2.3厚壁圆筒应力分析

合集下载

06_压力容器应力分析_厚壁圆筒弹塑性应力分析

06_压力容器应力分析_厚壁圆筒弹塑性应力分析

2.3 厚壁圆筒应力分析
2.3.2 弹塑性应力
因为“弹性筒”内壁面同时也是“塑性筒”的外 壁面,所以在交界面上( r=Rc ),也满足 Mises 条件
r R
c
r r R
c
2 s 3
联立上述三式,得到弹、塑性区界面压力pc的另一表达 式如下
pc
s R R
2.3.4 提高屈服承载能力的措施
(2)高压厚壁筒提高屈服承载能力的措施
2.3 厚壁圆筒应力分析
2.3.4 提高屈服承载能力的措施
下图为经过自增强处理后,单层厚壁筒中的应力 分布情况。自增强法最早出现于20世纪初,首先应用 于炮筒的制造。目前已经应用于石油化工中的高压及 超高压容器、超高压管道、超高压压缩机气缸等。
残余应力的计算是依据“卸载定理”的,参见教 材。该部分须掌握残余应力的分布图。
2.3 厚壁圆筒应力分析
2.3.2 弹塑性应力
2.3 厚壁圆筒应力分析
(1)爆破过程 OA:弹性变形 AB:进入屈服 BC:屈服并强化 CD:爆破 pc:塑性垮塌压力, 工程上称为爆破 压力。
2.3.3 屈服压力和爆破压力
2.3 厚壁圆筒应力分析
(2)理想弹塑性材料
2.3.2 弹塑性应力
对于理想弹塑性材料,忽略材料的硬化阶段,同 时认为材料的屈服极限为常数。
2.3 厚壁圆筒应力分析
(3)塑性失效准则
2.3.2 弹塑性应力
筒体为理想弹塑性材料,当屈服区扩展至外壁 面,使筒体整体屈服,此时承受的内压力为筒体承 受的最高极限载荷。 (4)屈服条件 当材料从弹性阶段进入理想塑性阶段时,应满 足一定的条件,以此来判定材料是否进入屈服阶段, 此条件称为“屈服条件”(屈服失效判据)。 常用的屈服条件有:Tresca屈服条件和Mises 屈服条件。

厚壁圆筒应力分析

厚壁圆筒应力分析

温度变化引起的弹性热应力
热应力
构件之间热变形 的相互约束
构件热变形受到 外界约束
构件内部温度 分布不均匀
2.3 厚壁圆筒应力分析
2、厚壁圆筒的热应力
◆厚壁圆筒中的热应力由平衡方程、几何方程和物理方程, 结合边界条件求解。
◆当厚壁圆筒处于对称于中心轴且沿轴向不变的温度场时, 稳态传热状态下,三向热应力的表达式为:
应变
径向应变、轴向应变和周向应变
分析方法
8个未知数,只有2个平衡方程,属静不定问 题,需平衡、几何、物理等方程联立求解。
2.3 厚壁圆筒应力分析
2.3.1 弹性应力
p0
研究在内压、 外压作用下, 厚壁圆筒中的 应力。
图2-15 厚壁圆筒中的应力
2.3 厚壁圆筒应力分析
2.3.1 弹性应力
•以轴线为z轴建立圆柱坐标。 •求解远离两端处筒壁中的三向应力。
2.3 厚壁圆筒应力分析
c. 几何方程(续) 径向应变 周向应变 变形协调方程
(2-27) (2-28)
2.3 厚壁圆筒应力分析
d. 物理方程
(2-29)
2.3 厚壁圆筒应力分析
e. 平衡、几何和物理方程综合—求解应力的微分方程
(2-33)
2.3 厚壁圆筒应力分析
边界条件为:当
时,


时,

由此得积分常数A和B为:
2.3 厚壁圆筒应力分析
周向应力 径向应力
轴向应力
称Lamè(拉美)公式
(2-34)
2.3 厚壁圆筒应力分析
表2-1 厚壁圆筒的筒壁应力值
2.3 厚壁圆筒应力分析
(a)仅受内压
(b)仅受外压
图2-17 厚壁圆筒中各应力分量分布

厚壁圆筒应力分析剖析

厚壁圆筒应力分析剖析

厚壁圆筒应力分析剖析一、应力分析方法1.在应力分析中,通常采用静力学的方法,根据力学定律对厚壁圆筒进行应力分析。

2.厚壁圆筒的应力分析可以分为轴向应力、周向应力和切向应力三个方向上的应力分析。

二、应力计算公式1.轴向应力:σa=(P·r)/t其中,σa表示轴向应力,P表示圆筒受到的内外压力,r表示圆筒内径,t表示圆筒壁厚。

2.周向应力:σc=(P·r)/(2t)其中,σc表示周向应力。

3. 切向应力:τ = (P · ri) / t其中,τ 表示切向应力,ri 表示圆筒中心点到任意一点的径向距离。

三、实例分析假设有一个内径为 10cm,外径为 15cm,壁厚为 2cm 的厚壁圆筒,内外压力分别为 5MPa 和 10MPa。

现对该厚壁圆筒进行应力分析。

1.轴向应力:根据公式σa = (P · r) / t,代入 P = 5MPa,r = 7.5cm,t =2cm,计算得σa = (5×7.5) / 2 = 18.75MPa。

同理,代入 P = 10MPa,r = 7.5cm,t = 2cm,计算得σa =(10×7.5) / 2 = 37.5MP a。

2.周向应力:根据公式σc = (P · r) / (2t),代入 P = 5MPa,r = 7.5cm,t= 2cm,计算得σc = (5×7.5) / (2×2) = 9.375MPa。

同理,代入 P = 10MPa,r = 7.5cm,t = 2cm,计算得σc =(10×7.5) / (2×2) = 18.75MPa。

3.切向应力:根据公式τ = (P · ri) / t,代入 P = 5MPa,ri = 7.5cm,t =2cm,计算得τ = (5×7.5) / 2 = 18.75MPa。

同理,代入 P = 10MPa,ri = 7.5cm,t = 2cm,计算得τ =(10×7.5) / 2 = 37.5MPa。

压力容器厚壁圆筒的弹塑性应力分析

压力容器厚壁圆筒的弹塑性应力分析

未来发展方向和前景展望
THANK YOU
汇报人:XX
有限元法的优缺点及其在 工程实践中的应用案例
厚壁圆筒的弹塑性应力分析中的材料模型
理想弹塑性模型:假设材料在受力过程中遵循胡克定律,忽略材料的应变率效应 和温度效应。
弹塑性有限元法:将厚壁圆筒离散化为有限个单元,每个单元的应力应变关系通 过弹塑性本构方程描述。
增量理论:基于增量形式的本构方程,考虑了前一次加载时残留在材料中的应力 场对当前加载的影响。
厚壁圆筒的弹塑性应力 分析的未来发展
PART 01 添加章节标题
PART 02
压力容器厚壁圆 筒的弹塑性应力
分析概述
压力容器厚壁圆筒的结构特点
厚壁圆筒由金属材料制成,具有高强度和耐腐蚀性能。 厚壁圆筒的结构设计应满足压力容器的工艺要求和使用条件。 厚壁圆筒的厚度通常较大,以承受内压和其他附加载荷。 厚壁圆筒的制造过程中需要进行焊接、热处理、无损检测等质量控制措施。
PART 06
厚壁圆筒的弹塑 性应力分析的未
来发展
新型材料对厚壁圆筒弹塑性应力分析的影响
新型材料的出现将改变厚壁圆筒的弹塑性应力分析的边界条件和载荷条件。 新型材料的力学性能对厚壁圆筒的弹塑性应力分析的精度和可靠性提出了更高的要求。 新型材料的加工制造技术将促进厚壁圆筒的弹塑性应力分析方法的改进和发展。 未来将有更多的新型材料应用于厚壁圆筒的制造,需要进一步研究这些材料对弹塑性应力分析的影响。
提高压力容器的安裂而引起的安全事故 为压力容器的设计、制造和使用提供科学依据
PART 03
厚壁圆筒的弹塑 性应力分析方法
有限元法在厚壁圆筒弹塑性应力分析中的应用
有限元法的定义和原理
厚壁圆筒的弹塑性应力分 析的数学模型

2 压力容器应力分析3(1)

2 压力容器应力分析3(1)
2 po K 2 R i 1 2 2 K 1 K 1
2 Ro 1 2 2 K 1 r
pi
K 1 Pi 2 K 1
2
z
1 pi 2 K 1
13
2.3 厚壁圆筒应力分析
周向应力
2 2 2 2 p R p R p p R i i 00 i 0 iR 0 1 2 2 2 2 2 R R R R r 0 i 0 i
径向应力
2 2 2 2 p R p R p p R i i 00 i 0 iR 01 2 2 r 2 2 2 R R R R r 0 i 0 i
一、压力载荷引起的弹性应力
二、温度变化引起的弹性热应力
5
2.3 厚壁圆筒应力分析
一、压力载荷引起的弹性应力 1、轴向(经向)应力 对两端封闭的圆筒,横截面在变形后仍保持平面。所以,
假设轴向应力沿壁厚方向均匀分布,得:
2 2 2 2 R p R p p R p R i i 0 0 i i 00 =A z 2 2 2 2 R R R R 0 i 0 i
厚壁容器: 应力
D /D 1 . 1 1 . 2 o i
径向应力不能忽略,处于三向应力状态;应力 仅是半径的函数。 周向位移为零,只有径向位移和轴向位移 径向应变、轴向应变和周向应变
位移 应变
分析方法
8个未知数,只有2个平衡方程,属静不定问 题,需平衡、几何、物理等方程联立求解。
3
2.3 厚壁圆筒应力分析
(2-29)
11
2.3 厚壁圆筒应力分析
e. 平衡、几何和物理方程综合—求解应力的微分方程 将式(2-28)中的应变换成应力

厚壁圆筒应力分析

厚壁圆筒应力分析

厚壁圆筒应力分析1、概述K>1.2的壳体成为厚壁圆筒。

厚壁容器承压的应力特点有(此处不考虑热应力):一、不能忽略径向应力,应做三向应力分析;二、厚壁容器的应力在厚度方向不是均匀分布,而是应力梯度。

所以,在求解的时候需要联立几何方程、物理方程、平衡方程才能确定厚壁各点的应力大小。

2、解析解一、内压为i p ,外压为0p 的厚壁圆筒,需要求出径向应力r σ、周向应力θσ和轴向应力z σ,其中轴向应力z σ不随半径r 变化。

(1)几何方程如图所示,取内半径r ,增量为dr 的一段区域两条弧边的径向位移为ω和ωωd +,其应变的表达式为:r rd rd d r dr d dr d r ωθθθωεωωωωεθ=-+==-+=))((周向应力:径向应力:(1) θσ对r 求导,得:()θθσσωωωωωσ-=⎪⎭⎫ ⎝⎛-=-='⎪⎭⎫ ⎝⎛=r r r dr d r r r dr d r dr d 112 (2) (2)物理方程根据胡克定理表示为:[]z Eσσμσεθθ+-=r (1 (3) 两式相减,消去z σ得:[]θθσσμεε-+=r E)(1-r []z r E σσμσεθ+-=(1r (4) 将(4)代入(2)得:[])z r Edr d σσμσεθθ+-=(1 (5) 对(3)的θε求导得,z σ看做常数:⎪⎭⎫ ⎝⎛-=dr r d dr d E dr d σμσεθθ1 (6) 联立(5)、(6)得:[]θθθσσμσμσ-)1-r rdr d dr d +=( (7) (3)平衡方程如图所示,沿径向和垂直径向建立坐标系,把θσ向x 轴和y 轴分解,得:⎪⎭⎫ ⎝⎛=-+2sin 2θθd p p p r dr r (8) 其中()θσσd dr r d p r r dr r ++=+)( (9)θσrd p r r =由于θd 很小,22sin θθd d ≈⎪⎭⎫⎝⎛,略去二阶微量r r d d σ,得 drd r r r σσσθ=- (10) 联立(7)(10)得0322=+drd dr d r r r σσ (11)对(11)进行求得r σ,在代入(10)得22r B A r BA r +=-=θσσ(12) 其中A 、B 是两个积分常数,要求A ,B 需要两个方程,根据内外壁边界条件00,,p R r p R r r ir i -==-==σσ(13)将(13)代入(12)得:22020202202002)(i ii i i i R R RR p p B R R R p R p A --=--=(14)最后剩下z σ未求出,最后在轴向用平衡方程,内力等于外力。

厚壁圆筒应力分析剖析

厚壁圆筒应力分析剖析

厚壁圆筒应力分析剖析厚壁圆筒是一种常见的结构,广泛应用于各个领域,比如压力容器、热交换器等。

在使用厚壁圆筒的过程中,必须进行应力分析,以确保结构的安全性和可靠性。

首先,研究厚壁圆筒的应力分析需要考虑以下几个方面。

1.圆筒的几何形状:厚壁圆筒是由外径、厚度和长度组成的。

这些几何参数会影响圆筒内部的应力分布情况。

2.材料特性:圆筒的材料特性直接影响其应力分布。

研究厚壁圆筒时,通常会考虑材料的弹性模量和泊松比等参数。

3.加载条件:圆筒的应力分布受外部载荷的影响。

载荷的形式可以是压力、温度、重力等。

加载条件的确定对于应力分析至关重要。

接下来,我们将详细介绍厚壁圆筒的应力分析方法。

1.内外压力分析:考虑厚壁圆筒内外的压力差异。

当内外压力相等时,圆筒应力较小。

当内压大于外压时,圆筒将会受到较大的应力。

2.纵向应力分析:厚壁圆筒在纵向方向上承受的应力主要为轴向拉应力。

如果存在压力差,则拉应力沿厚度逐渐增加。

3.周向应力分析:在周向上,厚壁圆筒受到的应力主要为周向拉应力。

当圆筒内外压力不平衡时,周向应力将会增加。

4.切应力分析:切应力是圆筒内部的剪切应力分量。

在圆筒壁厚度的不同位置,切应力的大小也会有所不同。

5.应力分布图:为了更好地理解厚壁圆筒的应力分布情况,可以绘制应力分布图。

这样可以直观地了解不同部位的应力分布情况,以便进行结构优化。

总结一下,厚壁圆筒的应力分析对于确保结构安全性至关重要。

通过分析内外压力、纵向应力、周向应力和切应力,可以更好地理解圆筒的应力分布情况。

通过应力分布图,可以更直观地了解圆筒不同部位的应力情况,从而进行优化设计。

在实际工程中,应力分析的结果可以用来指导材料的选择、结构的设计以及使用中的安全操作。

第二章 厚壁圆筒的弹塑性应力分析

第二章 厚壁圆筒的弹塑性应力分析

第二章 厚壁圆筒的弹塑性应力分析1.只受内压作用:(1)在厚壁圆筒中,筒体处于三向应力状态,其中θσ为拉应力,r σ为压应力,且沿壁厚非均匀分布;而z σ介于θσ和r σ之间,即2r z θσσσ+=,且沿壁厚均匀分布。

(2)在筒体内壁面处,θσ、r σ的绝对值比外壁面处为大,其中θσ具有最大值,且恒大于内压力i p ,其危险点将首先在内壁面上产生。

(3)θσ沿壁厚分布随径比K 值的增加趋向更不均匀,不均匀度为内、外壁周向应力之比,即2()1()2io r R r R K θθσσ==+=。

显然,不均匀度随2K 成比例,可见K 值愈大,应力分布愈不均匀。

当内壁材料开始屈服时,外壁材料远小于屈服限,因此筒体材料的强度不能得到充分的利用。

由此可知,用增加筒体壁厚(即增加K 值)的方法来降低厚壁圆筒的内壁应力,只在一定范围内有效,而内压力接近或超过材料的许用应力时,增加厚度是完全无效的。

为了提高筒壁材料的利用率,有效的办法是改变应力沿壁厚分布的不均匀性,使其趋于均化。

2.往往采用组合圆筒或单层厚壁圆筒自增强处理技术,以提高筒体的弹性承载能力。

3.温差应力:厚壁圆筒的厚壁可能从内表面或外表面被加热,由于筒壁较厚,并有一定的热阻,在筒体的内、外壁之间存在温度差,温度较高部分因受热而引起膨胀变形,同时受到温度较低部分的约束,从而使前者受压缩,而后者受拉伸,出现了温差应力或称热应力。

(1)厚壁圆筒中,温差应力与温度差t ∆成正比,而与温度本身的绝对值无关,因此在圆筒内壁或外壁进行保温以减小内、外壁的温度差,可以降低厚壁圆筒的温差应力。

(2)温差应力的分布规律为三向应力沿壁厚均为非均匀分布,其中,轴向应力是环(周)向应力与径向应力之和,即t t t z r θσσσ=+ ;在内、外壁面处,径向应力为零,轴向应力和环(周)向应力分别相等,且最大应力发生在外壁面处。

(3)温差应力是由于各部分变形相互约束而产生的,因此应力达到屈服极限而屈服时,温差应力不但不会继续增加,而且在很大程度上会得到缓和,这就是温差应力的自限性,它属于二次应力。

厚壁圆筒的弹性应力分析

厚壁圆筒的弹性应力分析
径向应变
周向应变
对第二式求导并变换得:
第五章 高压容器设计
20
第二节 高压容器筒体的结构与强度设计
二、厚壁圆筒的弹性应力分析 (一)受内压单层厚壁圆筒中的弹性应力
物理方程 按广义虎克定律可表示为:
第五章 高压容器设计
21
第二节 高压容器筒体的结构与强度设计
二、厚壁圆筒的弹性应力分析 (一)受内压单层厚壁圆筒中的弹性应力
物理方程
第五章 高压容器设计
22
第二节 高压容器筒体的结构与强度设计
二、厚壁圆筒的弹性应力分析 (一)受内压单层厚壁圆筒中的弹性应力
(2)平衡方程
第五章 高压容器设计
23
第二节 高压容器筒体的结构与强度设计
二、厚壁圆筒的弹性应力分析 (一)受内压单层厚壁圆筒中的弹性应力
(2)平衡方程
第五章 高压容器设计
2000MPa
第五章 高压容器设计
4
第一节 概述
二、高压容器的结构特点
高压容器设计与制造技术发展的核心问题: 既要随着生产的发展能制造出大壁厚的容器 又要设法尽量减小壁厚以方便制造。
高压容器特点: 1 结构细长(长径比可达28) 2 采用平盖或球形封头(平盖仅在1m直径以下采用) 3 密封结构特殊多样(多种自紧式密封) 4 高压筒身限制开孔
第五章 高压容器设计
11
第二节 高压容器筒体的结构与强度设计
一、高压筒体的结构型式及设计选型
(二)单层式 单层厚壁高压容器有种形式: 单层卷焊式:直径工序少,周期短效率高 单层瓦片式:生产效率比单层卷焊差,费工费时 无缝钢管式:效率高,周期短 以上三种形式被三方面因素制约: 1)厚壁材料来源; 2)大型机械条件; 3)纵向和环向深厚焊逢中缺陷检测;

厚壁圆筒应力分析

厚壁圆筒应力分析

轴向应力为一常量,沿壁厚均匀分布,且为周向应力与径向应力
和的一半,即
z
1 2
r
18
2.3 厚壁圆筒应力分析
③除 z 外,其它应力沿壁厚的不均匀程度与径比K值有关。
以 为例,外壁与内壁处的 周向应力 之比为:
K值愈大不均匀程度愈严重,
rR0
2
rRi K 2 1
当内壁材料开始出现屈服时, 外壁材料则没有达到屈服,
r max pi
max
pi
K2 1 K2 1
min
pi
2 K2 1
rr min 0
r max p0
r
z
p0
K2 1 K2 1
max
p0
2K 2 K2 1
(a)仅受内压
(b)仅受外压
图2-17 厚壁圆筒中各应力分量分布
16
2.3 厚壁圆筒应力分析
仅在内压作用下,筒壁中的应力分布规律: ①周向应力 及轴向应力 z 均为拉应力(正值),
应力
7
2.3 厚壁圆筒应力分析
a. 微元体 如图2-15(c)、(d)所示,由圆柱面mn、m1n1和纵截面mm1、nn1组 成,微元在轴线方向的长度为1单位。
b. 平衡方程
r
d
r
r
drd
r rd
2
dr
sin
2
0
r
r
d r
dr
(2-26)
8
2.3 厚壁圆筒应力分析
c. 几何方程 (应力-应变)
m'1
2、压力容器应力分析
CHAPTER Ⅱ STRESS ANALYSIS OF PRESSURE VESSELS

厚壁圆筒平面应力问题和平面应变问题

厚壁圆筒平面应力问题和平面应变问题

厚壁圆筒平面应力问题和平面应变问题下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!Certainly! Here's a structured demonstration article on the topic "Thickwalled Cylinder: Plane Stress and Plane Strain Problems" in Chinese:厚壁圆筒的平面应力问题与平面应变问题。

球形厚壁容器的应力分析与设计原则

球形厚壁容器的应力分析与设计原则

球形厚壁容器的应力分析与设计原则球形厚壁容器是一种常见的工程结构,用于承载高压气体或液体,具有很高的安全性要求。

本文将对球形厚壁容器的应力分析和设计原则进行探讨,旨在提供对该类型结构设计的指导。

1. 应力分析1.1 球形厚壁容器的应力分布球形厚壁容器在承受内压力时,内表面受到压力的作用,会产生张力,而外表面则受到压力的补偿,会产生压力。

由于球形厚壁容器对称性的特点,其应力分布均匀,主要表现为径向应力和周向应力。

1.2 球形厚壁容器的应力计算公式根据力学原理,球形厚壁容器的应力计算公式可表达为σ = P * r / (2t),其中σ为应力,P为内压力,r为球的半径,t为容器的壁厚。

通过该公式可以计算不同点位处的应力大小。

2. 设计原则2.1 壁厚计算原则为确保球形厚壁容器在工作状态下的安全性,必须合理确定其壁厚。

壁厚的计算应基于以下几个因素:容器的材料强度、容器的内外径、内压力和设计寿命等。

通常采用ASME标准来计算壁厚,确保容器的强度和刚度能满足使用要求。

2.2 接头设计原则球形厚壁容器在实际制作中需要设置接头,接头的设计应符合机械原理和焊接工艺要求。

常见的接头形式包括对焊接头、角接头和对接接头等。

接头的设计需要考虑其受力性能,以保证接头区域的强度和稳定性。

2.3 强化措施原则针对球形厚壁容器承受的较高压力,设计中可采取一些强化措施以增加结构的稳定性和强度。

如设置加强筋、球缺口切割和局部加壁等,这些措施能够有效地提升容器的抗压能力和抗拉能力。

2.4 材料选择原则在球形厚壁容器的设计中,材料的选择对结构的稳定性和耐腐蚀性有着重要影响。

常见的选择材料包括不锈钢、碳钢和合金钢等。

根据容器的使用环境和要求,选择合适的材料可以提高容器的耐用性和安全性。

3. 结论本文对球形厚壁容器的应力分析与设计原则进行了探讨,并给出了相应的计算公式和设计原则。

在实际设计过程中,应根据容器的具体要求和使用环境选择合适的设计参数,确保容器的安全可靠运行。

05_压力容器应力分析_厚壁圆筒弹性应力分析

05_压力容器应力分析_厚壁圆筒弹性应力分析

2.3 厚壁圆筒应力分析
2.3.1 弹性应力
仅考虑温差引起的热应力: 对于对称于中心轴且沿轴向不变的稳态温度场, 厚壁圆筒内的三向热应力表达式为
周向热应力 径向热应力 轴向热应力 Et 1 ln K r K 2 1 2 2(1 ) ln K K 1
这样,有几何方程 (又称:变形协调方程)
d 1 r dr r
(2 28)
上式表明,微元体的应变遵循一定的关系等式。
2.3 厚壁圆筒应力分析
2.3.1 弹性应力
物理方程 (弹性范围内的微元体应力与应变关系式) 在三向应力状态下,应力与应变有下列关系
1 r r ( z ) E 1 ( r z ) E 1 z z ( r ) E
2.3.1 弹性应力
2.3.1 弹性应力 (1) 压力载荷引起的弹性应力 ① 轴向(经向)应力σz
Pi P0 z Pi P0 pi Ri2 p0 R02 F R02 Ri2 F R0 pi Ri2 p0 R02 pi p0 K K (径比) z (2 25) 2 2 2 Ri R0 Ri K 1
② 根据第一强度理论,有:σ1 =σϴ ≤[σ], 最大的 σ1 在内壁面处 ( r=Ri ),因此内壁面为危险部位,屈服 首先由内壁面开始。同理,如果根据第三强度理论, 有:σ1 - σ3=σϴ - σr ≤[σ], 最大的σ1 - σ3仍然在内壁面处, 因此内壁面为危险部位。这里,第一强度理论和第三 强度理论得出相同的危险部位位置。 ③ σr 、σϴ 和σz 沿壁厚方向的分布是不均匀的,在内壁 面处应力值较大,外壁面处应力值较小,表明筒体材 料未得到充分利用。

2.3厚壁圆筒应力分析

2.3厚壁圆筒应力分析
pi
max p i
K K
2 2
1 1

min
pi
2 K
2
1
,随着 r 增加, 径向应力绝对值
逐渐减小,在外壁处 r =0; 轴向应力为一常量,沿壁厚均匀分布,且为周向应力与径向应力 和的一半,即

1 2
z


r

18
2.3 厚壁圆筒应力分析
2.3.1 弹性应力(续)
r
1 E 1 E
r

z

(2-29)
r
z

11
2.3 厚壁圆筒应力分析
2.3.1 弹性应力(续)
过程设备设计
e. 平衡、几何和物理方程综合 将式(2-28)中的应变换成应力
求解应力的微分方程
d r
2
并整理得到:
r
dr
2
过程设备设计
2.3 厚壁圆筒应力分析
教学重点:
(1)厚壁圆筒中三向应力的公式表达
和应力分布图;
(2)厚壁圆筒中的弹塑性区的应力分布;
(3)提高屈服承载能力的措施。
教学难点:
厚壁圆筒中三向应力公式推导。
4
2.3 厚壁圆筒应力分析
2.3.1 弹性应力
p0
过程设备设计
po pi
pi
Di
Do
a. po
b.
p 0 R i R 0
2
2
1 r
2
R R
2 0
2 i
A
B r
2
径向应力
r
pi Ri p0 R0
2
2
R R

厚壁圆筒应力分析

厚壁圆筒应力分析

r
A
B r2
A
B r2
(2-33)
12
2.3 厚壁圆筒应力分析
2.3.1 弹性应力(续)
过程设备设计
边界条件为:当 r Ri 时, r pi ; 当 r R0 时, r p0 。
由此得积分常数A和B为:
A pi Ri2 p0 R02 R02 Ri2
B pi p0 Ri2 R02
b. 平衡方程
r
dr r
drd
rrd
2 dr sin
d
2
0
sin(d/2) d / 2
图2-15
p
R1 R2 t
r
r
d r
dr
(2-26)
薄壁微元平衡方程。 拉普拉斯方程
微元体平衡方程
8
2.3 厚壁圆筒应力分析
2.3.1 弹性应力(续)
c. 几何方程 (应力-应变)
过程设备设计
图2-16 厚壁圆筒中微元体的位移
静不定问题,需平衡、几何、物理等方程 分析方法: 联立求解
与薄壁容器比较, 有何异同?
2
2.3 厚壁圆筒应力分析
主要内容
过程设备设计
2.3.1 弹性应力 2.3.2 弹塑性应力 2.3.3 屈服压力和爆破压力 2.3.4 提高屈服承载能力的措施
3
2.3 厚壁圆筒应力分析
2.3 厚壁圆筒应力分析
过程设备设计
pi Ri2 R02
p0 R02 Ri2
=A
(2-25)
6
2.3 厚壁圆筒应力分析
2.3.1 弹性应力(续)
过程设备设计
2. 周向应力与径向应力 由于应力分布的不均匀性,进行应力分析时,必须从微元体着 手,分析其应力和变形及它们之间的相互关系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章
压力容器应力分析
CHAPTER Ⅱ STRESS ANALYSIS OF PRESSURE VESSELS
第三节
厚壁圆筒应力分析
1
2.3 厚壁圆筒应力分析
过程设备设计
厚壁容器: D o / D i 1 . 1 1 . 2 应考虑径向应力,是三向应力状态;
应力特征: 应力沿壁厚不均匀分布;
24
2.3 厚壁圆筒应力分析
2.3.1 弹性应力(续)
过程设备设计
1. 热应力
图2-19 碳素钢的热应力值
25
2.3 厚壁圆筒应力分析
2.3.1 弹性应力(续)
过程设备设计
2. 厚壁圆筒的热应力
求厚壁圆筒中的热应力,首先确定筒壁的温度分布,再由平衡
方程、几何方程和物理方程,结合边界条件求解。 当厚壁圆筒处于对称于中心轴且沿轴向不变的温度场时,稳态 传热状态下,三向热应力的表达式为:
如图2-15(c)、(d)所示,由圆柱面mn、m1n1和纵截面mm1、nn1 组成,微元在轴线方向的长度为1单位。 b. 平衡方程
r d r r dr d
r rd 2 dr sin
d 2
0
sin(d /2) d / 2
(2-26)
图2-15
过程设备设计
③除 z 外,其它应力沿壁厚的不均匀程度与径比K值有关。
以 为例,外壁与内壁处的
周向应力 之比为:
r R
0
r R
K
2
2
1
i
K值愈大不均匀程度愈严重,
当内壁材料开始出现屈服时, 外壁材料则没有达到屈服,
因此筒体材料强度不能得到充分的利用。
r min 0
r
i
r min 0
r
z p0
K
K 2
2 1
r max p

r max
p
0

min
=-
p0
K 1
2
K
2K K 2
2
2
1

max
p0
1
(a)仅受内压
(b)仅受外压
16
图2-17 厚壁圆筒中各应力分量分布
2.3 厚壁圆筒应力分析
2
沿壁厚方向均匀分布,得: z
2

z

Ri p i R 0 p 0 R
2 0
R
2 i


pi Ri p0 R0
2
2
R
2 0
R
2 i
=A
(2-25)
6
2.3 厚壁圆筒应力分析
2.3.1 弹性应力(续)
过程设备设计
2. 周向应力与径向应力 由于应力分布的不均匀性,进行应力分析时,必须从微元体着 手,分析其应力和变形及它们之间的相互关系。 a. 微元体
外壁处 r=R o
po
K po K
2 2
r
pi

K
2
2 Ro 1 2 1 r
K Pi K
2 2
1 1
pi K
2
2
1
po K K
2
2 Ri 1 2 1 r 2

轴向热应力
t z
E t 1 2 ln K r 2 2 2 1 ln K K 1
(2-38)
27
o 2.3 厚壁圆筒应力分析
t
2.3.1 弹性应力(续)
过程设备设计
2. 厚壁圆筒的热应力(续) 上式中:
t
筒体内外壁的温差,
t t i t 0
1


t z
Pt

1 2 ln K ln K
r

2 K
2
1
Pt

1 ln K

2K K
2
2
1

Pt
1 ln K

2 K
2
1
29
2.3 厚壁圆筒应力分析
2.3.1 弹性应力(续)
σ
过程设备设计
σ
σθ t σ
O
t z
σz
r
O
t
σ rt
r
σ rt
Ri Ro
σθt
Ri Ro
(a)内部加热;
由此得积分常数A和B为:
A
pi R R
2 i 2 0
p0 R R
2 i
2 i
2 0
B
pi
p 0 R R R R
2 0 2 i
2 0
13
2.3 厚壁圆筒应力分析
2.3.1 弹性应力(续)
pi Ri p0 R0
2 2
过程设备设计
周向应力

R R
2 0
2 i

pi
p 0 R i R 0
2
2
1 r
2
R R
2 0
2 i
A
B r
2
径向应力
r
pi Ri p0 R0
2
2
R R
2 0
2 i

pi
p 0 R i R 0 1
2 2
R R
2 0
2 i
r
2
A
B r
2
轴向应力

z

pi Ri p0 R0
2
2
R
2 0
R
2 i
19
2.3 厚壁圆筒应力分析
2.3.1 弹性应力(续)
过程设备设计
二、温度变化引起的弹性热应力 1. 热应力 2. 厚壁圆筒的热应力 3. 内压与温差同时作用引起的弹性应力 4. 热应力的特点
20
2.3 厚壁圆筒应力分析
2.3.1 弹性应力(续)
过程设备设计
1. 热应力 因温度变化引起的自由膨胀或收缩受到约束,在弹性体内 所引起的应力,称为热应力。
过程设备设计
热应 任意半径r 处 力

t r
t
圆筒内壁 Kr
K

圆 筒 外 壁K r
1

pt
Pt

ln K ln K
r


K K
2 r 2
1 1
1 1



Pt
0
0
2K K
2 2


1 ln K ln K
r
K K
2 r 2

1 ln K

1

Pt

1 ln K

2 K
2
3
d r dr
0
解该微分方程,可得 r 的通解。将 r 再代入式(2-26) 得 。
r A
B r
2
A
B r
2
(2-33)
12
2.3 厚壁圆筒应力分析
2.3.1 弹性应力(续)
r Ri
r R0
过程设备设计
边界条件为:当 当
时, r p i ; 时, r p 0 。
(详细推导见文献[11]附录)
26
2.3 厚壁圆筒应力分析
2.3.1 弹性应力(续)
过程设备设计
2. 厚壁圆筒的热应力(续)
周向热应力

t
K E t 1 ln K r 2 1 ln K K
2 r 2
1 1
径向热应力

t r
2 ln K r K r 1 Et 1 ln K K 2 1 2
1 1
z
1 pi 2 K 1
K2 po 2 K 1
15
2.3 厚壁圆筒应力分析
2.3.1 弹性应力(续)
z z
过程设备设计

max
pi
K K
2
1 1
2 K 2 1
2
z
K
pi 2 1

min
pi
c. 几何方程(续)
r

d dr
径向应变

d dr
周向应变

r d
rd
rd
(2-27)


r
变形协调方程
d dr

1 r
r


(2-28)
10
2.3 厚壁圆筒应力分析
2.3.1 弹性应力(续)
过程设备设计
d. 物理方程
b. 平衡方程
c. 几何方程 :微元体位移与应变之间的关系。(用位移法求解) d. 物理方程:弹性范围内,微元体的应变与应力的关系 e. 平衡、几何和物理方程综合—求解应力的微分方程 (求解微分方程,积分,边界条件定常数)
应力
7
2.3 厚壁圆筒应力分析
过程设备设计
a. 微元体
2.3.1 弹性应力(续) A来自称Lamè (拉美)公式
(2-34)
14
2.3 厚壁圆筒应力分析
2.3.1 弹性应力(续)
过程设备设计
当仅有内压或外压作用时,拉美公式可以简化,此时,厚壁圆筒 应力值和应力分布分别如表2-1和图2-17 表2-1 厚壁圆筒的筒壁应力值
受 力 情 况 位 应 力 分 析 置
仅受内压 p o =0 任意半径 r 处
若内外壁间的温差大,应考虑器壁中的热应力。 静不定问题,需平衡、几何、物理等方程 分析方法: 联立求解
相关文档
最新文档