结构力学(二)

合集下载

结构力学II期末考试题及答案

结构力学II期末考试题及答案

结构力学II期末考试题及答案一、选择题(每题2分,共20分)1. 梁的弯曲刚度EI表示的是()。

A. 梁的抗弯能力B. 梁的抗扭能力C. 梁的抗剪能力D. 梁的抗压能力答案:A2. 在平面杆件结构中,节点的平衡条件是()。

A. 节点的外力之和为零B. 节点的外力矩之和为零C. 节点的外力和外力矩之和均为零D. 节点的外力和外力矩之和均不为零答案:C3. 梁的剪力图和弯矩图是()。

A. 梁的变形图B. 梁的内力图C. 梁的位移图D. 梁的应力图答案:B4. 静定结构的特点之一是()。

A. 有多余约束B. 无多余约束C. 可以承受任何荷载D. 只能承受静荷载答案:B5. 影响结构刚度的因素包括()。

A. 材料性质B. 几何尺寸C. 材料性质和几何尺寸D. 材料性质或几何尺寸答案:C6. 在结构力学中,二阶效应通常指的是()。

A. 材料的非线性效应B. 几何非线性效应C. 动力效应D. 热效应答案:B7. 杆件的轴力图可以用来确定()。

A. 杆件的弯矩B. 杆件的剪力C. 杆件的位移D. 杆件的应力答案:D8. 连续梁和简支梁的主要区别在于()。

A. 连续梁的跨度更大B. 连续梁可以承受更大的荷载C. 连续梁的约束更多D. 连续梁的刚度更大答案:C9. 桁架结构中的节点通常被认为是()。

A. 刚性节点B. 铰接节点C. 半刚性节点D. 弹性节点答案:B10. 影响结构稳定性的主要因素是()。

A. 材料的强度B. 结构的刚度C. 荷载的大小D. 结构的几何形状答案:D二、填空题(每题2分,共20分)1. 梁的挠度计算公式为:δ = (5PL^3) / ( )。

答案:(384EI)2. 杆件的轴向刚度KA表示的是杆件抵抗()的能力。

答案:轴向变形3. 在静定结构中,每个节点的自由度是()。

答案:34. 梁的弯矩公式为:M = (EI/R) * (d^2y/dx^2),其中y是()。

答案:梁的挠度5. 桁架结构中,节点的平衡条件是()。

结构力学(二) ( 复习资料汇总 )

结构力学(二) ( 复习资料汇总 )

第1次作业(结构力学二)一、单项选择题(本大题共40分,共 20 小题,每小题 2 分)1. 位移法的基本结构是( )A. 静定刚架;B. 单跨静定梁的组合体;C. 单跨超静定梁的组合体D. 铰结体系2. :以下关于影响线的说法不正确的一项为( )A. 影响线指的是单位力在结构上移动时所引起的结构的某一内力(或反力)变化规律的图形B. 利用影响线可以求结构在固定荷载作用下某个截面的内力C. 利用影响线可以求结构某个截面内力的最不利荷载位置D. 影响线的横坐标是截面位置,纵坐标为此截面位置处的截面内力值3.A. B. C. D. 仅由平衡条件不能确定4. 不计杆的分布质量,图示体系的动力自由度为( )A. 1;B. 2;C. 3;D. 45. 用力法计算超静定结构时,其基本未知量为A. 杆端弯矩;B. 结构角位移;C. 结点线位移;D. 多余未知力6. 单元坐标转换矩阵是() A. 奇异矩阵 B. 对称三对角矩阵 C. 对称非奇异矩阵 D. 正交矩阵7. 位移法的基本未知量包括()A. 独立的角位移B. 独立的线位移C. 独立未知的结点角位移和线位移D. 结点位移8. 图乘法计算位移的公式中( )A. A和yC 可取自任何图形B. A和yC必须取自直线图形C. 仅要求A必须取自直线图形D. 仅要求yC必须取自直线图形9. 已知材料屈服极限 =300MPa,结构截面形状如图所示,则极限弯矩Mu=()A. 20kN•mB. 25kN•mC. 30kN•mD. 35kN•m.10. 整体坐标系下单元刚度矩阵与下面的哪一个因素无关A. 局部坐标与整体坐标的选取B. 结构的约束信息C. 单元的几何参数D. 杆端位移与杆端力之间的变换关系11. 欲减小图示结构的自振频率,可采取的措施有()A. 减小质量mB. 增大刚度EIC. 将B支座改为固定端D. 去掉B支座12. 图(b)为图(a)所示结构MK影响线,利用该影响线求得图(a)所示固定荷载作用下的MK值为()A. 4kN•mB. 2kN•mC. -2kN•mD. -4kN•m13. 图示为三自由度体系的振型,其相应的频率是ωa 、ωb、ωc,它们之间的大小关系应是( )A. B. C. D.14. 图(a)所示一组移动荷载作用在图(b)所示的梁上,则C截面弯矩的最不利位置为()A. P1作用在C点上 B. P2作用在C点上 C. P3作用在C点上 D. P3作用在B点上15. 平面杆件自由单元(一般单元)的单元刚(劲)度矩阵是( )A. 非对称、奇异矩阵B. 对称、奇异矩阵C. 对称、非奇异矩阵D. 非对称、非奇异矩阵16. 对称结构在反对称荷载作用下,内力图中为正对称的是( )A. 弯矩图B. 剪力图C. 轴力图D. 弯矩图、剪力图和轴力图17. 由于温度改变,静定结构() A. 会产生内力,也会产生位移; B. 不产生内力,会产生位移; C. 会产生内力,不产生位移; D. 不产生内力,也不产生位移。

结构力学 2几何组成分析

结构力学 2几何组成分析

II
解: 三刚片三铰相连,三铰不共线,所以该体系 三刚片三铰相连,三铰不共线, 为无多余约束的几何不变体系. 为无多余约束的几何不变体系.
三刚片虚铰在无穷远处的讨论
一个虚铰在无穷远
一个虚铰在无穷远: 一个虚铰在无穷远:若组成此虚铰的二杆与另两铰的连 线不平行则几何不变;否则几何可变. 线不平行则几何不变;否则几何可变
例1: 对图示体系作几何组成分析
I II
III
解: 三刚片三铰相连,三铰不共线,所以该体 三刚片三铰相连,三铰不共线, 系为无多余约束的几何不变体系. 系为无多余约束的几何不变体系.
例2: 对图示体系作几何组成分析Байду номын сангаас
I
II
III
主从结构, 主从结构,顺序安装
例3: 对图示体系作几何组成分析
I III
FAy 如何求支 座反力? 座反力 静定结构
FB 无多余 联系几何 不变。 不变。
例1:如何通过减约束变成静定? 1:如何通过减约束变成静定 如何通过减约束变成静定?


还有其他可能吗? 还有其他可能吗?
结论与讨论
结构的组装顺序和受力分析次序密切相关。 结构的组装顺序和受力分析次序密切相关。 正确区分静定、超静定,正确判定超静定结 构的多余约束数十分重要。 超静定结构可通过合理地减少多余约束使其 变成静定结构。 变成静定结构。 分析一个体系可变性时,应注意刚体形状可 任意改换。按照找大刚体(或刚片)、减二元 任意改换。按照找大刚体(或刚片)、减二元 体、去支座分析内部可变性等,使体系得到最 大限度简化后,再应用三角形规则分析。 大限度简化后,再应用三角形规则分析。
彼此等长 →常变
彼此不等长 →瞬变

结构力学二自考试题及答案

结构力学二自考试题及答案

结构力学二自考试题及答案一、选择题(每题2分,共20分)1. 在结构力学中,以下哪一项不是结构分析的基本假设?A. 连续性假设B. 平衡假设C. 均匀性假设D. 各向同性假设答案:D2. 根据弯矩和剪力的关系,以下哪项是错误的?A. 弯矩图是剪力图的积分B. 剪力图是弯矩图的微分C. 弯矩和剪力在数值上相等D. 剪力是弯矩的导数答案:C3. 在静定结构中,以下哪项是正确的?A. 可以确定所有未知内力B. 可以确定所有未知外力C. 可以确定所有未知位移D. 可以确定所有未知反力答案:A4. 以下哪种情况下,结构的自振频率会降低?A. 增加结构的刚度B. 增加结构的质量C. 增加结构的阻尼D. 减少结构的跨度答案:B5. 对于一个悬臂梁,当自由端施加向下的力时,以下哪项描述是错误的?A. 梁端部产生向下的弯矩B. 梁端部产生向下的剪力C. 梁的根部产生向上的弯矩D. 梁的根部产生向上的反力答案:C6. 在结构力学中,剪力和弯矩的正负号是如何规定的?A. 剪力指向截面右侧为正,弯矩使截面上凸为正B. 剪力指向截面左侧为正,弯矩使截面上凸为正C. 剪力指向截面右侧为正,弯矩使截面下凸为正D. 剪力指向截面左侧为正,弯矩使截面下凸为正答案:A7. 以下哪项不是影响结构稳定性的因素?A. 结构的几何形状B. 材料的弹性模量C. 结构的支撑条件D. 作用力的性质答案:B8. 在结构力学中,以下哪项是正确的?A. 只有静定结构才需要考虑稳定性问题B. 超静定结构不需要考虑稳定性问题C. 所有结构都需要考虑稳定性问题D. 只有柔性结构需要考虑稳定性问题答案:C9. 对于一个静定平面桁架,以下哪项是错误的?A. 每个节点只有两个多余约束B. 每个节点最多只能传递两个力C. 可以通过节点法求解内力D. 可以通过截面法求解内力答案:B10. 在结构力学中,以下哪项是正确的?A. 只有静定结构才能进行弯矩分配法B. 超静定结构不能使用弯矩分配法C. 弯矩分配法可以用于所有类型的结构D. 弯矩分配法只能用于连续梁答案:C二、简答题(每题10分,共30分)11. 简述结构力学中弯矩和剪力的基本概念及其关系。

结构力学2ppt课件

结构力学2ppt课件
二元体的方法进行分析。
G G
E
F
E
F
C
C
D
D
A
B
A
B
注:二元体遇到,可以先去掉。
例2:分析图示体系
解:
固定一个刚片的 装配方式。
AB部分与基础固 结在一起,可视为一
扩大的刚片Ⅰ。CD视 为刚片Ⅱ,Ⅰ、Ⅱ用 链杆1,2,3联结。
A
B 1C
ⅡD

2
3
结论:几何不变,无多 余约束。
.
例3:分析图示体系

不变。如有多余约束,体系几何可变。
• ③ 、W<0,或V<0,体系有多余约束,是否

几何不变则需分析。
说明:
W≤0,是体系几何不变的必要条件,非充分条件。
体系的几何组成,不仅与约束的数量有关,而且与 约束的布置有关。
.
•说明:
• (1)、W≤0
是体系几何不变的 必要条件,非充分 条件。 • (2)、体系的 几何组成(是否几 何不变)不仅与约 束的数量有关,而 且与约束布置有关。
与地面相连接只限制了两个自由度有一根链杆是多余约束多余联如果在一个体系中增加一个约束体系的自由度因此减少此约束称为必要约束或非多余约束
第二章
结构的几何构造分析
(机动分析) ( 组成分析)
.
§2-1几何构造分析的几个概念
• 一.体系——杆件+ 约束(联系)
• 杆件:不考虑材料应 变,视作刚体,平面刚 体称为“刚片”。
.
W=2×6-9-3=0
体系几何不变
W=2×6-9-3=0
体系几何可变
习题课I:平面杆件体系的几何构造分析
• 重点:掌握用基本规律分析体系几 何组成的方法。 • 要求: • 1、明确几何构造分析的目的和计算 步骤。 • 2、掌握用基本规律分析体系的几何 构成。 • 3、了解结构的组成顺序和特点。

结构力学二第十六章答案龙驭球

结构力学二第十六章答案龙驭球

结构力学二第十六章答案龙驭球一、题目来源与背景本文档是针对结构力学二课程中的第十六章“龙驭球”题目的解答。

在结构力学中,龙驭球是一种经典力学问题,旨在通过分析球体与杆件的受力情况,求解出各种规定条件下的力学参数。

二、问题描述假设有一个质量为m的球体,球体的初始速度为v,竖直向下飞行。

接下来,球体被固定在两根长度为L的轻质杆件的末端(杆件不可伸缩),形成一个“y”字形的结构。

现在问题来了:球体在两个杆件上下晃动的过程中,求解出球体在竖直方向上的位移。

三、问题分析对于此题,我们需要通过结构力学的相关知识进行分析和求解。

首先需要明确以下几点:1.需要考虑球体的重力作用,并将其作为竖直方向上的外力。

2.杆件对球体的支持力会受到球体在竖直方向上的位移的影响。

3.杆件内外可以考虑为刚性体,不考虑弯曲变形。

在问题分析的基础上,我们可以开始具体的求解过程。

四、问题求解1. 问题建模首先,我们对问题进行建模。

根据问题描述,结构如下图所示。

-| || || || || |--------+ --------O图中,“-”代表杆件,”| |“代表竖直的杆件,”——–+ ——–“代表水平的杆件,”O“代表球体。

我们需要求解出球体在竖直方向上的位移。

2. 动力学分析根据动力学原理,我们可以列写球体受力平衡方程。

设球体在竖直方向上的位移为y,由于竖直方向上没有外力的作用(忽略空气阻力),球体在竖直方向上的受力平衡方程为:mg - F = ma其中,m为球体质量,g为重力加速度,F为杆件对球体的支持力。

3. 求解根据受力分析,我们可以将上述方程改写为:mg - F = m* d^2y/dt^2其中,d2y/dt2表示球体在竖直方向上的加速度。

进一步分析可知,在球体的运动过程中,可以将拉格朗日方程应用于系统,并得到运动方程。

所以,我们可以列写拉格朗日方程:L = T - V其中,T为系统的动能,V为系统的势能。

在这里,由于球体只在竖直方向上运动,我们可以忽略其他方向的运动,仅考虑竖直方向上的运动。

结构力学(二)(山东联盟)智慧树知到答案章节测试2023年烟台大学

结构力学(二)(山东联盟)智慧树知到答案章节测试2023年烟台大学

绪论单元测试1.本课程的在线考试时间是第()周?A:12B:14C:15或16答案:C2.想取得较好的学习效果应做到以下哪几条?A:每个视频至少学习两遍以上B:记住解题步骤和一些重要的结论C:视频中讲解的所有题目全部做对D:重视解题步骤的完整性答案:ABCD第一章测试1.用位移法计算超静定结构总是比用力法计算时的基本未知数少。

()A:错B:对答案:A2.图示结构的位移法基本方程中F1P = F2P =0,因此各杆仅承受轴向力,没有弯矩。

( )A:错B:对答案:B3.图示两种结构的杆长l 和抗弯刚度EI相同,当杆端B发生竖直向下的单位位移时,它们具有相同的弯矩图和变形曲线。

()A:对B:错答案:A4.图示结构的位移法基本体系,其典型方程系数k11为20,图中括号内数字为线刚度。

()A:对B:错答案:B5.图a所示结构用位移法求解时, M3图应如图b形状。

()A:对B:错答案:B6.图示结构用位移法求解时,D1=FPl3/30EI。

( )A:错B:对答案:B7.图示结构固端弯矩MABF=ql2/12+M/2。

()A:错B:对答案:A8.位移法中角位移未知量的数目恒等于刚结点数。

()A:对B:错答案:B9.图示结构横梁无弯曲变形,故其上无弯矩。

()A:错B:对答案:A10.图示结构EI=常数,用位移法求解时有一个基本未知量。

()A:错B:对答案:B11.图示两结构中MA相等,EI均为常数。

()A:错B:对答案:B12.图示结构各杆EI为常数,其结点位移基本未知量为_______.A:4B:1C:3D:2答案:C13.图示结构用位移法计算时,若取结点A的转角为D1,k11为().A:11EI/lB:9EI/lC:10EI/lD:7EI/l答案:C14.在位移法典型方程的系数和自由项中,数值范围可为正、负实数的有:()A:主系数和自由项B:副系数和自由项C:主系数D:主系数和副系数答案:B15.图b是图a所示结构位移法所作图的条件是:()A: i1¹i2¹i3 ,为有限值B: i2=¥ ,i1=i3,为有限值C: i1¹i2, i1=i3 ,为有限值D: i1=i2=i3 ,为有限值答案:B第二章测试1.对图示结构的杆端B,其远端为固定端A,则其转动刚度SBA=4i。

结构力学第二章结构的几何组成分析

结构力学第二章结构的几何组成分析

链杆法
链杆选取
选择适当的链杆,作为分析的基本单元。
约束条件分析
分析链杆的约束条件,确定结构的几何特性。
几何组成判定
根据链杆的几何特性和约束条件,判断结构 的几何组成。
混合法
1 2
方法选择
根据结构特点,选择刚片法或链杆法进行分析。
综合分析
综合运用刚片法和链杆法,对结构进行几何组成 分析。
3
结果判定
常变体系
在荷载作用下,体系的几何形状会发生变化,且这种变化是持续的。例如,一个由三个链杆连接的刚片,在荷载 作用下会持续发生变形。
03
几何组成分析方法
刚片法
刚片选取
选择适当的刚片,作为分析的基本单 元。
自由度计算
几何不变体系判定
根据约束条件,判断结构是否为几何 不变体系。
计算各刚片的自由度,确定约束条件。
结构力学第二章结构的几何组成分析
目录 Contents
• 几何组成分析基本概念 • 几何组成分析基本规则 • 几何组成分析方法 • 几何组成与结构性能关系 • 复杂结构几何组成分析示例 • 几何组成分析在工程应用中的意义
01
几何组成分析基本概念
几何不变体系与几何可变体系
几何不变体系
在不考虑材料应变的前提下,体 系的形状和位置都不会改变。
几何可变体系
在不考虑材料应变的前提下,体 系的形状或位置可以发生改变。
自由度与约束
自由度
描述体系运动状态的独立参数,即体系可以独立改变的坐标 数目。
约束
对体系运动状态的限制条件,即减少体系自由度的因素。
刚片与链杆
刚片
在力的作用下,形状和大小保持不变 的平面或空间图形。

结构力学(2)(专升本)阶段性作业2

结构力学(2)(专升本)阶段性作业2

结构力学(2)(专升本)阶段性作业2总分: 100分考试时间:分钟单选题1. 位移法方程的实质是_____。

(7分)(A) 平衡方程(B) 位移方程(C) 物理方程(D) 平衡方程与位移方程。

参考答案:A2. 图示超静定结构,如果用位移法求解,则基本未知量个数为_____。

(7分)(A) 1(B) 2(C) 3(D) 5参考答案:B3. 图示结构位移法最少未知量个数为_____。

(7分)(A) 1;(B) 2;(C) 3;(D) 4。

参考答案:C4. 在位移法中,将铰接端的角位移,滑动支撑端的线位移作为基本未知量_____。

(7分)(A) 绝对不可;(B) 一定条件下可以;(C) 可以,但不必;(D) 必须。

参考答案:C5. 图示刚架用位移法计算时,自由项的值是_____。

(6分)(A) -10(B) -14(C) 10(D) 14参考答案:A6. 用位移法求解图示结构时,独立的结点角位移和线位移未知数数目分别是_____。

(6分)(A) 3,3(B) 4,3(C) 4,2(D) 3,2参考答案:C判断题7. 图示结构用位移法求解时,基本未知量数目为3,用力法求解,则基本未知量数目为5。

(6分)正确错误参考答案:错误解题思路:8. 位移法典型方程的右端项一定为零。

(6分)正确错误参考答案:正确解题思路:9. 位移法以结点力为基本未知量。

(6分)正确错误参考答案:错误解题思路:10. 位移法的典型方程与力法的典型方程一样,都是变形协调方程。

(6分)正确错误参考答案:错误解题思路:11. 用位移法解超静定结构时,基本结构超静定次数一定比原结构高。

(6分)正确错误参考答案:正确解题思路:12. 位移法未知量的数目与结构的超静定次数有关。

(6分)正确错误参考答案:错误解题思路:13. 结构按位移法计算时,其典型方程的数目与结点位移数目相等。

(6分)正确错误参考答案:错误解题思路:14. 位移法的基本结构可以是静定的,也可以是超静定的。

(完整)结构力学(二) 教案

(完整)结构力学(二) 教案

第十章、矩阵位移法授课题目:第一节概述第二节单元坐标系中的单元刚度方程和单元刚度矩阵教学目的与要求:1.掌握整体刚度矩阵中的位移矩阵和结点力矩阵 2.掌握局部坐标系中刚度矩阵教学重点与难点:重点:结构的离散化,自由式杆件的单元刚度矩阵难点:无教学方法:讲授法教学手段:多媒体、板书教学措施:理论分析与实际工程相结合讲解讲授内容:第十章、矩阵位移法第一节概述结构矩阵分析方法是电子计算机进入结构力学领域而产生的一种方法。

它是以传统结构力学作为理论基础,以矩阵作为数学表述形式,以电子计算机作为计算手段,三位一体的方法。

1.结构的离散化由若干根杆件组成的结构称为杆件结构.使用矩阵位移法分析结构的第一步,是将结构“拆散”为一根根独立的杆件,这一步骤称为离散化。

为方便起见,常将杆件结构中的等截面直杆作为矩阵位移法的独立单元,这就必然导致结构中杆件的转折点、汇交点、支承点、截面突变点、自由端、材料改变点等成为连接各个单元的结点。

只要确定了杆件结构中的全部结点,结构中各结点间的所有单元也就随之确定了。

(a)(b)2。

结点位移和结点力由于矩阵位移法不再为了简化计算而忽略杆件的轴向变形,因此,对于平面刚架中的每个刚结点而言,有三个相互独立的位移分量:水平方向的线位移分量u,竖直方向的线位移分量v,和结点的转角位移分量q。

对于这三个分量,本章约定线位移与整体坐标系方向一致为正,转角以顺时针转向为正,反之为负.结点荷载是指作用于结点上的荷载.本章约定结点集中力和支反力均以与整体坐标系方向相同时为正,反之为负。

结点集中力偶和支座反力偶以顺时针转向为正,反之为负.()()N 1Q 23N 4Q 56e e i i e i i ee j j j j Ff F f M f F f F f M f ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦F F F()()123456e e i i e i i ee j j j j u v u v δδθδδδθδ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦δδδ3。

全国自考结构力学(二)真题及参考答案

全国自考结构力学(二)真题及参考答案

精心整理全国2010年4月高等教育自学考试结构力学(二)试题及其答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.图示结构,K 截面弯矩值为(内侧受拉为正)( )A .0B .41F P lC .21F P l D .F P l2 )A B C .折线D 3A .55kN B .15kN C .-D .-4A .0B .2P F C .22F P D .F P5.用位移法计算图示结构(EI =常数)时,基本未知量的个数最少为( )A .9B .8C .7D .66.在线弹性体系的四个互等定理中,最基本的是( )A .位移互等定理B .反力互等定理C .位移反力互等定理D .虚功互等定理 7.图示结构中,BD 杆B 端截面弯矩值为( )A .0.3MB .0.4MC .0.5MD .0.6M8.F P =1在图示梁AE 上移动,K 截面弯矩影响线上竖标等于零的部分为( )A B C D 9为常数,结构刚度矩阵元素K 33等于( )A B C D 10)A B .36ml EI C D .3ml EI小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

错填、不填均无分。

11.图示桁架中1杆的轴力为__________。

12.支座位移引起的位移计算公式i i C R ·∑-=∆中i R 为__________。

13.图示梁B 截面的转角为__________。

14.图示结构,A 支座反力F Ay 的影响线方程为__________。

15.当远端为定向支座时,弯矩传递系数为__________。

16.根据__________定理,结构刚度矩阵为对称矩阵。

17.图(b)为图(a)所示梁B支座反力影响线,其竖标y C=__________。

18.用矩阵位移法求解图示结构时,结构刚度矩阵的阶数为__________。

《结构力学(二)》复习题

《结构力学(二)》复习题

一. 判断(每题2分, 共20分) 1. 图示杆AB 与CD 的EI ,l 相等,但A 端的劲度系数(转动刚度)AB S 大于C 端的劲度系数(转动刚度)CD S 。

( )2. 图示刚架可利用力矩分配法求解。

( )3. 梁的绝对最大弯矩表示在一定移动荷载作用下梁某一截面的最大弯矩( )4. 图示结构E Q 影响线的AC 段纵标不为零。

()5. 静定结构及超静定结构的内力影响线都是由直线组成。

()6. 图示梁的绝对最大弯矩发生在距支座A 6.625m 处。

( )7. 图示体系设为自振频率)可如下计算稳态动位移。

33max 27175,6961(/)st st y Pl Pl y y EI EI θω===-8. 体系的动力自由度与质点的个数不一定相等。

9. 单自由度体系如图,,欲使顶端产生水平位移,需加水平力,则体系的自振频率。

10. 结构刚度矩阵是对称矩阵,即有i j ji K K ,这可由位移互等定理得到证明。

11. 图a 对称结构可简化为图b 来计算。

( )12. 图示结构横梁无弯曲变形,故其上无弯矩。

( )13. 位移法未知量的数目与结构的超静定次数有关。

( )14. 位移法的典型方程与力法的典型方程一样,都是变形谐调方程。

( ) 15. 用位移法可以计算超静定结构,也可以计算静定结构。

( ) 16. 图b 为图a 用位移法求解时的基本体系和基本未知量,其位移法典型方程中的自由项,。

( )Z为水平横梁的水平位移,则图应如图b形状。

17.图示结构a用位移法求解时,基本未知量3()18.图示结构在荷载作用下的弯矩图形状是正确的。

( )19.力矩分配法中的分配系数、传递系数与外来因素(荷载、温度变化等)有关。

()20.力矩分配法仅适用于解无线位移结构。

()21.图示体系是几何不变体系。

22.图示体系是几何不变体系。

N为30kN。

()23.图示拱在荷载作用下,DE24.图示结构中的反力2H kN。

结构力学二(第二章)

结构力学二(第二章)
A a
4
B
B 杆通过铰 瞬变体系 瞬 变 体 系
瞬 变 体 系
常 变 体 系
郑州大学土木工程学院
5
规则四、一点与一刚片用两 根不共线的链杆相联,组成无多 余约束的几何不变体系。
1
A
A
2
B
C
两根共线的链杆联一点 瞬变体系
两根不共线的链杆联 结一点称为二元体。
在一体系上增加(或减去)二元体不改变原体系的机 动性,也不改变原体系的自由度。
郑州大学土木工程学院
2
3、约束:在体系内部加入的减少自由度的装置。 ⑴单链杆:仅在两处与其它物体用铰相连,不论其形状和 铰的位置如何。 一根链杆可以减少体系一个自由度,相当于一个约束。 多余约束:不减少体系自由度的约束。 注意:多余约束将影响结构的受力与变形。 ⑵单铰: 联结 两个 刚片的铰。 一个单铰可减少体系两个自由度相当于两个约束。 ⑶虚铰(瞬铰) 联结两刚片的两根不共线的链杆相当于一个单铰即瞬铰。 ⑷复铰(重铰)联结三个或三个以上刚片的铰 联结n个刚片的复铰相当于n-1个单铰,相当于 2(n-1)个约束! ⑸刚性连接——固定支座、刚节点 一个刚性连接可减少体系三个自由度相当于三个约束。
郑州大学土木工程学院
8
1-4、瞬变体系在一般荷载作用下 (C ) A 产生很小的内力 B 不产生内力 C 产生很大的内力 D 不存在静力解答 1-5、从一个无多余约束的几何不变体系上去除二元体后得到 的新体系是 (A ) A 无多余约束的几何不变体系 B 有多余约束的几何不变体系 C 几何可变体系 D 几何瞬变体系 1-6、图示体系是什么体系? (C ) A 无多余约束的几何不变体系 Ⅲ B A B 有多余约束的几何不变体系 C C 几何可变体系 Ⅱ Ⅰ D 几何瞬变体系

结构力学二试题及答案

结构力学二试题及答案

结构力学二试题及答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.图示拉杆拱中AB杆的轴力为()A.-15kN B.-10kN C.0 D.30kN2.图示刚架,若分布荷载用其合力代替,则支座反力()A.都发生变化 B.都不变化 C.仅水平反力变化 D.仅竖向反力变化3.AB杆件(EI=常数),荷载引起的弯矩图与单位力引起的弯矩图如图所示,图乘的结果应为() 2y12lA.3EIy12lC.?3EIy12lB.3EI2y12lD.?3EI4.图示对称刚架,EI不变,在FP作用下,若EI1减小,则()A.MAB增大,右侧受拉 B.MAB减小,右侧受拉 C.MAB增大,左侧受拉D.MAB减小,左侧受拉5.图示结构,在FP作用下()A.A端左侧受拉,D端右侧受拉 B.A端右侧受拉,D端右侧受拉 C.A端左侧受拉,D端左侧受拉 D.A端右侧受拉,D端左侧受拉6.图(a)所示刚架,用力法计算时,不能作为力法基本结构的是()7.图示对称刚架,在FP作用下,取半边结构计算,正确的.半边结构为()8.图(a)静定MC影响线如图(b)所示,正确的答案是()A.yB=-1 B.yB=-1m C.yB=1 D.yB=1m9.图示刚架,单元(1)的等效结点荷载矩阵为()TA.[0 -12kN -8kN·m 0 -12k N 8kN·m]TB.[12kN 0 -8kN·m 12kN 0 8kN·m]TC.[0 12kN 8kN·m 0 12kN -8kN·m]TD.[-12kN 0 8kN·m -12kN 0 -8kN·m]10.?1、?2、?3分别是图示三个梁的自振频率,它们之间正确的关系是()A.?12,?23 C.?12,?23B.?12,?32 D.?12,?23二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

4月全国结构力学(二)自考试题及答案解析

4月全国结构力学(二)自考试题及答案解析

全国2019年4月高等教育自学考试结构力学(二)试题课程代码:02439一、单项选择题(本大题共8小题,每小题2分,共16分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.图示三铰拱支座A的水平反力H A是()A.1kNB.1.5kNC.2kND.3kN2.图示结构D截面剪力Q D影响线在E点的坚标应是()A.-11B.-21C.+2D.+13.图示静定梁,其支座B左侧截面剪力影响线的正确形状是()A.图(a)B.图(b)C.图(c)D.图(d)4.图示刚架考虑轴向变形,正确的结点位移编码是()125.图示刚架单元②的坐标转换矩阵中元素T 11、T 12分别为( )A .-22、22 B .22、22C .-22、-22D .22、-22 6.用能量法求出的基本周期T 与其精确值T 1间的关系是( ) A .T<T 1B .T=T 1C .T>T 1D .T 与T 1间的大小没有确定关系7.图(a )(b )(c )所示压杆,杆长l 、抗弯刚度EI 均相同,临界荷载分别为P 1c 、P 2c 和P 3c ,三者间大小的正确关系是( ) A .c 1P >c 2P >c 3P B . c 3P >c 2P >c 1P C .c 2P >c 1P >c 3PD .c 2P >c 3P >c 1P38.图示等截面梁极限弯矩M u 已知,则极限荷载P u 等于( ) A .a 2MuB .a M uC .ba M uD .bM u二、填空题(本大题共9小题,每小题2分,共18分) 请在每小题的空格中填上正确答案。

错填、不填均无分。

9.图(a )所示对称结构,EI =常数,若取图(b )为其对称力法基本体系,则δ12=___________,Δ1P =____________。

10.图示对称结构,杆端弯矩M BA =____________,____________侧受拉。

结构力学2课后概念题答案(龙驭球)

结构力学2课后概念题答案(龙驭球)

概念题1.1结构动力计算和静力计算的主要区别是什么?答:主要区别表现在:(1)在动力分析中要汁入惯性力,静力分析中无惯性力:(2)在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3)动力分析方法常和荷载类型有关,而静力分析方法一般和荷载类型无关。

1.2什么是动力自由度,确建体系动力自由度的目的是什么?答:确左体系在振动过程中任一时刻体系全部质量位苣或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。

确泄动力自由度的目的是:(1)根据自由度的数目确立所需建立的方程个数(运动方程数=自由度数),自由度不同所用的分析方法也不同:(2)因为结构的动力响应(动力内力和动位移)和结构的动力特性有密切关系,而动力特性又和质量的可能位世有关。

1.3结构动力自由度和体系几何分析中的自由度有何区别?答:二者的区别是:几何组成分析中的自由度是确泄刚体系位置所需独立参数的数目,分析的目的是要确眾体系能否发生刚体运动。

结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确能结构振动形状。

1.4结构的动力特性一般指什么?答:结构的动力特性是指:频率(周期)、振型和阻尼。

动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)所确左的、表征结构动力响应特性的量。

动力特性不同,在振动中的响应特点亦不同。

1.5什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼?答:振动过程的能量耗散称为阻尼。

产生阻尼的原因主要有:材料的内摩擦、构件间接触而的摩擦、介质的阻力等等。

当然,也包括结构中安装的各种阻尼器、耗能器。

阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假想力。

粘滞阻尼理论假定阻尼力和质量的速度成比例。

粘滞阻尼理论的优点是便于求解,但其缺点是和往往实际不符,为扬长避短,按能量等效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼假设称为等效粘滞阻尼。

结构力学(第二章)-三铰拱课件

结构力学(第二章)-三铰拱课件
稳定性分析对于结构的整体稳定性和安全性具有 重要意义。
03
三铰拱的设计与优化
设计原则与步骤
确定设计要求
明确三铰拱的设计目标,如承载能力、稳定性、 经济性等。
截面设计
根据计算出的内力和弯矩,设计三铰拱的截面尺 寸和形状。
结构分析
对三铰拱进行受力分析,计算出各截面的内力和 弯矩。
稳定性分析
对三铰拱进行稳定性分析,确保其在承载过程中 不会发生失稳。
3D打印技术
3D打印技术能够实现复杂结构的快速 、精确制造,为三铰拱的原型制作和 试验提供便利。
未来发展方向与趋势
跨学科融合
结构力学与材料科学、计算机科 学、人工智能等学科的交叉融合,
将推动三铰拱在理论和实践上的 创新。
绿色与可持续发展
在未来的发展中,三铰拱的设计和 建造将更加注重环保和可持续发展, 如采用可再生材料和节能技术。
智能化与自动化
随着智能化和自动化技术的发展, 三铰拱的设计、建造和监测将趋向 于智能化和自动化,提高效率和安 全性。
THANK YOU
感谢聆听
案例分析与实践
案例一
某桥梁的三铰拱设计,通过优 化设计,提高了桥梁的承载能 力和稳定性。
案例二
某工业厂房的三铰拱设计,采 用轻量化设计,降低了结构的 自重。
案例三
某大型场馆的三铰拱设计,通 过参数优化,实现了结构的优 化和美观。
04
三铰拱的施工与维护
施工工艺与要点
01
02
03
04
施工准备
确保施工场地安全,检查施工 材料质量,制定施工计划和安
100%
建筑工程
在建筑工程中,三铰拱可用于大 型工业厂房、仓库、展览馆等建 筑的屋盖结构。

结构力学学习课件2

结构力学学习课件2

F MB
FP
F MBC F MB
A B
M
+
F CB
C
F MC ′
D
A
C MAB
MBA
B µ
MBC
F B
µ
A B
M ′
+
C MCB
C
F F MC + MC ′
D
M

C BC
+ …
µ MCB
C
D
µ MCD
C MDC
例:
用力矩分配法计算图示刚架,作弯矩图。 用力矩分配法计算图示刚架,作弯矩图。 80kN 30kN/m B i=2 3m 3m i=1 10m C i=1 3m 5m 160kN D
D iAD
M
A θA iAB iAB B
MAB =
SAB ⋅M ∑S
A
C
SAC MAC = ⋅M ∑S
A
µ MAj = µAj ⋅ M
MAB=SAB θA =4iAB θA MAC=SAC θA = iAC θA MAD=SAD θA =3iAD θA
( 8-5 ) -
SAD MAD = ⋅M ∑S
CBA = MBA /MAB
µ MAj = µAj ⋅ M
C MBA = CBA ⋅ MAB
远端弯矩/近端弯矩 远端弯矩 近端弯矩
称为分配弯矩。 称为分配弯矩。 称为传递弯矩。 称为传递弯矩。
(8-10) )
二、基本运算(单结点的力矩分配) 基本运算(单结点的力矩分配)
B MBA MAB A MAC θA C
综上所述,多结点力矩分配即为:每次只放松一个结点, 综上所述,多结点力矩分配即为:每次只放松一个结点,相当于单结 点分配传递。最后将各步骤所得的杆端弯矩(增量)叠加。 点分配传递。最后将各步骤所得的杆端弯矩(增量)叠加。

结构力学(二)·随堂练习2020秋华南理工大学网络教育答案

结构力学(二)·随堂练习2020秋华南理工大学网络教育答案

结构力学(二)第一章绪论第二章平面体系的机动分析3.(判断题) 图示体系为无多余约束的几何不变体系。

()答题:对. 错. (已提交)参考答案:√问题解析:A. 几何不变,无多余约束B. 几何不变,有一个多余约束C. 瞬变体系D. 几何不变,有2个多余约束答题: A. B. C. D. (已提交)参考答案:B问题解析:5.(单选题) 图示体系为。

A. 几何常变体系B. 无多余约束的几何不变体系C. 瞬变体系D. 有多余联系的几何不变体系答题: A. B. C. D. (已提交)参考答案:C问题解析:A. 几何常变体系B. 无多余约束的几何不变体系C. 瞬变体系D. 有多余联系的几何不变体系答题: A. B. C. D. (已提交)参考答案:C问题解析:8.(判断题) 下图的体系为几何不变体系。

()答题:对. 错. (已提交)参考答案:×问题解析:A. 几何常变体系B. 无多余约束的几何不变体系C. 瞬变体系D. 有多余联系的几何不变体系答题: A. B. C. D. (已提交)参考答案:B问题解析:10.(单选题) 下图所示正六边形体系为。

A. 几何常变体系B. 无多余约束的几何不变体系C. 瞬变体系D. 有多余联系的几何不变体系答题: A. B. C. D. (已提交)参考答案:C问题解析:第三章静定梁与静定刚架问题解析:4.(判断题) 如图所示力作用在梁上,最右边支座反力不为0。

()答题:对. 错. (已提交)6.(单选题) 图示两结构及其受载状态,它们的内力符合:()A. 弯矩相同,剪力不同B. 弯矩相同,轴力不同C. 弯矩不同,剪力相同D. 弯矩不同,轴力不同答题: A. B. C. D. (已提交)参考答案:B问题解析:7.(单选题) 图示结构MDC(设下侧受拉为正)为:()A. -PaB. PaC. -Pa/2D. -Pa/2答题: A. B. C. D. (已提交)参考答案:C8.(单选题) 图a结构的最后弯矩图为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结构力学(二)参考资料一、单项选择题(本大题共0分,共 80 小题,每小题 0 分)1. 位移法的基本结构是( )A. 静定刚架B. 单跨静定梁的组合体C. 单跨超静定梁的组合体D. 铰结体系2. :以下关于影响线的说法不正确的一项为( )A. 影响线指的是单位力在结构上移动时所引起的结构的某一内力(或反力)变化规律的图形B. 利用影响线可以求结构在固定荷载作用下某个截面的内力C. 利用影响线可以求结构某个截面内力的最不利荷载位置D. 影响线的横坐标是截面位置,纵坐标为此截面位置处的截面内力值3.A.B.C.D. 仅由平衡条件不能确定( )4. 不计杆的分布质量,图示体系的动力自由度为A. 1B. 2C. 3D. 45. 用力法计算超静定结构时,其基本未知量为A. 杆端弯矩B. 结构角位移C. 结点线位移D. 多余未知力6. 单元坐标转换矩阵是()A. 奇异矩阵B. 对称三对角矩阵C. 对称非奇异矩阵D. 正交矩阵7. 位移法的基本未知量包括()A. 独立的角位移B. 独立的线位移C. 独立未知的结点角位移和线位移D. 结点位移8. 图乘法计算位移的公式中( )可取自任何图形A. A和yCB. A和y必须取自直线图形CC. 仅要求A必须取自直线图形D. 仅要求y必须取自直线图形C9. 已知材料屈服极限 =300MPa,结构截面形状如图所示,则极限弯矩Mu=()A. 20kN•mB. 25kN•mC. 30kN•mD. 35kN•m.10. 欲减小图示结构的自振频率,可采取的措施有()A. 减小质量mB. 增大刚度EIC. 将B支座改为固定端D. 去掉B支座11. 图(b)为图(a)所示结构MK影响线,利用该影响线求得图(a)所示固定荷载作用下的MK值为()A. 4kN•mB. 2kN•mC. -2kN•mD. -4kN•m12. 图示为三自由度体系的振型,其相应的频率是ωa 、ωb、ωc,它们之间的大小关系应是( )A.B.C.D.13. 图(a)所示一组移动荷载作用在图(b)所示的梁上,则C截面弯矩的最不利位置为()A. P1作用在C点上B. P2作用在C点上C. P3作用在C点上D. P3作用在B点上14. 平面杆件自由单元(一般单元)的单元刚(劲)度矩阵是( )A. 非对称、奇异矩阵B. 对称、奇异矩阵C. 对称、非奇异矩阵D. 非对称、非奇异矩阵15. 对称结构在反对称荷载作用下,内力图中为正对称的是( )A. 弯矩图B. 剪力图C. 轴力图D. 弯矩图、剪力图和轴力图16. 由于温度改变,静定结构()A. 会产生内力,也会产生位移;B. 不产生内力,会产生位移;C. 会产生内力,不产生位移;D. 不产生内力,也不产生位移。

17. 分别是局部坐标系和整体坐标系的单元杆端力矩阵,〔T〕是坐标转换矩阵,则正确的表达式为( )A.B.C.D.18. 图示结构截面D的剪力影响线为()A.B.C.D.19. 图(a)(b)(c)所示压杆,杆长l、抗弯刚度EI均相同,临界荷载分别为P1c 、P2c和P3c,三者间大小的正确关系是()A.B.C.D.20. 图(a)、(b)两结构中,EI1、EI2及h均为常数,则两者自振频率ωa与ωb的关系为()A.B.C.D.21. 图(a)所示超静定结构取图(b)所示结构为力法基本结构,则基本未知量X1(顺时针为正)为A.B.C.D.22. 下述桁架体系内力计算正确的有:()A.B.C.D.23. 图示刚架考虑轴向变形,正确的结点位移编码是()A.B.C.D.24. 图示结构单元③的单元等效结点荷载矩阵为()A.B.C.D.25. 图示结构MK 、VK的影响线在B处的值为( )A. 0,0B. 2m,1C. -4m,1D. 4m,026. 图示结构,A.B.C.D.27. 二自由度体系的质量矩阵,它的两个振型可能是( )A.B.C.D.28. 图示桁架中零杆(不含零支座杆)的根数为()A. 1B. 2C. 3D. 429. 图(a)所示结构的力法基本体系如图(b )所示,则力法方程=中△1CA.B.C.D.30. 图示结构各杆长均为l,EI=常数,欲使结点A产生单位转角,则在结点A 施加力偶矩M=()A.B.C.D.31. 如图所示体系,其多余约束数应为:A. 0B. 1C. 2D. 332. 结构上同一截面的极限弯矩Mu 和屈服弯矩Ms的关系是( )A.B.C.D.33. 图示静定梁,其支座B左侧截面剪力影响线的正确形状是()A. 图(a)B. 图(b)C. 图(c)D. 图(d)34. 柔度系数反映了()A. 功互等定理B. 反力互等定理C. 位移互等定理D. 反力与位移互等定理35. 按先处理法,图示结构的结点荷载列阵为( )A.B.C.D.36. 图(a),(b)所示弹性压杆的临界荷载分别为P1C 、P2C,则两者的关系应是( )A.B.C.D.37. 图示等截面超静定梁的极限荷载Pu=()A.B.C.D.38. 图示结构的超静定次数是()A. 5B. 6C. 7D. 839. 图(a)、(b)、(c)所示弹性杆系结构可能发生失稳,属于第一类(分枝点)失( )稳的情况是A. 图(a)、(b)B. 图(a)、(c)C. 图(b)、(c)D. 图(a)、(b)、(c)40. 静定结构因支座移动:()A. 会产生内力,但无位移B. 会产生位移,但无内力C. 内力和位移均不会产生D. 内力和位移均会产生41. 图示桁架a杆的内力是:()A. 2PB. - 2PC. 3PD. -3P.42. 图示超静定结构的超静定次数为( )A. 4B. 3C. 2D. 1影响线在E点的坚标应是()43. 图示结构D截面剪力QDA. -1B.C.D.44. 图示串联弹簧结构的自振频率为()A.B.C.D.45. 突加荷载作用下的动力系数为()A. 1B. 2C. 3D. 446. 图示结构,若改变EI的大小,则( )A. 内力改变,位移改变B. 内力改变,位移不变C. 内力不变,位移改变D. 内力不变,位移不变47. 如图所示结构,截面D的剪力影响线QD是( )A.B.C.D.48. 图示组合结构,不计杆质量,其动力自由度为:()A. 6B. 5C. 4D. 349. 图示结构MK 、VK的影响线在B处的值为()A. 0,0B. 2m ,1C. -4m ,1D. 4m ,050. 图示桁架中CD杆的轴力为A.B.C.D.51. 图示连续梁在图示荷载作用下,可能的破坏机构有()A. 3种B. 4种C. 5种D. 6种52. 图示刚架,各杆EI为常数,不计轴向变形,其动力自由度的数目是()A. 1B. 2C. 3D. 453. 图示结构,k为②单元在整体坐标系下单元刚度矩阵的元素,它在结构刚52度矩阵中的正确位置是( )A. 第三行,第六列B. 第四行,第七列C. 第五行,第三列D. 第六行,第四列54. 当简谐荷载作用于有阻尼的单自由度体系时,若荷载频率远远大于体系的自振频率,则此时与动荷载相平衡的主要是( )A. 弹性恢复力B. 阻尼力C. 惯性力D. 重力55. 图示结构,BA杆件B端弯矩M(左侧受拉为正)为()BAA. 0B. F lC. 0.5F lD. -0.5F l56. 单元刚度矩阵反映了:( )A. 杆端位移与杆端力之间的变换关系B. 杆端位移与结点位移之间的变换关系C. 结点位移与结点力之间的变换关系D. 杆端位移与结点力之间的变换关系57. 图示刚架的等效结点荷载列阵为( )A.B.C.D.58. 位移法确定独立未知结点线位移数目时常采用的方法是()A. 铰化结点,增设连杆B. 改支座C. 加刚臂D. 增加支座59. 图(a)和图(b)为简支梁的两种单位力状态,由位移互等定理可得()A.B.C.D.60. 平面桁架单元的坐标转换矩阵可表示为()A.B.C.D.61. 图示连续梁受集度为q、可任意布置的均布荷载作用,使支座D的反力FDy 最大的最不利荷载布置是 ( )A.B.C.D.62. 支座发生位移时,静定结构( )A. 会产生内力,也会产生位移B. 不产生内力,会产生位移C. 会产生内力,不产生位移D. 不产生内力,也不产生位移63. 若要延长单自由度体系的自振周期,需()A. 增加刚度,减小质量B. 减小刚度,增加质量C. 增大初位移和初速度D. 减小初位移和初速度64. 用力法计算图示结构时,使力法典型方程中副系数全为零的基本结构是A.B.C.D.65. 图示平面刚架一般单元结点发生单位转角,则结点处的力F=()A.B.C.D. 066. 图示结构,CD杆的轴力等于( )A.B.C.D.( )67. 图示结构,用矩阵位移法计算时(计轴向变形),未知量数目为:A. 7B. 8C. 9D. 468. 三铰拱在满跨均布荷载作用下时,其合理拱轴线的形式应为A. 圆弧曲线B. 椭圆曲线C. 二次抛物线D. 折线69. 图(a)所示静定梁,P=1在AC间移动时,图(b)、(c)分别为该梁的反力R B 、弯矩MC的影响线形状,经分析可知( )A. 图(b)是正确的B. 图(c)是正确的C. 图(b),(c)均是正确的D. 图(b),(c)均是不正确的70. AB梁为矩形截面梁,截面高为h,上侧温度升高10℃,下侧温度下降2℃,B点的竖向位移(以向下为正)为( )A.B.C.D.71. 图示桁架上弦有单位荷载P=1移动,则杆a轴力影响线竖标的正负号分布范围正确的是( )A. 由A至B全为正号B. 由A至B全为负号C. AC段为正,CB段为负D. AC段为负,CB段为正72. 图示结构K截面弯矩(设下面受拉为正)为A.B.C.D.73. 用图乘法求位移的必要条件之一是:()A. 单位荷载下的弯矩图为一直线B. 结构可分为等截面直杆段C. 所有杆件EI为常数且相同D. 结构必须是静定的74. 图示简支梁QK的影响线为()A.B.C.D.75. 单自由度体系无阻尼情况下最大静位移为yst,突加荷载引起的最大动位移ymax=( ).A. ystB. 2ystC. 3ystD. 076. 图示刚架,各杆EI=常数,不计轴向变形,其动力自由度的数目是 ( )A. 1B. 2C. 3D. 477. 位移法方程反映的是()A. 位移平衡方程B. 位移协调条件C. 基本结构产生单位位移的力平衡方程D. 变形方程常数,用力法求解时最少未知量的个数为。

()78. 图示对称结构,各杆EI=A. 2B. 3C. 4D. 579. 忽略轴向变形图示结构用位移法求解时,基本位移未知量个数为()A. 2B. 3C. 4D. 580. 图示等截面梁极限弯矩Mu 已知,则极限荷载Pu等于()A.B.C.D.二、判断题(本大题共0分,共 40 小题,每小题 0 分)1. 桁架ABC在C结点处有重物W,杆重不计,EA为常数,在C点的竖向初位移干扰下,W将只作竖向自由振动。

相关文档
最新文档