公安大数据警务大数据分析系统方案设计(图文)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公安大数据警务大数据分析系统方案设计(图文)
产品推荐1:智慧消防:水源采集系统方案
产品推荐2:激光投影:最佳的大屏解决方案产品推荐3:智慧展厅:综合应用解决方案
物联网与大数据作为信息时代的技术产物,受到社会各界的广泛关注,如何利用物联网技术与大数据分析算法提升办案效率,已成为各国警方分析研究的课题。本文构想了一套基于物联网技术的警务大数据分析模型,意在探讨该套模型在实际应用中的可行性,以及可能遇到的困难。背景介绍警察作为一个国家的重要机构,肩负着维护社会稳定,打击违法犯罪的重要职责,面对着越来越狡猾的犯罪分子,警方需要有效提升预防和打击犯罪的能力,单靠警员人工破案已无法满足社会需求,因此国家提出“科技强警”的发展战略,借助高科技装备、信息化手段帮助警方打击违法犯罪,“金盾工程”更是将公安信息化建设推向了高潮。然而,随着信息时代的到来,犯罪分子作案手段越发多变、隐蔽,传统的信息化手段已很难帮助警方快速分析研判。
近年来,“物联网”、“大数据”越来越被人们所熟知,著名的“谷歌汽车”、“大数据流感预测”更是成为物联网技术与大数据预测应用的经典案例。这两个在几年前还不为人知的技
术名词,仿佛是在一夜之间闯入了我们的生活,将人们拉入了科幻电影中的场景。那什么是“物联网”、“大数据”呢?物联网技术是利用互联网等通信技术手段把传感器、控制器、机器、人与物通过新的方式联系在一起,形成人与物、物与物互联,实现信息化,远程管理控制和智能化的网络。
作为物联网之后IT行业又一大颠覆性的技术革命,大数据是信息爆炸时代的产物,人们每天上网、交流、购物、订票……产生了数以亿级的数据,而这项技术的意义并不在于掌握了庞大的数据信息,而在于对这些含有意义的数据进行专业化的预测处理。
警方分析研判的关键是挖掘人员、组织、案(事)件、阵地以及物品五要素之间的关联关系,如果能够借助物联网技术获取五要素信息,那么将大大提升警方获取线索信息的效率,同时也能避免人为错误。而面对庞杂的线索信息,则可以借助大数据分析技术实现深入,高效的挖掘分析,进而快速找出五要素之间的关联关系。
本文试图探讨构建一套基于物联网技术的警务大数据分析模型,借以提高警方线索采集和分析研判过程的准确性和效率。
技术架构基于物联网技术的警务大数据分析模型是一种利用大数据分析算法对海量警务物联网线索信息进行深度挖
掘分析的系统模型。它包括了物联感知层、数据传输层、数据分析层以及数据展示层,同时,它还要与现有的公安信息网有效融合,实现信息共享碰撞。
物联感知层警务物联网,是指利用感知技术与智能装置对警务工作关注对象进行自动感知识别,通过网络,技术处理和智能分析,实现对关注对象状态和态势信息的实时掌握,达到对关注对象动态监测、精确管理和科学指挥的目的。
目前警方所应用的场景有旅客身份证查验、警车警员GPS 定位、城区视频监控、道路卡口车辆监控、重点部位报警防范、重点人员手机定位、枪支RFID标签定位等,可以采集到人员、车辆以及物品的城市时空数据,为警方建立基本要素排查提供大量真实可靠的原始数据。
数据传输层经过移动互联网、有线网络等媒介传输到系统模型的物联网数据,具有数据量大,且分布在不同时域,空域的特点,是无法直接使用的,为此需要按照一定的标准规则对它们进行初步的筛选和归类整合,将其转化为兼容系统模型的,具有统一规范标准的“元数据”。
数据分析层经过初步归类整合的数据依旧是海量且缺乏直观联系关系,无法为警方提供研判依据,为此需要借助专业的数据挖掘算法对这些数据进一步分析、整合。同时还要与公安信息网中的线索与情报进行碰撞,以降低单一数
据源造成的信息可靠性低等问题。常用的分析算法有分类分析、回归分析、聚类分析以及关联分析。
分类分析根据一定的分类准则将具有不同特征的数据划分到不同类别的过程。以某地区团伙作案为例,该区域近一段时期是团伙犯罪高发期,警方对该区域以及邻近区域娱乐场所以及出租屋的人员进行集中排查,采集到大量的身份证信息和手机串号信息。
通过对午夜时段的身份证号以及手机串号进行碰撞,可以筛选出一批经常出入于犯罪高发区的可疑人员名单,进而帮助警方缩小排查范围。
回归分析通过对自变量和因变量做一定的相关性分析,由此建立回归方程,用以预测变量的依赖关系。加利福尼亚警方曾利用火灾预警系统来预测建筑物火情以及分析纵火案。
加利福尼亚警方通过将一年内火灾案件与当天天气,建筑物自身因素等资料数据化,形成了一套火灾级别与火灾因素的拟合函数,当火灾因素点越丰富时,拟合出来的火灾隐情拟合函数曲线就越细腻平滑,精准度也就越高,进而形成经验数据,有效提升火灾预警能力。同时,警方也不放过那些异常点,因为往往异常点代表着具有“人为纵火”嫌疑,警方再通过对这些异常点的分析,找出隐藏在火灾背后的案情。
聚类分析不同于分类分析,聚类分析没有先验知识,一般是将一堆看似毫无规则的数据根据某种特征进行划分,不同属性的数据分到不同的组。警方可以根据时间或者空间为基准属性,对采集到的身份证号,报警信息,手机串号等进行分组,进而发现可疑线索。
例如,某文物保护单位午夜时分发生文物盗窃案件,通过对该单位近一周内的监控录像、手机串号等数据的采样,警方首先将可疑目标锁定在午夜时段出现的四个手机串号上,因为该时段不可能是正常游客参观时段,具有可疑性,但由于作案人带了头套和手套,未能取得有价值的作案监控录像。
警方再对其余时间进行排查碰撞发现,在案发前三天,可疑目标手机串号出现在文物展览时段,通过对该时段的监控录像与手机串号进行排查定位,就可以有效缩小排查范围。
关联分析用于在大量杂乱无章的数据中寻找有价值数据间的相关关系。通过分析犯罪嫌疑人的基本信息、亲朋好友、交通工具、银行账户以及出行记录等,就能绘制出一张犯罪嫌疑人的关系网,进而为警方快速掌握犯罪嫌疑人动向提供有力线索。
数据展示层伴随着大数据应用而出现的技术还有可视化展示技术,它能够很直观的将大数据分析产生的晦涩难懂的