2020年1月经济数学基础试卷及答案
经济数学基础及参考答案
![经济数学基础及参考答案](https://img.taocdn.com/s3/m/05638a3683c4bb4cf7ecd1d6.png)
作业(一)(一)填空题3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 21. 函数212-+-=x x x y 的连续区间是( )答案:D ,可能是cA .),1()1,(+∞⋃-∞B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1l i m=+→xxxC.11sinlim 0=→xx x D.1si n l i m=∞→xx x3. 设y x =lg 2,则d y =( ).答案:B A .12d xx B .1d x x ln 10C .ln 10xx d D .1d xx4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x 2 B .xx sinC .)1ln(x +D .x cos(三)解答题问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在;1lim ()lim (sin)x x f x x b b x--→→=+=,0sin lim ()lim 1x x x f x x++→→==,有极限存在,lim ()lim ()1x x f x f x b +-→→===(2)当1==b a 时,)(x f 在0=x 处连续。
国开大学电大《经济数学基础1》2020期末试题及答案
![国开大学电大《经济数学基础1》2020期末试题及答案](https://img.taocdn.com/s3/m/91684c684b7302768e9951e79b89680202d86b54.png)
国开大学电大《经济数学基础1》2020期末试题及答案一、选择题(每题3分,共30分)1. 设函数f(x) = x^3 - 6x^2 + 9x - 1,求f(1)的值。
A. 3B. 0C. -3D. -12. 函数y = 2x^3 - 3x^2 + 4在x = 1处的切线斜率为:A. 1B. 2C. 3D. 43. 设函数f(x) = x^2 - 4x + 3,求f'(x)的值。
A. 2x - 4B. 2x + 4C. 4x - 2D. 4x + 24. 若函数f(x)在区间(a,b)内可导,则下列结论正确的是:A. f'(x)在(a,b)内连续B. f(x)在(a,b)内单调C. f'(x)在(a,b)内可积D. f(x)在(a,b)内可导5. 下列函数中,哪个函数在x = 0处不可导?A. y = x^2B. y = |x|C. y = x^3D. y =x^2 + 3x6. 设函数y = 2x^3 - 3x^2 + 4,求y"的值。
A. 12x - 6B. 12x + 6C. 6x - 12D. 6x + 127. 函数y = x^2e^x在x = 0处的极值为:A. 0B. 1C. 2D. 38. 下列函数中,哪个函数在(-∞,+∞)内单调递增?A. y = x^2B. y = x^3C. y = -x^2D. y =-x^39. 求极限lim(x→0) (sin x)/x的值。
A. 0B. 1C. 2D. 无极限10. 设函数f(x) = 2x^3 - 3x^2 + 4,求f'(1)的值。
A. 1B. 2C. 3D. 4二、填空题(每题3分,共30分)1. 函数y = 3x^2 - 2x + 1在x = 2处的导数y' =_______。
2. 函数y = x^3 - 6x^2 + 9x - 1的导数y' = _______。
3. 函数y = e^x在x = 0处的导数y' = _______。
经济数学试题及答案大全
![经济数学试题及答案大全](https://img.taocdn.com/s3/m/96f8ac7bc4da50e2524de518964bcf84b8d52d45.png)
经济数学试题及答案大全一、单项选择题(每题2分,共20分)1. 函数f(x)=x^2-4x+3的零点个数为()。
A. 0B. 1C. 2D. 3答案:C2. 极限lim(x→0) (sin x)/x的值为()。
A. 1B. 0C. -1D. 2答案:A3. 以下哪个函数是奇函数()。
A. y = x^2B. y = x^3C. y = x^4D. y = ln(x)答案:B4. 以下哪个选项是二阶导数()。
A. f'(x)B. f''(x)C. f'''(x)D. f(x)答案:B5. 以下哪个选项是定积分的基本性质()。
A. ∫[a,b] f(x)dx = ∫[a,c] f(x)dx + ∫[c,b] f(x)dxB. ∫[a,b] f(x)dx = ∫[b,a] f(x)dxC. ∫[a,b] f(x)dx = -∫[b,a] f(x)dxD. ∫[a,b] f(x)dx = ∫[a,b] f(-x)dx答案:A6. 以下哪个选项是多元函数的偏导数()。
A. ∂f/∂xB. ∂f/∂yC. ∂f/∂zD. ∂f/∂t答案:A7. 以下哪个选项是线性代数中的矩阵运算()。
A. 矩阵加法B. 矩阵乘法C. 矩阵转置D. 矩阵求逆答案:B8. 以下哪个选项是概率论中的随机变量()。
A. X = 5B. X = {1, 2, 3}C. X = [0, 1]D. X = {x | x ∈ R}答案:B9. 以下哪个选项是统计学中的参数估计()。
A. 点估计B. 区间估计C. 假设检验D. 方差分析答案:A10. 以下哪个选项是计量经济学中的回归分析()。
A. 简单线性回归B. 多元线性回归C. 时间序列分析D. 面板数据分析答案:A二、填空题(每题2分,共20分)11. 函数f(x)=x^3-3x的导数为_________。
答案:f'(x) = 3x^2 - 312. 极限lim(x→∞) (x^2 - 3x + 2)/(x^2 + 4x + 3)的值为_________。
2020年中级经济基础真题与答案(第一套)
![2020年中级经济基础真题与答案(第一套)](https://img.taocdn.com/s3/m/be385fd55901020206409cf7.png)
型数据,数学性质较强,选项 B、D 错误。
17.账户发生额和余额的基本关系是( )。 A.期初余额+本期增加发生额-本期减少发生额=期末余额 B.期初余额=期末余额 C.期初余额-本期减少发生额=期末余额 D.期初余额+本期增加发生额=期末余额 【答案】A
【解析】账户四个金额要素之间的关系为:期初余额本期增加发生额一本期减少发生额=期末 余额。
2020 年中级经济师《中级经济基础》答案及解析(第一套)
一、单选选择题(共 70 题,每题 1 分,每题的备选项中,只有 1 个最符合题意) 1. 对分类变量观测的结果称为( ) 。 A.分类数据 B.顺序教据 C.数值型数据 D.定量数据 【答案】A 【解析】分类变量的观测结果称为分类数据;顺序变量的观测结果称为顺序数量;定量变量 的观测结果称为数值型数据或定量数据。ຫໍສະໝຸດ 29.征税客体是()。
A.法人
B.单位和个人 C.企业 D.自然人
【答案】B
【解析】税收的征收主体是国家,征收客体是单位和个人。
30.个人所得中的综合所得适用的税率为( )。
A.3%~45%的超額累进税率 B.5%~35%的超額累进税率
C.20%的比例税率
D.25%的比例税率
【答案】A
【解析】居民个人所得中的综合所得适用 3~45%的超额累进税率;经营所得适用 5%~35% 的超额累进税率;利息、股息、红利所得,财产租赁所得,财产转让所得和偶然所得,适用比 例税率,税率为 20%。
【解析】所谓长期,是指这样一个时期:企业在这个时期内可以调整生产要素,从而一切生
产要素都是可变的。这样,长期成本中就没有什么固定成本,一切成本都是可变的。
21.下列统计数据中,属于观测数据的是( )。 A.居民收入数据 B.新药疗效数据 C.电池使用寿命数据 D.轮胎使用寿命数据 【答案】A 【解析】观测数据是指通过直接调查或测量而收集到的数据。选项 B、C、D 属于实验数据。
经济初级试题及答案
![经济初级试题及答案](https://img.taocdn.com/s3/m/b6543a3b9a6648d7c1c708a1284ac850ad0204b2.png)
经济初级试题及答案一、选择题(每题2分,共20分)1. 经济学中,资源的稀缺性意味着:A. 资源是无限的B. 资源是充足的C. 资源是有限的D. 资源是可再生的答案:C2. 以下哪一项不是市场经济的基本特征?A. 价格机制B. 竞争机制C. 计划机制D. 供求机制答案:C3. 根据边际效用递减法则,当一个人连续消费某种商品时,其总效用:A. 持续增加B. 持续减少C. 先增加后减少D. 保持不变答案:C4. 以下哪一项不是货币政策工具?A. 利率B. 公开市场操作C. 法定准备金率D. 财政支出答案:D5. 经济全球化的主要表现不包括:A. 国际贸易的增长B. 国际投资的增长C. 国际援助的增长D. 国际劳动力流动答案:C6. 以下哪一项不是公共物品的特征?A. 非排他性B. 非竞争性C. 可交易性D. 非营利性答案:C7. 以下哪一项不是通货膨胀的原因?A. 货币供应过多B. 需求拉动C. 成本推动D. 通货紧缩答案:D8. 以下哪一项不是经济周期的阶段?A. 繁荣B. 衰退C. 萧条D. 稳定答案:D9. 以下哪一项不是经济自由度指数的衡量标准?A. 贸易自由B. 财政自由C. 宗教自由D. 货币自由答案:C10. 以下哪一项不是经济增长的来源?A. 资本积累B. 技术进步C. 人口增长D. 资源枯竭答案:D二、判断题(每题1分,共10分)1. 经济人假设认为人总是理性的。
(对)2. 完全竞争市场不存在价格歧视。
(对)3. 政府干预经济总是有益的。
(错)4. 经济中的失业都是自愿失业。
(错)5. 经济全球化对所有国家都有利。
(错)6. 货币政策能够影响利率。
(对)7. 通货膨胀会导致货币购买力下降。
(对)8. 公共物品的供给总是由政府负责。
(错)9. 经济周期的波动是不可预测的。
(错)10. 经济增长一定会导致环境恶化。
(错)三、简答题(每题5分,共20分)1. 简述凯恩斯主义经济学的主要观点。
《经济数学基础》习题答案及试卷(附答案)
![《经济数学基础》习题答案及试卷(附答案)](https://img.taocdn.com/s3/m/fc5e36230a4c2e3f5727a5e9856a561252d32107.png)
习题解答第一章 经济活动中的函数关系分析实训一(A )1.填空题:(1)(,2][2,)-∞-+∞ ; (2)()3,5; (3)1x; (4)2x e ;2x e ; (5)473x -,提示:由()()47433433g f x x x =+=+-⎡⎤⎣⎦,所以()473x g x -=.2.(1)tan(2)y x =;(2)(3)y=;(4)y=lg(sin 2)x .3.(1)cos y u =,1xu e =-; (2)ln y u =,222u x x =-+;(3)y =1u x =+;(4)y lg u v =,v =实训一(B )1.由已知可知2110x -<-<,得到201x <<,即定义域为()()1,00,1- .2.由()21f x x -=,可得()()2111f x x -=-+,所以()()21f x x =+.也可令1x t -=.3.(1)u y e =,sin u v =,2v x =;(2)log uv ay =,21u x =+,sin v w =,2w x =. 4. ()()()log log log a a a f x f y x y xy f xy +=+==;()()log log log a a axx f x f y x y f y y ⎛⎫-=-== ⎪⎝⎭. 实训二 (A )1.填空题:(1)y =(2)[]1,3-; (3)2π-,4π; (4)12,π. 2.(1)⨯;(2)⨯;(3)⨯;(4)√.3.(1)由()cos 21y x =+,解得21arccos x y +=,()1arccos 12x y =-, 所以,()()11arccos 12fx x -=-.定义域:[]1,1x ∈-;值域:11,22y π-⎡⎤∈-⎢⎥⎣⎦(2)由()1ln 2y x =++,解得12y x e -+=,12y x e -=-,所以,()112x fx e --=-定义域:(),x ∈-∞+∞;值域:()2,y ∈-+∞ 4.【水面波纹的面积】设面积为S (2cm ),时间为t (s ),则()22502500S t t ππ==【仪器初值】()0.04200.800208986.58Q Q e Q e -⨯-===解得0.808986.582000Q e =≈.实训二(B )1.由()x a f x x b +=+,解得反函数为()11a bx f x x --=-. 由已知()1x a f x x b -+=+,可得1a bx x a x x b-+=-+,相比较,可得a 为任意实数,1b =-.2.由()ln x x ϕ=,()21ln 3g x x ϕ=++⎡⎤⎣⎦,可得()221ln 3ln 3x x g x e e e ϕ+=⋅⋅=⎡⎤⎣⎦所以,()213x g x e+=.实训三【商品进货费用】 设批次为x ,由题意: 库存费:11250030000242C x x=⋅⋅=; 订货费:2100C x =. 【原料采购费用】设批量为x ,库存费用为1C ,进货费用为2C ,进货总费用为12C C C =+.1122C x x=⋅⋅= 23200640000200C xx=⋅=所以进货总费用为:12640000C C C x x=+=+. 【商品销售问题】设需求函数关系式为:d Q ap b =+,其中p 为定价. 由已知可得:1000070700073a ba b=+⎧⎨=+⎩,解得1000a =-,80000b =,所以100080000d Q p =-+; 供给函数为:1003000s Q p =+平衡状态下:价格70p =;需求量10000d Q =. 【商品盈亏问题】设()()()()2015200052000L x R x C x x x x =-=-+=-.()6001000L =; 无盈亏产量:()0L x =,解得400x =. 【供给函数】答案:1052PQ =+⋅. 【总成本与平均成本】总成本()1306C Q Q =+,[]0,100Q ∈. 平均成本()13061306Q C Q Q Q+==+,[]0,100Q ∈.第一章自测题一、填空题1、[2,1)(1,1)(1,)---+∞2、(,)-∞+∞3、(,1)a a --4、23x x -5、2ln(1)x -6、arcsin 2x7、cos(ln )x8、2142R Q Q =-+9、22()2505;()6248100R x x x L x x x =-=-+- 10、6P = 二、选择题1、C2、B3、B4、D5、C三、计算解答题1、(1)22log , 1y u u x ==+(2)1x y u e ==+ 2、1()1 , ()1f x x f x x -=+=- 四、应用题1、(1) 6 , 8P Q == (2) 3.5 , 3P Q == (3) 6.5 , 7P Q ==2、(1)()10200C x x =+,()200()10C x C x x x==+ (2)()15R x x =(3)()()()5200L x R x C x x =-=-,无盈亏点:40x =五、证明题(略)第二章 极限与变化趋势分析实训一(A )1.(1)×;(2)√;(3)×;(4)×;(5)√. 2.(1)收敛,且lim 0n n x →∞=;(2)发散,lim n n x →∞=∞;(3)收敛,且lim 2n n x →∞=;(4)发散.3.(1)收敛,且lim 2x y →∞=;(2)收敛,且0lim 1x y →=;(3)收敛,且lim 1x y →+∞=;(4)发散.【产品需求量的变化趋势】lim lim 0t t t Q e -→+∞→+∞==.实训一(B )(1)无穷大;(2)无穷大;(3)无穷大;(4)无穷大. 【人影长度】越靠近路灯,影子长度越短,越趋向于0.实训二 (A )1.填空题(1)5;(2)2;(3)1;(4)13;(5)∞;(6)∞;(7)2. 2.(1)()()()()2211111112lim lim lim 21121213x x x x x x x x x x x x →→→-+-+===---++; (2)(222211lim2x x x x x x →→→===--;(3)()()2322000222lim lim lim 211x x x x x x x x x x x x x →→→---===---; (4)()()211121111lim lim lim 111112x x x x x x x x x →→→--⎛⎫-===-⎪---++⎝⎭. 3.(1)222112lim lim 2111x x x x x x x →+∞→+∞-⎛⎫-==- ⎪+--⎝⎭; (2)()()()1121lim lim lim 22222222n n n n n n n n n n n n →∞→∞→∞⎛⎫++++-⎛⎫-=-==- ⎪⎪ ⎪+++⎝⎭⎝⎭. 【污染治理问题】由题意可知,该问题为等比级数问题,首项为a ,公比为45,则设n 周后所剩污染物为n a ,则45nn a a ⎛⎫= ⎪⎝⎭,因为4lim 05nn a →∞⎛⎫= ⎪⎝⎭,所以,可以确定随着时间的推移能将污染物排除干净.【谣言传播】 (1)1lim (t)lim11ktt t P ae -→∞→∞==+;(2)121(t)0.8110t P e-==+,可解得2ln 407.38t =≈.实训二(B )1.填空题(1)32π-; (2)0;0.(无穷小与有界函数的乘积为无穷小)(3)0a =,2b =-.2.(1)()3320lim3h x h x x h→+-=;(2)442x x x →→→===.3.由()3lim 30x x →-=,且232lim 43x x x kx →-+=-,可得()23lim 20x x x k →-+=,解得3k =-.4.由题意可知()()21116lim lim 511x x x x x ax bx x→→--++==--,可得7a =-,6b =.实训三 (A )1.填空题(1)1e -;(2)3e -;(3)e ;(4)e ;(5)3k =;(6)5050.1230⨯⨯=万元,()55010.125038.1⨯+-=万元,50.125041.1e ⨯=万元. 2.(1)6e -;(2)1e -;(3)2e -;(4)01e =. 3.(1)0.042003 6.68rtPe e ⨯==万元; 2.25o P =万元.(2)24.38t p =万元;24.43t p =万元.实训三(B )1.(1)(()0111lim 1lim 1lim 11x x x x x x e x x x --→∞→∞→∞⎡⎤⎛⎛⎫⎛⎫-=-=-==⎢⎥⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦;(2)()15lim 15xx x x e →→∞=+=;(3)()1111111lim lim 11xxx x xx e ---→→=+-=;(4)()()()1000ln 121limlim ln 12limln 12x x x x x x x xx →→→+=+=+ ()()112limln 12lnlim 12ln 2x xx x x x e →→=+=+==.2.322lim lim 122x xc x x x c c e e x c x c →∞→∞+⎛⎫⎛⎫=+== ⎪ ⎪--⎝⎭⎝⎭,所以3c =. 实训四 (A )1.填空题 (1)(]0,3;(2)()243,110,1x x x f x x ⎧-+≤-=⎨>⎩;(3)()0lim 1x f x -→=-,()0lim 0x f x +→=,()0lim x f x →不存在; (4)()(),22,-∞--+∞ ; (5)1x =,2x =;(6)1k =.2.图略,()0lim 1x f x -→=,()0lim 0x f x +→=,()0lim x f x →不存在. 3.()()1lim 11x f x f -→==,()1lim 2x f x +→=,因为()()11lim lim x x f x f x -+→→≠,所以()f x 在1x =处不连续.【个人所得税计算】个人所得税的起征点为月收入3500元.850035005000-=,50000.2555455⨯-=;1200035008500-=,85000.25551145⨯-=.【出租车费用】图略,()8, 322, 3836, 8x f x x x x x ≤⎧⎪=+<≤⎨⎪->⎩.实训四 (B )1.图略,()()0lim 10x f x f -→=-=,()0lim 0x f x +→=,因为()()11lim lim x x f x f x -+→→≠,所以()f x 在0x =处不连续.2.由连续的定义可知:()()220lim 1xx k f x e →==+=.3.因为()01f =,()01lim sin00x x f x→=≠(无穷小与有界函数的乘积), 所以0x =为第一类的可去间断点.第二章自测题一、填空题 1、1- 2、1 3、12- 4、345、221,02,0x x x x ⎧+=⎪⎨≠⎪⎩6、1-7、100 ; 0 8、0.035; 5.15e(万)(万)二、选择题1、C2、A3、C4、A5、B 三、计算解答题1、(1)原式=211(1)1 lim lim0(1)(1)1x xx xx x x→→--==+-+(2)原式=lim lim x x=1lim2x==-(3)设1xe t-=,则ln(1)x t=+,0x→时,0t→,原式=10011lim lim1ln(1)ln(1)limln(1)t ttttt ttt→→→==+⋅++1111lnln[lim(1)]ttet→===+(4)原式=sin[lim sin[limx x→+∞=s i n[l]s i n00x===2、(0)2f=00l i m()l) x x xf x---→→→==00lim lim(12x x--→→==+=00lim()lim(2)2x xf x x++→→=+=lim()2(0)xf x f→∴==()f x∴在0x=点连续,从而()f x在(,)-∞+∞内连续.四、应用题第三章经济最优化问题分析实训一(A )1.填空题(1)45x ; (2)2313x -; (3)23x ; (4)5232x --;(5)2ln 2x ; (6)1ln10x ; (7)0; (8)0.2.2log y x =,1ln 2y x '=.212ln 2x y ='=,122ln 2x y ='=.3.(1)()141y x -=-,即43y x =-; (2)()222y x +=--,即22y x =-+; (3)cos y x '=,312x k y π='==,切线方程为123y x π⎛⎫=- ⎪⎝⎭,即126y x π=-. 实训一(B )1.()()()20001sin010limlim lim sin 00x x x x f x f x f x x x x→→→-'====-.2.()()()()000002lim h f x h f x f x h f x h →+-+--()()()()0000022lim2h f x h f x hh f x h f x h →+-=+--()()()()00000022limlim 12h h f x h f x hh f x h f x h →→+-=⋅=+--. 其中()()()00002lim2h f x h f x f x h→+-'=,()()()()()00000021limh h f x f x h f x f x h f x →='+----⎡⎤⎡⎤⎣⎦⎣⎦. 3.因为3,02⎛⎫⎪⎝⎭不在21y x =上,不是切点.设过点3,02⎛⎫⎪⎝⎭与21y x =相切的切线的切点坐标为21,a a ⎛⎫ ⎪⎝⎭,则切点为21,a a ⎛⎫ ⎪⎝⎭的切线方程为:()2312Y X a a a -=--,有已知3,02⎛⎫ ⎪⎝⎭在切线上,带入可得1a =,所以切线方程为:()121y x -=--,即23y x =-+.实训二 (A )1.(1)223146y x x x '=+-; (2)11'ln n n y nx x x --=+; (3)21'41y x x =++; (4)2cosx cosx sinx'(x 1)x y +-=+. 2.(1)22'1xy x =+; (2)22'2sin3x 3cos3x x x y e e =+; (3)'y = (4)22sec cos122'csc sinx 2tan 2cos sin222x x y x x x x ====.3.(1)''2y =; (2)''2x x y e xe --=-+(3)222222(1x )2(2x)''224(1x )x y x x --+-==-+--; (4)2322222(1x)2''2arctanx 1(1x )x x x y x +-=++++. 4.(1)2212dy x xdx y y --+==;(2)x y x y dy y e y xy dx e x xy x++--==--. 【水箱注水】由24r h =,12r h =,22311133212h v r h h h πππ⎛⎫=== ⎪⎝⎭,两边求导得214v h h π''=,由已知2v '=,3h =,带入可得: 1294h π'=,89h π'=所以水位上升的速度为89π米/分.【梯子的滑动速度】由题意可得22100x y +=,两边求导可得:220dx dy xy dt dt +=,即dx y dy dt x dt=-, 将8y =,6x =,0.5dy dt =带入可得:820.563dy dt =-⨯=-.所以梯子的另一端华东的速度为23米/秒.负号表示运动方向. 实训二 (B )1.(1)11(1ln )e x e x y x x x e -=+++; (2)()()1112121y x x x ⎫'=--⎪⎪-+⎭. 2.()()cos sin x x y e x f e x ''=++. 3.将1y y xe -=两边对x 求导可得:0y y dy dy e xe dx dx --=,即1y ydy e dx xe =-.…………(1) 将0,1x y ==带入(1)可得:y e '=. 对(1)继续求导,()()()22121y y y y y y y e xe e e xy e y e xe ''----''==-.4.(1)22x z z xy x ∂'==∂, 22y zz yx y ∂'==∂; (2)2xy x z z ye xy x ∂'==+∂,2xy y z z xe x y∂'==+∂. 实训三 (A )1.填空题(1)单调递增区间,(),0-∞;单调递减区间()0,+∞. (2)6a =-.(3)驻点. (4)()00f x ''<.2.()()3444110y x x x x x '=-=-+=,得驻点1230,1,1x x x ==-=,单调递增区间:()()1.0 1.-+∞ ,单调递减区间:()().10.1-∞- .3.()()23693310y x x x x '=--=-+=,得驻点121,3x x =-=.又由于:66y x ''=-,()1120y ''-=-<,所以11x =-为极大点,极大值为0; ()360y ''=>,所以23x =为极小点,极小值为32-.【定价问题】21200080R PQ P P ==-,25000502500050(1200080)6250004000C Q P P =+=+-=-, 224000160T Q P ==-,21200080625000400024000160L R C T P P P P =--=--+-+28016160649000P P =-+-160161600L P '=-+=,解得:101P =, 167080L =.【售价与最大利润】1100200Q p =-,21100200R PQ P P ==-;220019004400L R C P P =-=+-,40019000L P '=-+=,解得 4.75P =此时:150Q =,112.5L =. 【最小平均成本】210000501000050x x c x x x ++==++;21000010c x '=-+=,解得100x =.【最大收入】315x R px xe -==,33155x x R exe--'=-3(155)0x x e-=-=,解得:3x =,此时115p e -=,145R e -=.实训三 (B )1.(1)设()1xf x e x =--,()10xf x e '=->(0x >),说明()f x 在0x >时单调递增,又()00f =,所以,当0x >时,()()00f x f >=,所以不等式成立. (2)设()()ln 1f x x x =-+,()1101f x x'=->+(0x >),说明()f x 在0x >时单调递增,又()00f =,所以,当0x >时,()()00f x f >=,所以不等式成立. 2.()cos cos3f x a x x '=+,没有不可导点,所以cos cos 033f a πππ⎛⎫'=+=⎪⎝⎭,得2a =.又()2sin 3sin3f x x x ''=--,03f π⎛⎫''=<⎪⎝⎭,所以3x π=为极大值点,极大值为3f π⎛⎫= ⎪⎝⎭【采购计划】 设批量为x ,采购费:132********200C x x =⨯=; 库存费:222xC x =⨯=;总费用:12640000C C C x x=+=+; 264000010C x'=-+=,解得800x =唯一驻点, 所以采购分4次,每次800吨,总费用最小.第三章自测题一、填空题 1. 2 2. 12-3. 21x -4. 1-5. 212c o s x xx+ 6. 17. 2l n3x + 8. 2 ; 09. 11ln ; ln y x y x yxy y x x xy --+⋅⋅+10. 12x =二、选择题1、C2、A3、A4、D5、A 三、计算解答题1、(1)([1]y x '''=+=+[12]()1x =⋅⋅⋅==(2)222()()2x x x x y e x e x xe e --'''=⋅+⋅-=- 2、方程221x y xy +-=两边对x 求导,得22()0x y y y x y ''+⋅-+= 解得:22y xy y x-'=-,将0,1x y ==代入,得切线斜率12k =,所以,切线方程为:11(0)2y x -=-,即:220x y -+=. 3、定义域(,)-∞+∞2363(2)y x x x x '=-=- 令0y '=,得驻点120,2x x ==递增区间:(,0)-∞、(2,)+∞ 递减区间:(0,2)极大值:(0)7f = 极小值:(2)3f = 四、应用题1、50S t ==(50)50dSt dt'== 所以,两船间的距离增加的速度为50千米/小时. 2、第四章 边际与弹性分析实训一(A )1.填空题(1)0.2x ∆=, 2.448y ∆=, 2.2dy =. (2)1x dy edx ==. (3)12dy x dx x ⎛⎫=+⎪⎝⎭. (4)cos(21)x +,2cos(21)x +. (5)[]()f g x ',[]()()f g x g x ''.2.(1)(12)dy x dx =+; (2)221dy dx x =+; (3)222(22)x x dy xe x e dx --=-; (4)322(1)dy x x dx -=-+; (5)23(1)1dy dx x =-+; (6)1dx dy x nx=. 3.()ln 11x y x x '=+++,11ln 22x y ='=+,所以11ln 22x dy dx =⎛⎫=+ ⎪⎝⎭. 【金属圆管截面积】2s r π=,2200.05ds r r πππ=∆=⨯=.实训一(B )1.(1)2sec x ;(2)1sin 5x 5;(3)2x ;(4)232x ;(5)21x +;(6)arctan x . 2.将x yxy e+=两边对x 求导,()1x yy xy ey +''+=+,解得:x y x ye yy x e ++-'=-,所以x y x ye ydy dx x e++-=-.3.(1110.001 1.00052≈+⨯=;(20.02221 2.001783⎛⎫==≈+= ⎪⨯⎝⎭; (3)()ln 1.01ln(10.01)0.01=+≈; (4)0.0510.05 1.05e ≈+=. 【圆盘面积的相对误差】2s r π=,0.2r ∆≤()'2s ds s r r r r π∆≈=∆=∆(1)()()22482240.29.65s ds cm cm πππ∆≈=⨯⨯==; (2)2220.22 1.67%24r r r s ds s s r r ππ∆∆∆≈===⨯≈. 实训二 (A )1.(1)()2'2x f x xe =;(2)[]1'()(1)a bf x x e a x ac --=++.2.(1)()21900110090017751200C =+⨯=;17757190036C ==. (2)()39002C '=,表示第901件产品的成本为32个单位;()51000 1.673C '=≈,表示第1001件产品的成本为53个单位. 3.(1)(50)9975R =;9975199.550R ==. (2)()502000.0250199R '=-⨯=,表示第51件产品的收入为199个单位. 4.22()()100.01520050.01200L R x C x x x x x x =-=---=--,50.020L x '=-=,解得唯一驻点250x =,所以当每批生产250个单位产品时,利润达到最大.实训二(B )1.()()()()()242,04282, 4x x x x L x R x C x x x ⎧--+≤≤⎪=-=⎨⎪-+>⎩, 即()232,0426, 4x x x L x x x ⎧-+-≤≤⎪=⎨⎪->⎩,求导()3,041, 4x x L x x -+≤<⎧'=⎨->⎩,令()0L x '=解得3x =百台(唯一驻点) 所以每年生产300台时,利润达到最大.()()430.5L L -=-万元,在最大利润的基础上再生产1百台,利润将减少0.5万元.2.()0.50.25C a a =+(万元)()2152R a aa =- ()22150.50.25 4.750.522a L a a a a a =---=-+-令() 4.750L a a '=-+=,解得 4.75a =(百台)又()10L a ''=-<,有极值的第二充分条件,可知当 4.75a =为最大值(唯一驻点) 所以该产品每年生产475台时,利润最大.实训三 (A )1.填空题 (1)1axy=;(2)21x Ey Ex ==;(3)1ln()4p η=-;(4)()334η=,()41η=,()554η=. 2.(1)15x η=; (2)3(3)5η=,价格为3时,价格上涨1%,需求下降0.6%,缺乏弹性;(5)1η=,价格为5时,价格上涨1%,需求下降1%,单位灵敏性; 6(6)5η=,价格为6时,价格上涨1%,需求下降1.2%. 3.(1)500P =元时,100000Q =张. (2)18002ppη=-.(3)1η=时,18002600p p p =-⇒=所以:当0600p ≤<时,1η<;当600900p <≤时,1η>.实训三 (B )1.(1)224202EQ x x Q Ex Q x '==--,243x EQ Ex ==-,所以价格增长5%,需求量减少6.7%;(2)()()3220R x xQ x x x ==--,x =403Q =.2.(1)2Q P '=-,48P Q ='=-,经济意义:在价格4P =的基础上,增加一个单位,需求量减少8个单位.(2)22275P P Q Q P η'=-=-,4320.542359P η===,经济意义,在4P =的基础上涨1%,需求减少0.54%.(3)375R PQ p p ==-,3375375p p p pη-=-,(4)0.46η=,经济意义,在4P =的基础上,若价格上涨1%,收入上涨0.46%.(4)198(6)0.46234η-=≈-,经济意义,在6P =的基础上,若价格上涨1%,收入减少0.46%. (5)375R p p =-,275305R p p '=-=⇒=,又6R p ''=-,()5300R ''=-<,所以由极值的第二充分条件,可知5P =时,总收入最大.第四章自测题一、填空题 1. 22 ; 2xxe e2.212x 3. arctan x4. 0.1 ; 0.63 ; 0.6 5. 45 ; 11 ; 456.10 ; 10% ; 变动富有弹性 7. 15%20% 8. 10% 二、选择题1、C2、B3、D4、A5、C 三、计算解答题1、(1)2222222()()2(2)x x x x y x e x e xe x e x ''''=⋅+⋅=+⋅2222222(1)x x x x e x e x e x =+=+ 22(1)xd y y d x xe x d x'∴==+ (2)222sin(12)[sin(12)]y x x ''=+⋅+2222s i n (12)c o s (12)(12)x x x '=+⋅+⋅+ 24s i n (24)x x =+ 24s i n (24)d y y d x x x d x'∴==+ 2、方程242ln y y x -=两边对x 求导,得31224dy dyy x dx y dx⋅-⋅⋅= 解得,3221dy x y dx y =-,3221x y dy dx y ∴=-3、四、应用题1、(1)()60.04C Q Q '=+ ()300()60.02C Q C Q Q Q Q==++(2)2300()0.02C Q Q'=-+令()0C Q '=,得Q = (3)2()()(204)204R Q P Q Q Q Q Q Q =⋅=-⋅=-2()()() 4.0214300L Q R Q C Q Q Q =-=-+- ()8.0414L Q Q '=-+ 令()0L Q =,得Q =2、 4Q P '=-(1)(6)24Q '=-,6P =时,价格上升1个单位,需求量减少24个单位.(2)22224(1502)15021502P P P Q P Q P P η''=-⋅=-⋅-=-- 24(6)13η=6P =时,价格变动1%,需求量变动2413% (3)23()()(1502)1502R P Q P P P P P P =⋅=-⋅=-33(1502)1502E R P PR P P E P R P P''=⋅=⋅--2215061502P P -=-61113P EREP==-6P =时,若价格下降2%,总收入将增加2213%第五章 经济总量问题分析实训一(A )1.填空题(1)3x ,3x C +; (2)3x ,3x C +; (3)cos x -,cos x C -+;(4C ; (5)arctan x ,arctan x C +.2.(1)B ; (2)C ; (3)D ; (4)A .3.(1)5322225x x C -+;(2)31cos 3xx e x C --+;(3)21x x C x-++; (4)(2)ln 2xe C e+. 4.(1)1arctan x C x--+;(2)sin cos x x C ++. 【曲线方程】由题意()21f x x '=+,所以()()()23113f x f x dx x dx x x C '==+=++⎰⎰,又过点()0,1带入,得到1C =,所以曲线方程为:()3113f x x x =++. 【总成本函数】由题意可得()220.01C x x x a =++,又固定成本为2000元,所以 ()220.012000C x x x =++. 【总收入函数】()()278 1.2780.6R x x dx x x C =-=-+⎰,由()000R C =⇒=,所以总收入函数为()2780.6R x x x =-.实训一(B )1.填空题(1)sin 2ln x x x +;(2)223cos3x e x +;(3)ln x x C +. 2.(1)D ; (2)B .3.(1)322233331u u u I du u du u u u -+-⎛⎫==-+- ⎪⎝⎭⎰⎰ 2133ln 2u u u C u=-+++; (2))32332333I dx x x C ===-+⎰;(3)()222222121212arctan 11x x I dx dx x C x x x x x ++⎛⎫==+=-++ ⎪++⎝⎭⎰⎰; (4)()()()1111tttt te e I dt edt e t C e +-==-=-++⎰⎰.实训二 (A )1.填空题 (1)212x ; (2)x e --; (3)ln x ; (4)arctan x ; (5)23x x +; (6)arcsin x . 2.(1)B ; (2)B .3.(1)()()()11cos 2121sin 2122I x d x x C =++=++⎰; (2)()()3212313139I x x C =+=++;(3)()()231ln ln ln 3I x d x x C ==+⎰;(4)111xx I e d e C x ⎛⎫=-=-+ ⎪⎝⎭⎰.4.(1)sin sin sin x xI e d x eC ==+⎰; (2)()()11ln 11x xx I d e e C e =+=+++⎰;(3)()()2222ln 22d x x I x x C x x -+==-++-+⎰;(4)22221111111x x x I dx dx x x x ++-⎛⎫==+- ⎪+++⎝⎭⎰⎰ 21l n (1)a r c t a n 2x x x C=++-+. 5.(1)()x x x x x I xd e xe e dx xe e C -----=-=-+=--+⎰⎰;(2)()()()ln 1ln 1ln 1I x dx x x xd x =+=+-+⎰⎰()()11ln 1ln 111x x x x dx x x dx x x +-=+-=+-++⎰⎰()()l n 1l n 1x x x x C =+-+++. 【需求函数】由已知,()111000ln3100033p pQ p dp C ⎛⎫⎛⎫=-⨯=+ ⎪ ⎪⎝⎭⎝⎭⎰ 又因为0p =时,1000Q =,代入上式,得到0C =.所以,()110003pQ p ⎛⎫= ⎪⎝⎭.【资本存量】由已知,32()2(1)y I t dt t C ===++⎰⎰因为0t =时,2500498y C C =+=⇒= 所以,322(1)498y t =++.实训二 (B )1.填空题(1)ln ()f x C +;(2)arctan(())f x C +;(3)'()()xf x f x C -+. 2.(1)()()2arctan 1x x x d e I e C e ==++⎰;(2)()()11131431dx I dx x x x x ⎛⎫==-⎪-+-+⎝⎭⎰⎰113l n 3l n 1l n 441x I x x C C x -=⎡--+⎤+=+⎣⎦+;(3)()()2arctan 111dxI x C x ==++++⎰;(4)()22222x x x x x I x d e x e e dx x e xe dx -----=-=-+=--⎰⎰⎰()22222x x x x x x I x e xe e C x e xe e C ------=----+=-+++. 【物体冷却模型】设()T t 为t 时刻物体的温度,由冷却定律可得:0()dTk T T dt=-, 分离变量0dT kdt T T =-,两边积分0dTkdt T T =-⎰⎰,可得:()0ln ln T T kt c -=+,0()kt T t T ce =+.由已知()0100T =,()160T =,020T =,带入得到:80c =,ln 2k =-, 所以ln2()2080t T t e -⋅=+, 当ln 23020803te t -⋅=+⇒=.实训三 (A )1.填空题 (1)122lim(1)nn i i n n→∞=+∑;(2)2)x dx -;(3)2π;(4)0. 2.(1)12010(3)3S x dx =+=⎰; (2)12218(2)3S x x dx -=--=⎰;(3)1303(1)4S x dx =-=⎰或034S ==⎰.实训三 (B )1.(1)分割:将[]0,4n 等分,每份长度为4n ;(2)近似代替:2412823i i n iA n n n⎡⎤+⎛⎫∆=⋅+= ⎪⎢⎥⎝⎭⎣⎦;(3)求和:()2212221111281281282nnni ii i n n n in n iA A n nn===++++≈∆===∑∑∑; (4)取极限:()2211282lim16n n n n A n→∞++==. 2.1sin xdx π⎰.3.22211113ln ln 222x dx x x x ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭⎰.实训四 (A )1.填空题(1)64;(2)1;(3)2π;(4)3;(5)1. 2.(1)()()()44341118111144I x d x x =--=-=⎰; (2)()()44223328I x dx xx =+=+=⎰;(几何上为直角三角形的面积)(3)22242200111222x x e I e dx e -===⎰; (4)2112111xx I e d e e x =-=-=⎰(5)01cos sin 222x x x I dx πππ++===⎰; (6)0;(利用当积分区间为对称区间,被积函数为奇函数时定积分的性质) (7)121211122222235I xdx xdx xdx xdx -=+=+=+=⎰⎰⎰⎰;(8)02sin 4I xdx π==⎰.(利用定积分的周期性)【资本存量问题】 (1)434211214I t ===⎰(万元);(4)33224422820 6.87x xtx x ⎛⎫==-=⇒=≈ ⎪⎝⎭⎰.【投资问题】01000P =,200A = 0.05()200T t tdP e dt-= 0.05()0.05020040004000TT t T t P edt e -==-+⎰ 10t =,0.5400040002595t P e=-+= 因为0.515741600T P e-≈<,所以,此项投资不恰当.实训四 (B )1.因为()1229214x dx --+=-⎰,()1129214x dx -+=⎰,()20216x dx +=⎰,()21214x dx +=⎰, ()3222213x dx +=⎰, 所以应该分两种情况: (1)因为()3403kf x dx =⎰,()()332240221816333k f x dx x dx -+=-==⎰⎰ 所以,0k =; (2)因为()()102112f x dx f x dx ---=⎰⎰,由对称性可知1k =-.2.对()21f x dx -⎰作代换令1x t -=(切记:定积分的换元要换限,积分值不变),则有:()()21011f x dx f t dt --=⎰⎰,所以,()()21101101112tte f x dx f t dt dt dt e t ---==+++⎰⎰⎰⎰ ()()()()001101011132ln 1ln 2ln 121t t td e ed te t e t e --+=++=+++=+++⎰⎰. 3.()()()()11111111I xf x dx xdf x x f x f x dx ----'===-⎰⎰⎰()()()()21111110x f f e f f --=+--=+-=.因为()()222x x f x e xe --'==-,()f x 为奇函数,所以()()110f f +-=.【储存费用问题】第五章自测题一、填空题 1.sin x x e c ++2.5314453x x x c -++ 3.ln xdx4.21ln 2x c +5.196.327.94π8.21200 ;200Q Q - 9.二、选择题1、D2、B3、A4、B5、C 三、计算解答题 1、(1)原式=1111()(3)(2)532dx dx x x x x =--+-+⎰⎰ 113[l n 3l n 2]l n 552x x x c cx -=--++=++ (2)原式=22111112sin ()cos cos cos1d x x x πππ-==-⎰2、(1)222222212(1)()()(1)(1)x x x F x G x dx dx x x x x ++++==++⎰⎰22111()arctan 1dx x c x x x=+=-+++⎰(2)222222212(1)3()()(1)(1)x x x F x G x dx dx x x x x -+--==++⎰⎰ 22131()3arctan 1dx x c x x x=-=--++⎰3、原式=31222(1)(1)1)33x x =+=+=⎰⎰四、应用题 1、(1)32412)2(24S x x dx x x =-=-=(2)1100()()1x x S e e dx ex e =-=-=⎰2、(1)2()()(100020)C Q C Q dQ Q Q dQ '==-+⎰⎰2311000103Q Q Q c =-++(0)9000C = ,9000c ∴=, 321()10100090003C Q Q Q Q ∴=-++ ()3400R Q Q = 321()()()10240090003L Q R Q C Q Q Q Q =-=-++- (2)令()()R Q C Q ''=,得60Q = 最大利润(60)99000L =(元) 3、.期末考试(90分钟)一、选择题(每题3分,共9分)1、设()0, 0x f x k x ≠=⎪=⎩在0x =处连续,问k =( )。
经济数学基础试题及答案
![经济数学基础试题及答案](https://img.taocdn.com/s3/m/bfc1d7b0c850ad02df80415e.png)
1、若函数 f(x),g(x) 分别是 R 上的奇函数,偶函数,且知足f(x)-g(x)=ex,则有().[A]f(2)<f(3)<g(0)[B]g(0)<f(3)<f(2)[C] f(2)<g(0)<f(3) [D]g(0)<f(2)<f(3)[K] D[Q] 函数的弹性是函数对自变量的()[A]导数[B]变化率[C]相对变化率 [D] 微分 [K]C[Q] 以下论断正确的选项是()[A]可导极值点必为驻点[B]极值点必为驻点 [C] 驻点必为可导极值点 D、驻点必为极值点[K] A[Q] 设 A 为 4×5 矩阵,则齐次线性方程组AX=0 ()。
[A]无解[B] 只有零解[C] 有独一非零解[D] 有无量多组解[K] D[Q] 函数在x=0处连续,则k =( ) . [A]-2[B]-1[C]1 [D]2 [K] C[Q] 函数f(x)= 在点 x = 1 处的切线方程是() . [A]2y一x=1 [B]2y-x =2 [C]y-2x = 1 [D]y-2x =2 [K] A[Q]以下函数在区间 (- ∞, + ∞ ) 上单一减少的是 () . [A]cosx [B]2x[C]x2[D]3-x [K] D[Q]设矩阵 Am ×n, Bs×m,Cn× p,则以下运算能够进行的是().[A]BA[B]BC[C]AB[D]CB [K] A[Q] 设线性方程组AX =b 的增广矩阵经过初等行变换化为,则此线性方程组解的状况是().[A] 有独一解[B] 有无量多解[C] 无解 [D] 解的状况不定 [K] A[Q] 以下结论正确的选项是().[A]对角矩阵是数目矩阵[B] 数目矩阵是对称矩阵[C] 可逆矩阵是单位矩阵[D] 对称矩阵是可逆矩阵 [K] B[Q]在使用 IRR 时,应依照的准则是 ( ) 。
[A] 接受 IRR 大于公司要求的回报率的工程,拒绝 IRR 小于公司要求的回报率的工程[B] 接受 IRR 小于公司要求的回报率的工程,拒绝IRR 大于公司要求的回报率的工程[C] 接受IRR 等于公司要求的回报率的工程,拒绝 IRR 不等于公司要求的回报率的工程[D] 接受 IRR 不等于公司要求的回报率的工程,拒绝IRR 等于公司要求的回报率的工程 [K]A[Q] 一个可能的利润率值所占的概率越大,那么( )。
2019-2020年电大考试数学经济基础试题答案及答案
![2019-2020年电大考试数学经济基础试题答案及答案](https://img.taocdn.com/s3/m/9d4582b980eb6294dd886cc7.png)
《经济数学基础》真题一、填空题(每题3分,共15分)6.函数()f x =的定义域是 (,2](2,)-∞-+∞ .7.函数1()1xf x e =-的间断点是 0x =.8.若()()f x dx F x C =+⎰,则()x x e f e dx --=⎰()x F e c --+.9.设10203231A a ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,当a = 0 时,A 是对称矩阵。
10.若线性方程组12120x x x x λ-=⎧⎨+=⎩有非零解,则λ= -1 。
6.函数()2x xe ef x --=的图形关于 原点 对称.7.已知sin ()1xf x x=-,当x → 0时,()f x 为无穷小量。
8.若()()f x dx F x C =+⎰,则(23)f x dx -=⎰1(23)2F x c -+ .9.设矩阵A 可逆,B 是A 的逆矩阵,则当1()T A -= TB 。
10.若n 元线性方程组0AX =满足()r A n <,则该线性方程组 有非零解 。
6.函数1()ln(5)2f x x x =++-的定义域是 (5,2)(2,-+∞ . 7.函数1()1xf x e =-的间断点是 0x = 。
8.若2()22x f x dx x c =++⎰,则()f x =2ln 24x x +.9.设111222333A ⎡⎤⎢⎥=---⎢⎥⎢⎥⎣⎦,则()r A = 1 。
10.设齐次线性方程组35A X O ⨯=满,且()2r A =,则方程组一般解中自由未知量的个数为 3 。
6.设2(1)25f x x x -=-+,则()f x =x2+4 .7.若函数1sin 2,0(),0x x f x xk x ⎧+≠⎪=⎨⎪=⎩在0x =处连续,则k= 2 。
8.若()()f x dx F x c =+⎰,则(23)f x dx -=⎰1/2F(2x-3)+c.9.若A 为n 阶可逆矩阵,则()r A = n 。
2020年初级经济师《经济基础知识》试题及答案(卷二)
![2020年初级经济师《经济基础知识》试题及答案(卷二)](https://img.taocdn.com/s3/m/8ea4bfcc7cd184254a353573.png)
2020年初级经济师《经济基础知识》试题及答案(卷二)[试题1.单选题] 试题]下列数据特征的测度中,属于数值平均数的是( )A.几何平均数B.众数C.中位数D.极值答案: A解析:数值平均数主要有算术平均数、几何平均数等。
[试题2:单选题] [2019年真题]下列数据特征的测度中,适用于品质数据的是()。
A.众数B .几何平均数C.算术平均数D.方差答案: A解析:众数不仅适用于品质数据,也适用于数值型数据。
[试题 3.单选题]下列对数据特征的测度中,既适用于品质数据也适用于数值型数据的是( ) 。
A.离散系数B.众数C.算术平均数D.方差答案: B解析:众数反映集中趋势2非常直观,不仅适用于品质数据,也适用于数值型数据。
[试题4.单选题]不学附某企业在全国设有1 5个分公司, 2013年底这些分公司的员工人数(单位:人)分别为:15 17 17 18 19 19 20 21 22 22 22 22 22 23 26这组数据的众数是( ) 人A.22B.19C.21D.26答案: A解析:众数是一组数据中出现频数最多的那个数值本组数据中很明显22这个数值出现频数最多。
[试题5:单选题] [试题]下列数据特征的测度中,属于位置平均数的是( ) 。
A.几何平均数B .算术平均数C.中位数D .极差答案: C解析:位置平均数主要有众数、中位数等;数值平均数主要有算术平均数、几何平均数等。
[试题6.单选题] [2019年真题]2018年上学期,某大学经济学专业20名学生高等数学考试成绩(单位:分)分别为:49 52 52 59 60 63 70 72728081818585858585899093,这组数据的中位数和众数分别是()分。
A.80 80B.80 81C.80.5 85D.80.593答案: C解析:本题考查众数和中位数的应用。
该组数据为20个数,中位数= ( 80+81 ) /2=80.5 ,众数是一组数据中出现频数最多的那个数值,也是85。
2020年初级经济师《基础知识》真题
![2020年初级经济师《基础知识》真题](https://img.taocdn.com/s3/m/0cb5cba74128915f804d2b160b4e767f5acf80a4.png)
2020年初级经济师《基础知识》真题1.【单选题】下列关于社会经济规律,说法错误的是()。
A. 经济规律体现着社会经济活动的必然趋势B. 经济规律具有客观性C. 在一定的社会阶段中,各种经济规律是由于(江南博哥)生产力的内部联系而相互联系着,形成经济规律体系D. 任何经济规律都是不以人的主观意志为转移的正确答案:C参考解析:C项,在一定的社会阶段中,各种经济规律是由于生产关系的内部联系而相互联系着,形成经济规律体系。
2.【单选题】人类历史上最初的社会经济制度是()。
A. 原始社会制度B. 奴隶社会制度C. 封建社会制度D. 资本主义社会制度正确答案:A参考解析:社会经济制度的演变经历了五个阶段,即:①原始社会制度;②奴隶社会制度;③封建社会制度;④资本主义社会制度;⑤社会主义社会制度,其中,原始社会制度是人类历史上最初的社会经济制度。
3.【单选题】关于商品的使用价值和价值的说法,错误的是()。
A. 使用价值是能满足人类某种需要的属性B. 使用价值是商品交换价值和价值的物质承担者C. 商品作为价值,在质上是相同的,在量上是不可以比较的D. 商品是使用价值和价值的矛盾统一体正确答案:C参考解析:C项,商品作为使用价值,在质上各不相同,因而在量上也难以比较。
但是商品作为价值,在质上是相同的,在量上也是可以比较的。
4.【单选题】社会主义的根本任务是()。
A. 解放和发展生产力B. 消灭剥削,消除两极分化C. 缩小贫富差距,实现共同富裕D. 满足人民群众日益增长的物质文化需要正确答案:A参考解析:社会主义的根本任务是解放和发展生产力;社会主义的根本目的是消灭剥削、消除两极分化和实现共同富裕。
5.【单选题】现代企业制度的基本特征不包括()。
A. 产权清晰B. 权责明确C. 政企分开D. 统筹兼顾正确答案:D参考解析:现代企业制度是同社会化大生产和现代市场经济相适应的企业制度,它是以完善的企业法人制度为基础,以有限责任制度为特征,以公司制为主要的、典型的企业资本组织形式的新型企业制度。
2020年1月经济数学基础试卷及答案
![2020年1月经济数学基础试卷及答案](https://img.taocdn.com/s3/m/afac25b0b8f67c1cfad6b89a.png)
试卷代号:2006国家开放大学2019年秋季学期期末统一考试经济数学基础12 试题2020年1月导数基本公式 积分基本公式:0)('=C ⎰=c dx1')(-=αααxx c x dx x ++=+⎰11ααα)1且,0(ln )('≠>=a a a a a xx c aa dx a xx+=⎰ln x x e e =')(c e dx e x x +=⎰)1,0(ln 1)(log '≠>=a a ax x axx 1)(ln '=c x dxx +=⎰ln 1x x cos )(sin '= ⎰+=c x xdx sin cos x x sin )(cos '-=⎰+-=c x xdx cos sinxx 2'cos 1)(tan =⎰+=c x dx xtan cos 12xx 2'sin 1)(cot -= c x dx x+-=⎰cot sin 12一、单项选择题(每小题3分,共15分) xD e C x B xA x-+∞-∞3...sin .),(.12)上单调减少的是(下列函数在指定区间11sin .1sin .01sin .1..2lim lim lim lim====→→∞→→x x D x xC x x B xx A x x x x )(下列极限计算正确的是)(1.)1(ln .)2(2ln 12.)(cos sin ..3x d dx xD xd xdx C d dx B x d xdx A x x ====)下列等式成立的是(.1.4.3.)(1-02353-1-10472-.431D C B A a A A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=的元,则设矩阵5、若线性方程组AX=O 只有零解,则线性方程组AX=b( ) A 、有唯一解 B 、有无穷多解 C 、无解 D 、解不能确定 二、填空题(每小题3分,共15分)的定义域是函数)1ln(1.6x xy +-=⎰=dx x ,)sin .7(⎰⎰=++=dx x f C x F dx x f )12()()(.8,则若的秩是矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=43-11-0211-1.9A10、线性方程组AX=b 有解的充分必要条件就是三、微积分计算题(每小题10分,共20分)'2cos .112y x ey x ,求设+=-..1241dx xex⎰计算定积分四、线性代数计算题(每小题15分,共30分).)(1223103341201.131-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=B A B A T ,求,设.3231224.14321321321有解,并求一般解为何值时,线性方程组求⎪⎪⎩⎪⎪⎨⎧=+-=--=+-λλx x x x x x x x x五、应用题(本题20分)15、设生产某种产品q 个单位时的成本函数为C(q)=100+0、25q 2+6q(万元)、 求:①q=10时的总成本、平均成本与边际成本;②产量q 为多少时,平均成本最小、 参考答案一、单项选择题(每小题5分,共15分) 1、D 2、C 3、B 4、A 5、D 二、填空题(每小题5分,共15分)6、]1,00,1-()(7、sinx+C C x F ++)12(21.8 9、 2 )()(.10A r A r =三、微积分计算题(每小题10分,共20分)x xe x x x e y x x 2sin 22)2(2sin )(.1122''2'--=--=--解: e e ex d e dx xexx x2222.122414141-===⎰⎰解:四、线性代数计算题(每小题15分,共30分)[]⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--→⎥⎦⎤⎢⎣⎡--→⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡--=-1325)(13102501131001211053012153211223103310421.131B A I B AB A T TT 因此,解: .3915.303-3-0003-9-101-5-016-9-103-9-10241-132-311-1-2241-1.1433231是自由未知量,其中方程组的一般解为时,方程组有解即因此,当变换,可得解:对增广矩阵做初等x x x x x ⎪⎩⎪⎨⎧-=-===⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡λλλλλ五、应用题(本题20分).20.20(20025.0100)(625.0100)()(./11)65.0)10(/5.1810)10()10(1851061025.0100)10(10.152'10'2时,可使平均成本最小因此,当产量舍去),解得唯一驻点令,②因为单位)(万元(边际成本为单位),(万元平均成本为(万元),时的总成本为解:①当=-===+-=++===+====⨯+⨯+===q q q q q C q qq q C q C q C C C C q q。
2020年国家开放大学电大考试经济数学考题题库及答案
![2020年国家开放大学电大考试经济数学考题题库及答案](https://img.taocdn.com/s3/m/6b232dd4be23482fb5da4c8f.png)
经济数学基础形成性考核册参考答案部分题目与答案符号在预览界面看不清,下载后再打开就可以看清了 作业一(一)填空题 1.___________________sin lim 0=-→xx x x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =+1在)2,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 25.设x x x f sin )(=,则__________)2π(=''f .答案:2π-(二)单项选择题1. 当x →+∞时,下列变量为无穷小量的是(D ) A .ln(1)x + B .21x x + C .21x e - D .sin x x2. 下列极限计算正确的是(B ) A.1lim 0=→x xx B.1lim 0=+→x x x C.11sin lim 0=→x x x D.1sin lim =∞→xx x 3. 设y x =lg2,则d y =(B ).A .12d x xB .1d x x ln10C .ln10x x dD .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠ C .函数f (x )在点x 0处连续 D .函数f (x )在点x 0处可微5.若1()f x x=,()f x '=(B ).A .21xB .21x - C .1x D .1x - (三)解答题1.计算极限(1)21123lim 221-=-+-→x x x x (2)218665lim 222=+-+-→x x x x x (3)2111lim 0-=--→x x x (4)31423532lim 22=+++-∞→x x x x x (5)535sin 3sin lim 0=→x x x (6)4)2sin(4lim 22=--→x x x 2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x x x a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在?(2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在;(2)当1==b a 时,)(x f 在0=x 处连续。
经济数学基础习题答案
![经济数学基础习题答案](https://img.taocdn.com/s3/m/4192df0f2a160b4e767f5acfa1c7aa00b42a9d41.png)
经济数学基础习题答案经济数学基础习题答案在学习经济学时,经济数学是一个必不可少的工具。
它帮助我们理解和分析经济现象,并提供了解决经济问题的方法。
然而,在学习经济数学时,我们经常会遇到一些难题,需要用到一些特定的技巧和方法。
在本文中,我将为你提供一些经济数学基础习题的答案,希望能帮助你更好地理解和应用这些知识。
1. 需求曲线和供给曲线的交点是市场均衡点。
求解市场均衡价格和数量。
答案:市场均衡点是需求曲线和供给曲线的交点。
需求曲线表示消费者对商品的需求量,供给曲线表示生产者提供的商品数量。
市场均衡价格是指消费者愿意购买的商品数量等于生产者愿意提供的商品数量时的价格。
市场均衡数量是指在市场均衡价格下,消费者愿意购买的商品数量等于生产者愿意提供的商品数量。
2. 计算弹性需求的公式是什么?如果价格上涨10%,需求量下降20%,该商品的价格弹性是多少?答案:弹性需求的公式是:价格弹性 = (需求量变化的百分比)/(价格变化的百分比)。
根据题目中的数据,需求量下降20%,价格上涨10%。
所以,价格弹性 = -20% / 10% = -2。
这意味着该商品的价格弹性为-2,即价格上涨10%,需求量下降20%。
3. 计算边际效用的公式是什么?如果某人消费第一个苹果的边际效用是10,第二个苹果的边际效用是8,第三个苹果的边际效用是6,那么他消费第四个苹果的边际效用是多少?答案:边际效用是指消费一个额外单位的商品所带来的额外满足感。
计算边际效用的公式是:边际效用 = (总效用变化)/(消费量变化)。
根据题目中的数据,第一个苹果的边际效用是10,第二个苹果的边际效用是8,第三个苹果的边际效用是6。
所以,第四个苹果的边际效用 = (6-8)/(3-2)= -2。
这意味着消费第四个苹果的边际效用是-2。
4. 计算利润的公式是什么?如果某公司的总收入是1000,总成本是800,那么该公司的利润是多少?答案:利润是指企业在生产和销售商品过程中所获得的净收益。
2020年国家开放大学电大数学经济基础试题答案题库
![2020年国家开放大学电大数学经济基础试题答案题库](https://img.taocdn.com/s3/m/e99f0998c1c708a1294a444d.png)
《经济数学基础》真题一、填空题(每题3分,共15分)6.函数()f x =的定义域是 (,2](2,)-∞-+∞U .7.函数1()1xf x e =-的间断点是 0x =.8.若()()f x dx F x C =+⎰,则()x x e f e dx --=⎰()x F e c --+.9.设10203231A a ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,当a = 0 时,A 是对称矩阵。
10.若线性方程组12120x x x x λ-=⎧⎨+=⎩有非零解,则λ= -1 。
6.函数()2x xe ef x --=的图形关于 原点 对称.7.已知sin ()1xf x x=-,当x → 0时,()f x 为无穷小量。
8.若()()f x dx F x C =+⎰,则(23)f x dx -=⎰1(23)2F x c -+ .9.设矩阵A 可逆,B 是A 的逆矩阵,则当1()T A -= TB 。
10.若n 元线性方程组0AX =满足()r A n <,则该线性方程组 有非零解 。
6.函数1()ln(5)2f x x x =++-的定义域是 (5,2)(2,)-+∞U . 7.函数1()1xf x e =-的间断点是 0x = 。
8.若2()22x f x dx x c =++⎰,则()f x =2ln 24x x +.9.设111222333A ⎡⎤⎢⎥=---⎢⎥⎢⎥⎣⎦,则()r A = 1 。
10.设齐次线性方程组35A X O ⨯=满,且()2r A =,则方程组一般解中自由未知量的个数为 3 。
6.设2(1)25f x x x -=-+,则()f x =x2+4 .7.若函数1sin2,0 (),0x xf x xk x⎧+≠⎪=⎨⎪=⎩在0x=处连续,则k= 2 。
8.若()()f x dx F x c=+⎰,则(23)f x dx-=⎰1/2F(2x-3)+c .9.若A为n阶可逆矩阵,则()r A=n 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试卷代号:2006
国家开放大学2019年秋季学期期末统一考试
经济数学基础12 试题
2020年1月
导数基本公式 积分基本公式:
0)('=C ⎰=c dx
1
'
)(-=αααx
x c x dx x ++=
+⎰1
1
ααα
)1且,0(ln )('
≠>=a a a a a x
x c a
a dx a x
x
+=
⎰ln x x e e =')(
c e dx e x x +=⎰
)1,0(ln 1
)(log '≠>=
a a a
x x a
x
x 1
)(ln '=
c x dx
x +=⎰ln 1
x x cos )(sin '= ⎰+=c x xdx sin cos x x sin )(cos '-=
⎰+-=c x xdx cos sin
x
x 2
'cos 1
)(tan =
⎰+=c x dx x
tan cos 1
2
x
x 2
'sin 1
)(cot -
= c x dx x
+-=⎰
cot sin 1
2
一、单项选择题(每小题3分,共15分) x
D e C x B x
A x
-+∞-∞3...sin .),(.12)
上单调减少的是(
下列函数在指定区间
1
1
sin .1
sin .0
1
sin .1
..2lim lim lim lim
====→→∞→→x x D x x
C x x B x
x A x x x x )
(下列极限计算正确的是
)
(1.)1
(ln .)2(2ln 12.)(cos sin ..3x d dx x
D x
d xdx C d dx B x d xdx A x x ===
=)
下列等式成立的是(
.1
.4
.3
.)(1-02353-1-10472-.431D C B A a A A =⎥⎥
⎥⎦⎤
⎢⎢⎢⎣⎡=的元,则设矩阵
5.若线性方程组AX=O 只有零解,则线性方程组AX=b( ) A.有唯一解 B.有无穷多解 C.无解 D.解不能确定 二、填空题(每小题3分,共15分)
的定义域是
函数)
1ln(1.6x x
y +-=
⎰=
dx x ,)sin .7(
⎰⎰=
++=dx x f C x F dx x f )12()()(.8,则若
的秩是矩阵⎥⎥
⎥⎦
⎤
⎢⎢⎢⎣⎡=43-11-0211-1.9A
10.线性方程组AX=b 有解的充分必要条件是
三、微积分计算题(每小题10分,共20分)
'
2cos .112
y x e
y x ,求设+=-
..124
1
dx x
e
x
⎰
计算定积分
四、线性代数计算题(每小题15分,共30分)
.)(1223103341201.131-⎥⎥
⎥⎦
⎤
⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=B A B A T ,求,设
.3231224.14321321321有解,并求一般解
为何值时,线性方程组求⎪⎪⎩⎪
⎪⎨⎧=+-=--=+-λ
λx x x x x x x x x
五、应用题(本题20分)
15.设生产某种产品q 个单位时的成本函数为C(q)=100+0.25q 2+6q (万元). 求:①q=10时的总成本、平均成本和边际成本;②产量q 为多少时,平均成本最小. 参考答案
一、单项选择题(每小题5分,共15分) 1.D 2.C 3.B 4.A 5.D
二、填空题(每小题5分,共15分)
6.]1,00,1-()(
7.sinx+C C x F ++)12(2
1
.8 9. 2 )()(.10A r A r =
三、微积分计算题(每小题10分,共20分)
x xe x x x e y x x 2sin 22)2(2sin )(.112
2''2'--=--=--解: e e e
x d e dx x
e
x
x x
2222.12241
4
1
4
1-===⎰⎰
解:
四、线性代数计算题(每小题15分,共30分)
[]
⎥⎦
⎤⎢⎣⎡--=⎥
⎦
⎤
⎢⎣⎡--→⎥⎦⎤⎢⎣⎡--→⎥⎦⎤⎢⎣⎡=⎥⎦
⎤⎢⎣⎡=⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡--=-1325)
(13102501131001211053012153211223103310421.131
B A I B A
B A T T
T 因此,解: .3
915.
303-3-0003-9-101-5-016-9-103-9-10241-132-311-1-2241-1.1433231是自由未知量,其中方程组的一般解为时,方程组有解即因此,当变换,可得
解:对增广矩阵做初等x x x x x ⎪⎩⎪⎨
⎧-=-===⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡λλλλλ
五、应用题(本题20分)
.
20.20(20025.0100
)(625.0100
)()(./11)65.0)10(/5.1810
)
10()10(1851061025.0100)10(10.152
'
10'2时,可使平均成本最小因此,当产量舍去),解得唯一驻点令,②因为单位)(万元(边际成本为单位),(万元平均成本为(万元),时的总成本为
解:①当=-===+-
=++===+===
=⨯+⨯+===q q q q q C q q
q q C q C q C C C C q q。