上,则ABP 面积的取值范围______.【答案】[]6,12【解析】【分析】由题意求得所以()30A -,,()0,3B -,从而求得AB =,再根据直线与圆的位置关系可求得点P 到直线30x y ++=距离h ⎡∈⎣,再结合面积公式即可求解.【详解】因为直线30x y ++=分别与x 轴,y 轴交于A ,B 两点,所以()30A -,,()0,3B -,因此AB =.因为圆()2232x y -+=的圆心为()3,0,半径r =,设圆心()3,0到直线30x y ++=的距离为d ,则3033222d ++==>,因此直线30x y ++=与圆()2232x y -+=相离.又因为点P 在圆()2232x y -+=上,所以点P 到直线30x y ++=距离h 的最小值为32222d r -=-=,最大值为32242d r +=+=,即22,42h ⎡⎤∈⎣⎦,又因为ABP 面积为13222AB h h ⨯⨯=,所以ABC 面积的取值范围为[]6,12.故答案为:[]6,1216.瑞士数学家欧拉(LeonhardEuler )1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知ABC 的顶点()4,0-A ,()0,4B ,其欧拉线方程为20x y -+=,则顶点C 的坐标可以是_________【答案】()2,0或()0,2-【解析】【分析】设(,)C x y ,依题意可确定ABC ∆的外心为(0,2)M ,可得出,x y 一个关系式,求出ABC ∆重心坐标,代入欧拉直线方程,又可得出,x y 另一个关系式,解方程组,即可得出结论.【详解】设(,),C x y AB 的垂直平分线为y x =-,ABC 的外心为欧拉线方程为20x y -+=与直线y x =-的交点为(1,1)M -,∴22||||10,(1)(1)10MC MA x y ==++-=①由()4,0-A ,()0,4B ,ABC 重心为44(,)33x y -+,代入欧拉线方程20x y -+=,得20x y --=②由①②可得2,0x y ==或0,2x y ==-.故答案为:()2,0或()0,2-.【点睛】本题以数学文化为背景,考查圆的性质和三角形的外心与重心,考查逻辑思维能力和计算能力,属于较难题.四、解答题(本大题共6小题,共70.0分.解答应写出文字说明,证明过程或演算步骤)17.已知圆M 的圆心为()2,3,且经过点()5,1C -.(1)求圆M 的标准方程;(2)已知直线:34160l x y -+=与圆M 相交于,A B 两点,求AB .【答案】(1)()()222325x y -+-=(2)AB =【解析】【分析】(1)根据条件求出圆M 的半径,再结合圆心坐标求出标准方程即可;(2)求出圆心M 到直线l 的距离,再由垂径定理求出||AB .【小问1详解】因为圆M 的圆心为(2,3),且经过点(5,1)C -,所以圆M 的半径5r MC ===,所以圆M 的标准方程为()()222325x y -+-=.【小问2详解】由(1)知,圆M 的圆心为()2,3,半径=5r ,所以圆心M 到直线l 的距离2d =,所以由垂径定理,得AB ===.18.已知ABC 的顶点()3,2A ,边AB 上的中线所在直线方程为380x y -+=,边AC 上的高所在直线方程为290x y --=.(1)求顶点,B C 的坐标;(2)求ABC 的面积.【答案】(1)B 的坐标为()8,7,C 的坐标为()1,3(2)152【解析】【分析】(1)设(),B a b ,(),C m n ,由题意列方程求解即可得出答案.(2)先求出AB 和直线AB 所在的方程,再由点到直线的距离公式求出边AB 上的高,即可求出ABC 的面积.【小问1详解】设(),B a b ,因为边AB 上的中线所在直线方程为380x y -+=,边AC 上的高所在直线方程为290x y --=,所以2903238022a b a b --=⎧⎪⎨++-⨯+=⎪⎩,解得87a b =⎧⎨=⎩,即B 的坐标为()8,7.设(),C m n ,因为边AB 上的中线所在直线方程为380x y -+=,边AC 上的高所在直线方程为290x y --=,所以3802132m n n m -+=⎧⎪-⎨=-⎪-⎩,解得13m n =⎧⎨=⎩,即C 的坐标为()1,3.【小问2详解】因为()()3,2,8,7A B,所以AB ==因为边AB 所在直线的方程为237283y x --=--,即10x y --=,所以点()1,3C 到边AB的距离为2=,即边AB上的高为2,故ABC的面积为115222⨯=.19.已知直三棱柱111ABC A B C -,侧面11AA C C 是正方形,点F 在线段1AC 上,且13AF =,点E 为1BB 的中点,1AA =,1AB BC ==.(1)求异面直线CE 与BF 所成的角;(2)求平面CEF 与平面11ACC A 夹角的余弦值.【答案】(1)90(2)21【解析】【分析】(1)利用直棱柱的结构特征,结合线面垂直的性质,建立空间直角坐标系,利用直线与直线所成角的向量求法,计算得结论;(2)分别求出两个平面的法向量,利用平面与平面所成角的向量求法,即可得到结果.【小问1详解】因为侧面11AA C C 是正方形,1AA =,1AB BC ==,所以BA BC ⊥,因为三棱柱111ABC A B C -直三棱柱,所以1BB ⊥面ABC ,而BC ,BA ⊂平面ABC ,因此1BB BC ⊥,1BB BA ⊥,所以BC ,BA ,1BB 两两垂直.以B 为坐标原点,BC ,BA ,1BB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如下图:因此()100C ,,,()000,,B ,()010A ,,,(1102C ,,而点E 为1BB 的中点,所以2002E ⎛⎫ ⎪ ⎪⎝⎭,,,因为F 在线段1AC 上,所以设()()1,201AF AC λλλλλ==-≤≤ ,因此(),12BF BA AF λλλ=+=- ,因为13AF = ()()222123λλλ+-+=解得16λ=,因此152,,666BF ⎛⎫= ⎪ ⎪⎝⎭ ,即152,,666F ⎛⎫ ⎪ ⎪⎝⎭,因为21,0,2CE ⎛⎫=- ⎪ ⎪⎝⎭,所以11066CE BF ⋅=-+= ,因此异面直线CE 与BF 所成的角为90 .【小问2详解】设平面CEF 的法向量为()1n x y z = ,,,而552,,666CF ⎛⎫=- ⎪ ⎪⎝⎭,因此由1100n CE n CF ⎧⋅=⎪⎨⋅=⎪⎩ 得2025520666x z x y z ⎧-+=⎪⎪⎨⎪-++=⎪⎩,取2z =得1x =,35y =,所以13125n ⎛= ⎝ ,,是平面CEF 的一个法向量,设平面11ACC A 的法向量为()2222n x y z = ,,,()110AC =- ,,,(112AC =- ,,,因此由22100n AC n AC ⎧⋅=⎪⎨⋅=⎪⎩ 得020x y x y z -=⎧⎪⎨-+=⎪⎩,取1x =得1y =,0z =,所以()2110n = ,,是平面11ACC A 的一个法向量.设平面CEF 与平面11ACC A 夹角为θ,则02πθ≤≤,因此121212cos cos ,n n n n n n θ⋅==31521+==,所以平面CEF 与平面11ACC A 夹角的余弦值为24221.20.已知双曲线C的焦点坐标为()1F,)2F ,实轴长为4,(1)求双曲线C 的标准方程;(2)若双曲线C 上存在一点P 使得12PF PF ⊥,求12PF F △的面积.【答案】(1)2214x y -=;(2)1.【解析】【分析】(1)由题可知,c a 的值即可求出双曲线C 的标准方程;(2)由双曲线的定义及面积公式即可求出.【详解】(1)设双曲线方程为22221(0,0)x y a b a b-=>>,由条件知c =,24a =,∴2,1a b ==,∴双曲线C 的方程为2214x y -=.(2)由双曲线的定义可知,124PF PF -=±.∵12PF PF ⊥,∴22212420PF PF c +==,即21212()220PF PF PF PF ⨯-+=∴122PF PF ⋅=,∴12PF F △的面积12112122S PF PF =⋅=⨯=.21.在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,AB BC ⊥,侧面PAB ⊥底面ABCD ,2PA PB AD ===,4BC =.(1)若PB 的中点为E ,求证://AE 平面PCD ;(2)若PB 与底面ABCD 所成的角为60︒,求PC 与平面PBD 的所成角的余弦值.【答案】(1)证明见解析(2)80535【解析】【分析】(1)取PC 的中点F ,连接,EF DF .先证明四边形ADFE 是平行四边形,即可得出//DF AE ,然后即可证明线面平行;(2)先证明PO ⊥平面ABCD ,即可得出60PBA ∠=︒.然后建立空间直角坐标系,得出点以及向量的坐标,求出平面PBD 的法向量,根据向量求得PC 与平面PBD 的所成角的正弦值,进而求得余弦值.【小问1详解】如图1,取PC 的中点F ,连接,EF DF ,,E F 分别为,PB PC 的中点,∴//EF BC ,且122EF BC ==.//AD BC 且2AD =,//EF AD ∴且2EF AD ==,∴四边形ADFE 是平行四边形,//DF AE ∴.AE ⊄ 平面PCD ,DF ⊂平面PCD ,∴//AE 平面PCD .【小问2详解】若O 是AB 中点,取CD 中点为G ,连结OG .,O G 分别是,AB CD 的中点,∴//OG BC .AB BC ⊥,∴OG AB ⊥.由底面ABCD 为直角梯形且//AD BC ,2PA PB AD ===,4BC =.PA PB =,∴PO AB ⊥.由侧面PAB ⊥底面ABCD ,平面PAB ⋂平面ABCD AB =,PO ⊂面PAB ,∴PO ⊥平面ABCD ,P ∴在平面ABCD 的投影在直线AB 上.又PB 与底面ABCD 所成的角为60︒,PB ∴与底面ABCD 所成角的平面角60PBA ∠=︒,∴PAB 为等边三角形,2AB PA ==.以O 为原点,分别以,,OB OG OP 所在的直线为,,x y z 轴,如图2建空间直角坐标系,则()1,0,0B ,()1,4,0C ,()1,2,0D -,(3P ,则(3BP =- ,(1,2,3PD =- ,(1,4,3PC = .设平面PBD 的法向量(),,n x y z =r,则00n BP n PD ⎧⋅=⎪⎨⋅=⎪⎩,即020x x y ⎧-+=⎪⎨-+-=⎪⎩,取x =,得)n = ,∴cos ,35n PC n PC n PC ⋅==r uu u r r uu u r r uu u r .设PC 与平面PBD 的所成角为θ,则sin cos ,35n PC θ== . π0,2θ⎡⎤∈⎢⎥⎣⎦,∴cos 0θ≥∴cos 35θ==,PC ∴与平面PBD的夹角的余弦值为35.22.已知抛物线C :()220y px p =>的焦点为F ,斜率为1的直线l 经过F ,且与抛物线C 交于A ,B 两点,8AB =.(1)求抛物线C 的方程;(2)过抛物线C 上一点(),2P a -作两条互相垂直的直线与抛物线C 相交于MN 两点(异于点P ),证明:直线MN 恒过定点,并求出该定点坐标.【答案】(1)24y x=(2)证明见解析【解析】【分析】(1)根据条件,得到直线l 方程为2p y x =-,设1122(,),(,)A x y B x y ,联立抛物线方程,根据抛物线的弦长求得p ,即得答案;(2)求得a 的值,设直线MN 的方程为x my n =+,联立抛物线方程,得根与系数的关系,利用PM PN ⊥,得到32(1)n m -=-或32(1)n m -=--,代入直线方程,分离参数,求得定点坐标,证明结论.【小问1详解】设1122(,),(,)A x y B x y ,由题意知(,0)2p F ,则直线l 方程为2p y x =-,代入()220y px p =>,得22304p x px -+=,280p ∆=>,∴123x x p +=,由抛物线定义,知1||2p AF x =+,2||2p BF x =+,∴12348AB AF BF x x p p p p =+=++=+==,∴2p =,∴抛物线的方程为24y x =.【小问2详解】证明: (),2P a -在抛物线24y x =上,∴242),1(a a =∴=-,由题意,直线MN 的斜率不为0,设直线MN 的方程为x my n =+,设3344(,),(,)M x y N x y ,由24y x x my n⎧=⎨=+⎩,得2440y my n --=,则216160m n '∆=+>,且34344,4y y m y y n +==-,又23434)242(x x m y y n m n +=++=+,22234344334()()()x x my n my n m y y mn y y n n =++=+++=,由题意,可知PM PN ⊥,PM PN ∴⊥,故3434(1)(1)(2)(2)0PM PN x x y y +⋅=+--+= ,故()3434343412()40x x x x y y y y -++++++=,整理得2246850n m n m --++=,即22(3)4)(1n m -=-,∴32(1)n m -=-或32(1)n m -=--,即21n m =+或25n m =-+.若21n m =+,则21(2)1x my n my m m y =+=++=++,此时直线MN 过定点(1,2)-,不合题意;若25n m =-+,则()2525x my n my m m y =+=-+=-+,此时直线MN 过定点(5,2),符合题意,综上,直线MN 过异于P 点的定点(5,2).【点睛】方法点睛:直线和抛物线的位置关系中,证明直线过定点问题,一般是设出直线方程,利用根与系数的关系化简,求得参数之间的关系式,再对直线分离参数,求得定点坐标,进而证明直线过定点.。
高二期中考试试卷数学
高二期中考试试卷数学一、选择题(每题4分,共40分)1. 若函数f(x) = 2x + 3,则f(-1)的值为:A. -1B. 1C. 5D. -52. 已知等差数列{an}的首项a1 = 2,公差d = 3,则a5的值为:A. 11B. 14C. 17D. 203. 下列函数中,哪一个是奇函数?A. y = x^2B. y = x^3C. y = sin(x)D. y = cos(x)4. 一个圆的半径为5,圆心在原点,该圆的面积为:A. 25πB. 50πC. 75πD. 100π5. 计算定积分∫(0到1) x^2 dx的值为:B. 1/2C. 2/3D. 16. 已知向量a = (3, -4),向量b = (-2, 6),则向量a与向量b的数量积为:A. -10B. 0C. 10D. -207. 以下哪个不等式是正确的?A. |x| > xB. |x| ≥ xC. |x| < xD. |x| ≤ x8. 函数y = 2^x的反函数为:A. y = log2(x)B. y = 2^xC. y = log(x)D. y = x^(1/2)9. 已知抛物线y = x^2 - 4x + 4,其顶点坐标为:A. (2, 0)B. (-2, 0)C. (2, 4)D. (-2, 4)10. 计算极限lim(x→0) (sin(x)/x)的值为:B. 1C. π/2D. -1二、填空题(每题4分,共20分)11. 计算sin(π/6)的值为______。
12. 已知函数f(x) = x^2 - 6x + 8,求f(1)的值为______。
13. 计算定积分∫(-1到1) x dx的值为______。
14. 已知向量a = (1, 2),向量b = (2, 1),则向量a与向量b的夹角的余弦值为______。
15. 计算极限lim(x→∞) (1/x)的值为______。
三、解答题(每题10分,共40分)16. 已知函数f(x) = x^3 - 3x^2 + 2x,求导数f'(x),并求出f'(1)的值。
安徽省A10联盟2024-2025学年高二上学期11月期中考试数学试题
2023级高二上学期11月期中考数学(人教A 版)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分,考试时间120分钟。
请在答题卡上作答。
第I 卷(选择题共58分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题所给四个选项中,只有一项是符合题意的.1.在空间直角坐标系中,已知点,点,则( )A.点A 和点B 关于x 轴对称 B.点A 和点B 关于平面对称C.点A 和点B 关于y 轴对称D.点A 和点B 关于平面对称2.已知空间向量,,,若,,共面,则实数m 的值为( )A.1B.0C.-1D.-23.已知入射光线所在的直线的倾斜角为,与y 轴交于点(0,2),则经y 轴反射后,反射光线所在的直线方程为( )4.若点(-2,1)在圆的外部,则实数a 的取值范围是( )A. B. C. D.5.已知空间向量,,则向量在向量上的投影向量为( )A.B. C. D.6.已知椭圆C:(且),直线与椭圆C 相交于A ,B 两点,若(1,1)是线段的中点,则椭圆的焦距为( )A.2B.4C.7.古希腊数学家阿波罗尼奥斯与欧几里得、阿基米德齐名.他的著作《圆锥曲线论》是古代数学光辉的科学成果,阿氏圆(阿波罗尼斯圆)是其成果之一.在平面上给定相异两点A ,B ,设点P 在同一平面上,且满足,当且时,点P 的轨迹是圆,我们把这个轨迹称之为阿波罗尼斯圆.在中,Oxyz ()2,1,4A --()2,1,4B ---Oyz Oxz ()2,1,3a =- ()1,2,2b =- ()1,,2c m =- a b cπ320y +-=20y ++=20y --=20y -+=220x y x y a ++-+=()2,-+∞(),2-∞-12,2⎛⎫- ⎪⎝⎭()1,2,2⎛⎫-∞-+∞⎪⎝⎭()2a = 12b ⎛= ⎝a b )()(14⎛ ⎝2216x y m+=0m >6m ≠340x y +-=AB PA PB λ=0λ>1λ≠ABC △,且,当面积取得最大值时,( )C.D.8.已知点P 在椭圆C :上(点P 不是椭圆的顶点),,分别为椭圆C 的左、右焦点,交y 轴于点G ,且,则线段的长为( )A.B.C.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线:,:,则下列说法正确的是( )A.若,则或B.若,则C.若直线不经过第四象限,则D.若直线与x 轴负半轴和y 轴正半轴分别交于点A ,B ,O 为坐标原点,则面积的最小值是2010.已知椭圆C :的左、右焦点分别是,,左、右顶点分别是A ,B ,M 是椭圆C 上的一个动点(不与A ,B 重合),则( )A.离心率 B.的周长与点M 的位置无关C. D.直线与直线的斜率之积为定值11.如图,正方体的棱长为2,P 为上底面内部一点(包括边界),M ,N 分别是棱和的中点,则下列说法正确的是( )2AB =2CA CB =ABC △cos C =354522143x y +=1F 2F 2PF 112PF G GF F ∠=∠1PF 3253851l ()1230m x y m +++-=2l 220x my m ++-=12l l ∥1m =2m =-12l l ⊥23m =-1l 1m <-1l AOB △2214x y +=1F 2F 1e 2=12MF F △122MF -<<+MA MB 1111ABCD A B C D -1111A B C D AB BCA.当直线和直线所成的角是30°时,点PB.若平面,则C.若,则直线和底面所成的最大角是45°D.平面被正方体所截的截面形状是六边形第Ⅱ卷(非选择题共92分)三、填空题:本大题共3个小题,每小题5分,共15分.12.已知圆C 过,两点,且圆心C 在直线上,则该圆的半径为_________.13.已知实数x ,y 满足,则的取值范围为_________.14.已知椭圆:,,分别是椭圆的左、右焦点,若椭圆上存在点,满足,则椭圆的离心率的取值范围为_________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知直线过点,求满足下列条件的直线的方程.(1)与直线:垂直;(2)两坐标轴上截距相反.16.(15分)如图,在四棱锥中,四边形为正方形,平面,M ,N 分别为,的中点,,.(1)求证:异面直线和垂直;(2)求点A 到平面的距离17.(15分)1AA AP AP ∥1B MN 1B P ()111111A P mA D m A B =+-AP ABCD 1D MN ()1,3A ()4,2B 30x y +-=1y =+14y x ++C ()222210x y a b a b+=>>1F 2F C 122F F c =P 12111PF PF c+=C l ()2,1A -l m 50x y +-=P ABCD -ABCD PA ⊥ABCD PB BC 2AF AE PGFD EB GC===3AB PA ==EF MN MFG已知过点的直线与圆O :相交于A ,B 两点.(1)若弦的方程;(2)在x 轴正半轴上是否存在定点Q ,无论直线如何运动,x 轴都平分?若存在,请求出点Q 的坐标;若不存在,请说明理由.18.(17分)如图1,在矩形中,,,连接,沿折起到的位置,如图2,.(1)求证:平面平面;(2)若点M 是线段的中点,求平面与平面夹角的余弦值.19.(17分)已知椭圆E :的左、右焦点分别为,,离心率4.(1)求E 的标准方程;(2)过点的直线交E 于P ,Q 两点,若以为直径的圆过E 的右焦点,求直线的方程;(3)两条不同的直线,的交点为E 的左焦点,直线,分别交E 于点A ,B 和点C ,D ,点G ,H 分别是线段和的中点,,的斜率分别为,,且,求面积的最大值(O 为坐标原点)()1,0P l 224x y +=AB l l AQB ∠ABCD 2AB =BC =AC DAC △AC PAC △PB =PAC ⊥ABC PA MBC PAB ()222210x y a b a b+=>>1F 2F e =()2,0T PQ 2F PQ 1l 2l 1F 1l 2l AB CD 1l 2l 1k 2k 1240k k +=OGH △2023级高二上学期11月期中考数学(人教A 版)参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题的四个选项中,只有一项是最符合题目要求的.题号12345678答案BDACABDC1.B 已知点A 和点B 的横坐标互为相反数,纵坐标和竖坐标相等,所以点A 和点B 关于平面对称.故选B.2.D 由题意得,,即,所以,解得.故选D.3.A 由题意得,所求直线的斜率为y 轴交于点(0,2),则所求直线的方程为.故选A.4.C 由点(-2,1)在圆的外部,得,解得,故选C.5.A 向量在向量上的投影向量为.故选A.6.B 设,,则,将A ,B 的坐标代入椭圆方程得:,,两式相减,得:,变形为,又直线的斜率为,所以,即,因此椭圆的焦距为,故选B.Oyz c xa yb =+ ()()()1,,22,1,31,2,2m x y -=-+-122232x ym x y x y =-⎧⎪=+⎨⎪-=-+⎩012x y m =⎧⎪=-⎨⎪=-⎩πtan 3⎛⎫-= ⎪⎝⎭2y =+20y +-=220x y x y a ++-+=()()2222114021210a a ⎧+-->⎪⎨-+--+>⎪⎩122a -<<ab )212a bb a b b bb b⎛⋅⋅⋅=⋅== ⎝()11,A x y ()22,B x y 12122x x y y +=+=221116x y m +=222216x y m +=2222121206x x y y m--+=()()121212126m x x y y x x y y +-=--+AB 121213y y x x -=--12362m ⨯-=-⨯2m =4=7.D 由题意设,,,由化简得.∵,∴当时,面积最大,此时不妨设,则,.∴.故选D.8.C 根据对称,不妨设,.由题意得,,,则离心率,左准线方程为,所以,因为,所以由角平分线定理得,即,解得,所以.故选C.二、选择题:本题共3小题,每小题6分,共18分。
福建省厦门2024-2025学年高二上学期期中考试数学试题(含答案)
福建省厦门2024-2025学年高二上学期期中考试数学试题本试卷共4页。
全卷满分150分。
考试用时120分钟。
注意事项:1.答题前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效。
3.考试结束后,将答题卡交回。
一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若经过两点的直线的倾斜角为,则等于()A.-3B.-1C.0D.22.已知双曲线的离心率为,则该双曲线的渐近线方程为()A. B. C. D.3.已知圆与圆关于直线对称,则的方程为()A. B. C. D.4.已知抛物线的焦点为,过点且斜率大于0的直线交于A,B两点,若,则的斜率为()5.如图,椭圆的两个焦点分别为,以线段为边作等边三角形若该椭圆恰好平分的另两边,则椭圆的离心率为()(3,1)(2,1)A y B+-、3π4y22221(0,0)x ya ba b-=>>542y x=±12y x=±43y x=±34y x=±22:(1)(2)1M x y+++=22(3)(4)1N x y-++=:l l 250x y++=250x y--=250x y++=250x y--=2:4C y x=F F l C16||3AB=l22221(0)x ya ba b+=>>12,F F12F F12AF F 12AF FV12,AF AF6.已知为双曲线的右焦点,过点作的一条渐近线的垂线,垂足为E ,O 为坐标原点,若的面积为1,则的焦距的最小值为( )A.1B.2C.4D.7.如图,已知直线与抛物线交于A ,B 两点,且交AB 于点,点的坐标为,则方程为( )A. B. C. D.8.已知是椭圆与双曲线的公共焦点,是它们的一个公共点,且,线段的中垂线经过.记椭圆的离心率为,双曲线的离心率为,则的取值范围是( )A. B. C. D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得6分,部分选对得部分分,有选错的得0分.9.已知为双曲线的一个焦点,则下列说法中,正确的是( )A.的虚轴长为6B.的离心率为C.的渐近线方程为D.点到的一条渐近线的距离为410.已知动点在直线上,动点在圆上,过点作圆的两条切线,切点分别为A 、B ,则下列描述正确的有( )1-F 2222:1(0,0)x y C a b a b-=>>F C OEF V C l 22y x =,OA OB OD AB ⊥⊥D D (1,1)l 20x y +-=20x y ++=20x y -+=20x y --=12,F F P 12PF PF >1PF 2F 1e 2e 2114e e +(5,)+∞(6,)+∞(7,)+∞(6,7)F 22:1169x y Γ-=ΓΓ54Γ430x y ±=F ΓP :60l x y +-=Q 22:(1)(1)4C x y -+-=P CA.直线与圆相交B.|PQ |的最小值为C.四边形PACB 面积的最小值为4D.存在点,使得11.如图,曲线可以看作“蝴蝶结”的一部分,已知曲线上除原点外的所有点均满足其到原点的距离的立方与该点横纵坐标之积的绝对值的商恒为定值,则( )A.曲线关于直线对称B.曲线经过点,其方程为C.曲线围成的图形面积小于D.存在,使得曲线上有5个整点(即横、纵坐标均为整数的点)三、填空题:本题共3小题,每小题5分,共15分.12.已知椭圆的焦距是2,则的值是_____________.13.已知抛物线,从抛物线内一点发出平行于轴的光线经过抛物线上点反射后交抛物线于点,则的面积为____________.14.双曲线的离心率可以与其渐近线有关,比如函数的图象是双曲线,它的实轴在直线上,虚轴在直线上,实轴顶点是,焦点坐标是,已知函数.则其在一象限内的焦点横坐标是__________.四、解答题:共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题13分)已知圆与轴交于A ,B 两点,动点与点A 的距离是它与点距离倍.(1)求点的轨迹方程;l C 2-P 120APB ︒∠=C C (0)a a >C y x =C (1,1)--()322||x yxy +=C 2π8a (2,6)a ∈C 221(4)4x y m m +=>m 24y x =A x B C ABC V 1y x=y x =y x =-(1,1),(1,1)--(y x =+e 22O :4x y +=x P B P(2)过点作倾斜角为直线交点的轨迹于M ,N 两点,求弦长|MN |.16.(本小题15分)已知双曲线的一条渐近线方程为,且经过点.(1)求双曲线的方程;(2)直线与双曲线相交于两点,若线段AB 的中点坐标为,求直线的方程.17.(本小题15分)已知椭圆分别为椭圆的左、右顶点.(1)求椭圆的方程;(2)过点作斜率不为0的直线,直线与椭圆交于P ,Q 两点,直线AP 与直线BQ 交于点,记AP 的斜率为的斜率为.求证:为定值.18.(本小题17分)已知抛物线的焦点为,点是上的一点,且.(1)求抛物线的方程;(2)设点(其中)是上异于的两点,的角平分线与轴垂直,为线段AB 的中点.(i )求证:点N 在定直线上;(ii )若的面积为6,求点A 的坐标.19.(本小题17分)通过研究,已知对任意平面向量,把绕其起点沿逆时针方向旋转角得到向量,叫做把点绕点逆时针方向旋转角得到点,(1)已知平面内点,点,把点绕点逆时针旋转得到点,求点的坐标;(2)已知二次方程的图像是由平面直角坐标系下某标准椭圆绕原点逆时针旋转所得的斜椭圆,B 45︒l P 2222:100x y C a b a b-=>>(,)0x -=P C l C ,A B (3,2)l 2222:1(0)x y C a b a b+=>>,F A B C C (1,0)D l l C M 1,k BQ 2k 12k k 2:2(0)C y px p =>F (,2)M t C ||2MF =C ()()1122,,,A x y B x y 12x x <C M AMB ∠x N MAB ∆(,)AB x y =AB A θ(cos sin ,sin cos )AP x y x y θθθθ=-+B A θP (A B -B A π3P P 221x y xy +-=22221(0)x y a b a b+=>>O π4C(i )求斜椭圆的离心率;(ii )过点作与两坐标轴都不平行的直线交斜椭圆于点M 、N ,过原点作直线与直线垂直,直线交斜椭圆于点G 、H是否为定值,若是,请求出定值,若不是,请说明理由.C Q 1l C O 2l 1l 2l C 21||OH +福建省厦门2026届高二上期中考试数学试题参考答案及评分标准一、选择题:本题共8小题,每小题5分,共40分。
高二上学期期中考试数学试卷含答案(共5套)
高二上学期期中考试数学试题本卷分Ⅰ(选择题)、Ⅱ卷(非选择题)两部分,其中Ⅰ卷1至2页,第二卷2至4页,共150分,考试时间120分钟。
第Ⅰ卷(选择题,共60分)一、单选题:本题共12个小题,每小题5分1.“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.有下列四个命题:(1)“若,则,互为倒数”的逆命题;(2)“面积相等的三角形全等”的否命题;(3)“若,则有实数解”的逆否命题;(4)“若,则”的逆否命题.其中真命题为()A.(1)(2)B.(2)(3)C.(4)D.(1)(2)(3)3.若则为()A.等边三角形 B.等腰直角三角形C.有一个内角为30°的直角三角形 D.有一个内角为30°的等腰三角形4.已知.若“”是真命题,则实数a的取值范围是A.(1,+∞)B.(-∞,3)C.(1,3)D.5.的内角,,的对边分别为,,,若,,,则的面积为A.B.C.D.6.已知中,,则等于()A.B.或C.D.或7.等差数列的前项和为,若,则等于()A.58B.54C.56D.528.已知等比数列中,,,则()A.2B.C.D.49.已知,则z=22x+y的最小值是A.1 B.16 C.8 D.410.若关于的不等式的解集为,则的取值范围是()A.B.C.D.11.当a>0,关于代数式,下列说法正确的是()A.有最小值无最大值B.有最大值无最小值C.有最小值也有最大值D.无最小值也无最大值12.在△ABC中,AB=2,C=,则AC+BC的最大值为A.B.3C.4D.2第Ⅱ卷(非选择题,共90分)二、填空题:共4个小题,每小题5分,共20分13.命题的否定是______________.14.已知的三边长构成公差为2的等差数列,且最大角的正弦值为,则这个三角形的周长为________.15.已知数列{a n}的前n项和为S n,a1=1,当n≥2时,a n+2S n-1=n,则S2 017的值____ ___ 16.已知变量满足约束条件若目标函数的最小值为2,则的最小值为__________.三、解答题:共6题,共70分,解答应写出必要的文字说明、证明过程或演算步骤。
高二数学期中考试试题
高二数学期中考试试题一、选择题:(每题5分共60分)1.已知a,b,c是△abc三边之长,若满足等式(a+b-c)(a+b+c)=ab,则角c的大小为()a.60°b.90°c.120°d.150°2.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于()a.12b.22c.2d.323.在△abc中,已知sinacosb=sinc,那么△abc一定是()a.直角三角形b.等腰三角形c.等腰直角三角形d.正三角形4.如果,那么下列不等式成立的是()a.b.c.d.5.目标函数,变量满足,则有()a.b.无最小值c.无最大值d.既无最大值,也无最小值6.下列有关命题的说法正确的是a.命题“若,则”的否命题为:“若,则”;b.命题“使得”的否定是:“均有”;c.在中,“”是“”的充要条件;d.“或”是“”的非充分非必要条件.7..设f(n)=2+24+27+210+…+23n+1(n∈n*),则f(n)等于()a.27(8n-1)b.27(8n+1-1)c.27(8n+3-1)d.27(8n+4-1)8.已知等差数列的前项和为,,,取得最小值时的值为()a.b.c.d.10.若点o和点f分别为椭圆x24+y23=1的中心和左焦点,点p 为椭圆上的任意一点,则op→fp→的最大值为()a.2b.3c.6d.8二.填空题(每题5分共20分)13.不等式的解集是,则a+b的值是14.已知数列满足,,则的最小值为____.15.已知椭圆的焦点是,P为椭圆上一点,且是和的等差中项.若点p在第三象限,且∠=120°,则.16.已知椭圆x2a2+y2b2=1(ab0)的左,右焦点分别为f1(-c,0),f2(c,0),若椭圆上存在点p使asin∠pf1f2=csin∠pf2f1成立,则该椭圆的离心率的取值范围为________.三、解答题(每题12分)17.命题p:关于x的不等式对于一切恒成立,命题q:若为真,为假,求实数a的取值范围。
高二数学期中考试试卷
高二数学期中试卷1、设b a ,是两条不同的直线,βα,是两个不同的平面,则下列命题错误的是( )A 、若βα⊥⊥a a ,,则αβ B 、若αα⊥⊥b a ,,则a bC 、若a α,α⊥b ,则b a ⊥D 、若a α,b α,则a b2、在数列{}n a 中,3a 与10a 是方程0532=--x x 的两根,若{}n a 是等差数列,则76a a +等于( )A 、-5B 、5C 、-3D 、33、记数列{}n a 的前n 项和为n S ,且)1(2-=n n a S ,则2a 等于( )A 、4B 、2C 、1D 、-24、在ABC ∆中,060,3,2===B b a ,则A 等于( )A 、0013545或B 、0015030或C 、090D 、0455、若ABC ∆的角A ,B ,C 的对边分别c b a ,,,且2,45,10===∆ABC S B a ,则b 等于( )A 、5B 、25C 、41D 、256、设n S 为等比数列{}n a 的前n 项和,0852=+a a ,则25S S 等于( ) A 、11 B 、5 C 、-8 D 、-117、已知某几何体的三视图如图所示,则该几何体的体积是( )A 、61B 、31C 、21D 、22 8、在A B C ∆中,若cc b A 22cos 2+=,则A B C ∆的形状为( )A 、等腰三角形B 、等边三角形C 、直角三角形D 、等腰或直角三角形9、在数列{}n a 中,nn n a a a a -+=-=+11,211,则2010a 等于( ) A 、2- B 、31- C 、21- D 、3 10、在ABC ∆中,角A ,B ,C 的对边分别c b a ,,,若c a B b c a ⋅=-+3tan 222)(则角B 的值为( )A 、6πB 、3πC 、656ππ或D 、323ππ或 11、数列{}n a 中,前n 项和)(3为常数b b S n n +=,若{}n a 是等比数列,那么 b =12、若{}n a ,{}n b 满足2312++==⋅n n a b a n n n 且,则{}n b 的前10项和为13、在A B C ∆中,c b a ,,成等差数列,C B A sin ,sin ,sin 成等比数列,则ABC ∆的形状为14、在ABC ∆中,若36020===∆ABC S C c 且,,则=b a log15、下列命题中正确的是 (把正确命题的序号填在横线上) ○1若平面α平面β ,则平面α内任意一条直线都与平面β平行 ○2若平面α有三点A ,B ,C 到平面β距离相等,则αβ○3垂直于同一个平面的的两条直线平行 ○4若一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直 16、(本题满分12分)在ABC ∆中,设bb c B A -=2tan tan ,求A 的值。
湖北省部分重点中学2024_2025学年高二数学上学期期中试题含解析
湖北省部分重点中学2024-2025学年高二数学上学期期中试题(含解析)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟. 留意事项:1.答卷前,考生务必将自己的姓名、准考证号精确地写在答题卡上。
2.全部试题的答案均写在答题卡上。
对于选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案。
3.答第Ⅱ卷时,必需用0.5毫米墨水签字笔在答题卡上书写。
在试题卷上作答无效。
第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的1.已知点(-3,2)A ,(0,1)B -,则直线AB 的倾斜角为( ) A .030B .045C .0135D .01202.某工厂为了对40个零件进行抽样调查,将其编号为00,01,…,38,39.现要从中选出5个,利用下面的随机数表,从第一行第3列起先,由左至右依次读取,则选出来的第5个零件编号是( ) 0347 4373 8636 9647 3661 4698 6371 6233 2616 8045 6011 1410 9577 7424 6762 4281 1457 2042 5332 3732 2707 3607 5124 5179 A .36B .16C .11D .143.ABC ∆的内角,,A B C 的对边分别为,,a b c ,且3A π=,4c =,26a =,则角C =( )A .34π B .4π C .4π或34π D .3π或23π4.已知αβ、是平面,l m 、是直线,αβ⊥且=l αβ,m α⊂,则“m β⊥”是“m l ⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.若圆O 1:x 2+y 2=5与圆O 2:(x -m )2+y 2=20()m R ∈相交于A ,B 两点,且两圆在点A 处的切线相互垂直,则线段AB 的长度是( )A .2B .4C .5D .106.已知直线l :2(0,0)x ya b a b+=>>经过定点(1,1)M ,则32a b +的最小值是( ) A .3222+ B .526+C .562+ D .37.某学校随机抽查了本校20个学生,调查他们平均每天进行体育熬炼的时间(单位:min ),依据所得数据的茎叶图,以5为组距将数据分为8组,分别是[0,5),[5,10),…,[35,40],作出频率分布直方图如图所示,则原始的茎叶图可能是( )第7题图A .B .C .D .8.棱长为1的正方体ABCD-A 1B 1C 1D 1中,点P 在线段AD 上(点P 异于A 、D 两点),线段DD 1的中点为点Q ,若平面BPQ 截该正方体所得的截面为四边形,则线段AP 长度的取值范围为( ) A .103⎛⎤ ⎥⎝⎦,B .112⎛⎤ ⎥⎝⎦,C .1[,1)3D .102⎛⎤ ⎥⎝⎦,二、选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分 9.下列说法正确的是( ) A .命题“x R∀∈,21x >-”的否定是“0x ∃∈R ,201x <-”B .命题“0(3,)x ∃∈-+∞,209x ≤”的否定是“(3,)x ∀∈-+∞,29x >”C .“0m <”是“关于x 的方程220x x m -+=有一正一负根”的充分不必要条件D .“5a >”是命题“2,0x R x ax a ∀∈++≥”为假命题的充分不必要条件10.抛掷一枚骰子1次,记“向上的点数是4,5,6”为事务A ,“向上的点数是1,2”为事务B ,“向上的点数是1,2,3”为事务C ,“向上的点数是1,2,3,4”为事务D ,则下列关于事务A ,B ,C ,D 推断正确的是( ) A .A 与B 是互斥事务但不是对立事务 B .A 与C 是互斥事务也是对立事务 C .A 与D 是互斥事务 D .C 与D 不是对立事务也不是互斥事务 11.以下四个命题为真命题的是( )A .过点()10,10-且在x 轴上的截距是在y 轴上截距的4倍的直线的方程为11542y x =-+ B .直线3y +2=0的倾斜角的范围是50,[,)66πππ⎡⎤⎢⎥⎣⎦ C .曲线22120C :x y x ++=与曲线222480C :x y x y m +--+=恰有一条公切线,则4m =D .设P 是直线20x y --=上的动点,过P 点作圆O :221x y +=的切线PA ,PB ,切点为A ,B ,则经过A ,P ,O 三点的圆必过两个定点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学期中考试试题标准化工作室编码[XX968T-XX89628-XJ668-XT689N]2017 —— 2018学年度第二学期期中考试高 二 数学试题(理科)命题人: 审题人: 考试时间120分钟 分值150分注意事项: 1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
第Ⅰ卷(选择题 共70分)一、选择题:(本大题共14小题,每小题5分,共70分. 在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 点M 的直角坐标是(-,则点M 的极坐标为( )A .(2,)3πB .(2,)3π-C .2(2,)3πD .(2,2),()3k k Z ππ+∈2.从甲地到乙地有两种走法,从乙地到丙地有4种走法,从甲地不经过乙地到丙地有3种走法,则从甲地到丙地共有( )种不同的走法。
A. 9种 种 C. 11种 种 3. 若,)1(55443322105x a x a x a x a x a a x +++++=-则a 0-a 1+a 2-a 3+a 4-a 5=( )A. 64B. 32C. 1D. 04. 在某次大合唱中,要求6名演唱者站一排,且甲不站左端,乙不站右端,则不同的站法有多少种( )A. 368种B. 488种C. 486种 种5.在极坐标系中,圆cos 3πρθ⎛⎫=+ ⎪⎝⎭的圆心的极坐标为( )A. 1,23π⎛⎫- ⎪⎝⎭B. 1,23π⎛⎫ ⎪⎝⎭C. 1,3π⎛⎫- ⎪⎝⎭D. 1,3π⎛⎫⎪⎝⎭6. 从5名志愿者中选派4人在星期六和星期日参加公益活动,每人一天,每天两人,则不同的选派方法共有( )A. 60种B. 48种C. 30种D. 10种 7. 某产品的广告费用x 与销售额y 的统计数据如下表:由上表求得回归方程9.49.1y x ∧=+,当广告费用为3万元时销售额为( )A .39万元B .38万元C .万元D .万元 8. 已知ξ~B (n ,p ),且E ξ=7,D ξ=6,则p 等于A. 14B. 15C. 16D. 179. 学校将6名新毕业实习教师分派到高一3个班进行实习,每名实习教师只进入一个班级实习,每班至少1名,则不同的分派方案有( )种。
A. 630 B. 540 C. 450 D. 36010.为了解某高校学生使用手机支付和现金支付的情况,抽取了部分学生作为样本,统计其喜欢的支付方式,并制作出如下等高条形图: 根据图中的信息,下列结论中不正确的是( )A .样本中的男生数量多于女生数量B .样本中多数男生喜欢手机支付 C. 样本中喜欢手机支付的数量多于现金支付的数量 D .样本中多数女生喜欢现金支付 11. 将7个座位连成一排,安排4个人就座,恰有两个空位相邻的不同坐法有( )A. 240B. 360C. 480D. 56012. 随机抽取某中学甲,乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图 ,则下列关于甲,乙两班这10名同学身高的结论正确的是 ( )A . 甲班同学身高的方差较大B . 甲班同学身高的平均值较大C . 甲班同学身高的中位数较大D . 甲班同学身高在175以上的人数较多 13. 从3,2,1,0这4个数字中选3个数字组成没有重复数字的三位数,则该三位数能被3整除的概率为( )A .92 B .31 C. 125 D .95 14. 甲、乙、丙、丁四个人到重庆旅游,朝天门、解放碑、瓷器口三个景点,每个人只去一个景点,每个景点至少有一个人去,则甲不到瓷器口的方案有( ) A. 36种 B. 18种 C. 24种 种第Ⅱ卷(非选择题,共80分)二、填空题(本大题包括6小题,每小题5分,共30分,把正确答案填在答题卡中相应的横线上)15. 5(2x -的展开式中,72x 的系数是 . 16. 随机变量ξ服从正态分布),50(2σN ,若3.0)40(=<ξP ,则=<<)6040(ξP .17. 将序号为1, 2, 3, 4的四张电影票全部分给3人,每人至少一张.要求分给同一人两张电影票连号,那么不同的分法种数为____ ____.(用数字作答)18.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线1:(0)C θααπ=≤<,曲线23:2sin ,:23cos .C C ρθρθ==若1C 与 2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值.为19. 5(15)x y --的展开式中不含x 的项的系数和为 (结果化成最简形式) 20. 现有语文书一二三册,数学书一二三册,共计6本排成一排。
其中要求语文第一册不在两端,数学书恰有两本相邻的排列方案有 种。
三.解答题:解答应写出文字说明,证明过程或演算步骤。
21.(本小题满分12分)某网站从春节期间参与收发网络红包的手机用户中随机抽取10000名进行调查,将受访用户按年龄分成5组: [)10,20, [)20,30,…, []50,60,并整理得到如下频率分布直方图:(Ⅰ)求a 的值;(Ⅱ)从春节期间参与收发网络红包的手机用户中随机抽取一人,估计其年龄低于40岁的概率;(Ⅲ)估计春节期间参与收发网络红包的手机用户的平均年龄. 22.(本小题满分12分)某校举行高二理科学生的数学与物理竞赛,并从中抽取72名学生进行成绩分析,所得 物理及格 物理不及格 合计数学及格 27 9 36 数学不及格 122436 合计 393372(2)若以抽取样本的频率为概率,现在该校高二理科学生中,从数学及格的学生中随机抽取3人,记X 为这3人中物理不及格的人数,从数学不及格学生中随机抽取2人,记Y 为这2人中物理不及格的人数,记ξ=|X ﹣Y|,求ξ的分布列及数学期望. 附:x 2= . 23.(本小题满分14分)天气预报是气象专家根据预测的气象资料和专家们的实际经验,经过分析推断得到的,在现实的生产生活中有着重要的意义.某快餐企业的营销部门经过对数据分析发现,企业经营情况与降雨天数和降雨量的大小有关.P(X 2≥k )k(Ⅰ)天气预报说,在今后的四天中,每一天降雨的概率均为40%,求四天中至少有两天降雨的概率;(Ⅱ)经过数据分析,一天内降雨量的大小x (单位:毫米)与其出售的快餐份数y 成线性相关关系,该营销部门统计了降雨量与出售的快餐份数的数据如下:降雨量(毫米) 1 2 3 4 5 快餐数(份)5085115140160试建立y 关于x 的回归方程(和保留一位小数),为尽量满足顾客要求又不造成过多浪费,预测降雨量为6毫米时需要准备的快餐份数(快餐份数四舍五入保留整数). 附注:回归方程y bx a =+中斜率和截距的最小二乘估计公式分别为:121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-24.(本小题满分12分)点P 是曲线()221:24C x y -+=上的动点,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,以极点O 为中心,将点P 逆时针旋转90︒得到点Q ,设点Q 的轨迹方程为曲线2C .(1)求曲线1C ,2C 的极坐标方程;(2)射线()03πθρ=>与曲线1C ,2C 分别交于A ,B 两点,定点()2,0M ,求MAB △的面积.2017 —— 2018学年度第二学期期中考试 高 二 数学试题(理科)参考答案1-5 CCBDA 6-10 CADBD 11-14 CADC15. —40 16. 0.4 17. 18 18.4 19. 1024- 21题答案:(本小题满分12分) 22题答案:(本小题满分12分) 【答案】(1)解:根据题意,得:=≈,∵>,∴有99%的把握认为“数学及格与物理及格有关”(2)解:从数学及格的学生任抽取一人,抽到物理不及格的学生的频率为 = ,从数学不及格的学生任取一人,抽到物理不及格的学生的频率为 = ,X 可能的取值为0,1,2,3,Y 可能的取值为0,1,2, ξ的可能取值为0,1,2,3,P (ξ=0)=P (X=0)P (Y=0)+P (X=1)P (Y=1)+P (X=2)P (Y=2)= + + = ,P (ξ=1)=P (X=0)P (Y=1)+P (X=1)P (Y=0)+P (X=1)P (Y=2)+P (X=2)P(Y=1)+P (X=3)P (Y=2)= + ++ + = ,P (ξ=2)=P (X=0)P (Y=2)+P (X=2)P (Y=0)+P (X=3)P (Y=1)= + + = ,P (ξ=3)=P (X=3)P (Y=0)= = ,ξ 0123PEξ=+3× =【考点】独立性检验的应用,离散型随机变量及其分布列 【解析】【分析】(1)根据题意,求出X 2=≈>,从而有99%的把握认为“数学及格与物理及格有关”.(2)从数学及格的学生任抽取一人,抽到物理不及格的学生的频率为= ,从数学不及格的学生任取一人,抽到物理不及格的学生的频率为= ,X 可能的取值为0,1,2,3,Y 可能的取值为0,1,2,ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和E ξ. 23题答案:(本小题满分14分) 答案:(Ⅰ)(Ⅱ)3x = 110y = 27.5a b == 193份解析:(Ⅰ)四天均不降雨的概率41381()5625P ==, 四天中恰有一天降雨的概率132432216()55625P C =⨯⨯=, 所以四天中至少有两天降雨的概率128121632811625625625P P P =--=--=. (Ⅱ)由题意可知1234535x ++++==,50851151401601105y ++++==,==27.5a y bx -所以,y 关于x 的回归方程为:ˆ27.527.5yx =+. 将降雨量6x =代入回归方程得:ˆ27.5627.5192.5193y=⨯+=≈. 所以预测当降雨量为6毫米时需要准备的快餐份数为193份. 24题答案:(本小题满分12分)答案:(Ⅰ)4cos ρθ=(Ⅱ)3S =解析:(Ⅰ)曲线1C 的极坐标方程为4cos ρθ=.设(),Q ρθ,则,2P πρθ⎛⎫- ⎪⎝⎭,则有4cos 4sin 2πρθθ⎛⎫=-= ⎪⎝⎭.所以,曲线2C 的极坐标方程为4sin ρθ=.(Ⅱ)M 到射线3πθ=的距离为2sin3d π==)4sin cos 2133B A AB ππρρ⎛⎫=-=-= ⎪⎝⎭,则132S AB d =⨯=。