第三章酶的发酵生产PPT课件

合集下载

酶工程 第三章酶的发酵生产 第一节酶生物合成的基本理论

酶工程 第三章酶的发酵生产 第一节酶生物合成的基本理论
转录是以DNA为模板,以核苷三磷酸为底物,在RNA聚合酶 (转录酶)的作用下,生成RNA的过程。
第一节 酶生物合成的基本理论
转录时,RNA聚合酶首先结合到DNA的特定位点(启动基因)上,DNA的 双螺旋链部分解开,以其中一条链为模板,通过碱基互补方式结合进第一个 核苷三磷酸,然后随着RNA聚合酶的移动,DNA双螺旋逐渐解开,按照模板上 的碱基顺序逐个加入与其互补的核苷三磷酸并聚合而生成多聚核苷酸链。在 RNA聚合酶后面生成的多聚核苷酸链立即与模板分开,DNA分子的两条链又重 新缠绕形成双螺旋。(图3-1)
第一节 酶生物合成的基本理论
三、酶生物合成的调节
如上所述,酶的生物合成要经过一系列的步骤,需要 诸多因素的参与。故此,在转录和翻译过程中,许多因素 都会影响酶的生物合成。那么,究竟哪些因素对酶的生物 合成起主要的调节控制作用呢?研究结果表明,至少在原 核生物中,甚至在所有生物中,转录水平的调节控制对酶 的生物合成是至为重要的。
的过程,称为酶生物合成的诱导作用。简称为诱导作用。 起诱导作用的物质,称为诱导剂。例如,乳糖诱导β—半 乳糖苷酶的合成等。
酶生物合成的诱导作用过程如图3-4所示。
第一节 酶生物合成的基本理论
第一节 酶生物合成的基本理论
(B)
图3-4酶生物合成的诱导作用 (A)-----无诱导物时 (B)----添加诱导物时
转录水平调节控制,又称为基因的调节控制。这种控 制理论最早是由雅各(Jacob)和莫诺德(Monod)于1960年 提出的操纵子学说来阐明的,1966年发现了启动基因,使 这一调节控制理论不断完善。
第一节 酶生物合成的基本理论
根据基因调节控制理论,在DNA分子中,与酶生物合 成有密切关系的基因有4种。它们是调节基因(Regulator gene)、启动基因(Promoter gene)、操纵基因(Operator gene)和结构基因(Strutural gene)。其中,结构基因与 酶有各自的对应关系,结构基因中的遗传信息可转录成 mRNA上的遗传密码,再经翻译成为酶蛋白的多肽链。操纵 基因可以特异性地与调节基因产生的边构蛋白(阻抑蛋白) 中的一种结构结合,从而操纵酶合成的时机及速度。结构 基因与操纵基因一起称为操纵子。启动基因决定酶的合成 能否开始,启动基因由两个位点组成,一个是RNA聚合酶 的结合位点,另一个是环腺苷酸(cAMP)与环腺苷酸接受 蛋白(CRP)的复合物(cAMP- CRP)的结合位点。只有在 cAMP- CRP复合物结合到启动基因的位点上时,RNA

酶工程酶的发酵生产课件

酶工程酶的发酵生产课件
该中心保藏有细菌10500株,真菌45000株,酵母 14500株,放线菌9500株。
第十四页,共49页。
DSMZ
DSMZ (Deutsche Sammlung von Mikroorganismen und
Zellkulturen GmbH) 德国微生物菌种保藏中心 DSMZ成立于1969年,是德国的国家菌种保藏中心。
第五页,共49页。
第二节 酶发酵生产常用的微生物 (酶的生产菌种)
一、产酶菌种的要求
二、常用的产酶微生物 三、利用微生物产酶的优点 四、高纯菌种的获取
第六页,共49页。
一、产酶菌种的要求
1、发酵周期短,产量高;
2、容易培养和管理; 3、产酶稳定性好,不易变异退化,不易被感染; 4、有利于酶的分离和纯化; 5、安全性可靠,非致病菌。
产酶促进剂 —— 少量加入之后能显著增加酶产量的物质。一般都是酶
的诱导物或表面活性剂。例如纤维素能诱导纤维素酶,吐温80可提高多
种酶的产量。表面活性剂提高酶产量的作用机制目前还未完全了解,使 用时必须考虑其对微生物是否有毒性。生产上提高胞外酶的活力,一般 都采用非离子表面活性剂。
第二十九页,共49页。
转录是以DNA为模板,以核苷三磷酸为 底物,在RNA聚合酶(转录酶)的作 用下,生成RNA的过程。
转录速度表达式?
第四页,共49页。
二、蛋白质的生物合成—翻译
翻译:以mRNA为模板,以氨基酸为底物, 在核糖体上通过各种tRNA,酶和辅助因子 的作用,合成多肽的过程。
四个阶段 1、氨基酸活化生成氨酰-tRNA 2、肽链合成的起始 3、肽链的延伸 4、肽链合成的终止 思考:密码子偏爱性与翻译速率?
美国农业研究菌种保藏中心

酶工程微生物发酵产酶课件

酶工程微生物发酵产酶课件
• 某些物质(容易利用的碳源)经过分解代谢产生的 物质阻遏了某些诱导酶生物合成的现象
• 连锁效应
• 实质 —— cAMP 通过启动基因调控酶的合成
微生物发酵产酶
• 酶生物合成的调节 A. 无诱导物
—— 转录水平
…R P
O
S1 S2

– 调节模式 2:诱导作 阻遏蛋白

B. 添加诱导物
• 加入某些物质(诱
• 酶生物合成的过程
– 肽链的合成 —— 翻译
• 以mRNA为模板,以氨基酸为底物,在核糖体上通过 各种tRNA、酶和辅助因子,合成多肽链的过程
• 氨基酸活化生成氨酰-tRNA • 肽链合成起始
微生物发酵产酶
• 酶生物合成的过程
– 肽链的合成 —— 翻 译
• 肽链延伸
• 肽链合成的终止
• 肽链翻译后加工
时间
细胞浓度 酶浓度
微生物发酵产酶
• 酶生物合成的模式
– 延续合成型

• 酶的合成伴随着细胞的生长
而开始,生长进入平衡期 后
/

酶 浓
,酶还能延续合成 一段时间 度
• 此类酶的合成可被诱导物所
诱导,一般不受分解代谢物 阻遏
• 此类酶所对应的 mRNA 稳定 性好
• 举例:黑曲霉培养生产聚半
时间
细胞浓度 酶浓度
时间
滞后合成型
时间
微生物发酵产酶
• 酶生物合成的模式
– 同步合成型


/
• 酶的生物合成与细胞生长同 酶
步进行(生长偶联 型)


• 大部分组成酶属于此类
• 此类酶的合成可由其诱导物
诱导生成,不受分解代谢物 阻遏和反馈阻遏作用

酶工程 第三章酶的发酵生产 第三节发酵工艺条件及控制

酶工程 第三章酶的发酵生产 第三节发酵工艺条件及控制
为了获得足够多的能量,以满足细胞生长和发酵产酶 的需要,培养基中的能源(一般是碳源提供)必须经有氧 解才能产生大量的ATP。为此,必须供给充足的氧气。
第三节 发酵工艺条件及控制
无机元素是通过添加无机盐来提供的,一般采用水溶 性的硫酸盐、磷酸盐或盐酸盐等。有时也使用硝酸盐,在 提供无机氮的同时,提供无机元素。
4.生长因素 生长因素是指细胞生长繁殖所必不可缺的微量有机化 合物主要包括各种氨基酸、嘌呤、嘧啶、维生素,以及动 植物生长激素等。各种氨基酸是蛋白质和酶的组分;嘌呤 和嘧啶是核酸和某些辅酶的组分;维生素主要起辅酶作用; 动植物生长激素则分别对动物细胞和植物细胞的生长、分 裂起调节作用。有的细胞能够自己合成各种生长因素,而 有的细胞则缺少合成一种或多种生长因素的能力,需由外 界供给,才能正常生长繁殖,这样的细胞称为营养缺陷型。
第三节 发酵工艺条件及控制
在酶的发酵生产中,通常在培养基中加进玉米浆、酵 母膏等,以提供各种必需的生长因素。有时,也加进纯化 的生长因素,以供细胞生长繁殖之需。
现举例几种酶发酵培养基: (1)枯草杆菌BF7658α—淀粉酶发酵培养基:玉米粉 8%,豆饼粉4%,磷酸氢二钠0.8%,硫酸铵0.4%,氧化钙 0.2%,氯化铵0.15%。 (2)枯草杆菌AS1.398中性蛋白酶发酵培养基:玉米 粉4%,豆饼粉3%,麸皮3.2%,米糠1%,磷酸氢二钠0.4%, 磷酸二氢钾0.03%。 (3)黑曲霉糖化发酵培养基:玉米粉10%,豆饼粉4%, 麸皮1%(PH4.4—5.0)。
第三节 发酵工艺条件及控制
不同细胞生长繁殖的最适PH有所不同。一般细胞和放 线菌的生长最适PH为中性或微碱性(PH6.5—8.0);霉菌 和酵母的生长最适PH为偏酸性(PH4.0—6.0);植物细胞 生长的最适PH为5—6。

酶的发酵生产

酶的发酵生产

酶工程•第一章绪论•第二章酶的发酵生产•第三章酶的分离纯化•第四章酶分子修饰•第五章酶与细胞固定化•第六章酶反应动力学•第七章酶的应用第一章绪论•第一节酶的概述•第二节酶工程概述•第三节酶的生产方法•第四节酶的应用前景第一节酶的概述一. 酶(enzyme)的概念二. 酶的研究历史三. 酶的分类与命名四. 酶的活力测定一. 酶(enzyme)的概念1.酶是催化剂(catalyst)所谓催化剂是一类能改变反应速度,但不改变反应性质、反应方向和反应平衡点,而且本身在反应前后也不发生变化的外在因素。

酶在化学反应中就是充当这样的角色。

2.酶是一种特殊的催化剂3.酶是生物催化剂酶在催化反应时,具有与一般非酶催化剂不同的特点。

其具有催化的高效性、高度专一性及化学本质是蛋白质的特点。

(1)酶具有催化的高效性酶能在温和条件下(常温、常压和近中性PH),极大地提高反应速度,与非酶催化剂相比,酶的催化效率可高出107~1012倍。

如:2H2O2 2H2O + O2该反应的催化剂可以有Fe+、血红素和过氧化氢酶,其催化反应的速度分别是:5.6×10-4mol/mol Fe+.S、6.0×10-1mol/mol血红素.S、3.5×106mol/mol过氧化氢酶.S(2)酶具有催化的高度专一性(specificity)酶作用的的专一性是指酶在催化反应时,通常只作用一种或一类反应物发生相应的反应的特性。

酶作用的专一性主要表现在以下几个方面:a. 绝对专一性:酶只能催化一种反应物发生反应的特性如:谷氨酸脱氢酶只能催化L-谷氨酸脱氢,对其他氨基酸没有作用,其具有绝对专一性。

b. 相对专一性:酶在催化反应时,允许底物分子有一些变化,即可以催化一类反应物发生反应。

如:酯酶催化酸与醇缩合成酯,但对反应物分子的侧链基团专一性不强。

淀粉酶、蛋白水解酶也具有这种专一性。

c. 异构专一性:酶对反应物分子的立体异构体和顺反异构体具有高度的选择能力。

第三章第一节酶生物合成的调节PPT课件

第三章第一节酶生物合成的调节PPT课件

AUG
反密码
GUU UAC ACA
5’
3’ mRNA
密码(codon)与反密码(anticodon) 的碱基配对
.
31
蛋白质合成的几个要素-核糖体,ribosome
• 核糖体(或称核糖核蛋白体)由蛋白质和rRNA组成。 是存在于细胞质内的微小颗粒。
.
32
The ribosome composition of
.
Few example
2
一、提取分离法
• 酶的提取:在一定的条件下,用适当的溶剂处理 含酶原料,使酶充分溶解到溶剂中的过程。
• 主要提取方法:
– 盐溶液提取
– 酸溶液提取
– 碱溶液提取
– 有机溶剂提取等
注意选择适当 的溶剂!!!
.
3
• 优点:提取方法简单方便 • 缺点:
– 必须先获得含酶组织或细胞 – 受气候环境影响 – 若培养细胞则工艺路线变复杂 – 产品含杂质较多,分离纯化较困难
.
4
适用范围
• 在动植物资源丰富的地区 • 从动物胰脏中提取各种胰蛋白酶,小肠中
提取碱性磷酸酶
.
5
二、生物合成法(发酵法)
• 利用微生物细胞、植物细胞或动物细胞的 生命活动而获得人们所需酶的技术。
依细胞 种类不同
微生物 植物细胞 动物细胞
发酵产酶 培养产酶 培养产酶
.
6
• 酶的发酵生产:经过预先设计,通过
60年代中期,在操纵子中还发现了另一个开关基因,称为启动基因。启
动基因位于操纵基因之前,二者紧密相邻。启动基因由环腺苷酸(cAMP)启 动,而环腺苷酸能被葡萄糖所抑制。这样,葡萄糖便通过抑制环腺苷酸而间 接抑制启动基因,使结构基因失活,停止合成半乳糖苷酶。

酶的发酵工程PPT课件

酶的发酵工程PPT课件

在核糖体上合成多肽(三阶段)
1、起始阶段 2、延伸阶段 3、终止阶段
肽链合成的起始阶段
1.mRNA与小亚基结合:形成30S-mRNA-IF3复合物
2.AUG与蛋氨酰-tRNA结合:
30S-mRNA-IF3
fMet-tRNA-IF2-GTP
IF1
30S起始复合物
fMet-tRNA正好位于mRNA的起始密码子上(AUG)。
延长部位
(二)蛋白质的生物合成--翻译(translation)
定义 以mRNA为模板,以氨基酸为底物,在核糖 体上通过各种tRNA、酶和辅助因子的作用,合 成多肽链的过程。

5’
酪氨酰- tRNA
5’
AUG GUU UAC ACA
反密码
3’ mRNA
密码与反密码的碱基配对
给位 (P位) 大亚基
第二章
酶的生物合成与发酵生产
提取分离法 微生物细胞发酵产酶
酶的生产方法
生物合成法
化学合成法
植物细胞发酵产酶
动物细胞发酵产酶
第一节
酶生物合成及调节
一、酶的生物合成
遗传信息传递的中心法则
转 录 复制 传 DNA 递 转录 给 R N 逆转录 A 蛋白质 RNA , 翻译 再 复制 由 R N
(一)RNA的生物合成--转录(transcription)
µ max:最大比生长速率(1/h) S:营养物浓度(生长限制基质浓度) 克/L 或 mol/L
Ks:莫诺德常数或饱和常数或营养物利用常数 克/L,
蛋 苏
Mg+ K+
移位
GTP
UAC UGU AUG ACA GUU 3’ 5’
转肽

酶的发酵生产

酶的发酵生产

• 2. 液体深层发酵 • 液体表面发酵,目前已不采用。 • 液体深层通风发酵, • 主要设备是一个具有搅拌桨叶和 通气系统
的密闭容器。
• 优点:①产酶纯度高,质量稳定;
• ②较易控制发酵条件,有利于自动化控制; ③机械化程度高,劳动强度小;设备利用 率高。
• 缺点:设备投资较大。
• 3. 固定化细胞发酵
• 厚层通气法:将固体培养基接入菌种后,平 铺在具有多孔的大池内,厚度可达20-30厘米; 待微生物已开始生长,即从池底通入一定温 度和相对湿度的空气,使微生物比较均匀适 宜地生长繁殖和产酶。
优点:①设备简单,投资较少。②环境污染 少;③特别适用于霉菌的培养和发酵产酶。
缺点 :①劳动强度大;②原料利用率低;③ 产酶纯度较差;提取精制较难;④传质传 热效率低,发酵条件不易控制均匀,产酶 不稳定;⑤不宜胞内酶生产(菌体分离难 度大)
酶合成转录水平上的调节
底物和代谢产物对基因活性的调节(诱导、 阻遏)
编码蛋白质和淀粉等分解酶的基因。 合成各种细胞代谢过程中所必需的小分子物
质(如氨基酸、嘌呤和嘧啶)的酶的基因。
• 弱化子对基因活性的调节(转录弱化作用)
某些酶基因的起始密码前有一段一定长度的 mRNA片断(前导区),此mRNA片断通过自 我配对可行成茎环结构,负载特殊氨基酰— tRNA的浓度影响了其在mRNA上的位置,从 而决定了mRNA的二级结构,达到微调基因转 录的目的。该片断的缺失会提高酶的表达量。
来源于中温性和嗜热性微生物的耐热蛋白酶
来源
Bacillus Licheniformis
B.stearothermophilus NCIB 8924 B.thermoproteolyticus
生长温

第三章 酶的发酵生产

第三章 酶的发酵生产

五、温度的调节控制
1、温度对酶的发酵生产的影响
在发酵初期,细胞吸收营养物质合成自身物质和酶, 吸热反应,培养基中的营养物质被大量分解释放热 反应,但此时吸热反应大于放热反应,培养基需升 温;
当细胞繁殖迅速时,情况相反,需降温维持细胞生 产繁殖和产酶所需的最适的温度。
细胞(微生物)生产繁殖和产酶的最适温度随菌种 和酶的性质不同而异,并且生长繁殖和产酶的最适 温度往往不一致。 一般,细菌为37℃,霉菌和放线菌为28~30℃, 一些嗜温微生物需在40~50℃生长繁殖, 如:红曲霉的生长温度为35℃~37℃,而产糖化 酶的最适温度为37 ℃~40 ℃。
1、划线分离法
将样品制备适当的稀释液,用接种环蘸取样品 稀释液在培养基平板上分区划线分离,然后培养直 至单个菌落出现。
2、稀释分离法
五、菌株产酶性能鉴定
1、平板透明水解圈法
透明圈直径与产酶的关系: lg[E] / D=k· △[C] / lgt R/r·
其中:
[E] :产酶浓度; D:菌体量; R:水解圈; r:菌落直径;△:琼脂厚度;[C] :底物浓度; t:培养时间; k:常数。
(一)固体培养发酵(传统的方法)
一般适合于真菌发酵。
(二)液体深层发酵:
①适用性强,可用于各种细胞的悬浮培养和发酵。 ②易于人为控制。 ③机械化程度高,酶产品质量好,酶产率及回收 率较高。
(三)固定化细胞发酵(70年代后期)
1、优点:重复使用、易于分离、易于机械化、 抗逆性强、效率高。 2、缺点:产品质量不够稳定、易受传质和氧 的限制。
4、滞后合成型
只有当细胞生长进入平衡期后,酶才开始合成并大 量积累。许多水解酶类属于此类。 它们在细胞对数期 不合成,可能是受 到分解代谢产物的 阻遏作用,当阻遏 解除后,酶开始合 成,其对应的 mRNA稳定性高。

第三章 酶的发酵生产

第三章 酶的发酵生产

三 动植物细胞培养缺点 动植物细胞体积大、对剪切力敏感, 动植物细胞体积大 、 对剪切力敏感 , 要求特殊生 物反应器。 物反应器。 动植物细胞生长速率、代谢速率低,发酵周期长, 动植物细胞生长速率 、 代谢速率低 , 发酵周期长 , 对防止杂菌污染的技术要求高。 对防止杂菌污染的技术要求高。 动物细胞营养要求苛刻. 动物细胞营养要求苛刻
应用实例 在利用嗜热芽孢杆菌生产α-淀粉酶时 淀粉酶时,采用甘油替 在利用嗜热芽孢杆菌生产 淀粉酶时 采用甘油替 代果糖解除分解代谢物阻遏,可以使产量提高 可以使产量提高25 代果糖解除分解代谢物阻遏 可以使产量提高 倍. 某些商业酶的诱导 酶 α-淀粉酶 淀粉酶 葡萄糖淀粉酶 转化酶 普鲁兰酶 木糖异构酶 底物 淀粉 淀粉 蔗糖 普鲁兰 木糖 诱导 淀粉或麦芽糊精
酶的生产方法 酶的生产方法
提取分离法
生物合成
化学合成
SOD-BLOOD Papain-Papaya Chymotrypsin-Pancrea
Amylase from B.subtilis Protease from B.subtilis Phosphatase from B.subtilis Glucoamylase from Aspergillus Plant cell Animal cell
二 不同类型、植物、动物细胞的特性比较 不同类型、植物、
微生物细胞 细菌 细胞大小 (µm) 025~1 ~ 倍增时间(hr) 倍增时间 营养要求 细胞壁 对剪切力 主要产物 酵母 1~10 ~ 1.15~ ~ 2 简单 有 大多不敏感 醇、有机酸、氨基酸、核苷 有机酸、氨基酸、 抗生素、 多糖、 酸、抗生素、酶、多糖、色 素、菌体 2~6.9 ~ 霉菌 20~300 ~ 20~74 ~ 较简单 有,坚硬 敏感 色素、 色素、香 精、药物 10~100 ~ 15~100 ~ 复杂 无 很敏感 激素、 激素、疫 苗、单克 隆抗体 植物细胞 动物细胞

酶工程 第三章酶的发酵生产 第二节酶发酵生产常用的微生物

酶工程 第三章酶的发酵生产 第二节酶发酵生产常用的微生物

第二节 酶发酵生产常用的微生物
十、啤酒酵母(Sacharomycescerevisiae)
啤酒酵母是在工业上广泛应用的酵母,细胞由圆形、 卵形、椭圆形到腊肠形。在麦芽汁琼脂培养基上菌落为白 色,有光泽,平滑,边缘整齐。营养细胞可以直接变为子 囊,每个子囊含有1—4个圆形光亮的子囊孢子。
啤酒酵母主要用于酿造啤酒、酒精、饮料酒和面包制 造。在酶的生产方面,用于转化酶、丙酮酸脱羧酶、醇脱 氢酶等的生产。
酶的发酵生产是以获得大量所需的酶为目的。为此, 除了选择性能优良的产酶细胞以外,还必须满足细胞生长、 繁殖和发酵产酶的各种工艺条件,并要根据发酵过程的变 化进行优化控制。
酶发酵生产的一般工艺流程如图3-6所示。
酶工程
第三章 酶的发酵生产
第二节 酶发酵生产常用的微生物
任何生物都能在一定条件下合成某些酶。但是并不是 所有的细胞都能用于酶的发酵生产。一般说来,能用于酶 发酵生产的细胞必需具备如下几个条件:(1)酶的产量 高。优良的产酶细胞首先要具有高产的特性,才有较好的 开发应用价值。高产细胞可以通过筛选、诱变、或采用基 因工程、细胞工程等技术而获得。(2)容易培养和管理。 要求产酶细胞容易生长繁殖,并且适应性较强,易于控制 便于管理。(3)产酶稳定性好。在通常的生产条件下, 能够稳定地用于生产,不易退化。一旦细胞退化,要经过 复壮处理,使其恢复产酶性能。(4)利于酶的分离纯化。 发酵完成后,需经分离纯化过程,才能得到所需的酶。这 就要求产酶细胞本身及其它杂质易于和酶分离。(5)安 全可靠。要求使用的细胞及其代谢物安全无毒,不会影响 生产人员和环境,也不会对酶的应用产生其他不良影响。
第二节 酶发酵生产常用的微生物
二、大肠杆菌(Escherichia coli)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

trp 密码子 序列3、4不能形成衰减子结构
•当色氨酸浓度低时
27
细胞周期与酶的合成
可能的三种模式:
合成伴着生长进行, 进入静止期,合成降 低
对数生长期合成降低, 静止期合成增加
中间类型
28
三、酶发酵动力学
主要研究在发酵过程中细胞生长速率,产物 形成速率以及环境因素对速率的影响.
在酶的发酵生产中,研究酶发酵动力学对于了 解酶生物合成模式;发酵条件的优化控制,提 高酶产量具有重要的理论指导意义。
钮经义(1920-1995)
8
目前,应用于工业的酶类,主 要来自于微生物发酵。
9
什么是发酵?
利用微生物,在适宜的条件下,将原料经过 特定的代谢途径转化为人类所需要的产物的 过程。
10
发酵工业经历了哪几个阶段?
原始发展阶段(发酵技术原始,顶多是家庭小制作,技术 进步缓慢,完全是经验式的,并不知道其中的原理 。)
1、某些微生物因争夺生存环境或营养物,会产生抗 生素将其他种类的微生物杀死。
2、微生物会产生蛋白酶、纤维素酶和淀粉酶,将营 养物质水解成可吸收的小分子的多肽或氨基酸、葡 萄糖 。
3、微生物细胞会通过合成或分解代谢生产它必需的 一些物质,包括氨基酸、核苷酸等。
6
微生物作为酶来源的优越性:
1)种类繁多(>20万种) 2)易于人工控制,获得高产酶的菌种 3)微生物生长周期短,繁殖迅速,培养
发酵工程
12
二、酶的生物合成
Central dogma
13
酶合成的基本过程
转录
翻译
调控
基因表达的调控
•基因表达在全过程的各水平上都可以受调控:
染色质 活化
转录起始、延长、终止 转录后加工
转录起始调节 是基因表达调 控的主要环节
蛋白质翻译 翻译后加工修饰
15
启动子 (promoter)
大部分大组成型酶及部分诱导酶.
mRNA不稳定,细胞进入生长平衡期后,新的
mRNA不再合成.
32
33
延续合成型:
酶的合成伴随着细胞 生长而开始,但在细 胞生长进入稳定期后, 酶的合成仍将延续较 长一段时间。
生物合成可受诱导物 诱导,一般不受分解代 谢物阻遏
mRNA相当稳定
34
35
中期合成型:
30
酶生物合成模式:根据酶的合成与细胞生 长的关系,可以把酶生物合成模式分为4 种类型:
同步合成型 延续合成型 • 中期合成型 滞后合成型。
31
同步合成型 :
又称生长偶联型,
是指酶合成与细胞生 长同步进行,当细胞 生长进入对数期时, 酶也大量合成;当细 胞进入稳定期时,酶的 合成也停止。
方便,成本低 4)提高微生物产酶的途径多 5)培养条件简单,易于自动化,生产易
管理 6)微生物本身也容易改造
7
2.人工合成酶制剂:
蛋白质的人工合成:人 工合成胰岛素等
人工合成酶制剂受客观 条件的限制,如试剂、 设备等,另外,体外合 成,形成单体的难度大, 且只能合成那些已经完 全搞清楚其化学结构的 酶类。
结构基因
阻遏蛋白基因
操纵序列 (operator)
特异DNA序列
蛋白质因子
16
17
乳糖操纵子——诱导型操纵子
•乳糖操纵子的结构 调控区
结构基因
DNA
P Oz ya
I基因
操纵序列 启动子
CAP结合位点
z: β-半乳糖苷酶 y: 通透酶 a:乙酰基转移酶
18
•乳糖操纵子被阻遏蛋白封闭 阻遏基因
DNA
前导mRNA
1 5’
核糖体
RNA聚合酶
UUUU 3’
衰减子结构
就是终止子
4 可使转录 终止
3
2
34
UUUU 3U’UUU……
前导肽
trp 密码子
•当色氨酸浓度高时
26
前导DNA 前导mRNA
Trp合成酶系相关 结构基因被转录
RNA聚合酶 结构基因
5’
前导肽
23
核1 糖体
2 43
4
UUUU…U…UUU……
I
Ppol O z y a
mRNA
阻遏蛋白
没有乳糖存在时
19
•乳糖操纵子被诱导物开放
DNA
I
pPol O z y a
mRNA
启动转录
mRNA
阻遏蛋白
β-半乳糖苷酶
半乳糖
乳糖
有乳糖存在时
20
DNA
CAP结合位点
P
OZ YA
+ + + + 转录
CCAACCPPAAPP CACPAP 无葡萄糖,cAMP浓度高时
酶的合成在细胞生长 一段时间后才开始, 而在细胞生长进入稳 定期后,酶的合成也终 止。
29
影响酶生物合成模式的因素主要是: mRNA和培养基中存在的阻遏物:
mRNA稳定性高的,在细胞停止生长后继续合成相应的酶; mRNA稳定性差的,随着细胞生长停止而终止酶的合成; 不受阻遏物阻遏的,可随着细胞生长而开始酶的合成; 受阻遏物阻遏的,要在细胞生长一段时间或进入稳定期后解除
阻遏,才能开始酶的合成。
传统发酵工业阶段(人们才开始了解发酵现象的本质 ,
采用开放式的发酵方式,生产过程较为简单,对生产设备要求不
高,规模一般不大 。)
现代发酵工业阶段(生产技术要求高;生产规模大;技
术发展速度快;菌种的生产能力大幅度提高,新产品、新技术、
新设备的应用达到前所未有的程度。 )
生物技术产业阶段 (利用构建的基因工程菌生产 ) 11
24
调节区
trpR
PO
前导序列
前导mRNA
1
2
结构基因
衰减子区域
3
4
UUUU……
trp 密码子 终止密码子
第14a1a0前、导11密肽码编子码UU为区Ut:Ur包p…密含…U码序U子U列U1……衰减子结构 UUUU……
形成发夹结构能力强弱: 序列1/2>序列2/3>序列3/4
25
前导DNA
转录衰减机制
CAP
有葡萄糖,cAMP浓度低时
21
低半乳糖时
葡萄糖低 cAMP浓度高
IO
葡萄糖高 cAMP浓度低
无转录
IO
无转录
高半乳糖时
RNA-pol
O
mRNA
O
低水平转录
22
23
色氨酸操纵子——阻遏型操纵子
调节区
结构基因
trpR RNA聚P合酶O
RNA聚合酶
Trp 低时
mRNA
Trp 高时
操纵子关闭
Trp
第三章 酶的来源与发酵生产
1
第一的来源
1.主要来源于生物:所有细胞都有产酶的
能力,但不是所有细胞都是酶的合适来源
动物: 胰脏胰蛋白酶,胃粘膜胃蛋白酶
植物: 菠萝、木瓜蛋白酶
微生物: 利用微生物细胞的生命活动合成所需酶类 的方法称为发酵法
5
为什么要利用微生物?
抗生素、氨基酸、酶制剂等产品为什么能通 过微生物发酵来生产?这与微生物的生长和 代谢特点有什么关系?
相关文档
最新文档