对“解决问题的策略-的认识与思考
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对“解决问题的策略”的认识与思考
[摘要]《数学新课程标准》中很明确提到,“解决问题”是数学课程目标的四大领域之一,而让学生“形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神”又是这一目标的具体内容之一。苏教版小学数学教材在第二学段每学期的教材中,都安排了一个“解决问题的策略”单元,明确地提出了解决问题的策略,对此,研究教材中的这部分内容的教育价值,对更好地落实数学课程目标,提高解决问题策略教学的有效性有着积极作用。那么怎样认识解决问题的策略,如何在实践中探索促进学生形成解决问题策略的有效方法,是值得研究的问题。
[关键词]感悟体验训练积累
《数学新课程标准》中很明确提到,“解决问题”是数学课程目标的四大领域之一,而让学生“形成解决问题的一些基本策略,提要求按解决问题策略的多样性,发展实践能力与创新精神”又是这一目标的具体内容之一。苏教版小学数学教材在第二学段每学期的教材中,都安排了一个“解决问题的策略”单元,明确地提出了解决问题的策略,对此,研究教材中的这部分内容的教育价值,对更好地落实数学课程目标,提高解决问题策略教学的有效性有着积极作用。那么怎样认识解决问题的策略,如何在实践中探索促进学生形成解决问题策略的有效方法,是值得研究的问题。
一、对“解决问题的策略”的认识。
1、分析策略思想方法三者之间的关系。
数学思想是对数学知识的本质认识,是对数学规律的理性认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点。数学思想在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学解决问题的指导思想。数学方法是指从数学的角度提出问题、解决问题的过程中采用的各种方式、手段、途径等,其中包括变换数学形式。从字面上看,”解决问题的策略”就是解决问题的策略和谋略。我们认为解决问题的策略介于数学思想与数学方法之间,既利用数学思想作宏观指导,规划解决问题的大致方向,又利用数学方法作为直接、具体的解决问题的手段。
2、认识“解决问题的策略”的教育价值。
解决问题策略的教学有利于提高学生数学知识的掌握水平,加深对数学知识、思想方法的本质理解:有利于培养学生运用所学的知识解决实际问题的能力:有利于培养学生的问题意识:有利于培养学生的探索精神和创新能力。在小学数学教学中经常开展解决问题的活动,引导学生善于提出问题,乐于解决问题,学生就会逐渐习惯客观理性面对问题,获得解决问题的方法、技巧及体验,形成解决问题的策略。
二、对“解决问题的策略”的思考。
1、小学数学解决问题的主要策略。
解决问题的策略有很多,苏教版教材主要编排了以下策略:综合与分析、列表、画图,枚举、倒推,尝试、转化。这些策略有的侧重整理问题中叙述的条件和问题,通过画图、列表、简化等手段,帮助学生清晰地理解题意,为分析数量关系做准备;有的侧重对问题里的信息进行组合,加工,通过综合与分析,形成解决问题的思路,计划;有的侧重根据具体的问题,有条理、有顺序、比较全面
地思考问题;有的侧重在解决新颖的问题时,或以猜测作为解决问题的突破口,进行尝试和调整,最终找到解决问题的方法,可将新颖的、复杂的、难的问题转化成熟悉的简单的问题。
2、探索形成解决问题策略的有效方法。
(1)感悟策略要夯实基础。
在解决简单实际问题的教学中,将分析与综合的方法作为教学重点,因为分析与综合是解决问题中最具基础作用的策略。具体地说:第一,理解加法,减法,乘法,除法的含义。如,加法的含义是把两个数合拼成一个数的运算。加法表现在解决问题中就是把两个部分合起来,求总和是多少。我们要抓住这一本质,在解决问题过程中将学生的思维引导到四则运算的基本概念上,把四则运算的概念教学与问题解决的能力紧密结合起来。第二,掌握基本的数量关系。基本的数量关系是学生形成解决问题模型的基础。只有积累基本数量关系的结构,才能使学生在获得信息之后,迅速地形成解决问题的思路,提高解决问题的能力。例如,低年级学生常见的购物问题,学生在生活中有亲身体验,列式计算是比较容易的,但教师不能仅仅局限于学生是否会做,同时要渗透单价,数量和总价的关系。长期训练后,学生在解决问题时就会有意无意地借助数量关系进行思考,从而由原先的借助生活经验解决问题过渡到应用数学知识解决问题提供了思维方法,为具体列式提供了理论依据,它能简化思维过程,提高解决问题的效率。第三,学会基本的思考方法。在第一学段解决问题的过程中,要让学生初步学会综合法和分析法。学生掌握这两种方法应该经历循序渐进地过程。即一开始具有分析、综合的意识,慢慢地明确用综合法和分析法思考的过程,直到将这两种思维方法整合。同时,还要让学生掌握解决问题的一般步骤,把培养学生思考问题的逻辑性与提高解决能力紧密结合起来。
(2)内化策略要反复体验。
教材中增加“解决问题的策略”这一单元,其目的不仅在于让学生会解决某一类问题,更重要的是在于让学生经历并体验每一种策略的形成过程,获得对策略内涵的认识与理解。策略教学不能直接由教师传递,而应重在学生的体验。为了增强学生的体验,在解决问题的过程中,教师要设计多层次的数学活动,引导学生不断思考:“我运用了什么策略?”“为什么要用这个策略?”“这一策略的运用程序是否合理?”“解决这一问题可用的策略是否唯一?还有其他的策略吗?应该如何选择?”……帮助学生把解决问题过程中的体验进行整理归纳,最终内化成自己的策略,例如,教学六年级《替换的策略》,可设计多次对比,分析,逐步使学生对替换策略达到深刻的理解。例题主要教学倍数关系的替换,在明确题意的基础上,首先使学生产生使用替换策略的心理需求;然后引导学生经历替换的具体过程,学习替换的方法;最后让学生通过回顾与反思,着力思考为什么要替换,替换的依据是什么,替换前后数量关系是怎样变化的等问题,让学生感受替换的思考过程,更重要的是明确替换的价值在于使问题简单化,这是一种重要的解题策略。在学生初步学习了倍数关系的替换策略后,老师可抓住替换的依据进行变式,由小杯的容量是大杯的13,改变为大杯的容量比小杯多20毫升,自然过渡到相差关系的替换。当学生经历了两种类型的替换之后,教师可再次组织学生比较,使学生初步明白:倍数关系替换的结果总量不变,而相差关系替换的结果总量变了:倍数关系替换时,杯子的总数变了,而相差关系替换时,杯子的总数不变。虽然两种替换的方式不同,但替换的作用都是把两种量与总量之间的关系由复杂变得简单了。在这之后的变式练习和巩固应用中,教师都让学生在解决问题之前或之后进