图像分割处理实验报告

合集下载

数字图像处理实验报告——图像分割实验

数字图像处理实验报告——图像分割实验

实验报告课程名称数字图像处理导论专业班级_______________姓名 _______________学号_______________电气与信息学院与谐勤奋求就是创新一.实验目得1.理解图像分割得基本概念;2.理解图像边缘提取得基本概念;3.掌握进行边缘提取得基本方法;4.掌握用阈值法进行图像分割得基本方法.二。

实验内容1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。

比较三种算子处理得不同之处;2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明。

3.任选一种阈值法进行图像分割、图1 图2三.实验具体实现1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。

比较三种算子处理得不同之处;I=imread(’mri、tif');imshow(I)BW1=edge(I,’roberts’);figure ,imshow(BW1),title(’用Roberts算子’)BW2=edge(I,’sobel’);figure,imshow(BW2),title(’用Sobel算子 ')BW3=edge(I,’log’);figure,imshow(BW3),title(’用拉普拉斯高斯算子’)比较提取边缘得效果可以瞧出,sober算子就是一种微分算子,对边缘得定位较精确,但就是会漏去一些边缘细节.而Laplacian—Gaussian算子就是一种二阶边缘检测方法,它通过寻找图象灰度值中二阶过零点来检测边缘并将边缘提取出来,边缘得细节比较丰富。

通过比较可以瞧出Laplacian-Gaussian算子比sober算子边缘更完整,效果更好。

2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明.i=imread('m83、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图');thread=130/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’);3.任选一种阈值法进行图像分割、i=imread('trees、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图’);thread=100/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’)1、分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。

实验六 图像分割

实验六 图像分割

信息工程学院实验报告课程名称:数字图像处理实验项目名称:实验六图像分割实验时间:班级:姓名:学号:一、实验目的1. 使用MatLab 软件进行图像的分割。

使学生通过实验体会一些主要的分割算子对图像处理的效果,以及各种因素对分割效果的影响。

2. 要求学生能够自行评价各主要算子在无噪声条件下和噪声条件下的分割性能。

能够掌握分割条件(阈值等)的选择。

完成规定图像的处理并要求正确评价处理结果,能够从理论上作出合理的解释。

二、实验内容与步骤1.边缘检测(1)使用Roberts 算子的图像分割实验调入并显示图像room.tif图像;使用Roberts 算子对图像进行边缘检测处理;Roberts 算子为一对模板:(a)450方向模板(b)1350方向模板图 1 matlab 2010的Roberts算子模板相应的矩阵为:rh = [0 1;-1 0];rv = [1 0;0 -1];这里的rh 为45度Roberts 算子,rv 为135度Roberts 算子。

分别显示处理后的45度方向和135方向的边界检测结果;用“欧几里德距离”和“街区距离”方式计算梯度的模,并显示检测结果;对于检测结果进行二值化处理,并显示处理结果。

提示:先做检测结果的直方图,参考直方图中灰度的分布尝试确定阈值;应反复调节阈值的大小,直至二值化的效果最为满意为止。

(2)使用Prewitt 算子的图像分割实验(a)水平模型(b)垂直模板图2. Prewitt算子模板使用Prewitt 算子进行内容(1)中的全部步骤。

(3)使用Sobel 算子的图像分割实验使用Sobel(a)水平模型(b)垂直模板图3. Sobel算子模板(4)使用LoG (拉普拉斯-高斯)算子的图像分割实验使用LoG (拉普拉斯-高斯)算子进行内容(1)中的全部步骤。

提示1:处理后可以直接显示处理结果,无须另外计算梯度的模。

提示2:注意调节噪声的强度以及LoG (拉普拉斯-高斯)算子的参数,观察处理结果。

图像分割处理实验报告

图像分割处理实验报告

图像分割处理实验报告1. 引言图像分割是计算机视觉中的重要任务之一,其目标是将图像划分成具有相似特征的子区域。

图像分割在很多应用领域中都有着广泛的应用,比如医学影像分析、目标检测和图像编辑等。

本实验旨在探索不同的图像分割算法,并比较它们在不同场景下的效果和性能。

2. 实验方法2.1 实验数据本实验选取了一组包含不同场景的图像作为实验数据集,包括自然景观、人物肖像和城市街景等。

每张图像的分辨率为500x500像素。

2.2 实验算法本实验使用了两种经典的图像分割算法进行比较,分别是基于阈值的分割和基于边缘的分割。

2.2.1 基于阈值的分割基于阈值的分割算法是一种简单而直观的方法,其原理是根据像素值的亮度信息将图像分割成不同的区域。

在本实验中,我们将图像的灰度值与一个事先设定的阈值进行比较,如果大于阈值则设为白色,否则设为黑色,从而得到分割后的图像。

2.2.2 基于边缘的分割基于边缘的分割算法利用图像中的边缘信息进行分割,其原理是检测图像中的边缘并将其作为分割的依据。

在本实验中,我们使用了Canny边缘检测算法来提取图像中的边缘信息,然后根据边缘的位置进行分割。

2.3 实验流程本实验的流程如下:1. 加载图像数据集;2. 对每张图像分别应用基于阈值的分割算法和基于边缘的分割算法;3. 计算分割结果和原始图像之间的相似度,使用结构相似性指标(SSIM)进行评估;4. 分析并比较两种算法在不同场景下的分割效果和性能。

3. 实验结果3.1 分割效果实验结果表明,基于阈值的分割算法在处理简单场景的图像时效果较好,可以比较准确地将图像分割为目标区域和背景。

然而,当图像的复杂度增加时,基于阈值的分割算法的效果明显下降,往往会产生较多的误分割。

相比之下,基于边缘的分割算法在处理复杂场景的图像时表现良好。

通过提取图像的边缘信息,该算法能够较准确地分割出图像中的目标区域,相比于基于阈值的分割算法,其产生的误分割较少。

3.2 性能评估通过计算分割结果和原始图像之间的SSIM指标,我们可以得到两种算法在不同场景下的性能评估。

图像分割 实验报告

图像分割 实验报告

图像分割实验报告图像分割实验报告一、引言图像分割是计算机视觉领域中的一个重要研究方向,它旨在将一幅图像分割成具有语义意义的不同区域。

图像分割在许多应用中发挥着关键作用,如目标检测、场景理解和医学图像处理等。

本实验旨在探索不同的图像分割方法,并对其进行比较和评估。

二、实验方法本实验选择了两种常用的图像分割方法:基于阈值的分割和基于边缘的分割。

首先,我们使用Python编程语言和OpenCV库加载图像,并对图像进行预处理,如灰度化和平滑处理。

接下来,我们将详细介绍这两种分割方法的实现步骤。

1. 基于阈值的分割基于阈值的分割是一种简单而常用的分割方法。

它通过将图像像素的灰度值与预先设定的阈值进行比较,将像素分为前景和背景两类。

具体步骤如下:(1)将彩色图像转换为灰度图像。

(2)选择一个适当的阈值,将图像中的像素分为两类。

(3)根据阈值将图像分割,并得到分割结果。

2. 基于边缘的分割基于边缘的分割方法是通过检测图像中的边缘来实现分割的。

边缘是图像中灰度变化剧烈的区域,通常表示物体的边界。

具体步骤如下:(1)将彩色图像转换为灰度图像。

(2)使用边缘检测算法(如Canny算法)检测图像中的边缘。

(3)根据边缘信息将图像分割,并得到分割结果。

三、实验结果与讨论我们选择了一张包含多个物体的彩色图像进行实验。

首先,我们使用基于阈值的分割方法对图像进行分割,选择了适当的阈值进行实验。

实验结果显示,基于阈值的分割方法能够将图像中的物体与背景分离,并得到较好的分割效果。

接下来,我们使用基于边缘的分割方法对同一张图像进行分割。

实验结果显示,基于边缘的分割方法能够准确地检测出图像中的边缘,并将图像分割成多个具有边界的区域。

与基于阈值的分割方法相比,基于边缘的分割方法能够更好地捕捉到物体的形状和边界信息。

通过对比两种分割方法的实验结果,我们发现基于边缘的分割方法相对于基于阈值的分割方法具有更好的效果。

基于边缘的分割方法能够提供更准确的物体边界信息,但也更加复杂和耗时。

图像分割 实验报告

图像分割 实验报告

图像分割实验报告《图像分割实验报告》摘要:图像分割是计算机视觉领域的重要研究方向,它在许多领域都有着重要的应用价值。

本实验旨在探究图像分割算法在不同场景下的表现,并对比不同算法的优缺点,为图像分割技术的进一步发展提供参考。

一、实验背景图像分割是指将图像划分成若干个具有独立语义的区域的过程。

图像分割技术在医学影像分析、自动驾驶、图像识别等领域都有着广泛的应用。

因此,对图像分割算法的研究和优化具有重要意义。

二、实验目的本实验旨在通过对比不同图像分割算法在不同场景下的表现,探究其优劣,并为图像分割技术的进一步发展提供参考。

三、实验内容1. 数据准备:收集不同场景下的图像数据,包括自然景观、医学影像、交通场景等。

2. 算法选择:选择常用的图像分割算法,如基于阈值的分割、边缘检测、区域生长等。

3. 实验设计:将不同算法应用于不同场景的图像数据上,对比它们的分割效果和计算速度。

4. 结果分析:对比不同算法的优缺点,并分析其适用场景和改进空间。

四、实验结果通过实验我们发现,在自然景观图像中,基于阈值的分割算法表现较好,能够有效地将图像分割成不同的颜色区域;而在医学影像中,边缘检测算法表现更为出色,能够准确地识别出器官的边缘;在交通场景中,区域生长算法表现较好,能够有效地区分不同的交通标志和车辆。

五、结论不同的图像分割算法在不同场景下有着不同的表现,没有一种算法能够适用于所有场景。

因此,我们需要根据具体的应用场景选择合适的图像分割算法,或者结合多种算法进行优化,以达到更好的分割效果。

六、展望未来,我们将继续探究图像分割算法的优化和改进,以适应不同场景下的需求。

同时,我们还将研究图像分割算法在深度学习和人工智能领域的应用,为图像分割技术的发展贡献力量。

通过本次实验,我们对图像分割算法有了更深入的了解,也为其在实际应用中的选择提供了一定的指导。

希望我们的研究能够为图像分割技术的发展做出一定的贡献。

图像分割实验报告

图像分割实验报告

图像分割实验报告医学图像处理实验报告实验名称:图像分割设计实验姓名:gaojunqiang学号:20105405班级:生医 1001指导教师:……2013年6月5日一、实验目的1、编程实现下列功能:读出存储的黑白灰度图象并显示,用拉普拉斯算子对图象进行边缘检测,显示处理后图象,存储处理后图象。

2、编程实现下列功能:读出存储的黑白灰度图象并显示,用鼠标点击图象上某一点,以灰度相近原则进行区域生长,显示处理后图象,存储处理后图象。

二、实验原理1、拉普拉斯边缘检测二维函数f(x,y)的拉普拉斯是一个二阶的微分定义为:,2f = [,2f / ,x2 ,,2f / ,y2]一般情况下可以用一个拉普拉斯模板算子。

模板算子分为4邻域和8邻域,如下,2f = 4z5 – (z2 + z4 + z6 + z8)0 1 01 -4 10 1 04邻域模板算子,2f = 8z5 – (z1 + z2 + z3 + z4+z5 + z6 + z7+ z8)1 1 11 -8 11 1 18邻域模板算子2、区域增长区域增长是通过一个起始点作为种子点对他周围的点进行选择。

它采取的是一种迭代的思想。

区域增长也分为四邻域和八邻域两种方式。

通过像素的集合进行区域增长的算法如下:1)根据图像的不同应用选择一个或一组种子,它或者是最亮或最暗的点,或者是位于点簇中心的点。

2)选择一个描述符(条件)3)从该种子开始向外扩张,首先把种子像素加入集合,然后不断将与集合中各个像素连通、且满足描述符的像素加入集合4)上一过程进行到不再有满足条件的新结点加入集合为止。

三、实验代码及结果1、拉普拉斯边缘检测代码如下:%主函数如下:clc;closeall;clearall;Imag = imread('lena.tiff');ImagGray = rgb2gray(Imag); %将彩色图片转换成灰度图片 figure()imshow(ImagGray),title('灰度图像');% T = graythresh(ImagGray); %用大津法自动确定阈值 %I=edge(ImagGray,'log',0.004);% figure(),imshow(I), title('laplace边缘图像'); ImagGray =double(ImagGray); T = 60; %设置阈值LapModType = 8; %设置laplace模板方式ImagLapEdge = LaplaceEdge(ImagGray,LapModType,T); %laplace边缘检测ImagLapEdge = uint8(ImagLapEdge);figure()imshow(ImagLapEdge),title('laplace边缘图像');%拉普拉斯边缘检测函数如下:functionImagLapEdge = LaplaceEdge(ImagGray,MoldType,Thresh)%-----------------参数介绍-------------------- %输入参数:% ImagGray: 输入的灰度图像% MoldType: 摸板类型,包括四邻域和八邻域 % Thresh: 边缘检测阈值%输出参数:% ImagEdge: 边缘像素点,存储的是二值化图像[r,c] = size(ImagGray); ImagLapEdge = zeros(r,c);%四邻域拉普拉斯边缘检测算子if 4 == MoldTypefori = 2:r-1for j = 2:c-1Temp =-4*ImagGray(i,j)+ImagGray(i-1,j)+ImagGray(i+1,j)+ImagGray(i,j-1)+ImagGray(i,j+1);if Temp > ThreshImagLapEdge(i,j) = 255; elseImagLapEdge(i,j) = 0; endendendend%八邻域拉普拉斯边缘检测算子if 8 == MoldTypefori = 2:r-1for j = 2:c-1Temp =-8*ImagGray(i,j)+ImagGray(i-1,j)+ImagGray(i+1,j)+ImagGray(i,j-1)+ImagGray(i,j+1)+ImagGray(i-1,j-1)+ImagGray(i+1,j+1)+ImagGray(i+1,j-1)+ImagGray(i-1,j+1);if Temp > ThreshImagLapEdge(i,j) = 255; elseImagLapEdge(i,j) = 0;endendendend拉普拉斯边缘检测实验结果如下:图1 原灰度图像2、区域增长实验代码:主函数如下:clc;closeall;clearall;Imag = imread('lena.jpg');figure()imshow(Imag), title('原灰度图片');n = 4; %设置区域增长的种子点数 [x,y] = ginput(n); %在图像上取点 V = [y,x];V = uint16(V);thresh = 33; %区域增长的阈值growingtype = 8; %增长方式[regionGet,imout,regionsize]=regiongrowing(V,Imag,thresh,growingtype ); %区域增长函数figure()imshow(imout), title('区域分割后的图片'); holdonplot(x,y,'+');由于区域增长代码老师已给这里就不在写出。

图像分割处理实验报告

图像分割处理实验报告

一、实验目的:1.学会对图像进行二值化处理和直方图均衡化处理2.进一步了解数字图像处理的知识以及matlab软件的使用3.掌握基本的查资料方法二、实验内容把这幅图像分成同样大小的10幅人脸图片然后分别对第一行5幅人脸图像的第3 第4 第5 第二行5幅人脸图像的第1 第5 进行如下处理:1.进行大津法阈值分割的二值化处理2.进行直方图均衡化处理三、实验具体代码以及结果1.实验代码%clcclearsrc_path='D:\histogram matching.bmp'; %原始图片路径dst_path='D:\picture\'; %分割图片后保存路径mkdir(dst_path);A = imread(src_path); %读入原始图片[m,n,l] = size(A); %获得尺寸for i = 1:2for j = 1:5m_start=1+(i-1)*fix(m/2);m_end=i*fix(m/2);n_start=1+(j-1)*fix(n/5);n_end=j*fix(n/5);AA=A(m_start:m_end,n_start:n_end,:); %将每块读入矩阵imwrite(AA,[dst_path num2str(i) '-' num2str(j) '.jpg'],'jpg'); %保存每块图片endendcd 'D:\pic'x1=imread('1-3.jpg');%%%%%%%%%目标读取图像x2=imread('1-4.jpg');x3=imread('1-5.jpg');x4=imread('2-1.jpg');x5=imread('2-5.jpg');% matlab 自带的自动确定阈值的方法level1=graythresh(x1);level2=graythresh(x2);level3=graythresh(x3);level4=graythresh(x4);level5=graythresh(x5);%用得到的阈值直接对图像进行二值化处理并显示BW1=im2bw(x1,level1);BW2=im2bw(x2,level2);BW3=im2bw(x3,level3);BW4=im2bw(x4,level4);BW5=im2bw(x5,level5);figure(1),imshow(BW1);figure(2),imshow(BW2);figure(3),imshow(BW3);figure(4),imshow(BW4);figure(5),imshow(BW5);%直方图均衡化处理%%%%%%%%%%调用直方图均衡化函数 histeq()%%%%%均衡化处理后的灰度级直方图分布figure(6),imhist(histeq(rgb2gray(x1))); figure(7),imhist(histeq(rgb2gray(x2))); figure(8),imhist(histeq(rgb2gray(x3))); figure(9),imhist(histeq(rgb2gray(x4))); figure(10),imhist(histeq(rgb2gray(x5)));%%%均衡化处理后的图像%%%%%%figure(11),imshow(histeq(rgb2gray(x1))); figure(12),imshow(histeq(rgb2gray(x2))); figure(13),imshow(histeq(rgb2gray(x3))); figure(14),imshow(histeq(rgb2gray(x4))); figure(15),imshow(histeq(rgb2gray(x5)));。

医学图像处理实验报告 ----图像分割

医学图像处理实验报告 ----图像分割

医学图像处理实验报告 ----图像分割医学图像处理实验报告----图像分割一.实验目的:掌握基本的图像分割方法,观察图像分割的结果,加深对边缘检测、模板匹配、区域生长的理解。

二.实验内容:边缘检测、模板匹配、区域生长。

三.实验方法:1.边缘检测:图象Blood边缘检测方法Sobel打开Toolboxes\Image Processing项选Edge Detection并运行选图象Blood边缘检测方法Sobel如图1所示按Apply键观察检测到的边界从上面四幅图像的对比来看,阈值逐渐变大,而满足要求的像素点也逐渐变少,使得图像的边缘提取的效果也越来越差,图像轮廓变得不清楚了。

以下为采用Prewitt方法的边缘提取效果:以下为Roberts方法边缘提取的效果:以下为Laplacian of Gaussian方法边缘提取的效果:以上的各种方法的理论算法有所不同,但总体效果基本一致。

以下是选其他图像重做上面的实验(适当简化)2.模板匹配:在Photoshop中打开一黑白灰度图象文件在滤镜菜单其他子菜单中选自定项在自定界面中输入点模板按好键观察处理后图象。

原始图像:点模板滤镜后的图像:0 0 00 1 00 0 0点模板: -1 -1 -1 -1 8 -1-1 -1 -1线模板: -1 -1 -1 2 2 2-1 -1 -1线模板: -1 2 -1 -1 2 -1-1 2 -1线模板: 2 -1 -1 -1 2 -1-1 -1 2线模板: -1 -1 2 -1 2 -12 -1 -1从上面的四种线模板得比较中可以发现:第一种对检测横向图像更为有效,第二种为竖向,后两种为135和45度。

这是与模板的构成有关的。

方向模板:-1 1 1-1 -2 1-1 1 1可以看出这个方向模板较多地体现出东方向的像素。

方向模板:1 1 -11 -2 -11 1 -1可以看出这个模板较多地体现出西方向的情况。

方向模板:-1 -1 -11 -2 11 1 1这个模板较多地体现了南向的情况。

图像分割实验报告汇总

图像分割实验报告汇总
图像分割实验
一、实验目的
1.掌握图像分割的基本思想,了解其分割技术及其计算策略;
2.学会从图像处理到分析的关键步骤,掌握图像分割过程;
3.了解图像分割的意义,进一步加深对图像分析和理解;
4.掌握基本分割方法:迭代分割和OTSU图像分割,并编程实现。
二、实验原理
(一)迭代阈值分割选取的基本思路是:首先根据图像中物体的灰度分布情况,选取一个近似阈值作为初始阈值,一个较好的方法就是将图像的灰度均值作为初始阈值,然后通过分割图像和修改阈值的迭代过程获得认可的最佳阈值。迭代式阈值选取过程可描述如下:
由图3可得:对于直方图双峰不明显或图像目标和背景比例差异悬殊迭代法所选取的阈值不如最大类间方差法(OTSU)(差异不是很大,很细微)。
但是对于直方图双峰明显谷底较深的图像迭代分割可以较快地获得满意结果。
五、实验程序段(具体见实验框架)
1.迭代图像分割:
void CImageProcessingDoc::Onimagediedaifenge()
msg.Format("分割阈值T=%d",T);
AfxMessageBox(msg);
for(j=0;j<m_Height;j++)
{
for(i=0;i<m_Width;i++)
{
if (m_pDibInit->m_pDibBits[j*m_SaveWidth + i]>=T)
m_pDibInit->m_pDibBits[j*m_SaveWidth + i]=255;
1.计算初始化阈值 = ;
2.根据 ,将图像分为两部分,分别计算灰度值期望,取其平均值为g1;

(完整word版)图像分割 实验报告

(完整word版)图像分割 实验报告
%例2迭代阈值分割
f=imread('cameraman.tif');%读入图像
subplot(1,2,1);imshow(f);%创建一个一行二列的窗口,在第一个窗口显示图像
title('原始图像');%标注标题
f=double(f);%转换位双精度
T=(min(f(:))+max(f(:)))/2;%设定初始阈值
Tnew=(mean(f(r1))+mean(f(r2)))/2;%新阈值两个范围内像素平均值和的一半
done=abs(Tnew-T)<1;%设定两次阈值的比较,当满足小于1时,停止循环,
1是自己指定的参数
T=Tnew;%把Tnw的值赋给T
i=i+1;%执行循坏,每次都加1
end
f(r1)=0;%把小于初始阈值的变成黑的
给背景指定一个特定的灰度级
该方法将背景用一个固定灰度级LG表现,便于研究边缘灰度的变化。
二值图像输出
在某些场合(如字符识别等),既不关心非边缘像素的灰度级差别,又不关心边缘像素的灰度级差别,只关心每个像素是边缘像素还是非边缘像素,这时可采用二值化图像输出方式,其表达式为
此法将背景和边缘用二值图像表示,便于研究边缘所在位置。
imshow(f,[]); %显示原图像f
title('原始图像'); %给图像加标题为'原始图像'
J=imnoise(f,'gaussian',0.02);%对图像加高斯噪声
subplot(3,3,2);%创建有3*3子图像的窗口,原图在位置2
imshow(J,[]);%显示加噪声的图像
title('加高斯噪声图像');%给图像加标题为'加高斯噪声图像'

图像分割实验报告

图像分割实验报告

实验七图像分割一、实验目的利用光谱特征进行遥感图像的分割和分割后处理。

二、实验要求1. 能够根据图像的特征,综合使用不同的方法分割出地物对象。

2. 熟练掌握图像直方图的应用。

3. 掌握彩色图像分割的基本方法4. 掌握利用波段组合进行图像分割的工作流程5. 熟悉数学形态学基本方法的应用。

三、实验准备●软件准备:ENVI软件●数据:兰花.jpg文字测原始图像.bmpIKNOSm14 nj Hroad●基本知识:➢图像分割的原则:(1)依据像素灰度值的不连续性进行分割。

假定不同区域像素的灰度值具有不连续性,因而可以对其进行分割。

(2)依据同一区域内部像素的灰度值具有相似性进行分割。

这种方法一般从一个点(种子)出发,将其邻域中满足相似性测量准则的像素进行合并从而达到分割的目的。

依据像素的不连续性进行分割的方法只要是区域增长法。

➢图像分割的工作流程:(1)确定待分割的对象;(2)选择对分割对象敏感的波段;(3)选择分割方法进行分割;(4)将分割后的结果图像转为矢量图。

➢图像分割:(1)图像分割是指把图像分成各具特性的区域并提取出感兴趣的目标的技术和过程。

从数学角度来看,图像分割是将数字图像划分成互不相交的区域的过程。

图像分割的过程也是一个标记的过程,即将属于同一个区域的像素赋予相同的编号的过程。

(2)目的:将一幅图像分为几个区域,这几个区域之间具有不同的属性,同一区域中各像素具有某些相同的性质。

➢图像分割的方法:(1)灰度阀值法,它在目标与背景之间存在强对比时特别有效(直方图方法);(2)数学形态学方法,腐蚀、膨胀、开运算和闭运算;➢波段运算:ENVI Band Math是一个灵活的图像处理工具,其中许多功能是无法在任何其它的图像处理系统中获得的。

由于每个用户都有独特的需求,利用此工具用户自己定义处理算法,应用到在ENVI打开的波段或整个图像中,用户可以根据需要自定义简单或复杂的处理程序。

例如:可以对图像进行简单加、减、乘、除运算,或使用IDL编写更复杂的处理运算功能。

图像分割实验报告

图像分割实验报告

图像分割实验报告一、实验目的1. 掌握图像分割的基本思想,了解其分割技术及其计算策略;2. 学会从图像处理到分析的关键步骤,掌握图像分割过程;3. 了解图像分割的意义,进一步加深对图像分析和理解;4. 掌握基本分割方法:迭代分割和OTSU图像分割,并编程实现。

二、实验原理(一)迭代阈值分割选取的基本思路是:首先根据图像中物体的灰度分布情况,选取一个近似阈值作为初始阈值,一个较好的方法就是将图像的灰度均值作为初始阈值,然后通过分割图像和修改阈值的迭代过程获得认可的最佳阈值。

迭代式阈值选取过程可描述如下:1. 计算初始化阈值g0=(g max+g min);22. 根据g0,将图像分为两部分,分别计算灰度值期望,取其平均值为g1;3. 如此反复迭代,当|g n-g n−1|足够小时,停止迭代,取T=g n即为最终阈值。

(二)OTSU图像分割(最大类间方差法)是一种自适应的阈值确定的方法,是按图像的灰度特性,将图像分成背景和目标两部分。

背景和目标之间的类间方差越大,说明构成图像的两部分的差别越大, 当部分目标错分为背景或部分背景错分为目标都会导致两部分差别变小。

因此,使类间方差最大的分割意味着错分概率最小。

以最佳门限将图像灰度直方图分割成两部分,使两部分类间方差取最大值,即分离性最大。

OTSU阈值选取过程可描述如下:1.记T为目标与背景的分割阈值,目标点数占图像比例为w1,平均灰度为u1;背景点数占图像比例为w2,平均灰度为u1;2.图像的总平均灰度为:u=w1*u1+w2*u2;3.目标和背景图象的方差:g=w1*(u1-u)*(u1-u)+w1*(u2-u)*(u2-u)=w1*w2*(u1-u2)*(u1-u2);4.当方差g最大时,可以认为此时前景和背景差异最大,此时的灰度T是最佳阈值。

二、实验内容1. 利用C++编程实现迭代阈值图像分割算法;2. 利用C++编程实现OTSU动态阈值图像分割算法。

实验六 图像分割

实验六 图像分割

信息工程学院实验报告课程名称:数字图像处理 实验项目名称:实验六 图像分割 实验时间:2016、12、16班级: 姓名: 学号:一、实验目得1、 使用Mat La b 软件进行图像得分割。

使学生通过实验体会一些主要得分割算子对图像处理得效果,以及各种因素对分割效果得影响。

2、 要求学生能够自行评价各主要算子在无噪声条件下与噪声条件下得分割性能。

能够掌握分割条件(阈值等)得选择。

完成规定图像得处理并要求正确评价处理结果,能够从理论上作出合理得解释。

二、实验内容与步骤1、边缘检测(1)使用Roberts 算子得图像分割实验调入并显示图像r oom、tif 图像;使用Ro berts 算子对图像进行边缘检测处理; Ro ber ts 算子为一对模板:(a)450方向模板 (b)1350方向模板图 1 mat lab 2010得Ro berts 算子模板相应得矩阵为:rh = [0 1;—1 0]; rv = [1 0;0 -1];这里得rh 为45度Rob erts 算子,rv 为135度Robert s 算子。

分别显示处理后得45度方向与135方向得边界检测结果;用“欧几里德距离”与“街区距离”方式计算梯度得模,并显示检测结果;对于检测结果进行二值化处理,并显示处理结果。

提示:先做检测结果得直方图,参考直方图中灰度得分布尝试确定阈值;应反复调节阈值得大小,直至二值化得效果最为满意为止。

(2)使用Prewitt 算子得图像分割实验(a)水平模型(b)垂直模板图2、Prewitt算子模板使用Prewitt 算子进行内容(1)中得全部步骤。

(3)使用Sobel 算子得图像分割实验使用Sobel算子进行内容(1)中得全部步骤。

(a)水平模型(b)垂直模板图3、Sobel算子模板(4)使用LoG (拉普拉斯-高斯)算子得图像分割实验使用LoG (拉普拉斯—高斯)算子进行内容(1)中得全部步骤。

提示1:处理后可以直接显示处理结果,无须另外计算梯度得模。

分割实验报告范文

分割实验报告范文

实验名称:分割实验一、实验目的1. 了解分割算法的基本原理和分类。

2. 掌握常用的分割算法,如阈值分割、边缘检测等。

3. 熟悉分割算法在图像处理中的应用。

二、实验原理分割算法是图像处理中的一项基本技术,其主要目的是将图像分割成若干个区域,以便对图像进行进一步的分析和处理。

分割算法可分为阈值分割、边缘检测、区域生长、聚类等方法。

1. 阈值分割:通过设定一个阈值,将图像中的像素分为两类,一类为背景,一类为前景。

2. 边缘检测:通过检测图像中像素的灰度变化,找出图像的边缘。

3. 区域生长:从种子点开始,逐步将相邻的像素合并到同一个区域。

4. 聚类:将图像中的像素根据其特征进行分类。

三、实验内容1. 阈值分割实验(1)选择一幅图像作为实验对象。

(2)设定阈值,对图像进行分割。

(3)分析分割结果,比较不同阈值对分割效果的影响。

2. 边缘检测实验(1)选择一幅图像作为实验对象。

(2)采用不同的边缘检测算法(如Sobel、Prewitt、Roberts等)对图像进行处理。

(3)比较不同算法的边缘检测结果,分析其优缺点。

3. 区域生长实验(1)选择一幅图像作为实验对象。

(2)设定种子点,选择合适的邻域搜索方法(如八邻域、四邻域等)。

(3)逐步将相邻的像素合并到同一个区域。

(4)分析分割结果,比较不同邻域搜索方法对分割效果的影响。

4. 聚类实验(1)选择一幅图像作为实验对象。

(2)采用不同的聚类算法(如K-means、层次聚类等)对图像进行处理。

(3)比较不同算法的聚类结果,分析其优缺点。

四、实验步骤1. 准备实验环境,安装相关软件。

2. 选择实验对象,如一张包含前景和背景的图像。

3. 根据实验目的,选择合适的分割算法。

4. 设置参数,如阈值、邻域搜索方法等。

5. 运行实验,观察分割结果。

6. 分析实验结果,总结经验。

五、实验结果与分析1. 阈值分割实验结果分析通过实验,我们可以发现,不同的阈值对分割效果有较大影响。

图像处理边缘提取与分割实验报告附源码

图像处理边缘提取与分割实验报告附源码

图像处理边缘提取与分割实验报告附源码实验一数字图像处理实例专业:模式识别与智能系统姓名:XXX学号:*************边缘提取与图像分割理论、算法、源码与实例1)理论一、边缘检测的基本方法:各种差分算子,主要有:差分边缘检测方法Roberts梯度模算子前两种对垂直,水平,对角检测好。

Prewitt算子,Robinson算子(算八个方向的梯度最大值)Sobel算子(利用上下左右加权,可平滑噪声);Kirsch算子Rosenfeld算子Laplace算子(二阶导数算子,一般不用于检测,用于之后判别暗区与明区。

)LOG算子,(XXX平滑后求导提取边界。

)主要思路用高斯函数对图像平滑滤波,然后再对图像进行拉普拉斯运算,算得的值等于零的点认为是边界点。

该算法高斯函数方差取值很重要,过大会导至精度不高。

还容易产生虚假边界。

但可以用一些准备去除虚假边界。

对于灰度渐变图的效果也不太好。

但大部份图片边缘提取效果还好。

Canny边界检测算子二、拟合曲面求导提取边界。

主要思路为在点的邻域各点拟合一个曲面,由曲面的求导代替离散点求差分,这种方法对于噪声比较不敏感。

三、统计判决法提取边界以误判几率最小化设置门限,对边界检测算子作用后的每一个像点判别/。

统计判决法依赖于先验知识。

四、分裂—合并算法按一定的均一化标准,将图片分成子图。

合并满足均一性准则的子图。

实验一数字图像处理实例专业:模式识别与智能系统姓名:陈光磊学号:*************五、跟踪技术1)区域跟踪,基于区域的图像分割方法。

应用于直接提取区域。

检测满足跟踪准则的点,找到这样的点,检测其所有邻点,把满足跟踪准则的任合邻点合并再重复。

直到没有邻点满足检测准则。

2)曲线跟踪,基于边界的图像分割方法。

对整幅图扫描,对所有“目前点”的邻点检测,周围没有满足跟踪条件的点时,返回到上一个最近的分支处,掏出另一个满足跟踪原则的目前点。

重复根踪。

6、模型化与统计检验法检测边界开始步骤为对图像划分成多块子图,每块子图进行曲面拟合。

数字图像实验报告 图像分割

数字图像实验报告  图像分割

图像分割实验目的:1.了解图像分割的基本理论和方法;2.掌握对图像进行点、线和边缘检测的方法;3.掌握阈值分割的方法和阈值的选择;4.熟悉区域生长法和分水岭分割算法实验内容:1.对图片lung2.bmp和加噪声的lung3.bmp分别用3*3的sobel算子、prewitt算子、log算子、canny算子进行处理,根据处理结果分析上述算子,分别是什么类型的?有何作用?思考一下如何设计算子。

lung3.bmp为g = imnoise(f,”salt & pepper”,0.02)(0.02表示发生概率)答:lung2.bmp:>> f=imread('lung2.bmp');>> [fs,ts]=edge(f,'sobel');>> [fp,tp]=edge(f,'prewitt');>> [fl,tl]=edge(f,'log');>> [fc,tc]=edge(f,'canny');>> subplot(2,3,1),imshow(f),title '原图',subplot(2,3,2),imshow(fs),title 'sobel',subplot(2,3,3),imshow(fp),title'prewitt',subplot(2,3,4),imshow(fl),title'log',subplot(2,3,5),imshow(fc),title 'canny';lung3.bmp:>> g=imnoise(f,'salt & pepper',0.02);>> [gs,tgs]=edge(g,'sobel');>> [gp,tgp]=edge(g,'prewitt');>> [gl,tgl]=edge(g,'log');>> [gc,tgc]=edge(g,'canny');>> subplot(2,3,1),imshow(g),title '噪音图',subplot(2,3,2),imshow(gs),title 'sobel',subplot(2,3,3),imshow(gp),title'prewitt',subplot(2,3,4),imshow(gl),title'log',subplot(2,3,5),imshow(gc),title 'canny';Prewitt算子和Sobel算子提取边缘的结果差不多。

图像分割实验报告

图像分割实验报告

图像分割实验报告
《图像分割实验报告》
图像分割是计算机视觉领域的一项重要技术,它能够将图像分割成不同的区域或对象,为图像识别、目标检测等任务提供了重要的基础。

本实验报告将介绍我们在图像分割领域的研究成果及实验结果。

实验目的
本次实验的目的是通过对图像分割算法的研究和实验,探讨不同算法在图像分割任务中的表现,并对比它们的优缺点,为进一步的研究提供参考。

实验方法
我们选取了常用的图像分割算法,包括基于阈值的分割、区域增长法、边缘检测法、基于聚类的分割等,对这些算法进行了实验比较。

我们使用了多种类型的图像数据集,包括自然场景图像、医学影像等,以验证算法在不同场景下的表现。

实验结果
通过实验,我们发现不同的图像分割算法在不同的图像类型下表现出不同的优劣势。

基于阈值的分割算法在简单的图像中表现较好,但在复杂的场景下效果有限;区域增长法对于连续性较强的对象分割效果较好;边缘检测法在处理边缘清晰的图像时表现出色;基于聚类的分割算法对于复杂背景下的对象分割有一定优势。

结论
通过本次实验,我们对图像分割算法的优劣势有了更深入的了解,不同的算法适用于不同的场景。

在未来的研究中,我们将进一步探索图像分割算法的改进
和优化,以提高图像分割的准确性和效率,为计算机视觉领域的发展贡献力量。

图像分割实验报告-推荐下载

图像分割实验报告-推荐下载

实验题目 图像分割
姓名
一、实验目的
班级
1.熟悉 matlab 图像处理工具箱及图像边缘检测函数的使用; 2.理解和掌握图像边缘检测(Sobel、Prewitt、Log 边缘算子)的方 法和应用; 3.掌握用阈值法进行图像分割的基本方法。
二.实验环境 Matlab 环境下
三、实验内容与步骤 使用 Roberts 算子的图像分割实验 调入并显示图像 room.tif 中图像;使用 Roberts 算子对图像进行 边缘检测处理; Roberts 算子为一对模板:
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

图像分割实验报告

图像分割实验报告

图像分割实验报告图像分割实验报告一、引言图像分割是计算机视觉领域中的重要研究方向之一,它旨在将一幅图像分割成若干个具有相似特征的区域。

图像分割在许多应用中都起着关键作用,如目标检测、图像识别、医学图像处理等。

本实验旨在探究不同的图像分割算法的性能和适用场景。

二、实验方法本次实验选取了常用的两种图像分割算法:基于阈值的分割算法和基于边缘检测的分割算法。

实验使用的图像为一幅自然风景图。

1. 基于阈值的分割算法基于阈值的分割算法是最简单且常用的分割方法之一。

该方法通过设置一个或多个阈值,将图像中像素的灰度值与阈值进行比较,将像素分为不同的区域。

实验中,我们通过观察图像的灰度直方图,选择合适的阈值对图像进行分割。

2. 基于边缘检测的分割算法基于边缘检测的分割算法通过检测图像中的边缘信息来实现分割。

实验中,我们选取了经典的Canny边缘检测算法。

该算法首先对图像进行高斯滤波,然后计算图像的梯度,最后通过非极大值抑制和双阈值处理来提取图像的边缘。

三、实验结果1. 基于阈值的分割算法通过观察图像的灰度直方图,我们选择了适当的阈值对图像进行分割。

实验结果显示,该方法能够将图像中的前景物体与背景分离,并得到清晰的边界。

然而,该方法对光照变化和噪声比较敏感,当图像中存在复杂的纹理和颜色变化时,分割效果较差。

2. 基于边缘检测的分割算法使用Canny边缘检测算法对图像进行分割,实验结果显示,该方法能够有效地提取图像中的边缘信息。

与基于阈值的方法相比,基于边缘检测的方法对光照变化和噪声有较好的鲁棒性。

然而,该方法在分割复杂纹理和颜色变化较小的区域时,容易产生边缘断裂的问题。

四、讨论与总结通过本次实验,我们对比了基于阈值的分割算法和基于边缘检测的分割算法的优缺点。

基于阈值的方法简单直观,适用于对比较简单的图像进行分割;而基于边缘检测的方法能够提取图像中的边缘信息,适用于复杂的图像分割任务。

然而,两种方法都存在一定的局限性,需要根据具体的应用场景选择合适的算法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、实验目的:
1.学会对图像进行二值化处理和直方图均衡化处理
2.进一步了解数字图像处理的知识以及matlab软件的使用
3.掌握基本的查资料方法
二、实验内容
把这幅图像分成同样大小的10幅人脸图片
然后分别对第一行5幅人脸图像的第3 第4 第5 第二行5幅人脸图像的第1 第5 进行如下处理:
1.进行大津法阈值分割的二值化处理
2.进行直方图均衡化处理
三、实验具体代码以及结果
1.实验代码
%clc
clear
src_path='D:\histogram matching.bmp'; %原始图片路径
dst_path='D:\picture\'; %分割图片后保存路径
mkdir(dst_path);
A = imread(src_path); %读入原始图片
[m,n,l] = size(A); %获得尺寸
for i = 1:2
for j = 1:5
m_start=1+(i-1)*fix(m/2);
m_end=i*fix(m/2);
n_start=1+(j-1)*fix(n/5);
n_end=j*fix(n/5);
AA=A(m_start:m_end,n_start:n_end,:); %将每块读入矩阵
imwrite(AA,[dst_path num2str(i) '-' num2str(j) '.jpg'],'jpg'); %保存每块图片
end
end
cd 'D:\pic'
x1=imread('1-3.jpg');%%%%%%%%%目标读取图像
x2=imread('1-4.jpg');
x3=imread('1-5.jpg');
x4=imread('2-1.jpg');
x5=imread('2-5.jpg');
% matlab 自带的自动确定阈值的方法
level1=graythresh(x1);
level2=graythresh(x2);
level3=graythresh(x3);
level4=graythresh(x4);
level5=graythresh(x5);
%用得到的阈值直接对图像进行二值化处理并显示
BW1=im2bw(x1,level1);
BW2=im2bw(x2,level2);
BW3=im2bw(x3,level3);
BW4=im2bw(x4,level4);
BW5=im2bw(x5,level5);
figure(1),imshow(BW1);
figure(2),imshow(BW2);
figure(3),imshow(BW3);
figure(4),imshow(BW4);
figure(5),imshow(BW5);
%直方图均衡化处理
%%%%%%%%%%调用直方图均衡化函数 histeq()%%%%
%均衡化处理后的灰度级直方图分布
figure(6),imhist(histeq(rgb2gray(x1))); figure(7),imhist(histeq(rgb2gray(x2))); figure(8),imhist(histeq(rgb2gray(x3))); figure(9),imhist(histeq(rgb2gray(x4))); figure(10),imhist(histeq(rgb2gray(x5)));
%%%均衡化处理后的图像%%%%%%
figure(11),imshow(histeq(rgb2gray(x1))); figure(12),imshow(histeq(rgb2gray(x2))); figure(13),imshow(histeq(rgb2gray(x3))); figure(14),imshow(histeq(rgb2gray(x4))); figure(15),imshow(histeq(rgb2gray(x5)));。

相关文档
最新文档