压力容器壁厚计算

合集下载

压力容器的壁厚计算公式

压力容器的壁厚计算公式

S壁厚(mm)
1
5.30292599
S壁厚(mm) 10
满足σt≦[σt]
S壁厚(mm)
10
P压力 (kg/cm2) 20.86709806
σt最大允许 应力
(kgf/cm2) 656.5359477
C壁厚附加量 (mm)
S壁厚(mm)
1
2.934235977
S壁厚(mm)
P压力 (kg/cm2)
10 须满足σt≦[σt]
[σ]许用应 力(kgf/cm2)
Φ 焊缝系数
C壁厚附加量 (mm)
压力校核
2000
1370
0.85
1
应力校核公
σt=(P(Di+(S-C))/(2(S-C)φ); 必须满足σt≦[σt]
符号意义 及单位
P压力(kg/cm2)
D直径(mm)
Φ 焊缝系数
C壁厚附加量 (mm)

应力校核
10
2000
0.85
压力容器壁厚计算
壁厚公式 S=PDi/(2*[σt]*Φ-P)+C
符号意义 及单位
P压力(kg/cm2)
D直径(mm)
[σ]许用应 力(kgf/cm2)
Φ 焊缝系数
壁厚计算
8
500
1370
0.85

最大允许工 作压力
[P]=(2[σt]φ(S-C))/((Di+(S-C))
筒 符号意义 壳 及单位
D直径(mm)
S壁厚(mm)
10
10.45697181
σt最大允许 应力
(kgf/cm2) 1310.130719
D直径(mm)
[σ]许用应 力(kgf/cm2)

外压容器壁厚计算

外压容器壁厚计算

外压容器的工作原理
外压容器是一种承受外部压力的容器,其壁厚设计需满足一定的压力承载要求。 当外压容器内压力低于外界压力时,容器外壁受到压力作用,产生向外扩张的趋势。
为了防止容器破裂,需要计算并确定适当的壁厚,以抵抗外部压力。
壁厚计算的基本公式
根据材料力学和压力容器的相关理论,可以推导 出外压容器壁厚的基本计算公式。
对未来外压容器设计的展望
智能化设计
绿色环保
定制化设计
跨界融合
随着人工智能和数值模拟技术 的发展,未来外压容器设计将 更加智能化,通过建立更加精 确的数学模型和优化算法,实 现更加快速、准确的设计和计 算。
未来外压容器设计将更加注重 环保和可持续发展,采用更加 环保的材料和制造工艺,降低 容器的能耗和排放,满足日益 严格的环保要求。
公式中包含了压力、容器半径、材料强度等参数, 用于计算所需的最小壁厚。
计算结果可为容器的设计和制造提供依据,确保 其安全性和可靠性。
壁厚计算的参数
压力
外压容器所承受的外部压力是决定壁厚的重 要因素。
容器半径
容器的尺寸直接影响壁厚的计算,半径越大, 壁厚需求也越大。
材料强度
容器的制造材料需具备足够的强度和韧性, 以满足外压承载要求。
其他因素
还包括温度、腐蚀等环境因素,这些因素可 能对外压容器的壁厚产生影响。
力等级
确定容器的直径、长度和压力等级, 这些参数将影响壁厚的计算。
了解容器的工作压力、设计压力、试 验压力等参数,以确保安全性和可靠 性。
选择合适的材料和厚度
根据容器的使用环境和压力等级,选 择合适的材料,如碳钢、不锈钢、铝 合金等。
随着市场需求的变化和多样化 ,未来外压容器设计将更加注 重定制化,以满足不同客户和 特定应用场景的需求。

任务四 压力容器的强度计算及校核

任务四 压力容器的强度计算及校核

项目一压力容器任务四压力容器的强度计算及校核容器按厚度可以分为薄壁容器和厚壁容器,通常根据容器外径Do与内径Di 的比值K来判断,K>1.2为厚壁容器,K≤1.2为薄壁容器。

工程实际中的压力容器大多为薄壁容器。

为判断薄壁容器能否安全工作,需对压力容器各部分进行应力计算与强度校核。

一、圆筒体和球形壳体1.壁厚计算公式圆筒体计算壁厚:圆筒体设计壁厚:球形容器计算壁厚:球形容器设计壁厚:式中δ——圆筒计算厚度,mmδd——圆筒设计厚度,mmpc——计算压力,MPa。

pc=p+p液,当液柱静压力小于5%设计压力时,可忽略Di——圆筒的内直径,mm[σ]T——设计温度T下,圆筒体材料的许用应力,MPa(可查表)φ——焊接接头系数,φ≤1.0C2——腐蚀裕量,mm2.壁厚校核计算式在工程实际中有不少的情况需要进行校核性计算,如旧容器的重新启用、正在使用的容器改变操作条件等。

这时容器的材料及壁厚都是已知的,可由下式求设计温度下圆筒的最大允许工作压力[pw]。

式中δe——圆筒的有效厚度,mm设计温度下圆筒的计算应力σT:σT值应小于或等于[σ]Tφ。

设计温度下球壳的最大允许工作压力[pw]:设计温度下球壳计算应力σT:σT值应小于或等于[σ]Tφ。

二、封头的强度计算1.封头结构封头是压力容器的重要组成部分,常用的有半球形封头、椭圆形封头、碟形封头、锥形封头和平封头(即平盖),如图1-4所示。

工程上应用较多的是椭圆形封头、半球形封头和碟形封头,最常用的是标准椭圆形封头。

以下只介绍椭圆形封头的计算,其他形式封头的计算可查阅GB150—2011。

图1-4 封头的结构型式2.椭圆形封头计算椭圆形封头由半个椭球面和高为h的直边部分所组成,如图1-5所示。

直边h的大小根据封头直径和厚度不同有25mm、40mm、50mm三种,直边h的取值可查表1-7。

表1-7 椭圆形封头材料、厚度和直边高度的对应关系单位:mm图1-5 椭圆形封头椭圆形封头的长、短轴之比不同,封头的形状也不同,当其长短轴之比等于2时,称为标准椭圆形封头。

压力容器材料壁厚计算与校核计算实例

压力容器材料壁厚计算与校核计算实例

第一节输入分析及功能性能描述1、工作介质:硫酸钴液体由于硫酸钴液体内杂质成份较复杂,且内部成份容易结晶,所以过滤器及管道、阀门全部选用不锈钢材料。

2、原液固含量:≤5%和本公司的液体高级工程师莫工和中南大学廖博士联系咨询后,取得硫酸钴溶液中固体的固含量≤5%的范围内3、设备的最高工作温度不超过70℃工艺要求提出设备的最高工作温度不得超过70℃,因此设计时应适当的放大,将设计温度提高到80℃。

4、工作压力由于中南装置功能及工艺参数中指出,反洗压力0.5Mpa(气源压力),所以在设计装置时按照0.8Mpa进行装置的设计。

5、过滤组件为1个;经过对工艺条件的提出,过滤组件为2个,1个为多通道滤芯过滤组件,1个双层滤芯过滤组件。

6、滤芯参数1.1双层滤芯规格:双层管YTT75X200-3-C0.4-D2(外管外径75,内径69;内管外径63,内径57)1.2滤芯数量:5套1.3过滤面积:1.3.1总过滤面积:1.3.2单管过滤面积:1.4过流截面面积S:0.00062㎡1.5滤芯安装形式:1个过滤器内1只滤芯组件2.1多通道滤芯规格:多通道滤芯YTT60X200-C0.5-D32.2滤芯数量:2套2.3过滤面积:2.3.1总过滤面积:2.3.2单管过滤面积:2.4过流截面面积S:0.00079㎡2.5滤芯安装形式:1个过滤器内1只滤芯组件7、输送管道为DN40管道;经工艺计算出循环系统的循环管直径为DN40,补液管道为DN25,回流排气管道为DN25,清液出口管道为DN25,反冲器安装管道为DN25,排渣管道为DN25,过滤罐体的材质为OCr18Ni9,管道的材质为OCr18Ni9;8、法兰的公称压力为1.6Mpa;工艺条件指出,设备管道法兰的公称压力为1.6Mpa,设计时,应按照此标准进行管道法兰的设计与选择。

9、清液储液罐的体积经过工艺工程师计算得,反冲器内部可用于反冲液的液体体积约为0.8L,因此在设计清液储液罐容积时按照1.2L来进行设计。

压力容器壁厚标准计算书(附带公式编辑)

压力容器壁厚标准计算书(附带公式编辑)

10.45697181 σ t最大允许 应力 (kgf/cm2) 1310.130719
标 准 椭 圆 形 封 头
壁厚公式 S=PDi/(2*[σ t]*Φ -0.5P)+C 符号意义 [σ ]许用应 P压力(kg/cm2) D直径(mm) Φ 焊缝系数 及单位 力(kgf/cm2) 壁厚计算 10 2000 1370 0.85 最大允许工 [P]=(2[σ t]φ (S-C))/((Di+0.5(S-C)) 作压力 符号意义 [σ ]许用应 C壁厚附加量 D直径(mm) Φ 焊缝系数 及单位 力(kgf/cm2) (mm)
标 准 椭 圆 形 封 头
压力校核 应力校核公 符号意义 及单位 应力校核
2000 1370 0.85 1 σ t=(P(Di+0.5(S-C))/(2(S-C)φ ); 必须满足σ t≦[σ t] P压力(kg/cm2) 10 D直径(mm) 2000 Φ 焊缝系数 0.85 C壁厚附加量 (mm) 1
球 壳 与 球 形 封 头
壁厚公式 S=PDi/(4*[σ t]*Φ -P)+C 符号意义 [σ ]许用应 P压力(kg/cm2) D直径(mm) Φ 焊缝系数 及单位 力(kgf/cm2) 壁厚计算 10 2000 1370 0.85 最大允许工 [P]=(4[σ t]φ (S-C))/((Di+(S-C)) 作压力 符号意义 [σ ]许用应 C壁厚附加量 D直径(mm) Φ 焊缝系数 及单位 力(kgf/cm2) (mm) 压力校核 2000 1370 0.85 1 应力校核公 σ t=(P(Di+(S-C))/(2(S-C)φ ); 必须满足σ t≦[σ t] 符号意义 及单位 应力校核 P压力(kg/cm2) 10 D直径(mm) 2000 Φ 焊缝系数 0.85 C壁厚附加量 (mm) 1

压力容器计算

压力容器计算

补强区焊缝截面积 焊缝底边长度 A3 焊缝高度
需 要 补 强 的 面 积 A A4 = A - ( A1 判 断 + A2 + A3)= -610.54 m m
2
A4 > 0 开孔处需要补强 A4 ≤ 0 开孔处无需补强 加 强 管 补 强 ( A1 + A2 + A3)≥A
重取接管管壁厚度δ t, 重复以上计算 ,直至
设计温度 [ σ ]t 钢板厚度负偏差 腐蚀裕量 C1 C2
焊接接头系数 φ
壳体最小厚度δ min (不包括腐蚀裕量) 计算壁厚
碳钢 不锈钢 δ =
低合金钢
≥3m m ≥2m m 取较大值
PcDi 2[σ ]tφ -Pc
1.06
mm
壁厚附加量
C
C1 + C2
3.8
4.86
mm
mm
δ 'n = δ + C = _ 取 δ n = 6
北京第一通用机械厂
σ
T
≤0.9σ sφ
可行
强度削弱系数
fr = [σ ]tT
[σ ] =
t
1.150 =
取fr =
1.000
因开孔削弱所需补强面积 A = dδ + 2δ (δ nt - CT )(1 - fr )
237.39 m m2
强度削弱系数
fr =
[σ ] t T
[σ ] =
t
1.1504 =
t T T
A2
A3
d
C
Ä ¦
mm mm mm mm mm MPa
6 0.9 1 130 1
Y
X
管 设计温度下许用应力 [σ ] 接管焊接接头系数 φ

压力容器壁厚计算公式

压力容器壁厚计算公式

压力容器壁厚计算公式压力容器是用于存储或传递压缩气体、液体、气固混合物或纯固体物质的容器。

它们在许多工业和农业应用中起着重要的作用,如石油化工、核能、航空航天等领域。

压力容器的设计需要考虑许多因素,其中之一是壁厚的计算。

1.设计压力(P):设计压力是指容器的最大使用压力。

它通常由设计标准或规范中规定的最大压力确定。

2.直径(D):直径是指容器横截面的最大宽度。

在计算壁厚时,需要考虑所选材料的强度和直径的大小。

3.容器材料:容器材料是选择合适的材料进行壁厚计算的重要因素。

材料的强度和抗压性能直接影响壁厚的计算。

4.强度计算:根据所选材料的特性,可以使用不同的强度计算公式,如薄壁理论、光滑壁薄壁理论、屈曲强度等来计算壁厚。

根据ASME(美国机械工程师学会)的规定,常用的薄壁理论公式如下:t=(P*D)/(2*S*F-0.2*P)其中,t表示壁厚,P表示设计压力,D表示直径,S表示所选材料的允许应力,F表示安全系数。

根据这个公式,壁厚的计算与设计压力、直径、材料的强度及安全系数有关。

这个公式是基于假设容器的压力均匀分布在容器壁上,并且不考虑应力集中和其他非均匀应力因素。

因此,在实际设计过程中,还需要考虑其他因素,如焊缝的强度、结构的稳定性等。

此外,在进行壁厚计算时,还需要参考相关的设计规范和标准,如ASME标准Section VIII,其中提供了更为详细和准确的壁厚计算方法,并考虑了更多的因素。

总之,压力容器壁厚的计算是设计过程中不可或缺的一部分,它需要考虑设计压力、直径、材料的强度等因素,并使用合适的计算公式和规范来确保容器的安全使用。

在实际设计过程中,还需要注意其他因素的影响,并根据实际情况进行调整。

压力容器壁厚快速计算

压力容器壁厚快速计算
压力容器壁厚计算
壁厚公式 S=PDi/(2*[σt]*Φ-P)+C
符号意义 及单位
P压力(kg/cm2)
D直径(mm)
[σ]许用应 力(kgf/cm2)
Φ 焊缝系数
壁厚计算
100
65
1150
1

最大允许工 作压力
[P]=(2[σt]φ(S-C))/((Di+(S-C))
筒 符号意义 壳 及单位
D直径(mm)
[σ]许用应 力(kgf/cm2)
Φ 焊缝系数
C壁厚附加量 (mm)
压力校核
65
1150
1
0.3
应力校核公
σt=(P(Di+(S-C))/(2(S-C)φ); 必须满足σt≦[σt]
符号意义 及单位
P压力(kg/cm2)
D直径(mm)
Φ 焊缝系数
C壁厚附加量 (mm)
应力校核
100
65
1
0.3
壁厚公式 符号意义 及单位
[σ]许用应 力(kgf/cm2)
Φ 焊缝系数
标 准 椭 圆 形
壁厚计算
10
2000
1370
0.85
最大允许工 作压力
[P]=(2[σt]φ(S-C))/((Di+0.5(S-C))
符号意义 及单位
D直径(mm)
[σ]许用应 力(kgf/cm2)
Φ 焊缝系数
C壁厚附加量 (mm)






形 封 头
S壁厚(mm) 5
满足σt≦[σt]
S壁厚(mm)
5
P压力 (kg/cm2) 155.0932568

压力容器壁厚快速计算

压力容器壁厚快速计算

正火 6~20 5100 3700 7
21~38 5000 3500
(a)钢板许用应力值
在下列低温度(℃)下的许用应力值,kgf/c㎡
≤20 100 150 200 250 300 350 400
1140 1140 1140
1140 1140
1270 1270 1270 1370 1370 1370
待定 待定 - - - -
40~60 4900 3300 1630 1630 1630 1630 1560 1440 1340 1220 待定 待定 待定 - - - -
8 15MnVgc YB363-69 热轧 6
5600 4200 1870 1870 1870 1870 1870 1810 1690 1560 待定 待定 待定 - - - -
1730 1670 1670 1600 1670 1600 1570 1730 1800 1730
1730 1670 1670 1600 1670 1600 1560 1730 1800 1730
1700 1700
1730 1670 1660 1560 1670 1590 1500 1730 1800 1730
1700
1730 1630 1530 1440 1560 1470 1380 1730 1800 1730
1700
1590 1500 1410 1340 1440 1380 1310 1630 1800 1730
1700
1470 1380 1280 1220 1310 1250 1190 1500 1750 1660
1130 1170 870 1170 870 1170 870 1260 930 1260 930 1040 770 1040 770 1080 800

压力容器、常压容器钢板壁厚计算选择和标准公式

压力容器、常压容器钢板壁厚计算选择和标准公式

压力容器、常压容器钢板壁厚计算选择和标准公式容器标准:《GB 150-2011 压力容器》《NB/T 47003.1-2009 钢制焊接常压容器》钢材标准:《GB 713-2008 锅炉和压力容器用钢板》--GB 150碳素钢和低合金钢的钢板标准牌号Q245R、Q345R、Q370R、18MnMoNbR、13MnNiMoR、15CrMoR、14Cr1MoR、12Cr2Mo1R、12Cr1MoVR 《GB/T 3274-2007 碳素结构钢和低合金结构钢热轧厚钢板和钢带》--GB150 Q235B钢板标准《GB 24511-2009 承压设备用不锈钢钢板及钢带》--GB150高合金钢的钢板标准《GB/T 4237-2007 不锈钢热轧钢板和钢带》--NB/T 47003高合金钢板标准,化学成分、力学性能《GB/T 3280-2007 不锈钢冷轧钢板和钢带》《GB/T 20878-2007 不锈钢和耐热钢牌号及化学成分》《GB/T 699-1999 优质碳素结构钢》牌号08F、10F、15F、08、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、15Mn、20Mn、25Mn、30Mn、35Mn、40Mn、45Mn、50Mn、60Mn、65Mn、70Mn《GB/T 700-2006 碳素结构钢》--牌号Q195、Q215、Q235、Q275《GB/T 709-2006 热轧钢板和钢带的尺寸、外形、重量级允许偏差》不锈钢牌号对照表《GB 150-2011 压力容器》俗称GB 24511-2009承压设备用不锈钢钢板及钢带GB/T 4237-1992不锈钢热轧钢板和钢带ASME(2007)SA240 统一数字代号新牌号旧牌号型号S304 S30408 06Cr19Ni10 0Cr18Ni9 304 S316 S31608 06Cr17Ni12Mo2 0Cr17Ni12Mo2 316 S316L S31603 022Cr17Ni12Mo2 00Cr17Ni14Mo2 316L S321 S32168 06Cr18Ni11Ti 0Cr18Ni10Ti 321圆筒直径:钢板卷焊的筒体,规定内径为公称直径。

压力容器厚度计算

压力容器厚度计算

压力容器厚度计算(总6页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除关于压力容器设计时材料和壁厚的讨论作者:云天宇2012年5月关于压力容器设计时材料和壁厚的讨论摘要:讨论压力容器设计时材料与壁厚的选取进行讨论,以及厚度的变化对强度的影响。

关键词:压力容器;设计;选材;厚度;强度;标准压力容器,是指盛装气体或者液体,承载一定压力的密闭设备,为了与一般容器(常压容器)相区别,只有同时满足下列三个条件的容器,才称之为压力容器:(1)工作压力(注1)大于或者等于(工作压力是指压力容器在正常工作情况下,其顶部可能达到的最高压力(表压力)); (不含液体静压力)(2)内直径(非圆形截面指其最大尺寸)大于等于。

且容积(V)大于等于立方米,工作压力与容积的乘积大于或者等于(容积,是指压力容器的几何容积); (3)盛装介质为气体、液化气体以及介质最高工作温度高于或者等于其标准沸点的液体。

压力容器中的介质种类繁多,来源广泛,这些介质中具有易燃、易爆、有腐蚀的特性。

因此压力容器选材根据介质特性的不同而不同。

压力容器钢板有碳素钢板、低合金钢钢板、高合金钢钢板、不锈钢与碳素钢等多种材料,且每种钢板都有它的使用范围。

选取时应考虑多方面因素。

使设计的压力容器安全又经济合理。

GB150-2011计算厚度是指按各章公式计算得到的厚度;设计厚度是指计算厚度与腐蚀裕量之和;名义厚度指设计厚度加上钢板厚度负偏差后向上圆整至钢材标准规格厚度,即标注在图样上的厚度;有效厚度指名义厚度减去腐蚀裕量和钢板厚度负偏差。

成型后最小厚度,一般指封头压形后会减薄,不同的制造工艺减薄量不同,所以封头都有成型后最小厚度。

我们这里主要讨论名义厚度与最小厚度之间关系和选用。

GB150-2011规定等国家标准的原则,制造工艺人员要根据图样厚度考虑加工减薄量而增加制造元件的毛坯厚度。

在我国材料标准中,钢板厚度范围变化,钢板的σb、σs也有变化,一般是板厚增加,σb、σs有所降低。

压力容器-壁厚计算公式

压力容器-壁厚计算公式

Pc Diσφδδcδn Cδe0.97001130.853.294979 4.3949798 1.35 6.65以上是筒体计算壁厚参数:Pc:计算压力MPa,取设计压力Di:圆筒内径mmσ:设计温度下圆筒材料的许用应力φ:焊接接头系数C:厚度附加量C=C1+C2,C1为钢材厚度负偏差,C2为腐蚀裕量δ:圆筒计算厚度;δc:圆筒设计厚度;δn:圆筒名义厚度;δe:圆筒有效厚度;Pc Diσφδδcδn Cδe0.97001130.853.287242 4.3872428 1.9 6.1以上是封头计算壁厚参数:Pc:计算压力MPa,取设计压力Di:封头内径mmσ:设计温度下封头材料的许用应力φ:焊接接头系数C:厚度附加量C=C1+C2,C1为钢材厚度负偏差,C2为腐蚀裕量δ:封头计算厚度;δc:封头设计厚度;δn:封头名义厚度;δe:封头有效厚度;Pc Diσφδδcδn Cδe0.98113010.281359 1.3813594 1.45 2.55以上是接管补强计算Pc:计算压力MPa,取设计压力Di:接管内径mmσ:设计温度下接管材料的许用应力φ:焊接接头系数C:厚度附加量C=C1+C2,C1为钢材厚度负偏差,C2为腐蚀裕量δ:接管计算厚度;δc:接管设计厚度;δn:接管名义厚度;δe:接管有效厚度;d:开孔直径,圆形孔取接管内直径加两倍厚度附加量,椭圆形或长圆形孔取所考虑平面上的尺寸(弦长,A:开孔消弱所需要的补强截面积A1:壳体有效厚度减去计算厚度之外的多余面积A2:接管有效厚度减去计算厚度之外的多余面积A3:焊缝金属截面积Pσσt P T1P T2P T3P T41113113 1.25 1.15 1.25 1.15以上是内压容器(外压容器和真空容器)的试验压力,其参数:P:设计压力Mpaσ:容器元件材料在试验温度下的许用应力MPaσt:容器元件材料在设计温度下的许用应力MPaP T1:内压容器的液压试验压力MPaP T2:内压容器的气压试验压力MPaP T3:外压容器和真空容器的液压试验压力MPaP T4:外压容器和真空容器的气压试验压力Mpa压力容器气密性试验压力为压力容器的设计压力钢号在下列温度下的许用应力MpaQ235-B≤150℃200℃250℃11310594 20R钢板≤100℃150℃200℃250℃133132123110 16MnR≤200℃250℃钢板170156 20钢管≤150℃200℃250℃130123110 20G钢管≤100℃150℃200℃250℃137132123110d A A1A2A3A083.9276.4487281.486383.12025-88.1578虑平面上的尺寸(弦长,包括厚度附加量)。

压力容器的壁厚计算公式

压力容器的壁厚计算公式

压力容器的壁厚计算公式压力容器壁厚计算公式是根据压力容器的设计标准和材料力学性能来确定的。

以下是一般情况下的壁厚计算公式。

1.理想气体公式在理想气体模型中,压力容器壁厚可以通过理想气体状态方程来计算。

理想气体状态方程如下:pV=nRT其中,p是压力,V是容器体积,n是物质的摩尔数,R是气体常数,T是绝对温度。

壁厚计算公式如下:t=(p*r)/(2S)其中,t是壁厚,p是设计压力,r是容器半径,S是容器材质的允许应力。

2.ASME标准公式按照ASME(美国机械工程师学会)的标准,压力容器壁厚计算公式如下:t=(PD)/(2SE-0.2P)其中,t是壁厚,P是设计压力,D是容器的直径,S是容器材料的允许应力。

3.API标准公式按照API(美国石油学会)的标准,压力容器壁厚计算公式如下:t=(P*D)/(2*F*E)其中,t是壁厚,P是设计压力,D是容器的直径,F是安全系数,E 是容器材料的抗拉强度。

4.GB标准公式按照GB(中国国家标准)的标准,压力容器壁厚计算公式如下:t=(P*D)/(2*σ-0.1P)其中,t是壁厚,P是设计压力,D是容器的直径,σ是容器材料的允许应力。

需要注意的是,这些公式只适用于一般情况,而对于一些特殊情况,如高温、低温、腐蚀等因素可能需要进行修正或采用其他的计算方法。

此外,在实际工程中,壁厚计算还需考虑多种因素,如材料的选择、焊缝强度计算、防爆设计等。

压力容器壁厚计算是一个复杂的问题,设计师应根据国家、行业及企业的相关标准与规范进行计算,并结合实际情况进行修正。

对于安全性较高的压力容器设计,还应进行压力容器强度计算和模拟分析,确保容器在设计工作条件下的可靠性和安全性。

压力容器壁厚计算公式

压力容器壁厚计算公式

压力容器壁厚计算公式压力容器是一种重要的工业设备,常用于储存和输送浓缩气体、液体和固体粉末等物质。

为了保证压力容器的安全使用,压力容器壁厚的计算是非常重要的。

圆筒形压力容器的壁厚计算公式:圆筒形压力容器是最常见的压力容器类型,其壁厚计算公式如下:t=(P×r)/(S×E-0.6P)或t=(PD)/(2×S×E-0.2P)其中,t为壁厚,P为设计压力,r为容器内径,S为允许应力,E为焊缝系数。

球形压力容器的壁厚计算公式:球形压力容器常用于储存高压气体,其壁厚计算公式如下:t=(P×r)/(2S×E-0.2P)椭圆形压力容器的壁厚计算公式:椭圆形压力容器常用于输送流体,其壁厚计算公式如下:t=(P×D)/(2S×E-0.4P)环形压力容器的壁厚计算公式:环形压力容器也称环形管道,常用于输送液体和气体,其壁厚计算公式如下:t=(P×(D-d))/(4S×E)其中,D为外径,d为内径。

常见材料的允许应力和焊缝系数如下:-碳钢:允许应力为120MPa,焊缝系数为1.0;-不锈钢:允许应力为150MPa,焊缝系数为1.0;-铝合金:允许应力为50MPa,焊缝系数为1.0。

需要注意的是,在进行压力容器壁厚计算时,还需要考虑到使用条件、工作温度和材料的强度等因素。

此外,还应遵守相关的国家和行业标准,确保压力容器的安全使用。

以上是常见压力容器壁厚计算的公式和一些注意事项。

不同的设计要求和使用条件可能会有所不同,因此在具体计算壁厚时,应遵循相应的规范和标准,以确保压力容器的安全可靠。

压力容器计算安全阀计算压力容器泄放量计算等常用参数秒算

压力容器计算安全阀计算压力容器泄放量计算等常用参数秒算

压力容器计算安全阀计算压力容器泄放量计算等常用参数秒算一、压力容器计算:压力容器是用于贮存或输送气体、液体或固体的容器,常见的压力容器有气瓶、锅炉、储罐等。

在设计压力容器时,需要计算一些重要的参数,以确保容器的安全使用。

1.壁厚计算:壁厚是指容器壁的厚度,用于承受容器内外的压力。

壁厚计算需要考虑容器内、外压力和温度等因素。

常见的壁厚计算方法有材料强度法、刚度法和支撑裕度法等。

2.封头计算:封头是压力容器的顶盖或底部,用于封闭容器内物质。

封头计算需要考虑内外压力和温度等因素。

常见的封头形状有球形、扁平形、圆锥形等,不同形状的封头计算方法也略有不同。

3.顶盖计算:顶盖是压力容器的顶部,用于封闭容器。

顶盖计算需要考虑内外压力和温度等因素,同时还要考虑防爆和抗震性能。

常见的顶盖形式有半球形、平面形、锥形等。

二、安全阀计算:安全阀是用于保护压力容器的一种安全装置,能够在压力超过设定值时自动泄放压力。

安全阀计算的目的是确定安全阀的额定排气量,以满足压力容器的安全使用要求。

1.额定排气量计算:额定排气量是指安全阀能够泄放的气体流量。

额定排气量计算需要考虑容器的容积、压力和泄放时间等因素。

常见的计算方法有试验法、公式法和经验法等。

2.安全阀应力计算:安全阀在泄放压力时,内部会产生较大的应力,应保证安全阀的结构强度。

安全阀应力计算需要考虑容器的压力和温度等因素,并进行强度校核。

三、压力容器泄放量计算:压力容器泄放量是指压力容器在一定时间内泄放的气体体积。

压力容器泄放量计算的目的是确定容器泄放的速率和时间,以评估容器的安全性。

1.泄放速率计算:泄放速率是指单位时间内泄放的气体体积。

泄放速率计算需要考虑容器的容积、泄放口的尺寸和压力差等因素。

常见的计算方法有理论法、试验法和经验法等。

2.泄放时间计算:泄放时间是指容器完全泄放所需的时间。

泄放时间计算需要考虑容器的气体压力、泄放口的尺寸和泄放速率等因素,以便评估容器在泄放过程中的安全性能。

压力容器的壁厚计算公式

压力容器的壁厚计算公式
压力容器壁厚计算 壁厚公式 S=PDi/(2*[σ t]*Φ -P)+C
圆 筒 壳
符号意义 [σ ]许用应 P压力(kg/cm2) D直径(mm) Φ 焊缝系数 及单位 力(kgf/cm2) 壁厚计算 10 2000 1370 0.85 最大允许工 [P]=(2[σ t]φ (S-C))/((D +(S-C)) i 作压力 符号意义 [σ ]许用应 C壁厚附加量 D直径(mm) Φ 焊缝系数 及单位 力(kgf/cm2) (mm) 压力校核 2000 1370 0.85 1 应力校核公 σ t=(P(Di+(S-C))/(2(S-C)φ ); 必须满足σ t≦[σ t] 符号意义 及单位 应力校核 P压力(kg/cm2) 10 D直径(mm) 2000 Φ 焊缝系数 0.85 C壁厚附加量 (mm) 1
S壁厚(mm) 10
P压力 (kg/cm2) 20.86709806 σ t最大允许 应力 (kgf/cm2) 656.5359477
满足σ t≦[σ t] S壁厚(mm) 10
C壁厚附加量 S壁厚(mm) (mm) 1 9.605851979
S壁厚(mm)
P压力 (kg/cm2)
10 须满足σ t≦[σ t] S壁厚(mm) 10
计算结果 C壁厚附加量 S壁厚(mm) (mm) 1 9.624407072
S壁厚(mm) 10
P压力 (kg/cm2) 10.43354903 σ t最大允许 应力 (kgf/cm2) 1313.071895
满足σ t≦[σ t] S壁厚(mm) 10
C壁厚附加量 (mm) 1
S壁厚(mm) 5.30292599
球 壳 与 球 形 封 头
壁厚公式 S=PDi/(4*[σ t]*Φ -P)+C 符号意义 [σ ]许用应 P压力(kg/cm2) D直径(mm) Φ 焊缝系数 及单位 力(kgf/cm2) 壁厚计算 10 2000 1370 0.85 最大允许工 [P]=(4[σ t]φ (S-C))/((Di+(S-C)) 作压力 符号意义 [σ ]许用应 C壁厚附加量 D直径(mm) Φ 焊缝系数 及单位 力(kgf/cm2) (mm) 压力校核 2000 1370 0.85 1 应力校核公 σ t=(P(Di+(S-C))/(2(S-C)φ ); 必须满足σ t≦[σ t] 符号意义 及单位 应力校核 P压力(kg/cm2) 10 D直径(mm) 2000 Φ 焊缝系数 0.85 C壁厚附加量 (mm) 1

压力容器壁厚成本计算

压力容器壁厚成本计算

椭圆型封头
压力容器壁厚计算公式:
圆桶壁厚:封头壁厚S':
S
计算壁厚,mm P
计算压力,MPa D
内径,mm σ设计温度下材料的许用应力,MPa(150℃以下Q235钢取113)φ焊接接头系数(一般取0.8)
K 封头形状系数(标准椭圆形封头K=1)
条件:
P 0.60MPa
D 800.00mm 钢板厚度规格4,5,6,8,10,12,14 mm σ113.00MPa
ρ7850.00kg/m3
φ0.80
K 1.00
计算结果:
圆桶壁厚S 2.66mm
封头壁厚S' 2.6592798mm
设计圆桶壁厚:20mm
设计封头壁厚:20mm
桶体高度:1800mm
圆桶的内表面积: 4.5216m2
圆桶的体积:0.90432m3
圆桶的质量:709.891kg
封头的内表面积:0.785m2
封头的质量:123.245kg
容器共有2个椭圆形封头
容器的内表面积: 6.0916m2
容器的总重:956.381kg
常规压力容器,CS每吨制造价:10000
SUS304每吨制造价:60000
内衬天然橡胶3mm,单价每平米:160
内衬天然橡胶5mm,单价每平米:250
EPOXY 防腐,单价每平米:85
FRP 防腐,单价每平米:150
容器的制造价:9563.812
衬胶费用:1522.9
总价:11086.712
X 1.2=13304.0544P PD s -=σφ2P
KPD
s 5.02'-=σφ。

内压经验公式

内压经验公式

内压经验公式通常用于估算容器或管道在内部压力作用下的行为。

这些公式基于实验数据和工程经验,用于预测容器或管道的应力、应变或其他相关参数。

一个常见的内压经验公式用于估算圆柱形压力容器的壁厚,其形式如下:
(t = \frac{P \cdot D}{2 \cdot S} + C)
其中:
•(t) 是容器的壁厚
•(P) 是容器内部的设计压力
•(D) 是容器的内径
•(S) 是材料的许用应力 即材料在给定温度下能够承受的最大应力,而不会导致破坏)•(C) 是一个经验系数,用于考虑制造过程中可能出现的误差、腐蚀等因素的影响
这个公式基于弹性力学的基本原理,假设容器在内部压力下表现出弹性行为。

然而,它仅适用于一定的压力范围和材料类型,对于高压或特殊材料的情况,可能需要使用更复杂的分析方法。

需要注意的是,这个公式仅是一个经验公式,其准确性取决于多个因素,包括材料的性质、容器的几何形状、制造工艺以及使用环境等。

因此,在实际应用中,建议根据具体情况进行详细的工程分析和计算,以确保容器的安全性和可靠性。

此外,对于涉及内压的其他设备和系统,如管道、储罐等,也有相应的经验公式可供参考。

这些公式通常基于类似的原理和考虑因素,但具体的形式和应用范围可能会有所不同。

因此,在使用这些公式时,需要仔细考虑其适用条件和限制。

压力容器强度计算公式及说明

压力容器强度计算公式及说明

压力容器壁厚计算及说明一、压力容器的概念同时满足以下三个条件的为压力容器,否则为常压容器。

1、最高工作压力P :9.8×104Pa ≤P ≤9.8×106Pa ,不包括液体静压力;2、容积V ≥25L ,且P ×V ≥1960×104L Pa;3、介质:气体,液化气体或最高工作温度高于标准沸点的液体。

二、强度计算公式1、受内压的薄壁圆筒当K=1.1~1.2,压力容器筒体可按薄壁圆筒进行强度计算,认为筒体为二向应力状态,且各受力面应力均匀分布,径向应力σr =0,环向应力σt =PD/4s ,σz = PD/2s ,最大主应力σ1=PD/2s ,根据第一强度理论,筒体壁厚理论计算公式,δ理=PPD -σ][2 考虑实际因素,δ=P PD φ-σ][2+C 式中,δ—圆筒的壁厚(包括壁厚附加量),㎜;D — 圆筒内径,㎜;P — 设计压力,㎜;[σ] — 材料的许用拉应力,值为σs /n ,MPa ;φ— 焊缝系数,0.6~1.0;C — 壁厚附加量,㎜。

2、受内压P 的厚壁圆筒①K >1.2,压力容器筒体按厚壁容器进行强度计算,筒体处于三向应力状态,且各受力面应力非均匀分布(轴向应力除外)。

径向应力σr =--1(222a b Pa 22r b ) 环向应力σθ=+-1(222ab Pa 22r b ) 轴向应力σz =222a b Pa - 式中,a —筒体内半径,㎜;b —筒体外半径,㎜;②承受内压的厚壁圆筒应力最大的危险点在内壁,内壁处三个主应力分别为:σ1=σθ=P K K 1122-+ σ2=σz =P K 112-σ3=σr =-P第一强度理论推导处如下设计公式σ1=P K K 1122-+≤[σ] 由第三强度理论推导出如下设计公式σ1-σ3=P K K 1122-+≤[σ] 由第四强度理论推导出如下设计公式:P K K 132-≤[σ] 式中,K =a/b3、受外压P 的厚壁圆筒径向应力σr =---1(222a b Pb 22r a ) 环向应力σθ=-+-1(222ab Pb 22r a ) 4、一般形状回转壳体的应力计算经向应力 σz =sP 22ρ 环向应力 sP t z =+21ρσρσ 式中,P —内压力,MPa ;ρ1—所求应力点回转体曲面的第一主曲率半径,㎜;(纬)ρ2—所求应力点回转体曲面的第一主曲率半径,㎜;(经)s —壳体壁厚,㎜。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆型封头
压力容器壁厚计算公式:
圆桶壁厚:封头壁厚S':
S
计算壁厚,mm P
计算压力,MPa D
内径,mm σ
设计温度下材料的许用应力,MPa(150℃以下Q235钢取113)φ
焊接接头系数(一般取0.8)K
封头形状系数(标准椭圆形封头K=1)条件:
P
0.60MPa D
800.00mm σ
113.00MPa ρ
7930.00kg/m3φ
0.80K
1.00计算结果:
圆桶壁厚S
2.66mm 封头壁厚S' 2.6592798mm
设计圆桶壁厚:20
mm 设计封头壁厚:20
mm 桶体高度:
1800mm 圆桶的内表面积:
4.5216m2圆桶的体积:
0.90432m3圆桶的质量:
717.126kg 封头的内表面积:
0.785m2封头的质量:
124.501kg 容器共有2
个椭圆形封头容器的内表面积:
6.0916m2容器的总重:966.128kg
常规压力容器,CS每吨制造价:10000SUS304每吨制造价:60000内衬天然橡胶3mm,单价每平米:160内衬天然橡胶5mm,单价每平米:250EPOXY 防腐,单价每平米:85FRP 防腐,单价每平米:150容器的制造价:9661.2776衬胶费用:1522.9总价:11184.178
X 1.2=13421.013P PD s -=σφ2P
KPD
s 5.02'-=σφ。

相关文档
最新文档