2 第2讲 磁场性质及带电粒子在磁场中的运动

2 第2讲 磁场性质及带电粒子在磁场中的运动
2 第2讲 磁场性质及带电粒子在磁场中的运动

第2讲磁场性质及带电粒子在磁场中的运动

真题再现

(多选)(2019·高考江苏卷)如图所示,在光滑的水平桌面上,a和b

是两条固定的平行长直导线,通过的电流强度相等.矩形线框位

于两条导线的正中间,通有顺时针方向的电流,在a、b产生的磁

场作用下静止.则a、b的电流方向可能是()

A.均向左B.均向右

C.a的向左,b的向右D.a的向右,b的向左

解析:选CD.若a、b的电流方向均向左,根据安培定则和磁场叠加可知,a直导线到a、b 直导线正中间部分的磁场方向垂直纸面向外,而b直导线到a、b直导线正中间部分的磁场方向垂直纸面向里,再根据左手定则可知,矩形线框受到的安培力的合力不为零,与题中线框在磁场作用下静止不符;同理,若a、b的电流方向均向右,可知矩形线框受到的安培力的合力不为零,与题中线框在磁场作用下静止也不符,选项A、B均错误;若a的电流方向向左、b的电流方向向右,根据安培定则和磁场的叠加可知,a、b直导线在a、b直导线中间所有空间产生的磁场方向均垂直纸面向外,根据左手定则可知,矩形线框受到的安培力的合力为零,与题中线框在磁场作用下静止相符;同理,若a的电流方向向右、b的电流方向向左,根据安培定则和磁场的叠加可知,a、b直导线在a、b直导线中间所有空间产生的磁场方向均垂直纸面向里,根据左手定则可知,矩形线框受到的安培力的合力为零,与题中线框在磁场作用下静止相符,选项C、D均正确.

考情分析

命题研究

分析近几年高考试题可以看出,对磁场性质和带电粒子在匀强磁场中的运动的考查是高考热点,涉及磁场知识点的题目年年都有,考查与洛伦兹力有关的带电粒子在有界匀强磁场中的

运动最多,一般为匀强磁场中的临界、极值问题,其次是与安培力有关的通电导体在磁场中的加速或平衡问题;高考命题仍会将带电粒子在匀强磁场中的运动作为重点,可能与电场相结合,也可能将对安培力的考查与电磁感应相结合,要熟练掌握磁场中曲线运动的分析方法及临界圆的画法

磁场对带电体的作用

【高分快攻】

1.磁场性质分析的两点技巧

(1)判断电流磁场要正确应用安培定则,明确大拇指、四指所指的方向及手掌的放法.

(2)分析磁场对电流的作用要做到“一明、一转、一析”.即:

2.安培力作用下的平衡与运动问题的求解思路

【典题例析】

如图,在磁感应强度大小为B 0的匀强磁场中,两长直导线P 和Q 垂直于纸面固定放置,两者之间的距离为l .在两导线中均通有方向垂直于纸面向里的电流I 时,纸面内与两导线距离均为l 的a 点处的磁感应强度为零.如果让P 中的电流反向、其他条件不变,则a 点处磁感应强度的大小为( )

A .0

B .33B 0 C.233B 0 D .2B 0

[解析] 导线P 和Q 中电流I 均向里时,设其在a 点产生的磁感应强度

大小B P=B Q=B1,如图所示,则其夹角为60°,它们在a点的合磁场的磁感应强度平行于PQ向右、大小为3B1.又根据题意B a=0,则B0=3B1,且B0平行于PQ向左.若P中电流反向,则B P反向、大小不变,B Q和B P大小不变,夹角为120°,合磁场的磁感应强度大

小为B′1=B1(方向垂直PQ向上、与B0垂直),a点合磁场的磁感应强度B=B20+B′21=23

3

B0,则A、B、D项均错误,C项正确.

[答案] C

【题组突破】

1.(多选)如图所示是小丽自制的电流表原理图.质量为m的均匀细金属杆MN与一竖直悬挂的绝缘轻质弹簧相连,弹簧劲度系数为k, 在边长ab=L1、bc=L2的矩形区域abcd 内有匀强磁场,磁感应强度大小为B,方向垂直于纸面向外.MN的右端连接一绝缘轻指针,可指示出标尺上的刻度,MN的长度大于ab.当MN中没有电流通过且MN处于静止状态时,MN与ab边重合,且指针指在标尺的零刻度处;当MN中有电流时,指针示数可表示电流大小.MN始终在纸面内且保持水平,重力加速度g.则()

A.要使电流表正常工作,金属杆中电流方向应从M至N

B.当该电流表的示数为零时,弹簧的伸长量为零

C.该电流表的最大量程是I m=kL2 BL1

D.该电流表的刻度在0~I m范围内是不均匀的

解析:选AC.要使电流表能正常工作,金属杆受到的安培力的方向应竖直向下,根据磁

场的方向和左手定则可知,金属杆中电流方向应从M至N,选项A正确;当该电流表的示数为零时,说明金属杆中电流为零,此时金属杆受竖直向下的重力和竖直向上的弹力作用,根据平衡条件和胡克定律可知,kx=mg,弹簧的伸长量为x=mg

k,选项B错误;根据平衡

条件和胡克定律可知,k(x+L2)=mg+BI m L1,解得I m=kL2

BL1,即该电流表的最大量程为I m

=kL2

BL1,选项C正确;根据平衡条件和胡克定律可知,k(x+l)=mg+BIL1,解得I=

k

BL1

·l,

即该电流表的刻度在0~I m范围内是均匀的,选项D错误.

2.(多选)某同学自制的简易电动机示意图如图所示.矩形线圈由一根漆包线绕制而成,漆包线的两端分别从线圈的一组对边的中间位置引出,并作为线圈的转轴.将线圈架在两个金属支架之间,线圈平面位于竖直面内,永磁铁置于线圈下方.为了使电池与两金属支架连接后线圈能连续转动起来,该同学应将( )

A .左、右转轴下侧的绝缘漆都刮掉

B .左、右转轴上下两侧的绝缘漆都刮掉

C .左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉

D .左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉

解析:选AD.如果将左、右转轴下侧的绝缘漆都刮掉,则线圈在安培力作用下转动起来,每转一周安培力驱动一次,可保证线圈不断地转动,A 项正确;如果左、右转轴上下侧的绝缘漆均刮掉,不能保证线圈持续转动下去,B 项错误;如果仅左转轴的上侧绝缘漆刮掉,右转轴的下侧绝缘漆刮掉,则线圈中不可能有电流,因此线圈不可能转动,C 项错误;如果左转轴上下侧的绝缘漆均刮掉,右转轴仅下侧的绝缘漆刮掉效果与A 项相同,因此D 项正确.

带电粒子在匀强磁场中的运动

【高分快攻】

1.“一点、两画、三定、四写”求解粒子在磁场中的圆周运动

(1)一点:在特殊位置或要求粒子到达的位置(如初始位置、要求经过的某一位置等).

(2)两画:画出速度v 和洛伦兹力F 两个矢量的方向.

(3)三定:定圆心、定半径、定圆心角.

(4)四写:写出基本方程qvB =m v 2R ,半径R =mv qB ,周期T =2πR v =2πm qB ,运动时间t =s v

=α2π

T . 2.常见模型的解题思路

(1)解答有关运动电荷在有界匀强磁场中的运动问题时,我们可以先将有界磁场视为无界磁场,假设粒子能够做完整的圆周运动,确定粒子做圆周运动的圆心,作好辅助线,充分利用相关几何知识解题.

(2)对称规律解题法

①从直线边界射入的粒子,又从同一边界射出时,速度与边界的夹角相等(如图甲所示).

②在圆形磁场区域内,沿半径方向射入的粒子,一定沿半径方向射出(如图乙所示).

【典题例析】

(2019·高考全国卷Ⅱ)如图,边长为l 的正方形abcd 内存在匀强磁场,磁感应强度大小为B 、方向垂直于纸面(abcd 所在平面)向外.ab 边中点有一电子发射源O ,可向磁场内沿垂直于ab 边的方向发射电子.已知电子的比荷为k .则从a 、d 两点射出的电子的速度大小分别为( )

A.14kBl ,54

kBl B .14kBl ,54kBl C.12kBl ,54kBl D .12kBl ,54

kBl [解析] 电子从a 点射出时,其轨迹半径为r a =l 4

,由洛伦兹力提供向心力,有ev a B =m v 2a r a ,又e m =k ,解得v a =kBl 4

;电子从d 点射出时,由几何关系有r 2d =l 2+????r d -l 22,解得轨迹半径为r d =5l 4,由洛伦兹力提供向心力,有ev d B =m v 2d r d ,又e m =k ,解得v d =5kBl 4

,选项B 正确.

[答案] B

【题组突破】

角度1 带电粒子在无边界匀强磁场中的运动分析

1.(2019·徐州二模)如图所示,匀强磁场垂直于纸面,磁感应强度大小为B ,一群比荷为q m 、速度大小为v 的离子以一定发散角α由原点O 出射,y 轴正好平分该发散角,离子束偏转后打在x 轴上长度为L 的区域MN 内,则cos α2

为( )

A .1-BqL 4mv

B .12-BqL 4mv

C .1-BqL 2mv

D .1-BqL mv

解析:选C.根据洛伦兹力提供向心力,有qvB =m v 2R ,得R =mv qB

,离子通过M 、N 点的轨迹如图所示,由几何关系知MN =ON -OM ,过M 点的两圆圆心与原点连线与x 轴夹角为α2,圆心在x 轴上的圆在O 点时的速度沿y 轴正方向,由几何关系可知L =2R -2R cos α2

,解得cos α2=1-BqL 2mv

,故选项C 正确.

角度2 带电粒子在圆形边界磁场中的运动分析

2.(多选)如图,虚线所示的圆形区域内存在一垂直于纸面的匀强磁场,P

为磁场边界上的一点,大量相同的带电粒子以相同的速率经过P 点,在纸面内

沿不同方向射入磁场.若粒子射入速率为v 1,这些粒子在磁场边界的出射点分

布在六分之一圆周上;若粒子射入速率为v 2,相应的出射点分布在三分之一圆周上.不计重力及带电粒子之间的相互作用.则v 2∶v 1为( )

A.3∶2

B .2∶1 C.3∶1 D .3∶ 2

解析:选C.由于是相同的粒子,粒子进入磁场时的速度大小相同,由qvB =m v 2R 可知,R =mv qB ,即粒子在磁场中做圆周运动的半径相同.若粒子运动的速度大小为v 1,如图所示,通过旋转圆可知,当粒子的磁场出射点A 离P 点最远时,则AP =2R 1;同样,若粒子运动的速度大小为v 2,粒子的磁场出射点B 离P 点最远时,则BP =2R 2,由几何关系可知,R 1=R 2,R 2=R cos 30°=32R ,则v 2v 1=R 2R 1

=3,C 项正确.

角度3 带电粒子在有边界磁场中的运动分析

3.(2019·镇江模拟)平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM 上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外.一带电粒子的质量为m ,电荷量为q (q >0).粒子沿纸面以大小为v 的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角.已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场.不计重力.粒子离开磁场的出射点到两平面交线O 的距离为( )

A.mv 2qB

B .3mv qB C.2mv qB D .4mv qB

解析:选D.如图所示为粒子在匀强磁场中的运动轨迹示意图,设

出射点为P ,粒子运动轨迹与ON 的交点为Q ,粒子入射方向与OM 成

30°角,则射出磁场时速度方向与OM 成30°角,由几何关系可知,PQ

⊥ON ,故出射点到O 点的距离为轨迹圆直径的2倍,即4R ,又粒子在匀强磁场中运动的轨

迹半径R =mv qB

,所以D 正确.

命题角度 解决方法 易错辨析

带电粒子在直线边界型磁场中的运动对称法

遵循进入磁场的角度和出磁

场的角度相同的原则

带电粒子在圆形边界磁场中

的运动

准确找到圆心、入射半径方

向,利用垂线法确定对应的圆

心角

若粒子沿半径方向射入磁场,

则一定会沿半径方向射出磁

场;否则不满足此条规律

带电粒子在三角形边界磁场

中的运动

切线法、临界值法

在磁场中运动的临界条件是

准确找到与边界相切的条件,

以此判断圆周运动的临界半

径的大小

带电粒子在匀强磁场中的匀

速圆周运动

中垂线法或速度切线法确定

圆心和半径方向,利用公式确

定周期和半径的大小

能熟练画出粒子的运动轨迹

并准确找到圆心、半径、圆心

角是解题的关键

带电粒子在磁场中运动的周期性多解问题和临界问题

【高分快攻】

1.求解临界、极值问题的“两思路、两方法”

2.带电粒子在磁场中运动的多解问题的处理方法

(1)方法技巧

①认真读题,逐一确认形成多解的各种因素.

②画出粒子运动的可能轨迹,并确定其圆心、半径的可能情况.

③对于圆周运动的周期性形成的多解问题,要注意系列解出现的可能,要注意每种解出现的条件,并寻找相关的通项公式.

(2)带电粒子在交变磁场中运动的多解问题

分析带电粒子在交变磁场中的运动,首先必须明确粒子运动的周期与磁场变化的周期之间的关系,正确作出粒子在磁场中随磁场变化的运动轨迹图,然后灵活运用粒子做圆周运动的规律进行解答,要特别注意对题目中隐含条件的挖掘,分析不确定因素可能形成的多解,力求使解答准确、完整.

【典题例析】

(2019·高考江苏卷)如图所示,匀强磁场的磁感应强度大小为B .磁场中的水平绝缘薄板与磁场的左、右边界分别垂直相交于M 、N ,MN =L ,粒子打到板上时会被反弹(碰撞时间极短),反弹前后水平分速度不变,竖直分速度大小不变、方向相反.质量为m 、电荷量为-q 的粒子速度一定,可以从左边界的不同位置水平射入磁场,在磁场中做圆周运动的半径为d ,且d

(1)求粒子运动速度的大小v ;

(2)欲使粒子从磁场右边界射出,求入射点到M 的最大距离d m ;

(3)从P 点射入的粒子最终从Q 点射出磁场,PM =d ,QN =d 2

,求粒子从P 到Q 的运动时间t .

[解析] (1)粒子的运动半径d =m v qB

解得v =qBd m

. (2)如图所示,粒子碰撞后的运动轨迹恰好与磁场左边界相切

由几何关系得d m =d (1+sin 60°)

解得d m =2+32

d . (3)粒子的运动周期T =2πm qB

设粒子最后一次碰撞射出磁场的时间为t ′,则

t =n T 4+t ′(n =1,3,5,…) (a)当L =nd +(1-32

)d 时,粒子斜向上射出磁场 t ′=112T ,解得t =(L d +33-46)πm 2qB

(b)当L =nd +(1+32

)d 时,粒子斜向下射出磁场 t ′=512T ,解得t =(L d -33-46)πm 2qB

. [答案] (1)qBd m (2)2+32

d (3)见解析 【题组突破】

角度1 带电粒子在磁场中运动的临界问题

1.(2019·常州一模)如图所示,在直角三角形abc 区域内存在垂直于纸面向外的匀强磁场,磁感应强度大小为B ,∠a =60°,∠b =90°,边长ab =L ,粒子源在b 点将带负电的粒子以大小、方向不同的速度射入磁场,已知粒子质量为m ,电荷量为q ,则在磁场中运动时间最长的粒子中,速度最大值是( )

A.qBL 2m

B .qBL 3m C.3qBL 2m D .3qBL 3m

解析:选D.由左手定则和题意知,沿ba 方向射出的粒子在三角形磁场区域内转半周,运动时间最长,速度最大的轨迹恰与ac 相切,轨迹如图所示,由几何关系可得最大半径:r

=ab ×tan 30°=33L ,由洛伦兹力提供向心力qv m B =m v 2m r ,从而求得最大速度:v m =3qBL 3m

,所以选项A 、B 、C 错误,选项D 正确.

角度2 带电粒子在磁场中运动的多解问题

2.如图所示,M 、N 为水平放置的彼此平行的不带电的两块平板,

板的长度和板间距离均为d ,在两板间有垂直于纸面方向的匀强磁场,

在距上板d 3

处有一质量为m 、电荷量为q 的带正电的粒子(不计重力),以初速度v 0水平射入磁场,若使粒子不能射出磁场,求磁场的方向和磁感应强度B 的大小范

围.

解析:第一种情况:

当磁场方向垂直纸面向里时,若粒子从左侧上板边缘飞出,则粒子做圆周运动的半径R 1=12·d 3=d 6 由qv 0B 1=m v 20R 1得:B 1=6mv 0qd

若粒子从右侧上板边缘飞出,其运动轨迹如图甲所示,

设粒子做圆周运动的半径为R 2,则:

R 22=????R 2-d 32

+d 2, 解得:R 2=53

d 由qv 0B 2=m v 20R 2得:B 2=3mv 05qd

所以当磁场方向垂直纸面向里时,粒子不能射出两板间的磁感应强度的范围为

3mv 05qd <B <6mv 0qd

. 第二种情况:

当磁场方向垂直纸面向外时,若粒子从左侧下板边缘飞出,则粒子做圆周运动的半径R 3=12·23d =d 3

由qv 0B 3=m v 20R 3得:B 3=3mv 0qd

若粒子从右侧下板边缘飞出,其运动轨迹如图乙所示,

设粒子做圆周运动的半径为R 4,则:

R 24=????R 4-23d 2

+d 2, 解得:R 4=1312

d 由qv 0B 4=m v 20R 4得:B 4=12mv 013qd

所以当磁场方向垂直纸面向外时,粒子不能射出两板间的磁感应强度的范围为12mv 013qd

B <3mv 0qd

. 答案:磁场垂直纸面向里时,3mv 05qd <B <6mv 0qd

磁场垂直纸面向外时,12mv 013qd <B <3mv 0qd

分析带电粒子在磁场中做匀速圆周运动的临界问题时,通常以题目中的“恰好”“最高”“最长”“至少”等为突破口,将不确定的物理量推向极端(如极大、极小,最上、最下,最左、最右等),结合几何关系分析得出临界条件,列出相应方程求解结果.

(1)常见的三种几何关系

①刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.

②当速率v 一定时,弧长(或弦长)越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长.

③当速率v 变化时,圆心角大的,运动时间长.

(2)两种动态圆的应用方法

①如图甲所示,一束带负电的粒子以初速度v 垂直进入匀强磁场,若初速度v 方向相同,大小不同,所有粒子运动轨迹的圆心都在垂直于初速度方向的直线上,速度增大时,轨迹半径随之增大,所有粒子的轨迹组成一组动态的内切圆,与右边界相切的圆即为临界轨迹.

②如图乙所示,一束带负电的粒子以初速度v 垂直进入匀强磁场,若初速度v 大小相同,方向不同,则所有粒子运动的轨迹半径相同,但不同粒子的圆心位置不同,其共同规律是:所有粒子的圆心都在以入射点O 为圆心,以轨迹半径为半径的圆上,从而可以找出动态圆的圆心轨迹.利用动态圆可以画出粒子打在边界上的最高点和最低点.

(建议用时:40分钟)

一、单项选择题

1.(2019·高考北京卷)如图所示,正方形区域内存在垂直纸面的匀强磁场.一带电粒子垂直磁场边界从a 点射入,从b 点射出.下列说法正确的是( )

A .粒子带正电

B .粒子在b 点速率大于在a 点速率

C .若仅减小磁感应强度,则粒子可能从b 点右侧射出

D .若仅减小入射速率,则粒子在磁场中运动时间变短

解析:选C.由左手定则可知,粒子带负电,A 项错误;由于洛伦兹力不做功,故粒子

速率不变,B 项错误;粒子在磁场中运动轨迹半径R =mv qB

,若仅减小磁感应强度B 的大小,则R 变大,粒子可能从b 点右侧射出,C 项正确;若仅减小入射速率,则R 变小,粒子在磁场中的偏转角θ变大,t =θ2πT ,T =2πm qB

,粒子在磁场中的运动时间变长,D 项错误.

2.(2019·江南十校联考)如图所示的坐标系中,有两个半径均为r 的圆形线圈L 1、L 2,分别垂直于y 轴和x 轴放置,其圆心O 1和O 2的坐标分别为(0,3r )、(3r ,0),给线圈L 1通电流3I 0(从上向下看为逆时针方向),给线圈L 2通电流4I 0(从右向左看为逆时针方向).据相关电磁学理论可以知道,圆环形电流在其中心轴线上产生的磁感应强度为B =

μIr 2

2(r 2+Z 2)32

,其中μ为真空磁导率,I 为环中电流,r 为圆环半径,Z 为中心轴线上任意一

点到圆环圆心的距离.据此可推算出两通电线圈在坐标原点O 处产生的磁感应强度的大小和方向分别为( )

A.5μI 016r

,方向指向第一象限 B.5μI 08r

,方向指向第二象限 C.5μI 032r

,方向指向第三象限

D.5μI 0r 216r 32,方向指向第四象限 解析:选 A.根据B =μIr 22(r 2+Z 2)32

可知:线圈L 1在O 点产生的磁感应强度为:B 1=

3μI 0r 2

2[r 2+(3r )2]3

2=3μI 016r

,由右手螺旋定则可知方向沿y 轴正方向,线圈L 2在O 点产生的磁感应强度为:B 2=4μI 0r 22[r 2+(3r )2]

32=4μI 016r ,方向沿x 轴正方向,B 1和B 2方向垂直,所以O 点的磁感应强度为B =B 21+B 22=5μI 016r

,方向指向第一象限,选项A 正确. 3.如图所示,竖直平行边界MN 、PQ 间有垂直于纸面向里的匀强磁场,甲、乙两个完全相同的粒子(不计粒子的重力)在边界MN 上的C 点分别以垂直于磁场的速度进入磁场,速度方向与边界MN 的夹角分别为30°、45°,结果两个粒子均从边界PQ 上的D 点射出磁

场,C 、D 连线与两边界的垂线CE 的夹角θ=30°,则两粒子在磁场中运动的速度之比v 甲v 乙

及运动的时间之比t 甲t 乙

分别为(已知sin 15°=6-24,cos 15°=6+24)( )

A.

6-22 2 B .6+22 2 C.6-24 23 D .6+24 23

解析:选A.C 、D 两点间的距离记为L ,粒子的运动轨迹如图所示,则轨迹半径r =L 2cos (θ+α)

,轨迹所对的圆心角β=2(90°-θ-α)=120°-2α,结合r =mv qB 和T =2πm qB ,得v ∝1cos (30°+α),t =β360°T ∝(120°-2α),则v 甲v 乙=cos (30°+45°)cos (30°+30°)=6-22,t 甲t 乙

=120°-2×30°120°-2×45°

=2,选项A 正确.

4.(2019·常州联考)两相邻匀强磁场区域的磁感应强度大小不同、方向平行.一速度方向与磁感应强度方向垂直的带电粒子(不计重力),从较强磁场区域进入到较弱磁场区域后,粒子的( )

A .轨道半径减小,角速度增大

B .轨道半径减小,角速度减小

C .轨道半径增大,角速度增大

D .轨道半径增大,角速度减小

解析:选D.分析轨道半径:带电粒子从较强磁场区域进入到较弱磁场区域后,粒子的

速度v 大小不变,磁感应强度B 减小,由公式r =mv qB 可知,轨道半径增大.分析角速度:由公式T =2πm qB 可知,粒子在磁场中运动的周期增大,根据ω=2πT

知角速度减小,选项D 正确. 5.(2019·苏州二模)一圆筒处于磁感应强度大小为B 的匀强磁场中,磁

场方向与筒的轴平行,筒的横截面如图所示.图中直径MN 的两端分别开

有小孔,筒绕其中心轴以角速度ω顺时针转动.在该截面内,一带电粒子

从小孔M 射入筒内,射入时的运动方向与MN 成30°角.当筒转过90°

时,该粒子恰好从小孔N 飞出圆筒.不计重力.若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为( )

A.ω3B

B .ω2B C.ωB D .2ωB

解析:选A.由题可知,粒子在磁场中做圆周运动的轨迹如图所示,

由几何关系可知,粒子在磁场中做圆周运动的圆弧所对的圆心角为30°,

因此粒子在磁场中运动的时间为t =112×2πm qB

,粒子在磁场中运动的时间与筒转过90°所用的时间相等,即πm 6qB =14×2πω,求得q m =ω3B

,A 项正确. 6.在空间中有一如图所示边界垂直纸面向里、磁感应强度为B 的匀强磁场,已知P 、

Q 、O 为边长为L 的等边三角形的三个顶点,两个带电粒子甲和乙分别从P 点垂直PO 方向射入匀强磁场中,甲从PO 边的M 点射出磁场,乙从QO 边的N 点射出磁场,已知PM =2MO ,QN =NO ,据此可知( )

A .若两个带电粒子的比荷相同,则甲、乙两个带电粒子射入磁场时的速度大小之比为1∶2

B .若两个带电粒子的动能相同,则甲、乙两个带电粒子所带电荷量之比为3∶2

C .若两个带电粒子的带电荷量相同,则甲、乙两个带电粒子射入磁场时的动量大小之比为3∶2

D .若两个带电粒子的比荷相同,则甲、乙两个带电粒子在磁场中运动的时间之比为3∶2 解析:选D .根据题述,画出两个带电粒子在磁场区域中运动的轨

迹,如图所示,由几何关系可知,r 甲=13L ,r 乙=12L .由qvB =m v 2r

,解得r =mv qB =p qB .若两个带电粒子的比荷 q m 相同,由r =mv qB

可知,甲、乙两个带电粒子射入磁场时的速度大小之比等于轨迹半径之比,即v 甲∶v 乙=r 甲∶r 乙=2∶3,选

项A 错误;若两个带电粒子的动能相同,由r =mv qB =2mE k qB

可知,甲、乙两个带电粒子所带电荷量的比值为q 甲q 乙=m 甲m 乙 ·r 乙r 甲=32m 甲m 乙

,选项B 错误;若两个带电粒子所带电荷量q 相同,由r =mv qB =p qB

可知,甲、乙两个带电粒子射入磁场时的动量大小之比等于轨迹半径之比,即p 甲∶p 乙=r 甲∶r 乙=2∶3,选项C 错误;若两个带电粒子的比荷相同,则由T =2πm qB

可知两粒子在磁场中运动的周期相同,带电粒子甲在磁场区域中运动轨迹圆弧所对圆心角为

180°,在磁场中运动的时间为T 2

;带电粒子乙在磁场区域中运动轨迹圆弧所对圆心角为120°,在磁场中运动的时间为T 3

,则甲、乙两个带电粒子在磁场中运动的时间之比为t 甲∶t 乙=3∶2,选项D 正确.

7.(2019·盐城质检)如图所示,在半径为R 的圆形区域内充满磁感应强度为B 的匀强磁场,MN 是一竖直放置的感光板,从圆形磁场最高点P 垂直磁场射入大量的带正电、电荷量为q 、质量为m 、速度为v 的粒子,不考虑粒子间的相互作用力,关于这些粒子的运动,以下说法正确的是( )

A .只要对着圆心入射,出射后均可垂直打在MN 上

B .对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心

C .对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长

D .只要速度满足v =qBR m ,沿不同方向入射的粒子出射后均可垂直打在MN 上 解析:选D.对着圆心入射的粒子,出射后不一定垂直打在MN 上,与粒子的速度有关,故A 错误;带电粒子的运动轨迹是圆弧,根据几何知识可知,对着圆心入射的粒子,其出射方向的反向延长线也一定过圆心,故B 错误;对着圆心入射的粒子,速度越大在磁场中

轨迹半径越大,弧长越长,轨迹对应的圆心角越小,由t =θ2π

T 知,运动时间t 越小,故C 错误;速度满足v =qBR m 时,轨迹半径r =mv qB

=R ,入射点、出射点、O 点与轨迹的圆心构成菱形,射出磁场时的轨迹半径与最高点处的磁场半径平行,粒子一定垂直打在MN 板上,故D 正确.

8.如图所示,在OA 和OC 两射线间存在着匀强磁场,∠AOC =30°,

正负电子(质量、电荷量大小相同,电性相反)以相同的速度从M 点垂直

OA 方向射入匀强磁场,下列说法正确的是( )

A .若正电子不从OC 边射出,正负电子在磁场中运动时间之比可

能为3∶1

B .若正电子不从O

C 边射出,正负电子在磁场中运动时间之比可能为6∶1

C .若负电子不从OC 边射出,正负电子在磁场中运动时间之比不可能为1∶1

D .若负电子不从OC 边射出,正负电子在磁场中运动时间之比可能为1∶6

解析:选D.正电子向右偏转,负电子向左偏转,若正电子不从OC 边射出,负电子一定不会从OC 边射出,二者运动轨迹对应的圆心角均为180°,可知二者在磁场中运动时间之比为1∶1,故A 、B 错误;若负电子不从OC 边射出且正电子也不从OC 边射出,正负电子在磁场中运动轨迹的圆心角都为180°,可知二者在磁场中运动的时间之比为1∶1;当负电子恰好不从OC 边射出时,运动轨迹对应的圆心角为180°,由几何关系知,此时正电子运动

轨迹的圆心角为30°,正负电子在磁场中运动的周期相等,根据t=θ

2πT知,正负电子在磁场中运动的时间之比为1∶6,故若负电子不从OC边射出,正负电子在磁场中运动时间之比在1∶6与1∶1之间,故C错误,D正确.

二、多项选择题

9.(2019·连云港二模)如图所示,两根长直导线竖直插入光滑绝缘水平桌面上的M、N 两小孔中,O为M、N连线中点,连线上a、b两点关于O点对称.导线通有大小相等、方

向相反的电流I.已知通电长直导线在周围产生的磁场的磁感应强度B=k I

r,式中k是常数,I 是导线中的电流,r为点到导线的距离.一带正电的小球(图中未画出)以初速度v0从a点出发沿连线运动到b点.关于上述过程,下列说法正确的是()

A.小球先做加速运动后做减速运动

B.小球一直做匀速直线运动

C.小球对桌面的压力先增大后减小

D.小球对桌面的压力一直在增大

解析:选BC.由安培定则和磁场叠加原理可以判断出在MN连线上的磁场方向平行桌面向里,所以小球所受洛伦兹力的方向垂直桌面向上.对小球受力分析,受重力、桌面支持力、洛伦兹力3个力作用,小球在水平方向不受力,故从a点到b点,小球一直做匀速直线运动,A错误,B正确;由于从a至b合磁感应强度先减小后增大,则小球所受洛伦兹力先减小后增大,桌面对小球的支持力先增大后减小,由作用力与反作用力的关系知小球对桌面的压力先增大后减小,C正确,D错误.

10.(2019·镇江高三模拟)如图所示,MN平行于y轴,在y轴与MN

之间的区域内存在与xOy平面垂直的匀强磁场,磁感应强度大小为B.在t

=0时刻,从原点O发射一束等速率的相同的带电粒子,速度方向与y

轴正方向的夹角分布在0~90°范围内.其中,沿y轴正方向发射的粒子

在t =t 0时刻刚好从磁场右边界MN 上的P 点离开磁场,已知P 点的坐标是((2

+2)d ,2d ),不计粒子重力,下列说法正确的是( ) A .粒子在磁场中做圆周运动的半径为2+2d

B .粒子的发射速度大小为3πd 2t 0

C .带电粒子的比荷为π4Bt 0

D .带电粒子在磁场中运动的最长时间为2t 0

解析:选BD.根据题意作出沿y 轴正方向发射的带电粒子在磁场中做圆周运动的轨迹如图甲所示.

圆心为O ′,根据几何关系,粒子做圆周运动的半径为r =2d ,故A 错误;沿y 轴正方向

发射的粒子在磁场中运动的圆心角为3π4,运动时间t 0=3π4×2d v 0解得:v 0=3πd 2t 0

,故B 正确;沿y 轴正方向发射的粒子在磁场中运动的圆心角为3π4

,对应运动时间为t 0,所以粒子运动的周期为T =8t 03,由Bqv 0=m ????2πT 2r 则q m =3π4Bt 0

,故C 错误;在磁场中运动时间最长的粒子的运动轨迹如图乙所示.

由几何知识得该粒子做圆周运动的圆心角为3π2

,在磁场中的运动时间为2t 0,故D 正确. 11.(2019·南通二模)如图所示为长为2L 、板间距离为L 的水平极板

P 、Q ,现有质量为m ,电荷量为q 的带正电粒子(不计重力),从左边极

板间中点处,以速度v 0平行极板射入,欲使粒子不打在极板上,可采用的办法有( )

A .在极板间加垂直纸面向内的匀强磁场,磁感应强度

B <4mv 017qL B .在极板间加垂直纸面向内的匀强磁场,磁感应强度B >4mv 0qL

C .在极板间加垂直极板指向P 极板的匀强电场,电场强度E

D .在极板间加垂直极板指向Q 极板的匀强电场,电场强度

E >17mv 204qL

解析:选ABC.如图1所示,由题意知,带正电的粒子从左边射出磁场,其在磁场中圆

周运动的半径R 17L 4

,粒子在磁场中做圆周运动的洛伦兹力提供向心力,即qvB =m v 20R

,可得粒子做圆周运动的半径R =mv 0qB ,所以mv 0qB 17L 4,解得:B >4mv 0qL 或B <4mv 017qL

,故A 、B 正确;当在极板间加垂直极板指向P 极板的匀强电场时,粒子恰好从右边射出电场,如图2所示,y =12qE m ????2L v 02

,解得E

,故C 正确;根据对称性可知,D 错误.

12.(2019·淮安二模)如图所示,两方向相反、磁感应强度大小均为B

的匀强磁场被边长为L 的等边三角形ABC 分开,三角形内磁场垂直纸面

向里,三角形顶点A 处有一质子源,能沿∠BAC 的角平分线发射速度不

同的质子(质子重力不计),所有质子均能通过C 点,质子比荷q m

=k ,则质子的速度可能为( )

A .2BkL

B .BkL 2 C.3BkL 2 D .BkL 8

解析:选BD.因质子带正电,且经过c 点,其可能的轨迹如图所示,

所有圆弧所对圆心角均为60°,所以质子运行半径r =L n

(n =1,2,3,…),

带电粒子在圆形磁场中运动的规律.

带电粒子在磁场中的运动 例 1. 如图所示,在宽度为 d 磁感应强度为 B 、水平向外的匀强磁场矩形区域内,一带电粒子以初速度 v 入射, 粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个 A. 带电粒子的比荷 B. 带电粒子在磁场中运动的周期 C. 带电粒子的质量 D. 带电粒子在磁场中运动的半径变式 . 若带电粒子以初速度 v 从 A 点沿直径入射至磁感应强度为 B , 半径为 R 的圆形磁场, 粒子飞出时偏离原方向 60°,利用以上数据可求出下列物理量中的哪几个 应用 1、如图所示,长方形 abcd 长 ad = 0.6m ,宽 ab = 0.3m , O 、 e 分别是 ad 、bc 的中点,以 ad 为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场 ,磁感应强度 B =0.25T 。一群不计重力、质

量 m =3 ×10-7 kg 、电荷量 q =+2×10- 3C 的带电粒子以速度 v =5×l02m/s 沿垂直 ad 方向且垂直于磁场射入磁场区域( A . 从 Od 边射入的粒子, 出射点全部分布在 Oa 边 B . 从 aO 边射入的粒子, 出射点全部分布在 ab 边 C .从 Od 边射入的粒子,出射点分布在 Oa 边和 ab 边 D .从 aO 边射入的粒子,出射点分布在 ab 边和 bc 边 应用 2. 在以坐标原点 O 为圆心、半径为 r 的圆形区域内,存在磁感应强度大小为 B 、方向垂直于纸面向里的匀强磁场,如图 10所示。一个不计重力的带电粒子从磁场边界与 x 轴的交点 A 处以速度 v 沿 -x 方向射入磁场,恰好从磁场边界与 y 轴的交点 C 处沿 +y方向飞出。 (1请判断该粒子带何种电荷,并求出其比荷 q/m; (2若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了 60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间 t 是多少? 例 2. 如图所示, 一束电子流以不同速率, 由边界为圆形的匀强磁场的边界上一点 A , 沿直径方向射入磁场,已知磁感应强度方向垂直圆平面,则电子在磁场中运动时:( A 轨迹长的运动时间长 B 速率大的运动时间长 C 偏转角大的运动时间长 D 速率为某一值时不能穿出该磁场

带电体在磁场中的运动

带电在匀强磁场中的运动 (大庆实验中学2015-2016学年高二上学期期中)7.如图所示,一个带正电q 的小带电体处于一匀强磁场中,磁场垂直纸面向里,磁感应强度为B .带电体质量为m ,为了使它对水平绝缘面正好无压力,应( ) A .使 B 数值增大 B .使磁场以速率v=向上移动 C .使磁场以速率v=向右移动 D .使磁场以速率v= 向左移动 【考点】共点力平衡的条件及其应用;洛仑兹力. 【分析】小球能飘离平面的条件:竖直向上的洛伦兹力与重力平衡,由左手定则可知,当洛伦兹力竖直向上时,电荷向右运动,根据相对运动小球不动时,磁场相对小球向左运动. 【解答】解:小球能飘离平面的条件,竖直向上的洛伦兹力与重力平衡即:qvB=mg ,得: ,根据相对运动当小球不动 时,磁场相对小球向左运动.故选项D 正确,ABC 错误. 故选:D 【点评】考查了运动电荷在磁场中的运动,用左手定则判断洛伦兹力的方向,注意小球飘离地面的条件. (哈尔滨师大附属中2014-2015学年高二上学期期末)12.【多选】如图所示,两根长直导线竖直插入光滑绝缘水平桌面上的M 、N 两小孔中,O 为M 、N 连线中点,连线上a 、b 两点关于O 点对称。两导线通有大小相等、方向相反的电流。已知长直导线周围产生的磁场的磁感应强度B =k I r ,式中k 是常数,I 是导线中的电流、r 为点到导线的距离。一带负电的小球以初速度v 0从a 点出发沿连线运动到b 点。关于上述过程,下列说法正确的是 BC A .小球先做加速运动后做减速运动 B .小球一直做匀速直线运动 C .小球对桌面的压力先减小后增大 D .小球对桌面的压力先增大后减小 (大庆实验中学2015-2016学年高二上学期期末) 【多选】12. 如图所示,在垂直纸面向里的水平匀强磁场中,水平放置一根粗糙绝缘细直杆,有一个重力不能忽略、中间带有小孔的带正电小球套在细杆上。现在给小球一个水平向右的初速度v0,假设细杆足够长,小球在运动过程中电荷量保持不变,杆上各处的动摩擦因数相同,则小球运动的速度v 与时间t 的关系图像可能是 BD (牡丹江一中2013-2014学年高二上学期期末)8.如图所示,空间存在垂直于纸面向里的磁感应强度为B 的匀强磁场,场内有一绝缘的足够长的直杆,它与水平面的倾角为θ,一带电量为-q 、质量为m 的带负电的小球套在直杆上,从A 点由静止沿杆下滑,小球与杆之间的动摩擦因数为μ,在小球以后运动的过程中,下列说法正确的是( B ) A .小球下滑的最大速度为v =mgsin θ μBq B .小球下滑的最大加速度为am =gsin θ C .小球的加速度一直在减小 D .小球的速度先增大后减小 (黑龙江某重点中学2014-2015届高二上学期期末) 【多选】 7. 如图所示,一带正电的滑环套在水平放置且足够长的粗糙绝缘杆上,整个装置处于方向如图所示的匀强磁场中.现给环施以一个水平向右的速度,使其运动,则滑环在杆上的运动情况可能是( ABD ) A.先做减速运动,后做匀速运动 B.一直做减速运动,直到静止 C.先做加速运动,后做匀速运动 D.一直做匀速运动 (大庆实验中学2012-2013学年高二11月月考) (安达市高级中学2013-2014学年高二下学期开学检测) 【多选】4. 如图所示,一个质量为m 、电荷量为+q 的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度为B 的匀强磁场中,不计空气阻力,现给圆环向右的初速度v 0,在以后的运动过程中,圆环运动的速度图象可能是下图中的( AD )

第1讲 电场和磁场的基本性质

第1讲电场和磁场的基本性质 “物理观念”构建 一、电场的性质 二、磁场对通电导体或运动电荷的作用 1.“两个磁场力” (1)安培力:F=BIL(I⊥B)。 (2)洛伦兹力:F=q v B(v⊥B)。 2.“两个定则” (1)对电流的磁场用安培定则。 (2)对通电导线在磁场中所受的安培力和带电粒子在磁场中所受的洛伦兹力用左手定则。 “科学思维”展示 一、研究电场的思想方法——对称法

二、三个物理量的判断方法 判断场强强弱 ①根据电场线或等势面的疏密判断 ②根据公式E=k Q r2和场强叠加原理判断 判断电势的高低 ①根据电场线的方向判断 ②由U AB= W AB q和U AB=φA-φB判断 ③根据电场力做功(或电势能)判断 判断电势能大小 ①根据E p=qφ判断 ②根据ΔE p=-W电,由电场力做功判断 1.正确地对导体棒进行受力分析,应特别注意通电导体棒受到的安培力的方向,安培力与导体棒和磁感应强度组成的平面垂直。 2.画出辅助图(如导轨、斜面等),并标明辅助方向(磁感应强度B、电流I的方向)。 3.将立体的受力分析图转化为平面受力分析图,即画出与导体棒垂直的平面内的受力分析图。 电场的基本性质 考向一库仑定律的应用及库仑力的合成 【典例1】(2018·全国卷Ⅰ,16)如图1,三个固定的带电小球a、b和c,相互间的距离分别为ab=5 cm,bc=3 cm,ca=4 cm。小球c所受库仑力的合力的方向平行于a、b的连线。设小球a、b所带电荷量的比值的绝对值为k,则() 图1 A.a、b的电荷同号,k= 16 9

B.a、b的电荷异号,k=16 9 C.a、b的电荷同号,k=64 27 D.a、b的电荷异号,k=64 27 解析如果a、b带同种电荷,则a、b两小球对c的作用力均为斥力或引力,此时c在垂直于a、b连线的方向上的合力一定不为零,因此a、b不可能带同种电荷,A、C错误;若a、b带异种电荷,假设a对c的作用力为斥力,则b对c 的作用力一定为引力,受力分析如图所示,由题意知c所受库仑力的合力方向平行于a、b的连线,则F a、F b在垂直于a、b连线的方向上的合力为零,由几何 关系可知F a F b= 1 tan α= 4 3,又由库仑定律得 F a F b=?? ? ? ? ? q a q b· r2bc r2ac,联立解得k=| q a q b|= 64 27,B 错误,D正确。 答案 D 考向二根据电场中的“点、线、面、迹”判断相关物理量的变化 【典例2】(2018·天津理综,3)如图2所示,实线表示某电场的电场线(方向未标出),虚线是一带负电的粒子只在电场力作用下的运动轨迹,设M点和N点的电势分别为φM、φN,粒子在M和N时加速度大小分别为a M、a N,速度大小分别为v M、v N,电势能分别为E p M、E p N。下列判断正确的是() 图2 A.v M

带电粒子在磁场中运动之多解周期运动问题

考点4.7 周期性与多解问题 1.带电粒子电性不确定形成多解:受洛伦兹力作用的带电粒子,由于电性不同,当速度相同时,正、负粒子在磁场中运动轨迹不同,形成多解. 如图6甲所示,带电粒子以速度v垂直进入匀强磁场,如带正电,其轨迹为a,如带负电,其轨迹为b. 2.磁场方向不确定形成多解:有些题目只已知磁感应强度的大小,而不知其方向,此时必须要考虑磁感应强度方向不确定而形成的多解. 如图乙所示,带正电粒子以速度v垂直进入匀强磁场,如B垂直纸面向里,其轨迹为a,如B 垂直纸面向外,其轨迹为b. 3.临界状态不唯一形成多解:带电粒子在洛伦兹力作 用下飞越有界磁场时,由于粒子运动轨迹是圆弧状, 因此,它可能穿过去,也可能转过180°从入射界面这 边反向飞出,从而形成多解,如图丙所示. 4.运动的周期性形成多解:带电粒子在部分是电场、部分是磁场的空间运动时,运动往往具有往复性,从而形成多解,如图丁所示. 一圆筒的横截面如图所示,其圆心为O.筒有垂直于纸面向里的匀 强磁场,磁感应强度为B.圆筒下面有相距为d的平行金属板M、N,其中 M板带正电荷,N板带等量负电荷.质量为m、电荷量为q的带正电粒子 自M板边缘的P处由静止释放,经N板的小孔S以速度v沿半径SO方 向射入磁场中.粒子与圆筒发生两次碰撞后仍从S孔射出.设粒子与圆筒碰 撞过程中没有动能损失,且电荷量保持不变,在不计重力的情况下,求: (1)M、N间电场强度E的大小; (2)圆筒的半径R.

(3)保持M、N间电场强度E不变,仅将M板向上平移,粒子仍从M板边缘的P处 由静止释放粒子自进入圆筒至从S孔射出期间,与圆筒的碰撞次数n。 1.如图所示,在纸面有磁感应强度大小均为B,方向相反的匀强磁场,虚线等边三角形ABC 为两磁场的理想边界。已知三角形ABC边长为L,虚线三角形为方向垂直纸面向外的匀强磁场,三角形外部的足够大空间为方向垂直纸面向里的匀强磁 场。一电量为+q、质量为m的带正电粒子从AB边中点P垂直AB 边射入三角形外部磁场,不计粒子的重力和一切阻力,试求: (1)要使粒子从P点射出后在最快时间通过B点,则从P点射出 时的速度v0为多大? (2)满足(1)问的粒子通过B后第三次通过磁场边界时到B的 距离是多少? (3)满足(1)问的粒子从P点射入外部磁场到再次返回到P点的最短时间为多少?画出 粒子的轨迹并计算。

带电粒子在圆形磁场中运动的规律

带电粒子在磁场中的运动 例1.如图所示,在宽度为d 磁感应强度为B 、水平向外的匀强磁场矩形区域内,一带电粒子以初速度v 入射,粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个 A.带电粒子的比荷 B.带电粒子在磁场中运动的周期 C.带电粒子的质量 D.带电粒子在磁场中运动的半径 变式.若带电粒子以初速度v 从A 点沿直径入射至磁感应强度为B ,半径为R 的圆形磁场,粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个 应用1、如图所示,长方形 abcd 长 ad = 0.6m ,宽 ab = 0.3m , O 、e 分别是 ad 、bc 的中点,以 ad 为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场),磁感应强度 B =0.25T 。一群不计重力、质 量 m =3 ×10-7 kg 、电荷量 q =+2×10- 3C 的带电粒子以速度v =5×l02m/s 沿垂直 ad 方向且垂直于磁场射入磁场区域 ( ) A .从 Od 边射入的粒子,出射点全部分布在 Oa 边 B .从 aO 边射入的粒子,出射点全部分布在 ab 边 C .从Od 边射入的粒子,出射点分布在Oa 边和 ab 边 D .从aO 边射入的粒子,出射点分布在ab 边和bc 边 应用2.在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图10所示。一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出。 (1)请判断该粒子带何种电荷,并求出其比荷q/m ; (2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间t 是多少? 例2.如图所示,一束电子流以不同速率,由边界为圆形的匀强磁场的边界上一点A ,沿直径方向射入磁场,已知磁感应强度方向垂直圆平面,则电子在磁场中运动时:( ) A 轨迹长的运动时间长 B 速率大的运动时间长 C 偏转角大的运动时间长 D 速率为某一值时不能穿出该磁场 变式.如右图所示,直角三角形ABC 中存在一匀强磁场,比荷相同的两个粒子沿AB 方向射入磁场,分别从AC 边上的P 、Q 两点射出,则 A.从P 射出的粒子速度大 B.从Q 射出的粒子速度大 C.从P 射出的粒子,在磁场中运动的时间长 D.两粒子在磁场中运动的时间一样长 例3.如右图所示,在半径为R 的圆形区域内充满磁感应强度为B 的匀强磁场,MN 是一竖直放置的感光板.从圆形磁场最高点P 垂直磁场射入大量的带正电、电荷量为q 、质量为m 、速度为v 的粒子,不考虑粒子间的相互作用力,关于这些粒子的运动以下说法正确的是 A.只要对着圆心入射,出射后均可垂直打在MN 上 B.对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心 C.对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长 D.只要速度满足m qBR v / ,沿不同方向入射的粒子出射后均可垂直打在MN 上(出射速度有什么关系?)若相同速率平行经过p 点的直径进入磁场,出射点又有什么规律?

带电粒子在均匀电磁场中的运动

目 录 一、引言 ........................................................................................ 1 二、认识等离子体 ........................................................................ 1 三、单粒子轨道运动 .................................................................... 5 3.1带电粒子在均匀电场中的运动学特性 .. (5) 3.1.10v 与E 垂直或平行时带电粒子的运动轨迹 (5) 3.1.20v 与E 成任一夹角时带电粒子的运动轨迹 (5) 3.2带电粒子在均匀磁场中的运动学特性 .......................... 6 3.2.1洛伦兹力 .. (6) 3.2.2粒子的初速度0v 垂直于B ...................................... 7 3.2.3粒子的初速度0v 与B 成任一夹角时 (8) 3.3带电粒子在均匀电磁场中的运动学特性 (10) 3.3.10v 、E 和B 两两相互垂直 (10) 3.3.20v 与E 成任一夹角,B 垂直它们构成的平面 (12) 四、小结 ...................................................................................... 16 参考文献 .. (16)

2.3 静磁场性质

2.3 静磁场性质
自强●弘毅●求是●拓新

在实验发现电与磁现象相互联系之前,人们通常将电和磁视作两个不相互联系的物理现象进行 探索。然而以康德和谢林为代表的哲学家认为,电、磁、光、热等现象是相互联系的。受他们 的影响,奥斯特坚信电磁是相互联系的物理现象,有着共同的根源。1820年4月,他观察到通 电导线扰动磁针的现象,发现了电流的磁效应。因此,学习了静电场的性质,大家想到了什 么?让我们来学习一下静磁场的性质。

Ampere 在1821-25 年之间,设计并完成了 四个关于电流相互作用 的精巧实验,得到了电 流相互作用力公式,称 为安培定律
?0 F12 ? 4?
l1
R12
l2
r1
r2
线圈1对线圈2的作用力
??
l1 l2
I 2 dl2 ? ( I1dl1 ? R12 ) R123
真空磁导率

实验证明:电流体对置于其中 的电流元 I 0 dl 有力的作用,电 流元受到的作用力是电流体中 所有电流与电流元作用的叠加
J ?r ?
I 0 dl
?0 ? Idl j ? R j ? ?0 ? J ? r ? ? ? ? r ? r ? ? ? ? I 0dl ? ??? ? ? dr ? dF ? I 0dl ? ? ? ? 3 3 ? R ? ? r ? r? ? 4? V ? j 4? ? j ? ?

实验证明
任一恒定电流元Idl 在其周围空间 激发出对另一恒定电流元(或磁 铁)具有力作用的物质,称为磁 场。对电流元有作用力是磁场的 基本特性。
I 0 dl

带电粒子在磁场中运动的多解问题

带电粒子在磁场中运动的多解问题 1.带电粒子电性不确定形成多解:受洛伦兹力作用的带电粒子,由于电性不同,当速度相同时,正、负粒子在磁场中运动轨迹不同,形成多解. 如图1甲所示,带电粒子以速度v垂直进入匀强磁场,如带正电,其轨迹为a,如带负电,其轨迹为b. 图1 2.磁场方向不确定形成多解:有些题目只已知磁感应强度的大小,而不知其方向,此时必须要考虑磁感应强度方向不确定而形成的多解. 如图乙所示,带正电粒子以速度v垂直进入匀强磁场,如B垂直纸面向里,其轨迹为a,如B垂直纸面向外,其轨迹为b. 3.临界状态不唯一形成多解:带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧状,因此,它可能穿过磁场飞出,也可能转过180°从入射界面这边反向飞出,从而形成多解,如图2甲所示. 图2 4.运动的周期性形成多解:带电粒子在部分是电场、部分是磁场的空间运动时,运动往往具有往复性,从而形成多解,如图乙所示. 典例1(多选)如图17所示,垂直于纸面向里的匀强磁场分布在正方形abcd区域内,O点是cd边的中点.一个带正电的粒子仅在磁场力的作用下,从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t0后刚好从c点射出磁场.现设法使该带电粒子从O点沿纸面以与Od成30°角的方向,以大小不同的速率射入正方形内,那么下列说法中正确的是()

图17 A .若该带电粒子在磁场中经历的时间是53t 0,则它一定从cd 边射出磁场 B .若该带电粒子在磁场中经历的时间是23 t 0,则它一定从ad 边射出磁场 C .若该带电粒子在磁场中经历的时间是54 t 0,则它一定从bc 边射出磁场 D .若该带电粒子在磁场中经历的时间是t 0,则它一定从ab 边射出磁场 答案 AC 解析 如图所示,作出刚好从ab 边射出的轨迹①、刚好从bc 边射出的轨 迹②、从cd 边射出的轨迹③和刚好从ad 边射出的轨迹④.由从O 点沿纸面 以垂直于cd 边的速度射入正方形内,经过时间t 0后刚好从c 点射出磁场可 知,带电粒子在磁场中做圆周运动的周期是2t 0.可知,从ad 边射出磁场经历的时间一定小于13t 0;从ab 边射出磁场经历的时间一定大于等于13t 0,小于56 t 0;从bc 边射出磁场经历的时间一定大于等于56t 0,小于43t 0;从cd 边射出磁场经历的时间一定是53 t 0. 典例2 如图18所示,在坐标系xOy 中,第一象限内充满着两个匀强磁场a 和b ,OP 为分界线,在磁场a 中,磁感应强度为2B ,方向垂直于纸面向里,在磁场b 中,磁感应强度为B ,方向垂直于纸面向外,P 点坐标为(4l,3l ).一质量为m 、电荷量为q 的带正电粒子从P 点沿y 轴负方向射入磁场b ,经过一段时间后,粒子恰能经过原点O ,不计粒子重力.求: 图18 (1)粒子从P 点运动到O 点的最短时间是多少? (2)粒子运动的速度可能是多少? 答案 (1)53πm 60qB (2)25qBl 12nm (n =1,2,3,…)

带电粒子在有界磁场中运动(超经典)

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中, 如“圆周运动中小球能过最高点的速度条 件” “动量中的避免碰撞问题”等等, 这类题目中往往含有“最大”、 “最高”、“至少”、 “恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁 场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 、解题方法 画图T 动态分析T 找临界轨迹。 (这类题目关键是作图,图画准了,问题就解决了一大 半,余下的就只有计算了——这一般都不难。 ) 、常见题型 (B 为磁场的磁感应强度,V 。为粒子进入磁场的初速度) r ①旳方向一定,大小不确定一第一类 I 』确宦 < ②V 。犬小 一亦方向不确定——第二类 ■③旳大小、方向都不确定一第三类 分述如下: 第一类问题: 例1如图1所示,匀强磁场的磁感应强度为 B,宽度为d ,边界为CD 和EF 。一电子从 CD 边界 外侧以速率 V 。垂直匀强磁场射入,入射方向与CD 边界夹角为0。已知电子的质量为 m 电荷量为e ,为使电子能从磁场的另一侧 EF 射出,求电子的速率 v o 至少多大? 2.行不确宦 -①巾确定 ——第四类 {——五类

例2如图3所示,水平线 MN 下方存在垂直纸面向里的磁感应强度为 B 的匀强磁场,在 MN 线上某点O 正下方与之相距 L 的质子源S,可在纸面内360°范围内发射质量为 m 电量 为e 、速度为 V o =BeL / m 的质子,不计质子重力,打在 MN 上的质子在 O 点右侧最远距离 OP ,打在O 点左侧最 远距离 OO 。 分析:首先求出半径得r =L ,然后作出临界轨迹如图 4所示(所有从 S 发射出去的质子 做圆周运动的轨道圆心是在以 S 为圆心、以r =L 为半径的圆上,这类问题可以先作出这一圆 ——就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆) ,O 諒L , OQL 。 【练习】如图5所示,在屏MN 勺上方有磁感应强度为 B 的匀强磁场,磁场方向垂直纸面 向里。P 为屏上的一小孔,PC 与MN 垂直。一群质量为 m 带电荷量为一q 的粒子(不计重力), 分析:如图2,通过作图可以看到:随着 界EF 相切,然后就不难解答了。 第二类问题: V o 的增大,圆半径增大,临界状态就是圆与边

高中物理磁场-完美总结

磁场基本性质 一、磁场 1、磁场:磁场是存在于磁体、运动电荷周围的一种物质.它的基本特性是:对处于其中的磁体、电流、运动电荷有力的作用. 2、磁现象的电本质:所有的磁现象都可归结为运动电荷之间通过磁场而发生的相互作用. 二、磁感线 为了描述磁场的强弱与方向,人们想象在磁场中画出的一组有方向的曲线. 1.疏密表示磁场的强弱. 2.每一点切线方向表示该点磁场的方向,也就是磁感应强度的方向. 3.是闭合的曲线,在磁体外部由N极至S极,在磁体的内部由S极至N极.磁线不相切不相交。4.匀强磁场的磁感线平行且距离相等.没有画出磁感线的地方不一定没有磁场. 5.安培定则:姆指指向电流方向,四指指向磁场的方向.注意这里的磁感线是一个个同心圆,每点磁场方向是在该点切线方向· *熟记常用的几种磁场的磁感线: 【例1】根据安培假说的物理思想:磁场来源于运动电荷.如果用这种思想解释地球磁场的形成,根据地球上空并无相对地球定向移动的电荷的事实.那么由此推断,地球总体上应该是:(A) A.带负电; B.带正电; C.不带电; D.不能确定 解析:因在地球的内部地磁场从地球北极指向地球的南极,根据右手螺旋定则可判断出地球表现环形电流的方向应从东到西,而地球是从西向东自转,所以只有地球表面带负电荷才能形成上述电流,故选A. 三、磁感应强度 1.磁场的最基本的性质是对放入其中的电流或磁极有力的作用,电流垂直于磁场时受磁场力最大,电流与磁场方向平行时,磁场力为零。 2.在磁场中垂直于磁场方向的通电导线受到的磁场力F跟电流强度I和导线长度l的乘积Il的比值,叫做通电导线所在处的磁感应强度. ①表示磁场强弱的物理量.是矢量. ②大小:B=F/Il(电流方向与磁感线垂直时的公式). ③方向:左手定则:是磁感线的切线方向;是小磁针N极受力方向;是小磁针静止时N极的指向.不是导线受力方向;不是正电荷受力方向;也不是电流方向. ④单位:牛/安米,也叫特斯拉,国际单位制单位符号T. ⑤点定B定:就是说磁场中某一点定了,则该处磁感应强度的大小与方向都是定值. ⑥匀强磁场的磁感应强度处处相等. ⑦磁场的叠加:空间某点如果同时存在两个以上电流或磁体激发的磁场,则该点的磁感应强度是各电流或磁体在该点激发的磁场的磁感应强度的矢量和,满足矢量运算法则.

带电粒子在磁场中的运动解题技巧

带电粒子在磁场中的运动 带电粒子在匀强磁场中作圆周运动的问题是近几年高考的热点,这些考题不但涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。只要确定了带电粒子的运动轨迹,问题便迎刃而解。下面举几种确定带电粒子运动轨迹的方法。 一、对称法 带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2)。利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。 例1.如图3所示,直线MN上方有磁感应强度为B的匀强磁场。正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少? 解析:正、负电子的半径和周期是相同的。只是偏转方向相反。先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。所以两个射出点 相距s=2r=,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。

例2.如图5所示,在半径为r的圆形区域内,有一个匀强磁场。一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。当∠MON=120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。 解析:分别过M、N点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。 由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O'的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30°= 又带电粒子的轨道半径可表示为:故带电粒子运动周期: 带电粒子在磁场区域中运动的时间 二、旋转圆法 在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。

带电粒子在有界磁场中运动(超经典)..

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 一、解题方法 画图→动态分析→找临界轨迹。(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。) 二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度) 分述如下: 第一类问题: 例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?

分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。 第二类问题: 例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。 分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆 ──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。 【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。P为屏上的一小孔,PC与MN垂直。一群质量为m、带电荷量为-q的粒子(不计重力),

带电粒子在磁场中的运动习题含答案

带电粒子在磁场中的运动 练习题 1. 如图所示,一个带正电荷的物块m 由静止开始从斜面上A 点下滑,滑到水平面BC 上的D 点停下来.已知物块与斜面及水平面间的动摩擦因数相同,且不计物块经过B 处时的机械能损失.先在ABC 所在空间加竖直向下的匀强电场,第二次让物块m 从A 点由静止开始下滑,结果物块在水平面上的D′点停下来.后又撤去电场,在ABC 所在空间加水平向里的匀强磁场,再次让物块m 从A 点由静止开始下滑,结果物块沿斜面滑下并在水平面上的D″点停下来.则以下说法中正确的是( ) A .D′点一定在D 点左侧 B .D′点一定与D 点重合 C .D″点一定在 D 点右侧 D .D″点一定与D 点重合 2. 一个质量为m 、带电荷量为+q 的圆环,可在水平放置的足够长的粗 糙细杆上滑动,细杆处于磁感应强度为B 的匀强磁场中.现给圆环向右初速度v 0,A . B . C . D . 子从ad 的中点垂直于电场和磁场方向射入,恰沿直线从bc 边的中点P 射出,若撤去磁场,则粒子从c 点射出;若撤去电场,则粒子将(重力不计)( ) A .从b 点射出 B .从b 、P 间某点射出 C .从a 点射出 D .从a 、b 间某点射出 4. 如图所示,在真空中匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里,三个油滴a 、b 、c 带有等量同种电荷,其中a 静止,b 向右做匀速运动,c 向左匀速运动,比较它们的重力Ga 、Gb 、Gc 的大小关系,正确的是( ) A .Ga 最大 B .Gb 最大 C .Gc 最大 D .Gb 最小 5. 如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角。现将带电粒子的速度变为v /3,仍从A 点射入磁场,不计重力,则粒子在磁场中的运动时间变为 ( ) A.t ?2 1 B. t ?2 C. t ?3 1 D. t ?3 6. 如图所示,在xOy 平面内存在着磁感应强度大小为B 的匀强磁场,第一、二、四象限内的磁场方向垂直纸面向里,第三象 限内的磁场方向垂直纸面向外.P (-L 2,0)、Q (0,-L 2)为坐标轴上的两个

高中物理 磁现象和磁场知识点总结教学内容

第三章第1节磁现象和磁场 一、磁现象 磁性、磁体、磁极:能吸引铁质物体的性质叫磁性。具有磁性的物体叫磁体,磁体中磁性最强的区域叫磁极。 二、磁极间的相互作用规律:同名磁极相互排斥,异名磁极相互吸引.(与电荷类比) 三、磁场 1.磁体的周围有磁场 2.奥斯特实验的启示: ——电流能够产生磁场, 运动电荷周围空间有磁场 导线南北放置 3.安培的研究:磁体能产生磁场,磁场对磁体有力的作用;电流能产生磁场,那么磁场对电流也应该有力的作用。 磁场的基本性质 ①磁场对处于场中的磁体有力的作用。 ②磁场对处于场中的电流有力的作用。 第三章第3节几种常见的磁场 一、磁场的方向 物理学规定: 在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所指的方向,就是该点的磁场方向。 二、图示磁场 1.磁感线——在磁场中假想出的一系列曲线 ①磁感线上任意点的切线方向与该点的磁场方向一致; (小磁针静止时N极所指的方向)

②磁感线的疏密程度表示磁场的强弱。 2.常见磁场的磁感线 永久性磁体的磁场:条形,蹄形 直线电流的磁场 剖面图(注意“”和“×”的意思) 箭头从纸里到纸外看到的是点 从纸外到纸里看到的是叉 环形电流的磁场(安培定则:让右手弯曲的四指和环形电流的方向一致,伸直的大拇指所指的方向就是环形导线中心轴线上磁感线的方向。) 螺线管电流的磁场(安培定则:用右手握住螺旋管,让弯曲的四指所指的方向跟电流方向一致,大拇指所指的方向就是螺旋管内部磁感线的方向。) 常见的图示: 磁感线的特点: 1、磁感线的疏密表示磁场的强弱 2、磁感线上的切线方向为该点的磁场方向 3、在磁体外部,磁感线从N极指向S极;在磁体内部,磁感线从S极指向N极 4、磁感线是闭合的曲线(与电场线不同) 5、任意两条磁感线一定不相交 6、常见磁感线是立体空间分布的 7、磁场在客观存在的,磁感线是人为画出的,实际不存在。 四、安培分子环流假说 1.分子电流假说 任何物质的分子中都存在环形电流——分子电流,分子电流使每个分子都成为一个微小的磁体。 2.安培分子环流假说对一些磁现象的解释: 未被磁化的铁棒,磁化后的铁棒 永磁体之所以具有磁性,是因为它内部的环形分子电流本来就排列整齐. 永磁体受到高温或猛烈的敲击会失去磁性,这是因为在激烈的热运动或机械振动的影响下,分子电流的取向又变得杂乱无章了。 3.磁现象的电本质

高三物理二轮复习课前诊断-磁场的基本性质

课前诊断——磁场的基本性质 考点一 带电粒子在磁场中的运动 1.[(2016·肇庆质检)如图所示,通电竖直长直导线的电流方向向上,初速度 为v 0的电子平行于直导线竖直向上射出,不考虑电子的重力,则电子将( ) A .向右偏转,速率不变,r 变大 B .向左偏转,速率改变,r 变大 C .向左偏转,速率不变,r 变小 D .向右偏转,速率改变,r 变小 解析:选A 由安培定则可知,直导线右侧的磁场垂直纸面向里,根据左手定则可知,电子受洛伦兹力方向向右,故向右偏转;由于洛伦兹力不做功,故速率不变,由r =mv qB 知r 变大,故选A 。 2.[考查圆周运动半径的确定方法及匀速圆周运动问题] (2016·福建省高考适应性检测)空间有一圆柱形匀强磁场区域,该区域的横截面的半径为R ,磁场方向垂直于横截面。一质量为m 、电荷量为q (q >0)的粒子以速率v 0沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向60°。不计重力,该磁场的磁感应强度大小为( ) A. 3mv 03qR B.mv 0qR C.3mv 0qR D.3mv 0qR 解析:选A 画出带电粒子运动轨迹示意图,如图所示。设带电粒子在 匀强磁场中运动轨迹的半径为r ,根据洛伦兹力公式和牛顿第二定律,qv 0B =m v 02r ,解得r =mv 0qB 。由图中几何关系可得:tan 30°=R r 。联立解得:该磁场的磁感应强度B =3mv 03qR ,选项A 正确。 3.[考查带电粒子在磁场中运动时间和运动半径的比较] (多选)(2016·南平检测)在一个边界为等边三角形的区域内,存在方 向垂直于纸面向里的匀强磁场,在磁场边界上的P 点处有一个粒子源,发 出比荷相同的三个粒子a 、b 、c (不计重力)沿同一方向进入磁场,三个粒 子通过磁场的轨迹如图所示,用t a 、t b 、t c 分别表示a 、b 、c 通过磁场的 时间;用r a 、r b 、r c 分别表示a 、b 、c 在磁场中的运动半径,则下列判断正确的是( ) A .t a =t b >t c B .t c >t b >t a

解决带电粒子在有界磁场中运动的临界问题的两种方法

解决带电粒子在有界磁场中运动的临界问题的两种方法 此类问题的解题关键是寻找临界点,寻找临界点的有效方法是: ①轨迹圆的缩放: 当入射粒子的入射方向不变而速度大小可变时,粒子做圆周运动的圆心一定在入射点所受洛伦兹力所表示的射线上,但位置(半径R)不确定,用圆规作出一系列大小不同的轨迹图,从圆的动态变化中即可发现“临界点”. 例1一个质量为m,带电量为+q的粒子(不计重力), 从O点处沿+y方向以初速度射入一个边界为矩形的匀强 磁场中,磁场方向垂直于xy平面向里,它的边界分别是 y=0,y=a,x=-1.5a,如图所示,那么当B满足条件_________ 时,粒子将从上边界射出:当B满足条件_________时, 粒子将从左边界射出:当B满足条件_________时,粒子 将从下边界射出: 例2 如图9-8所示真空中宽为d的区域内有强度为B的匀强磁场方向如图,质量m带电-q的粒子以与CD成θ角的速度V0垂直射入磁场中。要使粒子必能从EF射出,则初速度V0应满足什么条件?EF上有粒子射出的区域? 【审题】如图9-9所示,当入射速度很小时电子会在磁场中转动一段圆弧后又从同一侧射出,速率越大,轨道半径越大,当轨道与边界相切时,电子恰好不能从另一侧射出,当速率大于这个临界值时便从右边界射出,依此画出临界轨迹,借助几何知识即可求解速度的临界值;对于射出区域,只要找出上下边界即可。 【解析】粒子从A点进入磁场后受洛伦兹力作匀速圆周运动,要使粒子必能从EF射出,则 相应的临界轨迹必为过点A并与EF相切的轨迹如图9-10所示,作出A、P点速度的垂线相交于O/即为该临界轨迹的圆心。 临界半径R0由 d Cosθ R R0 = + 有: θ + = Cos 1 d R0 ; 故粒子必能穿出EF的实际运动轨迹半径R≥R0 即: θ + ≥ = Cos 1 d qB mv R0 有: ) Cos 1( m qBd v0 θ + ≥ 。 图9-8 图9-9 图 9-10

高中物理带电粒子在磁场中的运动知识点汇总

难点之九:带电粒子在磁场中的运动 一、难点突破策略 (一)明确带电粒子在磁场中的受力特点 1. 产生洛伦兹力的条件: ①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用. ②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小: 当电荷运动方向与磁场方向平行时,洛伦兹力f=0; 当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ; 当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ 3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功. (二)明确带电粒子在匀强磁场中的运动规律 带电粒子在只受洛伦兹力作用的条件下: 1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动. 2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动. ①向心力由洛伦兹力提供: R v m qvB 2 = ②轨道半径公式: qB mv R = ③周期: qB m 2v R 2T π=π= ,可见T 只与q m 有关,与v 、R 无关。 (三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的 物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。 1. “带电粒子在匀强磁场中的圆周运动”的基本型问题 (1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。确定半径和给定的几何量之间的关系是解题的基础, 有时需要建立运动时间t 和转过的圆心角α之间的关系( T 2t T 360t πα=α= 或)作为辅助。圆心的确定,通常有以下 两种方法。 ① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。 ② 已知入射方向和出射点的位置,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图9-2,P 为入射点,M 为出射点)。 (2)半径的确定和计算:利用平面几何关系,求出该圆的可能半径或圆心角。并注意以下两个重要的特点: 图9-1 图9-2 图9-3

知识讲解_带电粒子在磁场中的运动 提高

带电粒子在磁场中的运动 编稿:周军审稿:隋伟 【学习目标】 1.掌握带电粒子在匀强磁场中做匀速圆周运动的特点和解决此类运动的方法。 2.理解质谱仪和回旋加速器的工作原理和作用。 【要点梳理】 要点一:带电粒子在匀强磁场中的运动 要点诠释: 1.运动轨迹 带电粒子(不计重力)以一定的速度v进入磁感应强度为B的匀强磁场中: (1)当v∥B时,带电粒子将做匀速直线运动; (2)当v⊥B时,带电粒子将做匀速圆周运动; (3)当v与B的夹角为θ(θ≠0°,90°,180°)时,带电粒子将做等螺距的螺旋线运动. 说明:电场和磁场都能对带电粒子施加影响,带电粒子在匀强电场中只在电场力作用下,可能做匀变速直线运动,也可能做匀变速曲线运动,但不可能做匀速直线运动;在匀强磁场中,只在磁场力作用下可以做曲线运动.但不可能做变速直线运动. 2.带电粒子在匀强磁场中的圆周运动 如图所示,带电粒子以速度v垂直磁场方向入射,在磁场中做匀速圆周运动,设带电粒子的质量为m,所带的电荷量为q. (1)轨道半径:由于洛伦兹力提供向心力,则有 2 v qvB m r =,得到轨道半径 mv r qB =. (2)周期:由轨道半径与周期之间的关系 2r T v π =可得周期 2m T qB π =. 说明:(1)由公式 mv r qB =知,在匀强磁场中,做匀速圆周运动的带电粒子,其轨道半径跟运动速率 成正比. (2)由公式 2m T qB π =知,在匀强磁场中,做匀速圆周运动的带电粒子,周期跟轨道半径和运动速率 均无关,而与比荷q m 成反比. 注意: mv r qB =与 2m T qB π =是两个重要的表达式,每年的高考都会考查.但应用时应注意在计算说明 题中,两公式不能直接当原理式使用. 要点二:带电粒子在匀强磁场中做圆周运动的问题分析要点诠释:

相关文档
最新文档