平移和旋转 知识讲解 平移现象

合集下载

平移旋转图形知识点总结

平移旋转图形知识点总结

平移旋转图形知识点总结平移和旋转是几何学中两个重要的变换操作,它们可以改变图形的位置和方向,扩展了几何学的应用领域。

在本文中,我们将对平移和旋转的基本概念、性质和应用进行总结。

一、平移的基本概念平移是指图形在平面上沿着一定方向按照一定距离移动的变换操作。

在平移过程中,图形的大小和形状保持不变,只是位置发生改变。

平移可以用向量来描述,移动向量即为图形移动的方向和距离。

1. 平移的向量表示设图形A经过平移得到图形A',平移向量为向量→a,表示为A→A' = →a。

向量→a的方向和长度即为平移的方向和距离。

2. 平移的性质平移操作满足以下性质:(1)平移不改变图形的大小和形状;(2)平移不改变图形的面积和周长;(3)平移不改变图形的对称性。

3. 平移的表示方法平移可以通过向量、坐标和平移矩阵等多种方式来表示和描述。

在向量表示中,平移向量→a可以作为图形平移的唯一标识。

二、平移的应用平移在几何学和其他领域中有着广泛的应用,例如地图制作、计算机图形学和物理学等。

下面我们将介绍平移在几何学中的应用场景和相关问题。

1. 平移的作用(1)简化计算:通过平移操作,可以将图形移动到方便计算的位置,简化问题的解决过程;(2)构造对称图形:利用平移可以构造出一些对称图形,如平移正方形可以构造出菱形;(3)解决坐标运算:在坐标运算中,平移可以使坐标系原点发生偏移,方便计算。

2. 平移的问题在平移问题中,常见的问题包括:给定图形A和平移向量→a,求出图形A经过平移后的位置和形状;给定平移前后的图形A和A',求出平移向量→a。

解决这些问题需要灵活运用平移的基本性质和表示方法。

三、旋转的基本概念旋转是指图形围绕一点按照一定角度转动的变换操作。

在旋转过程中,图形的大小和形状保持不变,只是方向发生改变。

旋转可以用角度来描述,旋转角度即为图形旋转的方向和角度。

1. 旋转的角度表示设图形A经过旋转得到图形A',旋转角度为θ,表示为A→A' = θ。

图形的平移与旋转知识点汇总

图形的平移与旋转知识点汇总

第十五章图形的平移与旋转一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

一个图形经过平移后得到一个新图形,这个新图形与原图形是互相重合的,互相重合的点称为,互相重合的角称为,互相重合的线段称为。

注意:1.平移有两个要素:(1)沿某一方向移动;(2)移动一定的距离;2.平移的方向就是原图上的点指向它的对应点的方向;图像上每点都沿同一方向移动距离,这个距离是指对应点之间的长度;3.平移前后两图形是全等的。

平移的特征:平移不改变图形和,只改变了图形的位置;经过平移,对应点所连的线段(或 )且相等;对应线段(或)且相等,对应角。

二、1、旋转:在平面内,将一个图形绕一个沿某个方向转动一定,这样的图形运动称为旋转。

这个定点称为,转动的角称为。

任意一对对应点与旋转中心的连线所成的角都是 .注意:1.旋转中心在旋转过程中保持不动;2.图形的旋转是由,和所决定的;3.作平移图与旋转图。

(确定关键点,将关键点沿一定的方向移动相同的距离,连接关键点)旋转的特征:图形中每一点都绕着旋转中心按同一旋转方向旋转了同样大小的;对应点到旋转中心的距离;对应线段,对应角;图形的形状与大小都没有发生变化。

图形的变换包括、和旋转,这三种图形变换的共同点是:只改变图的,不改变图形的和。

2、旋转对称图形:在平面内,一个图形绕一个定点旋转一定的角度后能与自身,这样的图形称为旋转对称图形。

3、中心对称图形:在平面内,一个图形绕某个点旋转角度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。

这个点叫做对称中心。

中心对称图形是旋转角度为°的特殊旋转对称图形,但旋转对称图形不一定是中心对称图形。

4、成中心对称:把一个图形绕着某一点旋转180º,如果它能够和另一个图形重合,就称这两个图形成中心对称。

这个点叫做对称中心;这两个图形中的对应点,叫做关于中心的。

在成中心对称的两个图形中,连结对称点的线段都经过,并且被对称中心。

平移与旋转PPT课件

平移与旋转PPT课件

旋转是将图形绕某一点转动一定的角度,其实质是点的旋转。旋转不改
变图形中各点之间的相对位置关系,但改变其角度。
03
平移与旋转的联系
平移和旋转都是图形在平面内的运动,它们都可以改变图形的位置,但
不改变其形状和大小。在实际应用中,平移和旋转常常结合使用,以实
现图平移
在实际应用中,物体往往同时进行平 移和旋转运动,这种运动称为复合运 动。
旋转运动
旋转运动是围绕一个固定点进行的运 动,物体在平面内以该点为中心进行 旋转,其轨迹是一个圆或一个圆弧。
计算机图形学
计算机图形学是研究计算机生成 和操作图形的科学,它广泛应用 于游戏开发、电影制作、建筑设
计等领域。
平移与旋转是计算机图形学中基 本变换之一,通过这些变换可以
三维平移
总结词
三维平移是指空间内的移动,可以沿 三个方向进行。
详细描述
在三维空间中,三维平移可以表示为在 x轴、y轴和z轴上的三个单位向量的组 合,例如[1,0,0]、[0,1,0]和[0,0,1]。三 维平移会改变物体的位置和方向。
03 旋转的数学表示
一维旋转
总结词
一维旋转是指绕着一条直线进行的旋转。
都有广泛的应用。
THANKS FOR WATCHING
感谢您的观看
总结词
一维平移是指沿一个方向进行的移动。
详细描述
在数学中,一维平移通常表示为在坐标轴上的一个单位向量,例如在x轴上,可 以表示为[1,0,0]。一维平移不改变物体的方向,只改变位置。
二维平移
总结词
二维平移是指平面内的移动,可以沿两个方向进行。
详细描述
在二维坐标系中,二维平移可以表示为在x轴和y轴上的两个单位向量的组合, 例如[1,0]和[0,1]。二维平移会改变物体的位置,但不改变方向。

第三章平移与旋转知识归纳

第三章平移与旋转知识归纳

第三章:平移与旋转知识归纳
一、两个概念
1、平移:平面内,将一个图形沿某个方向移动一段距离,这种图形运动叫做平移。

2、旋转:平面内,将一个图形绕一个定点沿某个方向转动一个角度。

这种图形运动叫做旋转。

其中定点叫
旋转中心,转动的角度叫旋转角。

二、两种规律
1、平移的规律
经过平移,对应点的连线平等且相等;对应边平行且相等;对应角相等。

2、旋转的规律
经过旋转,对应点与旋转中心的连线相等;图形上每一个点都转动了相同的角度;旋转角相等。

三、两种作图
1、平移作图(先点后线)
基本步骤:(1)先移动对应点(2)再连接对应线段
2、旋转作图(先线后转)
基本步骤:(1)先连接对应点与旋转中心(2)再转动对应线段(3)最后连接对应边画完图形
四、几点拓展
1、旋转中心的确定
(1)旋转中心在图形上的
旋转前后都没有移动的点即为旋转中心
1
2
对应点连线的中垂线之交点。

2、 ( 因此:正三角形需转动120°,正三角形需转动120°,正方形需转动90°,正五边形需转动72°,正六边形需转动60°……
(2) 一般图形的旋转角度
3、
五、1、 2、
,求证BE=AE+CF 。

.
到D ,使BD=AB ,E 为CD=2CE 。

(3) 中 (4)
2
B C
D F
A
B
D
E。

三年级上册平移和旋转的知识点

三年级上册平移和旋转的知识点

三年级上册平移和旋转的知识点一、平移。

1. 平移的定义。

- 物体或图形在同一平面内沿直线运动,而本身没有发生方向上的改变,这种运动现象就是平移。

例如,在水平的传送带上,物体随着传送带直线移动;或者在电梯里,人随着电梯上下直线运动等都是平移现象。

2. 平移的特点。

- 平移后的图形与原图形的形状和大小完全相同。

例如,将一个正方形沿着水平方向平移一段距离后,得到的新正方形和原来的正方形边长一样,四个角也都是直角。

- 平移后的图形与原图形对应点之间的连线平行(或在同一条直线上)且相等。

比如一个三角形平移后,它原来的顶点和对应平移后的顶点连线是平行且相等的。

3. 平移的方向和距离。

- 方向:平移的方向可以是水平方向(向左或向右)、垂直方向(向上或向下)或者是斜着的方向。

例如,汽车在笔直的公路上向左行驶是水平方向的平移;火箭垂直升空是垂直方向的平移;而一个物体沿着与水平方向成45度角的方向移动就是斜方向的平移。

- 距离:平移的距离是指图形上每个点平移的长度。

可以通过数方格的方法来确定平移的距离,在方格纸上,一个方格的边长可以作为一个单位长度。

例如,一个图形从方格纸的左上角平移到右上角,经过了5个方格,那么平移的距离就是5个单位长度。

二、旋转。

1. 旋转的定义。

- 物体绕着一个点或一个轴做圆周运动的现象就是旋转。

像风车绕着中心轴转动、时钟的指针绕着中心点转动等都是旋转现象。

2. 旋转的特点。

- 旋转后的图形与原图形的形状和大小不变。

例如,一个圆形的表盘不管指针怎么旋转,表盘的形状和大小都不会改变。

- 图形的旋转是由旋转中心、旋转方向和旋转角度决定的。

3. 旋转中心、旋转方向和旋转角度。

- 旋转中心:是物体旋转时所绕着的那个点或轴。

例如,风车的旋转中心就是风车叶片中间固定的那个点;地球的自转是以地轴为旋转中心的。

- 旋转方向:分为顺时针方向和逆时针方向。

顺时针方向是指和时钟指针转动方向相同的方向,逆时针方向则是与时钟指针转动方向相反的方向。

三年级数学上册---平移、旋转及轴对称( 知识梳理+例题精讲+易错专练)

三年级数学上册---平移、旋转及轴对称( 知识梳理+例题精讲+易错专练)

第6讲平移、旋转及轴对称一、思维导图二、知识点梳理知识点一:平移在同一平面内,物体或图形沿着某一直线方向运动的现象叫做平移。

平移时物体或图形的形状、大小和方向没有变化,只是位置改变了。

知识点二:旋转物体或图形绕一个点或一个轴运动的现象叫做旋转。

旋转时物体或图形的形状和大小不变,其自身的运动方向发生了变化。

注意:旋转分为顺时针旋转和逆时针旋转。

知识点三:轴对称图形一个图形沿着一条直线对折后,折痕两边的部分能够完全重合的图形就是轴对称图形。

轴对称图形沿对称轴对折后,两边能够完全重合,即对称的点、对称的线段都能够完全重合,对称点到对称轴的距离相等。

三、例题精讲考点一:平移和旋转1.能够通过下图平移得到的图形是()。

A.B.C.D.2.在括号中填“平移”或“旋转”。

(1)小明进教室开门时,门的运动是()。

(2)小丽拧开纯净水瓶盖,瓶盖的运动是()。

(3)小红拉开窗帘,窗帘的运动是()。

(4)老师将课桌拖到最后一排,桌子的运动是()。

3.观察下面的图形,然后填空。

(1)小汽车向()平移了()格。

(2)小船向()平移了()格。

(3)飞机向()平移了()格。

4.如图所示。

(1)小狗先向左走4格,再向下走6格,它能吃到肉骨头吗?如果能,请你把小狗的行走过程在方格中画出来;如果不能,请你帮小狗设计一个正确的行走方案。

(2)小狗吃完肉骨头后接着想去吃大鸡腿,它应该怎么走?考点二:轴对称图形5.图形是从()对折的纸上剪下来的。

A.B.C.D.6.如图,一个大正方形被分成16个大小相同的小正方形,其中四个小正方形已涂成阴影,若再将一个小正方形涂成阴影,使所有阴影区域构成轴对称图形,则这个小正方形的编号为()。

7.拿一张长纸条,将它一反一正折叠起来,并画出字母E。

用小刀把画出的字母E挖去,拉开就可以得到一条以字母E为图案的花边,如图。

观察整条花边,左起和右起的三个图案各为一组,这两组图案有什么关系?8.(1)下面五个图形中,是轴对称图形的有()。

图形的平移和旋转知识点

图形的平移和旋转知识点

图形的平移和旋转【图形的平移】(1) 平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.注意:①平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换.②图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移的依据.③图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据.(2)平移的基本性质:由平移的基本概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.注意:①要正确找出“对应线段,对应角”,从而正确表达基本性质的特征.②“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.(3)简单的平移作图平移作图:确定一个图形平移后的位置所需条件为:①图形原来的位置;②平移的方向;③平移的距离.1, 【典型例题】例 1.如图,△ABC 绕 C 点旋转后,顶点 A 的对应点为点 D ,试确定顶点 B 对应点的位置,以及旋转后的三角形.分析:绕 C 点旋转,A 点的对应点是 D 点,那么旋转角就是∠ACD ,根据对应点与旋转中心所连线段的夹角等于旋转角即∠BCB′=ACD, 又由对应点到旋转中心的距离相等,即CB=CB ′,就可确定 B′的位置,如图所示.解:(1)连结 CD(2) 以 CB 为一边作∠BCE,使得∠BCE=∠ACD(3) 在射线 CE 上截取 CB′=CB则 B′即为所求的 B 的对应点.(4) 连结 DB′则△DB′C 就是△ABC 绕 C 点旋转后的图形.例 2.如图,四边形 ABCD 是边长为 1 的正方形,且 DE= 1 ,4△ABF 是△ADE 的旋转图形.(1) 旋转中心是哪一点?(2) 旋转了多少度?(3) AF 的长度是多少?(4) 如果连结 EF ,那么△AEF 是怎样的三角形?分析:由△ABF 是△ADE 的旋转图形,可直接得出旋转中心和旋转角,要求AF 的长度,根据旋转前后的对应线段相等,只要求 AE 的长度,由勾股定理很容易得到. △ABF 与△ADE 是完全重合的,所以它是直角三角形.解:(1)旋转中心是 A 点.(2)∵△ABF 是由△ADE 旋转而成的∴B 是 D 的对应点∴∠DAB=90°就是旋转角(3)∵AD=1,DE= 1412 (1)2 4∴AE= = 4∵对应点到旋转中心的距离相等且 F 是 E 的对应点∴AF= 174(4)∵∠EAF=90°(与旋转角相等)且 AF=AE ∴△EAF 是等腰直角三角形.【图形的旋转】(1) 旋转的概念:图形绕着某一点(固定)转动的过程,称为旋转,这一固定点叫做旋转中心。

(完整版)图形的平移与旋转知识点

(完整版)图形的平移与旋转知识点

第三章图形的平移与旋转复习要点专点一:图形的平移1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

平移是由移动的方向和距离决定的。

2.平移的性质:(1)平移不改变图形的形状和大小:即平移前后的线段相等,平移前后的三角形或多边形全等。

(2)平移后的图形与原来图形的对应线段平行且相等,对应角相等。

(3)平移后两图形的对应点所连的线段平行且相等。

专点二:图形的旋转1.旋转的定义:在平面内,将一个图形绕着一个定点沿着某个方向(顺时针或逆时针)旋转一定的角度,这样的图形运动成为旋转,这个定点称为旋转中心,旋转的角度称为旋转角。

2.旋转的性质:(1)旋转不改变图形的形状和大小:即旋转前后的图形是一组全等形。

(2)旋转后的图形与原来的图形的对应线段相等,对应角相等。

(3)经过旋转,图形上的每一点都绕着旋转中心沿相同的方向转动了相同的角度。

(4)任意一对对应点与旋转中心的距离相等。

考点三、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2、性质(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

考点四、坐标系中对称点的特征1、关于原点对称的点的特征:两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)2、关于x轴对称的点的特征:两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)3、关于y轴对称的点的特征:两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)专点五:利用轴对称、旋转和平移作图1.平移作图的一般步骤:(1)确定平移的方向和距离;(2)确定构成图形的关键点(线段两个端点,三角形三个顶点,n边形n 个顶点);(3)按照平移的方向和距离平移各个关键点;(4)顺次连接各个关键点的对应点,所得的图形就是平移后的图形。

平移和旋转

平移和旋转

第二讲平移与旋转一、新知讲解(一)1、平移的定义:在平面内,将一个图形沿某个方向移动一定距离,这样的图形运动称为平移.它是一种变换.2、平移的两个要素:(1)平移的方向(2)平移的距离.3、平移的性质:(1)平移不改变图形的形状和大小;(2)对应线段平行且相等;(3)对应角相等;(4)对应点所连的线段平行且相等(或在一条直线上).4、平移的实质:是图形上每一个点都沿同一个方向移动了相同的距离。

(二)1、旋转的定义:在平面内,把一个图形绕一个定点,沿某个方向转动一定的角度,这样的图形运动叫做旋转.2、图形旋转的三个要素:(1)旋转中心;(2)旋转方向;(3)旋转角度.3、旋转的性质:(1)图形上的每一点都绕旋转中心沿相同方向转动了相同的角度。

(2)对应线段相等,对应角相等;(3)对应点到旋转中心的距离相等;(4)图形中的每一点都绕着旋转中心旋转同样大小的角度.(5)对应点与旋转中心连线的夹角都是旋转角.4、平移与旋转的异同:区别:从定义分析;联系:都是全等变换。

即两种变换下对应线段相等,对应角相等二、典例分析例1、如图将ABC ∆沿直线AB 向右平移后到达BDE ∆的位置,若 100,50=∠=∠ABC CAB ,则CBE ∠的度数为____________.【变式练习】1、如图,在Rt △ABC 中,∠C =90°,BC =3cm ,AC =4cm ,将△ABC 沿BC 方向平移1cm ,得到△A 'B 'C '.求四边形ABC 'A '的面积.2.如上图,已知△ABC 中,∠ABC =90°,边BC =12cm ,把△ABC 向下平移至△DEF 后,AD =5cm ,GC =4cm ,请求出图中阴影部分的面积.3、在边长为1的小正方形网格中,AOB ∆的顶点均在格点上(1)、B 点关于y 轴的对称点坐标为____________;(2)、将AOB ∆向左平移3个单位长度得到111B O A ∆,请画出111B O A ∆;(3)、在(2)的条件下,1A 的坐标为____________.4、如图,B A ,的坐标为)1,0(),0,2(,若将线段AB 平移至11B A ,则b a +的值为( )A 、2B 、3C 、4D 、5例二、如图,在三角形ABC 中,90BAC ∠=︒,4cm AB =,5cm =BC ,3cm AC =,将三角形ABC 沿BC 方向平移cm(5)a a <得到三角形DEF ,且AC 与DE 相交于点G ,连接AD .(1)阴影部分的周长为______cm ;(2)若三角形ADG 的面积比三角形EGC 的面积大24.8cm ,则a 的值为______.变式:1、如图,△ABC 中,13AC BC ==,把△ABC 放在平面直角坐标系xOy 中,且点A ,B 的坐标分别为(2,0),(12,0),将△ABC 沿x 轴向左平移,当点C 落在直线8y x =−+上时,线段AC 扫过的面积为_______ .2、如图,在ABC 中,已知 7BC =,点 E F ,分别在边AB BC ,上,将BEF △沿直线 EF 折叠,使点B 落在点D 处,DF 向右平移若干单位长度后恰好能与边AC 重合, 连结AD ,若311AC AD −=,则 3AC AD +的值为________ .例三、如图,∠MAN=45°,点C在射线AM上,AC=10,过C点作CB⊥AN交AN 于点B,P为线段AC上一个动点,Q点为线段AB上的动点,且始终保持PQ =PB.(1)如图1,若∠BPQ=45°,求证:△ABP是等腰三角形;(2)如图2,DQ⊥AP于点D,试问:此时PD的长度是否变化?若变化,请说明理由;若不变,请计算其长度;(3)当点P运动到AC的中点时,将△PBQ以每秒1个单位的速度向右匀速平移,设运动时间为t秒,B点平移后的对应点为E,求△ABC和△PQE的重叠部分的面积.例四、(武侯)如图,每个小方格都是边长为1个单位长度的小正方形,ABC ∆的三个顶点都在格点上.(1)、将ABC ∆向右平移3个单位长度,画出平移后对应的111C B A ∆.(2)、将ABC ∆绕点O 旋转 180,画出旋转后对应的222C B A ∆.(第一题图) (第二题图)变式:(锦江)如图,ABC ∆三个顶点的坐标分别为()11,−A ,()24,−B ,()43,−C .(1)、请画出ABC ∆向右平移5个单位长度后得到111C B A ∆;(2)、请画出ABC ∆关于原点对称的222C B A ∆;(3)、在x 轴上求作一点P ,使PAB ∆的周长最小,并直接写出点P 的坐标.例五、如图,在ABC ∆中, 90=∠C , 70=∠BAC ,将ABC ∆绕点A 顺时针旋转 70,B ,C 旋转后对应点分别是'B 和'C ,连接'BB ,则'ABB ∠的度数是( )A 、 35B 、 40C 、 45D 、 55变式:如图,P 是等边ABC ∆内的一点,且3=PA ,4=PB ,5=PC ,将ABP ∆绕点B 顺时针旋转 60到QBC ∆位置.连接PQ ,则以下结论错误的是( )A 、 60=∠QPB B 、 90=∠PQC C 、 150=∠APBD 、 135=∠APC (例3图) (例3变式)例六、如图,在△ABC 和△DCE 中,AC =BC ,DC =EC ,∠ACB =∠DCE =90°,将△DCE 绕点C 旋转(0°<∠ACD <180°),连接BD 和AE :(1)求证:△BCD ≌△ACE ;(2)试确定线段BD 和AE 的数量关系和位置关系;(3)连接AD 和BE ,在旋转过程中,△ACD 的面积记为S 1,△BCE 的面积记为S 2,试判断S 1和S 2的大小,并给予证明.变式:如图,在正方形ABCD 中,F E ,分别是CD BC ,边上的点满足AF AE DF BE EF 、,+=分别与对角线BD 交于.,N M(1)、求证:︒=∠45EAF (2)、求证:222DN BM MN +=例七:(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为;(2)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE =90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由;(3)解决问题:如图3,在△ABC中,∠ACB=90°,AC=BC=5,平面上一动点P到点B的距离为3,将线段CP绕点C顺时针旋转90°,得到线段CD,连DA,DB,PB,则BD是否有最大值和最小值,若有直接写出,若没有说明理由?。

平移和旋转知识点总结

平移和旋转知识点总结

平移和旋转知识点总结一、平移的基本概念平移是指物体沿着某一方向按照一定距离进行移动的操作。

在平面上,平移是指将图形在水平方向和垂直方向上进行平移,将图形中的每一个点沿着相同的距离进行移动。

在三维空间中,平移是指将物体在三个坐标轴方向上进行移动,即沿着 x 轴、y 轴和 z 轴进行平移。

在进行平移变换时,可以使用矩阵的乘法来进行描述。

对于二维坐标系中的点 (x, y),如果要将其进行平移变换,可以使用以下的矩阵表示:```1 0 tx0 1 ty0 0 1```其中 tx 和 ty 分别表示在 x 方向和 y 方向上的平移距离。

对于三维空间中的点 (x, y, z),平移变换可以使用以下的矩阵表示:```1 0 0 tx0 1 0 ty0 0 1 tz0 0 0 1```其中 tx、ty 和 tz 分别表示在 x 轴、y 轴和 z 轴方向上的平移距离。

二、平移的性质1. 平移变换具有可加性,即两个或多个平移变换的效果可以合并为一个平移变换。

设 T1 和 T2 分别表示两个平移变换,对于任意的点 P,有 T2(T1(P)) = T3(P),其中 T3 为合并后的平移变换。

2. 平移变换的逆变换也是一个平移变换。

即如果对一个点进行一次平移变换 T,再对其进行逆变换 T^-1,则得到的结果还是一个平移变换,并且可以合并为一个恒等变换。

即 T^-1(T(P)) = P。

3. 平移变换不改变点之间的相互位置关系。

对于图形中的任意两点 A 和 B,它们之间的距离和方向在进行平移变换后不会发生改变,只是位置发生了移动。

三、平移的应用1. 平移变换在计算机图形学中有着广泛的应用。

在计算机图形学中,平移变换可以用来实现图形在屏幕上的移动、拖拽等操作。

在图形处理软件中,也可以使用平移变换来进行图形的平移操作。

2. 在工程和建筑设计中,平移变换可以用来描述物体在平面或空间中的移动和位置调整。

例如在建筑设计中,可以使用平移变换来进行建筑结构的调整和优化。

平移旋转的知识点总结

平移旋转的知识点总结

平移旋转的知识点总结平移的概念平移是指将图形沿着某个方向保持大小和形状不变地移动一定的距离。

在平移过程中,图形内部的每一个点都以相同的距离和方向移动,从而保持了图形的整体形状和大小不变。

平移的特点:1. 平移是一种刚性变换,即图形的大小和形状在平移过程中都不发生改变。

2. 平移可以沿着任意方向进行,只要给定了平移的距离和方向,就可以完成平移操作。

3. 平移可以作用在点、线、面甚至是三维空间中的物体上,因此具有广泛的应用范围。

平移的表示方法:在几何学中,平移可以用向量来表示。

如果我们将平移的距离和方向表示为一个向量t,那么对于平面上的任意一个点P(x, y),经过平移后的新坐标P'(x', y')可以表示为:P' = P + t这个公式表示了任意点P经过平移后的新位置P',其坐标是原始坐标P加上平移向量t。

旋转的概念旋转是指将图形围绕某个点或者某个轴旋转一定的角度。

在旋转过程中,图形内部的每一个点都以相同的角度绕旋转中心旋转,从而改变了图形的方向,但是保持了图形的大小和整体形状不变。

旋转的特点:1. 旋转同样是一种刚性变换,即图形的大小和形状在旋转过程中都不发生改变。

2. 旋转可以围绕点、线、面甚至是三维空间中的物体进行,因此具有广泛的应用范围。

3. 旋转角度可以是正数、负数、甚至是小数,可以顺时针或者逆时针进行旋转。

旋转的表示方法:在几何学中,旋转可以用矩阵来表示。

如果我们将旋转的角度表示为θ,旋转中心为C(x0, y0),那么对于平面上的任意一个点P(x, y),经过旋转后的新坐标P'(x', y')可以表示为:[x'] [cosθ -sinθ][x - x0] [x0 + (x - x0)cosθ - (y - y0)sinθ][y'] = [sinθ cosθ][y - y0] = [y0 + (x - x0)sinθ + (y - y0)cosθ]这个矩阵公式表示了任意点P(x, y)经过旋转后的新位置P'(x', y'),其中cosθ和sinθ是旋转角度θ的余弦和正弦值。

平移和旋转

平移和旋转

平移和旋转平移和旋转是几何学中常见的两种基本变换,它们在日常生活和工程设计中都有着重要的应用。

无论是建筑设计、机械制造还是计算机图形学,都离不开平移和旋转的操作。

在本文中,我们将详细介绍平移和旋转的定义、性质、应用以及在实际工程中的应用。

一、平移的定义和性质1. 平移的定义平移是指在平面上,将一个图形沿着某个方向移动一定的距离,而不改变它的形状和大小。

通俗地说,平移就是将一个图形整体沿着某个方向平行移动,移动的距离和方向是确定的。

如图1所示,将图形A通过平移变换得到图形A',图形A'与图形A相比没有发生变形,只是位置发生了改变。

平移变换可以保持图形的形状和大小不变,只是改变了位置。

在平移变换下,图形的各个点之间的位置关系保持不变。

即对于平面上的两点A和B,假设A经过平移变换得到A',B经过平移变换得到B',那么线段AB和线段A'B'的长度相等,并且它们的方向是相同的。

2. 旋转的性质旋转变换可以保持图形的形状和大小不变,只是改变了方向。

在旋转变换下,图形的每个点都以固定点为中心按照一定的角度旋转。

对于一个图形来说,它的每个点到固定点的距离在旋转变换后保持不变,而且每个点的旋转角度也是相同的。

三、平移和旋转的应用平移在日常生活和工程设计中有着广泛的应用。

在建筑设计领域,平移可以用于设计楼层的布局和空间的规划,实现空间的合理利用。

在机械制造领域,平移可以用于设计机械零件的运动轨迹,实现机械装置的运动控制。

在计算机图形学领域,平移可以用于设计图形界面和动画效果,实现图形的移动和变换。

1. 平移和旋转在建筑设计中的应用在建筑设计中,平移和旋转是常见的设计手段。

平移可以用于设计建筑的平面布局和空间分隔,实现建筑的功能和美观。

设计师可以通过平移将不同功能的区域进行合理的布局,使建筑空间更加通透和舒适。

而旋转可以用于设计建筑的外观和结构,实现建筑的立面和空间形态。

图像的平移与旋转 知识点

图像的平移与旋转 知识点

第三章图像的平移与旋转第一节图形的平移1.在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动叫做平移。

2.一个图形经过平移后得到一个新的图形,这个图形能与原图形相互重合,只是位置发生了变化。

我们把能够相互重合的点称为对应点,能够相互重合的角称为对应角,能够相互重合的线段称为对应线段。

3.平移的条件:确定一个图形平移后的位置,除需要原来的位置外,还需要一一对应的点的位置或平移的方向和距离,平移的方向为原图上的点指向它的对应点的方向,这一对对应点连接的线段的长是平移的距离。

注:(1)图形的平移有两个基本的条件:方向(任意方向);距离(2)平移改变了图形的位置,但不改变图形的形状和大小。

4.平移的性质:(1)平移后的图形与原图形对应点所连线段平行或在一条直线上且相等;(2)平移后的图形与原图形对应线段平行(或在一条直线上)且相等;(3)平移后的图形与原图形对应角相等。

5.平移作图常见形式及作法:第二节图形的旋转1.旋转:在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转。

这个定点被称为旋转中心,转动的角称为旋转角。

旋转不改变图形的形状和大小。

注:旋转是在平面内,而不是在空间内;旋转后的图形与原图形的形状、大小都相同,但形状、大小都相同的两个图形不一定可以通过旋转得到;旋转的角度一般小于360度。

2.旋转的三要素:图形的旋转由旋转中心、旋转的角度和旋转的方向所决定。

3.旋转的性质:一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等。

4.简单的旋转作图:旋转、平移、轴对称的异同:(1)三者的相同点:都是在平面内的图形变换不涉及立体图形的变换;三中变换都是只改变图形的位置,不改变形状和大小,其对应边相等,对应角相等。

(2)不同点:旋转、平移及轴对称的运动方式不同,旋转的运动方式是将一个图形旋转一定角度;而平移的运动方式则是将一个图形沿一条直线对折;旋转、平移及轴对称的对应线段、对应角之间的关系不同。

图形的平移与旋转

图形的平移与旋转

图形的平移与旋转【知识点梳理】一、平移定义和规律1.平移的定义:在平面,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.注意:〔1〕平移不改变图形的形状和大小〔也不会改变图形的方向,但改变图形的位置〕;〔2〕图形平移的要素:平移方向、平移距离.2.平移的规律〔性质〕:经过平移,对应点所连的线段平行且相等,对应线段平行且相等、对应角相等.注意:平移后,原图形与平移后的图形全等.3.简单的平移作图平移作图,就是把整个图案的每一个特征点按一定方向和一定的距离平行移动.平移作图要注意:①方向;②距离.二、旋转的定义和规律1.旋转的定义:在平面,将一个图形饶一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.这个定点称为旋转中心,转动的角称为旋转角.关键:〔1〕旋转不改变图形的形状和大小〔但会改变图形的方向,也改变图形的位置〕;〔2〕图形旋转的要素:旋转中心、旋转方向、旋转角.2.旋转的规律〔性质〕:经过旋转,图形上的每一个点都绕旋转中心沿一样方向转动了一样的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.〔旋转前后两个图形的对应线段相等、对应角相等.)注意:旋转后,原图形与旋转后的图形全等.3.简单的旋转作图:旋转作图,就是把整个图案的每一个特征点绕旋转中心按一定的旋转方向和一定的旋转角度旋转移动.旋转作图要注意:①旋转方向;②旋转角度.【典题例题】【例1】、在以下实例中,不属于平移过程的有〔〕①时针运行的过程;②火箭升空的过程;③地球自转的过程;④飞机从起跑到离开地面的过程。

A、1个B、2个C、3个D、4个【例2】、如下图的每个图形中的两个三角形是经过平移得到的是〔〕【例3】、以下图形经过平移后恰好可以与原图形组合成一个长方形的是〔 〕A 、三角形B 、正方形C 、梯形D 、都有可能【例4】、在图形平移的过程中,以下说法中错误的选项是〔 〕A 、图形上任意点移动的方向一样B 、图形上任意点移动的距离一样C 、图形上可能存在不动的点D 、图形上任意两点连线的长度不变【例5】、有关图形旋转的说法中错误的选项是〔 〕A 、图形上每一点到旋转中心的距离相等B 、图形上每一点移动的角度一样C 、图形上可能存在不动点D 、图形上任意两点连线的长度与旋转其对应两点连线的长度相等。

平移旋转对称的知识点归纳

平移旋转对称的知识点归纳

平移旋转对称的知识点归纳一、平移平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动。

1. 平移的性质平移后图形的形状和大小不变,只是位置发生了变化。

例如,一个正方形平移后还是正方形,边长和角度都不会改变。

对应点所连的线段平行且相等。

比如,一个三角形平移后,原来三角形的顶点和它平移后对应顶点所连的线段是平行且相等的。

2. 平移的应用在建筑设计中,经常会用到平移。

比如平移窗户的位置,来调整房间的采光和通风。

在图案设计中,通过平移可以创造出很多美丽的图案。

像一些地砖的图案,就是通过平移一个基本图形得到的。

二、旋转旋转是指在平面内,一个图形绕着一个定点旋转一定的角度得到另一个图形的变化。

1. 旋转的性质旋转前后图形的形状和大小不变。

例如,一个圆形旋转后还是圆形,半径不会改变。

对应点到旋转中心的距离相等。

比如,一个正多边形旋转后,它的各个顶点到旋转中心的距离都相等。

对应点与旋转中心所连线段的夹角等于旋转角。

2. 旋转的应用在机械制造中,一些零件的设计会用到旋转。

比如齿轮的设计,就是通过旋转来实现动力的传递。

在艺术创作中,旋转可以创造出独特的视觉效果。

像一些舞蹈动作,就有旋转的元素。

三、对称对称分为轴对称和中心对称。

1. 轴对称定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

性质:对称轴是对应点连线的垂直平分线。

例如,等腰三角形的对称轴是底边上的高所在的直线,它垂直平分底边。

轴对称图形的对应线段相等,对应角相等。

应用:在服装设计中,经常会用到轴对称。

很多衣服的图案是轴对称的,这样看起来更加美观。

2. 中心对称定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

性质:中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

中心对称图形的对应线段相等,对应角相等。

平移旋转知识点总结

平移旋转知识点总结

平移旋转知识点总结一、平移的基本概念1、平移的定义平移是指图形沿着一条直线方向移动,移动的距离和方向保持一致。

在平移过程中,图形的大小和形状都不发生变化,只是位置发生了改变。

可以将平移看作是图形的每个点都按照同一个方向和距离进行移动,从而得到了一个新的位置。

2、平移的表示平移可以用向量来表示,假设有一个向量V(u,v),其中u和v表示平移的水平和垂直方向上的距离。

对于一个点P(x,y),通过向量表示的平移操作可以表示为P'=(x+u, y+v)。

这表示点P经过向量V的平移操作后得到了新的点P'(x+u, y+v)。

3、平移的性质平移具有以下几个重要的性质:(1)平移是保形变换,即平移前后的图形形状相同;(2)平移不改变图形的大小;(3)平移不改变图形的角度;(4)平移保持了图形内的任意两点间的距离关系。

二、旋转的基本概念1、旋转的定义旋转是指图形以一个固定的点为中心,按照一定的角度转动。

在旋转过程中,图形的大小和形状都不发生变化,只是方向发生了改变。

可以将旋转看作是图形的每个点都按照同一个中心和角度进行转动,从而得到了一个新的方向。

2、旋转的表示旋转可以用矩阵来表示,假设有一个点P(x,y),以原点为中心,顺时针旋转角度为θ的旋转操作可以表示为P'=(x*cosθ-y*sinθ, x*sinθ+y*cosθ)。

这表示点P经过矩阵表示的旋转操作后得到了新的点P'(x',y')。

3、旋转的性质旋转具有以下几个重要的性质:(1)旋转是保形变换,旋转前后的图形形状相同;(2)旋转不改变图形的大小;(3)旋转保持了图形内的任意两点间的距禿;(4)旋转不改变图形的中心;(5)对任意两个点A和B,它们的连线在旋转前后的夹角不变。

三、平移和旋转的混合变换在实际问题中,往往需要对图形进行平移和旋转的组合变换。

对于平移和旋转的组合变换,其实际操作可以分为两步:首先进行平移,然后进行旋转。

(完整版)五年级第二讲图形的平移和旋转

(完整版)五年级第二讲图形的平移和旋转

图形的平移和旋转知识点讲解:平移的概念:平移,是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

平移的条件:确定一个平移运动的条件是平移的方向和距离。

平移特征:1、平移前后图形的形状、大小不变,只是位置发生改变。

2、新图形与原图形的对应点所连的线段平行且相等(或在同一直线上)。

3、新图形与原图形的对应线段平行且相等,对应角相等。

旋转的概念:在平面内,把一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

在画旋转图形时,点O叫做旋转中心,旋转的角叫做旋转角,如果图形上的点P经过旋转变为点Pˊ,那么这两个点叫做这个旋转的对应点。

旋转的特征:1、对应点到旋转中心的距离相等。

2、对应点与旋转中心所连线段的夹角等于旋转角。

3、旋转前、后的图形全等。

旋转三要素:①旋转中心②旋转方向③旋转角度课堂练一练一.涂色1、把图形向右平移7格后得到的图形涂上颜色。

2、把图形向左平移5格后得到的图形涂上颜色。

二、利用平移知识画图或填空1.画出小船向右平移6格后的图形2.、画出向右平移6格后的图形3、(1)小汽车向()平移了()格。

(2)小船向()平移了()格。

(3)小飞机向()平移了()格。

4、(1)绕O点顺时针旋转 90度。

(2)向右平移5格一、连一连。

升旗时国旗的运动时针的运动在算盘上拨珠平移电梯的运动风扇叶片的运动火车的运动光盘在电脑里的运动旋转把握汽车的方向盘二、操作。

1、向( )平移了( )格。

2、把上面的小船图向上平移5格3、把上图中的三角形绕垂足顺时针旋转180°一、看图填一填。

1、长方形向()平移了()格。

2、六边形向()平移了()格。

3、五角星向()平移了()格。

二、从镜子中看到的左边图形的样子是什么?画“√”镜子三、按要求操作。

1、把图中长方形向上平移2格;2、把图中三角形向右平移3格;3、把图中平行四边形向左平移5格。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

打印版
平移现象
问题导入观察下面的运动现象,你有什么发现?
过程讲解
1.观图,明确物体运动的特点
(1)观光缆车和推拉门是沿水平方向的直线运动,而观光梯是沿竖直方向的直线运动。

(2)运动过程中三个物体的大小、形状和方向都没有发生变化。

(3)一个物体的位置都发生了变化。

2.明确“平移”的意义
像推拉门、观光缆车和观光梯那样,无论是沿水平方向的运动,还是沿竖直方向的运动,在运动过程中,物体本身的方向不发生改变,把这种运动现象称为平移。

3.列举生活中的平移现象
生活中的平移现象有很多,例如:火车站、飞机场运送行李的传送带上行李的移动;电视机在流水线上的移动;电梯的上升、下降;抽屉的推和拉……
归纳总结
物体或图形沿直线运动,而本身的方向不发生改变时,这种运动现象就是平移。

相关文档
最新文档