解三角形单元教学设计
解三角形单元教学设计

解三角形单元教学设计作为解三角形单元的教师,了解和熟悉三角函数是教学设计的基础,因此需要从以下几个方面进行教学设计:一、概述三角函数作为初中数学中的重要内容,涉及到许多重要概念和公式,如三角比的定义、正弦定理、余弦定理等。
本次教学旨在通过学习三角函数的定义、公式和应用,培养学生的数学思维能力,提高他们的解题能力,并通过生动的教学方式,激发他们对数学的兴趣。
二、目标本次教学的主要目标是:1. 学生能够掌握三角函数的基本概念、公式和应用。
2. 学生能够运用正弦、余弦、正切三个函数计算三角形的各种角度和长度。
3. 学生能够应用三角函数解决实际问题。
三、教学策略为了达到上述目标,以下是本次教学的教学策略:通过小组活动、实验等方式,帮助学生自主学习三角函数的基本定义、公式和性质,了解三角函数的应用场景。
2. 教师导入相关知识点在引导学生的过程中,需要注意适时地为学生介绍三角函数的相关知识点,帮助学生加深对概念、公式和性质的理解。
3. 运用丰富的教学资源在教学过程中,可以通过图片、视频、实物等多种形式来展示三角函数的相关知识点和实际应用,激发学生的学习兴趣。
4. 课程设计确保课程设置合理,将抽象的三角函数概念转化为具体的实际问题,加强学生的应用能力和解题能力。
四、教学内容和方法1. 三角函数的定义和应用2. 三角函数的公式与性质针对三角函数的公式与性质,可以通过教师的讲解和互动式学习、角度变换等方式帮助学生深入理解和掌握三角函数公式和性质。
3. 应用实例与解题通过课堂讲解和课后作业,加强学生对于三角函数的应用知识的掌握和应用能力的提高。
五、教学考核方式为了检测本次教学的效果,可以采用以下考核方式:1. 课后习题(理解和运用能力)通过布置一些练习题来检验学生对于三角函数概念、公式和性质的理解和掌握,确保学生掌握了正确的解题方法和技巧。
2. 课堂互动(参与和表现)通过课堂上的互动讨论、个人或小组演示等方式,对学生参与度和表现进行评价。
沪科版九年级数学上册第23章《解直角三角形》教学设计

沪科版九年级数学上册第23章《解直角三角形》教学设计一. 教材分析《解直角三角形》是沪科版九年级数学上册第23章的内容,主要介绍了解直角三角形的知识和方法。
本章内容在初中数学中占有重要地位,是为后续学习平面几何和高中的三角学做铺垫。
通过本章的学习,学生能够掌握直角三角形的性质,学会使用勾股定理和三角函数解决实际问题。
二. 学情分析九年级的学生已经学习了平面几何的基础知识,对图形的性质和运算有一定的了解。
但是,对于解直角三角形的理解和应用,部分学生可能会感到困难。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行引导和辅导。
三. 教学目标1.理解直角三角形的性质,掌握勾股定理和三角函数的定义。
2.学会使用勾股定理和三角函数解决实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.勾股定理的理解和应用。
2.三角函数的定义和应用。
3.解决实际问题时的计算和推理。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探索和解决问题。
2.使用多媒体辅助教学,直观展示直角三角形的性质和应用。
3.注重实践操作,让学生通过动手操作和实际计算,加深对知识的理解。
4.采用分组合作和讨论的方式,培养学生的团队合作能力。
六. 教学准备1.多媒体教学设备。
2.直角三角形的模型或图片。
3.练习题和实际问题案例。
七. 教学过程1.导入(5分钟)利用多媒体展示直角三角形的图片,引导学生回顾已学的平面几何知识,为新课的学习做好铺垫。
2.呈现(15分钟)介绍直角三角形的性质,引导学生学习勾股定理和三角函数的定义。
通过示例和讲解,让学生理解并掌握这些知识。
3.操练(15分钟)让学生分组合作,利用直角三角形的模型或图片,进行实际操作,验证勾股定理和三角函数的性质。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成。
题目包括简单的基本计算、应用题等。
教师选取部分题目进行讲解和分析,帮助学生巩固所学知识。
高中数学第一章解三角形教学设计新人教A版必修5

(新课标)高中数学第一章解三角形教学设计新人教A版必修5从容说课本章主要学习了正弦定理和余弦定理、应用举例以及实习作业.正弦定理、余弦定理是反映三角形边、角关系的重要定理.利用正弦定理、余弦定理,可以将三角形中的边的关系与角的关系进行相互转化,许多几何问题也可以转化为解三角形的问题来研究.本节课是人教版数学必修五第一章解三角形的全章复习.教学重点1.在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形.2.三角形各种类型的判定方法;三角形面积定理的应用.3.正、余弦定理与三角形的有关性质的综合运用.教学难点定理及有关性质的综合运用.教具准备多媒体投影仪三维目标一、知识与技能1.掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形确良;2.三角形各种类型的判定方法;3.三角形面积定理的应用.二、过程与方法通过引导学生分析,解答典型例题,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题.三、情感态度与价值观通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系.教学过程导入新课师本章我们共学习了哪些内容?生 本章我们学习了正弦定理与余弦定理. 师 你能讲出正弦定理、余弦定理的具体内容吗?生 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即R CcB b A a 2sin sin sin ===; 余弦定理: a 2=b 2+c 2-2bcco s A ,b 2=a 2+c 2-2acco s B , c 2=b 2+a 2-2baco s C ;abc b a C ac b c a cisB bc a c b A 2cos ,2,2cos 222222222-+=-+=-+=.师 很好!哪位同学来说说运用正弦定理、余弦定理可以解决哪些类型的问题? 生 正弦定理可以解决以下两类问题:(1)已知两角和一边解三角形;(2)已知两边及其中一边的对角解三角形.余弦定理可以解决以下两类问题:(1)已知三边解三角形;(2)已知两边及其夹角解三角形.生 老师,我来补充.利用正弦定理的解题的类型(1)在有解时只有一解,类型(2)可有解、一解和无解;利用余弦定理的解题的两种类型有解时只有一解. 师 very good !除了以上这些,我们还学习了什么? 生 除了正弦定理、余弦定理我们还学习了三角形面积公式:C ab B ac A bc S sin 21sin 21sin 21===C ,利用它我们可以解决已知两边及其夹角求三角形的面积.师 你说的非常完善,你是我们全班同学学习的榜样.希望我们全班同学都向他学习.推进新课 多媒体投影解斜三角形时可用的定理公式 适用类型 备注余弦定理a 2=b 2+c 2-2bc cos A b 2=a 2+c 2-2ac cos B c 2=b 2+a 2-2ba cos C(1) 已知三边 (2)已知两边及其夹角类型(1)(2)有解时只有一解正弦定理(3)已知两角和一边类型(3)在有解时只有一解,类型(4)可有解、一解和无R CcB b A a 2sin sin sin === (4)已知两边及其中一边的对角解三角形面积公式S =21bc sin A =21ac sin B =21ab sin C(5)已知两边及其夹角生 老师,我也来补充.利用正弦定理、余弦定理我们还可以解决实际生活中的一些问题:有关测量距离、高度、角度的问题.师 看来同学们对解三角形这一章掌握得都不错.下面,我们来看一下例题与练习. [例题剖析]【例1】在△ABC 中,若sin A >sin B ,则A 与B 的大小关系为_________. 生 这个题目以前做过的,A 与B 的大小关系不定. 师 对吗?生 我认为不对.我以前做过的题目中没有“在△ABC 中”这个条件. (其他学生一致认可) 师 那本题应该怎么做呢?生 我觉得答案应该是A >B ,但是理由我说不上来. 生 我来说.因为在△ABC 中,由正弦定理得R CcB b A a 2sin sin sin ===,所以 a =2Rsin A ,B =2Rsin B .又因为sin A >sin B ,所以A >B . 又因为在三角形中,大边对大角,所以A >B . 师 好,你解得非常正确.【例2】在△ABC 中,若△ABC 的面积为S ,且2S=(a +b )2-C 2,求t a n C 的值. 师 拿到题目你怎么考虑,从哪里下手?生 利用三角形的面积公式,代入已知条件2S=(A +B )2-C 2中,再化简. 师 用面积公式S=21 bc in A =21ac sin B =21ab sin C 中的哪一个呢? 生 用哪一个都可以吧. 生 不对,应该先化简等式右边,得(A +B )2-C 2=A 2+2AB +B 2-C 2,出现了A 与B 的乘积:AB ,而2abco s C =a 2+b 2-c 2,因此面积公式应该用S=21ab sin C ,代入等式得 ab sin C =a 2+b 2+2ab -C 2=2ab -2abco s C .化简得tan 2C=2.从而有344142tan12tan2tan2-=-=-=CCC.师思路非常清晰,请同学们思考本题共涉及到了哪些知识点?生正弦定理、余弦定理与三角形面积公式.生还有余切的二倍角公式.师你能总结这类题目的解题思路吗?生拿到题目不能盲目下手,应该先找到解题切入口.师对,你讲得很好.生正弦定理、余弦定理都要试试.【例3】将一块圆心角为120°,半径为20 c m的扇形铁片裁成一块矩形,有如图(1)、(2)的两种裁法:让矩形一边在扇形的一条半径OA上,或让矩形一边与弦AB平行,请问哪种裁法能得到最大面积的矩形?并求出这个最大值.师本题是应用题,怎么处理?生由实际问题抽象出数学模型,找到相应的数学知识来解决.分析:这是一个如何下料的问题,从图形的特点来看,涉及到线段的长度和角度,将这些量放置在三角形中,通过解三角形求出矩形的边长,再计算出两种方案所得矩形的最大面积,加以比较,就可以得出问题的结论.解:按图(1)的裁法:矩形的一边O P在OA上,顶点M在圆弧上,设∠M OA=θ,则|MP|=20sinθ,|OP|=20co sθ,从而S=400sinθco sθ=200sin2θ,即当4πθ=时,S m a x=200.按图(2)的裁法:矩形的一边PQ与弦AB平行,设∠M O Q=θ,在△M O Q中,∠O QM=90°+30°=120°,由正弦定理,得|MQ|=θθsin2340120sinsin20=︒.又因为|MN |=2|OM |sin(60°-θ),=40sin(60°-θ),所以 S=|MQ |·|MN |=331600sinθsin(60°-θ)=331600{-21[co s60°-co s(2θ-60°)]}=33800[cos(2θ-60°)-co s60°]. 所以当θ=30°时,S m a x =33400. 由于33400>200,所以用第二种裁法可裁得面积最大的矩形,最大面积为33400c m 2. 评注:正弦定理、余弦定理在测量(角度、距离)、合理下料、设计规划等方面有广泛应用.从解题过程来看,关键是要找出或设出角度,实质是解斜三角形,将问题涉及的有关量集中在某一个或者几个三角形中,灵活地运用正弦定理、余弦定理来加以解决.【例4】如果一个三角形的三边是连续的三个自然数,求所有这些三角形中的最大角的度数.(精确到°) 师 已知什么,要求什么?生(齐答)已知三角形的三边,要求三角形中的角. 师 怎么处理呢?生用正弦定理或余弦定理实现三角形中边与角的转化,可是三条边的值不知道啊. 生条件中三角形的三边是连续的三个自然数,那么我们可以设这三个连续的自然数为n-1,n ,n+1,最大的角为θ,则)1(2321)1(24)1(2)1()1(cos 2222--=--=-+--+=n n n n n n n n n n θ.师 接下来怎么做呢?生 因为co sθ是[0°,180°]内的减函数,所以要求θ的最大值即求co sθ的最小值. 师cosθ的最小值怎么求呢? 生 因为cosθ>-1,从而有)1(2321--n >-1)1(23-⇒n <23n-1>1⇒n >2. 又因为n 为自然数,所以当n=3时,(cosθ)min =-41,所以θ的最大值为°. (教师用多媒体投影)解:设这三个连续的自然数为n-1,n ,n+1,最大的角为θ,则)1(2321)1(24)1(2)1()1(cos 2222--=--=-+--+=n n n n n n n n n n θ.因为cosθ是[0°,180°]内的减函数,所以要求θ的最大值即求co s θ的最小值,且cosθ>-1,从而有)1(2321--n >-1)1(23-⇒n <⇒23n-1>1⇒n >2. 因此,当n=3时,(cosθ)min =-41,所以θ的最大值为°. 师 下面我们来看一组练习 多媒体投影1.在△ABC 中,若A =30°,B =45°,C =6,则A 等于( ) A.26- B.26(2-C.)26(3-D.)26(4-2.在△ABC 中,若a =7,b =4,c =5, 则△ABC 的面积为(精确到0.1)( ) A .7B .C .D . 3.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离D 1与第二辆车与第三辆车的距离D 2之间的关系为( ) >d 2=d 2 <d 2 D.大小确定不了4.在△ABC 中,若A ·co t A =bco t B ,则△ABC 是_______三角形.5.在异面直线A ,B 上有两点M 、N ,EF 是直线A ,B 的公垂线段,若EM =5,EF =3,FN =4,MN =6,则异面直线A ,B 所成的角为___________.(精确到1°) 练习题答案:4.等腰°课堂小结同学们本节课你的收获是什么?生 正弦定理、余弦定理都是联系三角形边和角的关系式.生 凡是可用正弦定理的时候,都可以用余弦定理;当关系式中有边的平方项时,可以考虑余弦定理.生 已知两边一对角求解三角形时用余弦定理讨论二次方程,更容易判断是无解、一解还是两解的问题.生 利用正弦定理和余弦定理解决几何问题的关键还是在于找出图形中的边角关系,然后假设有关的边和角,利用正弦定理和余弦定理建立边或角的关系式.生 在运用正弦定理、余弦定理解决实际问题时,通常都根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出实际问题的解.其基本步骤是: (1)分析:理解题意,弄清已知与未知,画出示意图(一个或几个三角形);(2)建模:根据已知条件与求解目标,把已知量与待求量尽可能地集中在有关三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理、余弦定理解这些三角形,求得数学模型的解; (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.布置作业1.已知锐角三角形的三边长分别为2、3、x ,则x 的取值范围是__________.2.在△ABC 中,已知t a n A =21,t a n B =31,试求最长边与最短边的比. 3.某人坐在火车上看风景,他看见远处有一座宝塔在与火车前进方向成30°角的直线上,1分钟后,他看见宝塔在与火车前进方向成45°角的直线上,设火车的速度是100 km/h ,求宝塔离开铁路线的垂直距离. 答案:1.(5,13)2.解:因为t a n A =21,t a n B =31,所以1312113121tan tan 1tan tan )tan(=•-+=-+=+BA B A B A . 因为0°<A <45°,0°<B <45°,所以A +B = 45°. 所以3510103135sin sin sin =︒==B C b c ,所以最长边与最短边的比为35. 3.解:如图,设宝塔在C 点,先看时的位置为A ,再看时的位置为B ,由题意知∠BAC =45°-30°=15°,AB =3560100=(km ),AC =)13(3513515sin 53sin sin +=︒︒=∠•∠=ABC BCA AB AC ,所以C 点到直线AB 的距离为d =AC ·sin30°=65(3+1)(km ).板书设计 本章复习例1 例3 例2 例4(投影区)备课资料解三角形三角形的三条边和三个内角是三角形的六个基本元素.已知其中的三个基本元素(至少有一个是边)求其余的基本元素叫做解三角形. 1.直角三角形的解法因为直角三角形中有一个是直角,例如△ABC 中,C =90°,角A 、B 、C 的对边分别是A 、B 、C .那么利用以下关系式:(1)A +B =90°;(2)A 2+B 2=C 2;(3)A =c sin A =cco s B =B ·t a n A ;(4)B =cco s A =c sin B =acxtana . 可分四种情况来解直角三角形. (1)已知斜边和一锐角; (2)已知一条直角边和一锐角; (3)已知一斜边和一直角边; (4)已知两条直角边. 2.斜三角形的解法在一个三角形中,如果没有一个角是直角,那么这个三角形叫做斜三角形.斜三角形的解法可分以下四种情况:(1)已知两角和一边;(2)已知两边和其中一边的对角;(3)已知两边和它们的夹角;(4)已知三边.解斜三角形常常利用以下基本关系式: 1.三角形内角和为180°,即A +B +C =180°; 2.正弦定理,即R CcB b A a 2sin sin sin ===3.余弦定理,即(1)⎪⎩⎪⎨⎧+=+=+=;cos cos ,cos cos ,cos cos B a A b c A c C a b C b B c a(2)⎪⎩⎪⎨⎧-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2,cos 2222222222一般地说,在已知两边和其中一边的对角的情况下,解三角形时,问题不一定有解,如果有解也不一定有唯一解.对这类问题进行讨论,可得如下结论.90°≤A <180°0°<A <90°a >b 一解 一解 a =b 无解 一解a <b无解A >B sin A A =B sin A A <B sin A两解 一解 无解。
解三角形全章教案(整理)

数学5 第一章 解三角形第1课时课题: §1.1.1正弦定理●教学目标知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
●教学重点正弦定理的探索和证明及其基本应用。
●教学难点已知两边和其中一边的对角解三角形时判断解的个数。
●教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。
A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? B C Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin aA c=,sin bB c=,又sin 1c C c==,A则sin sin sin abcc ABC=== b c 从而在直角三角形ABC 中,sin sin sin abcABC==C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin abAB=sin cC=A c B(图1.1-3) 思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
解直角三角形教学设计

《解直角三角形》教学设计一、教材分析:本节课是在学习了“勾股定理”“锐角三角函数”等内容的基础上对运用所学知识解直角三角形的进一步探究。
通过直角三角形中边角关系的学习,学生将进一步体会数学知识之间的联系,并为运用解直角三角形的相关知识解决简单的实际问题奠定了基础。
二、学情分析:学生已经牢固掌握了勾股定理,也刚刚学习过锐角三角函数,但锐角三角函数的运用还不熟练,综合运用所学知识解决问题,将实际问题抽象为数学问题的能力都比较差,因此要在本节课进行有意识的培养。
三、学习目标:1.知道直角三角形的六个元素和解直角三角形的含义.2.会用勾股定理和锐角三角函数解直角三角形,并能解决简单的实际问题.四、学习重点:会通过已知条件解直角三角形五、教学过程:1.自主学习(1)直角三角形有哪些元素?分别是什么?它们之间有什么关系? 三边之间的关系:a 2+b 2=_____;锐角之间的关系:∠A+∠B=_____; 边角之间的关系:sinA=_____,cosA=_____,tanA=_____.(2)利用这些关系,除直角外,至少需要知道几个元素就可以求其他的元素了?2.重点研讨(1)已知两边例1:如图,在Rt △ABC 中,∠C = 90°,2=AC ,6=BC ,求这个直角三角形的其他元素.(2)已知一边和一锐角例2:如图,在Rt △ABC 中,∠C =90°,∠B =30°,b=20,求这个直角三角形的其他元素 .AB C 26A C B c a b=20 30° BAC c a b小结:1.在直角三角形中,除直角外有5个元素(即3条边、2个锐角),只要知道其中的 个元素(至少有1个是 ),就可以求出其余的3个未知元素.2.由直角三角形中 求出 的过程,叫做 .3.巩固训练(1)在△ACB 中,∠C=90°,AB=4,AC=3,欲求∠A 的值,最适宜的做法是( )A.计算tanA 的值求出B.计算sinA 的值求出C.计算cosA 的值求出D.先根据sinB 求出∠B ,再利用90°-∠B 求出(2)在Rt △ABC 中,∠C=90°,∠B=35°,AB=3,则BC 的长为( )A.3sin35°B.2cos35°C.3cos35°D.3tan35° (3)在Rt △ABC 中,∠C=90°,根据下列条件解直角三角形:(1)∠B=45°,c=14;(2)b=15,∠B=60°.4.延伸迁移 (1)如图,在△ABC 中, 求sinA 的值.(2)在△ABC 中,∠ABC=60°,AD 是BC 边上的高, 求△ABC 的面积.4.达标检测(1)如果等腰三角形的底角为30°,腰长为 6 cm ,那么这个三角形的面积为( )A.4.5 cm 2B. 39 cm 2C. 318 cm 2D.36 cm 2(2)如图,在 △ABC 中,32=AC ,︒=∠30A ,︒=∠45B ,求AB 的长.A B 410,sin 5AB AC B ===5. 学习反思:通过本节课的学习,你有什么收获?六、作业布置:(1)《作业设计》1-5.(2)选做题:《作业设计》6.七、板书设计:八、教学反思:通过本节课的学习,学生进一步熟悉了直角三角形边角之间的关系,并为运用解直角三角形解决实际问题做了准备,在本章的教学中具有承上启下的作用。
《三角形》单元教学设计

《三角形》单元教学设计一、单元教材分析1.单元横向联系本单元主要内容有:三角形的特性、三角形两边之和大于第三边、三角形的分类、三角形内角和及四边形的内角和。
共6课时。
三角形是常见的一种图形,在平面图形中,三角形是最简单的多边形,也是最基本的多边形,一个多边形都可以分割成若干个三角形。
三角形的稳定性在实践中有着广泛的应用。
2.单元纵向联系纵观义务教育阶段,学生对三角形的认识要经历以下过程。
第一学段:能辨认三角形;会用三角形拼图。
第三学段:认识三角形,了解三角形两边之和大于第三边,三角形的内角和是180°;认识等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形。
本单元内容的设计是在上述内容基础上进行的,通过这一内容的教学进一步丰富学生对三角形的认识和理解。
二、学情分析四年级的学生好奇心强,乐于探索,喜欢动手参与,愿意联系自己的生活实际解决问题。
在思维方面,以具体形象思维为主,并开始逐步向抽象思维过渡,不过分析、综合归纳、概括能力较弱。
学生通过第一学段以及四年级上册的学习,对三角形已经有了直观的认识,98%的学生能够从平面图形中分辨出三角形,学生能够正确区分锐角、直角钝角,50%的学生心中有一定的分类标准,但这些标准有的并不科学、并不合理。
三、单元课标(一)内容要求1.认识三角形,知道三角形内角和是180度。
会根据角的特征对三角形进行分类。
2.体会两点间所有连线中线段最短,知道两点间距离。
知道三角形任意两边之和大于第三边。
3.在图形认识与测量的过程中,增强空间观念和量感。
(二)学业要求1.知道两点间所有连线中线段最短,能在具体情境中运用两点之间线段最短,解决简单问题。
2.探索并说明三角形任意两边之和大于第三边的道理,通过对图形的操作感知三角形内角和是180度,能根据已知两个角的度数求出第三个角的度数。
3.会根据角的特征对三角形分类,认识直角三角形、锐角三角形和钝角三角形,能根据边的相等关系认识等腰三角形和等边三角形。
指向数学学科核心素养的单元教学设计——以“解三角形”为例

2022年第6期教育教学1SCIENCE FANS 2015年钟启泉教授指出单元教学设计是教学设计的关键环节。
新式的单元设计可以通过分析、重组、整合等形式将某些相关的内容组成单元后,通过对各教学要素的分析来设计整体的单元教学方案,以优化教学效果[1]。
数学单元教学设计将传统的数学教学秩序和课时安排打破,提倡将教学内容放置在单元的整体教学框架下设计,将注意力更多放在了教学内容本身上。
单元教学设计有助于改变教师过于注重具体知识点的倾向,对提高教学效率和拓宽教学视野有重要意义[2]。
钟启泉教授在《学会“单元设计”》中指出,单元设计所遵循的一般模型即“ADDIE模型”,即单元设计围绕“分析、设计、开发、实施、评价”来展开[3]。
“ADDIE模型”中,分析是指分析课标、学生、教学内容等教学要素;设计主要针对单元教学目标和课时教学目标设计教学活动和选择合适的教学方式;开发是指进行单元教学设计,为下一步教学设计的实施做准备;实施是指根据教学设计进行教学;评价是指对学生的学习效果进行测试评价并帮助教师进行教学反思。
1 “解三角形”单元教学设计教学要素分析1.1 课标分析解三角形内容属于必修课程中的“几何与代数”部分,《普通高中数学课程标准(2017年版)》对于这一单元的基本要求是学生可以通过对任意三角形边角关系的探索,掌握正、余弦定理,并能够运用正、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题[4]。
1.2 学科分析该单元内容的学习是以学生初中“解直角三角形”和“向量”的相关内容为基础。
解三角形可以被看作是三角函数和平面向量的相关知识的具体解题应用。
1.3 学情分析本单元内容位于人教B版必修四的第九章,授课对象为高一年级的学生。
本单元之前,学生已经学习了三角函数、向量等基础知识,但还不具备完全的运用数学知识解决实际问题的意识,还未形成完整的知识结构体系。
1.4 单元重点、难点分析重点:掌握正、余弦定理及其应用方法,并能正确运用定理解决三角形中边角互化的问题。
初中数学《解直角三角形》单元教学设计以及思维导图4

(4)能够运用三角函数解直角三角形,并解决与直角三角形有关的实际问题。 过程与方法:(1)经历探索直角三角形中边角之间关系的过程;经历探索 30º,45º,60º角的三角函数值的过程。
(2)体会数、形之间的联系,逐步学习利用数形结合思想分析问题和解决问题。 情感态度与价值观:(1)发展学生观察、分析、发现问题的能力;(2)培养学生独立思考及互相合作的习惯。
(2 课时)
专题二:用计算器求锐角三角函数
(2 课时)
专题三: 解直角三角形及其应用
(8 课时)
„„„„
其中,专题三中测量物体的高度作为研究性学 2 课时
专题学习目标
(1)理解正切、正弦、余弦的意义并能举例进行说明; (2)能够运用 tanA ,sinA ,cosA 表示直角三角形中两边的比; (3)能根据直角三角形中的边角关系,进行简单的计算。
62
25
∴BC= .
6
25 ∴cosB= BC 6 25 5 ,
AB 65 65 13 6
sinA= BC 5 AB 13
可以得出同例 1 一样的结论. ∵∠A+∠B=90°,
∴sinA:cosB=cos(90-A),即 sinA=cos(90°-A); cosA=sinB=sin(90°-A),即 cosA=sin(90°-A).
12
如图,在 Rt△ABC 中,∠C=90°,cosA= ,AC=10,AB 等于多少?sinB 呢?cosB、sinA 呢?你还能得出类似例 1 的
13
结论吗?请用一般式表达.
分析:这是正弦、余弦定义的进一步应用,同时进一步渗透 sin(90°-A)=cosA,cos
(90°-A)=sinA.
12
九年级数学下册《解直角三角形及其应用》教案、教学设计

3.挑战题:设置一些拓展性题目,激发学生的思维,培养他们解决问题的能力。
4.练习过程中,鼓励学生相互讨论,共同解决问题,教师及时给予反馈和指导。
(五)总结归纳,500字
在总结归纳阶段,我将完成以下任务:
1.让学生回顾本节课所学的知识点,总结三角函数的定义、公式及其应用。
2.强调直角三角形在实际问题中的求解方法,以及如何运用勾股定理和三角函数。
4.案例教学,突破难点:结合典型案例,引导学生分析问题、建立数学模型,运用三角函数求解,帮助学生突破难点。
5.实践操作,巩固提高:设计具有实际背景的练习题,让学生动手操作,运用所学知识解决问题,巩固所学知识,提高解题能力。
6.归纳总结,拓展延伸:对本节课的知识点进行归纳总结,强调重点,梳理难点,并进行拓展延伸,激发学生的思考。
2.提高作业:选取两道具有实际背景的题目,要求学生运用所学知识解决问题,并将解题过程和答案写在作业本上。此类题目旨在培养学生的应用能力和解题技巧。
3.拓展作业:针对学有余力的学生,布置一道拓展性题目,要求学生通过查阅资料、思考讨论等方式,探索直角三角形在其他领域的应用,如物理学、工程学等。
4.小组作业:分组进行课题研究,选取一个与直角三角形相关的实际案例,共同探讨解决方案,并将研究成果以报告的形式提交。此作业旨在培养学生的团队协作能力和研究能力。
3.梳理本节课的教学重点和难点,帮助学生巩固记忆。
4.鼓励学生提出疑问,解答他们在学习过程中遇到的问题。
5.布置课后作业,要求学生在课后进行复习和巩固,为下一节课的学习做好准备。
五、作业布置
为了巩固本节课所学知识,提高学生的解题能力和应用意识,特布置以下作业:
《解直角三角形》 教学设计

《解直角三角形》教学设计一、教学目标1、知识与技能目标(1)理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。
(2)能够将实际问题中的数量关系转化为直角三角形中元素之间的关系,从而解决实际问题。
2、过程与方法目标(1)通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,培养学生的分析问题和解决问题的能力。
(2)通过将实际问题转化为数学问题,建立数学模型,提高学生的数学应用意识和转化能力。
3、情感态度与价值观目标(1)在探究解直角三角形的过程中,培养学生勇于探索的精神和合作交流的意识。
(2)通过解决实际问题,让学生体会数学与生活的密切联系,激发学生学习数学的兴趣。
二、教学重难点1、教学重点(1)解直角三角形的方法。
(2)将实际问题转化为解直角三角形的问题。
2、教学难点(1)正确选择适当的锐角三角函数关系式解直角三角形。
(2)将实际问题中的数量关系转化为直角三角形中元素之间的关系。
三、教学方法讲授法、讨论法、练习法四、教学过程1、复习引入(1)回顾直角三角形的性质:直角三角形两直角边的平方和等于斜边的平方(勾股定理);直角三角形的两个锐角互余。
(2)复习锐角三角函数的定义:正弦(sin)、余弦(cos)和正切(tan)。
2、讲授新课(1)解直角三角形的概念:在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形。
(2)直角三角形中的五个元素:三条边(a、b、c)和两个锐角(∠A、∠B)。
(3)解直角三角形的依据三边之间的关系:a²+ b²= c²(勾股定理)锐角之间的关系:∠A +∠B = 90°边角之间的关系:sin A = a/c,cos A = b/c,tan A = a/b (以∠A 为例)(4)示例讲解例 1:在 Rt△ABC 中,∠C = 90°,a = 3,c = 5,求 b、∠A 和∠B。
华师版【第25章】《解直角三角形》整章教案

§25.1 测量【教学目标】 一、知识目标1. 复习巩固相似三角形知识。
2. 回顾有关直角三角形的知识。
二、能力目标1、通过操作、观察、培养学生动手和归纳问题的能力。
2、在观察、操作、培养等过程中,发展学生的推理能力。
三、情感态度目标通过运用相似及已学过的知识探索解三角形的方法,体验教学研究和发现的过程,逐渐培养学生用数学说理的习惯,唤起学生学习后续内容的积极性。
【重点难点】重点:学生通过探究,概括出测量的一般方法。
难点:用不同的方法解决同一实际问题。
【教学设想】 课型:新授课教学思路:直观感知-操作确认-合情说理-应用提高. 【课时安排】1课时。
【教学过程】 1.情境导入观察导图,并思考:三角形是测量中经常用到的平面图形,我们已经知道直角三角形的哪些特征呢? 2、课前热身根据观察的结果以前所学知识,请说出几个属于三角形性质的结论。
3、合作探究 (1)整体感知讨论应用太阳光线和其他器材测量旗杆高度的方法。
讨论应用太阳光线测量旗杆高度的方法。
鼓励学生运用自己设计的方法测量旗杆的高度。
(2)四边互动互动1:师:观察本章导图,它向我们展示了本章将学到的哪些内容? 生:学生讨论交流。
明确:本章告诉我们如何利用直角三角形来解决有关的测量问题。
互动2:师:导图中的旗杆高度都在直角三角形中吗? 生:举手回答。
明确:测量过程中,为了达到目的,通常将高度分成两部分,使一部分在直角三角形中,另一部分在四边形中。
互动3:师:你知道直角三角形中的边之间的关系吗?角之间呢? 生:举手回答。
明确:直角三角形的三边满足勾股定理,两锐角之和等于90度,出示课本第72页图:25.1.1。
互动4:师:在图25.1.1中为了测量旗杆的高度,除了知道有太阳光线外,还需要我们测量哪些值?图19.1.1生:讨论举手回答。
明确:测量出人的影长和旗杆的影长,人自己的身高通常是知道的,这就知道了AC 、''''C 和B C A ,而△ABC ∽△'''C B A ,所以''''C B BCC A AC ,解出BC 的长度。
《解三角形》教学设计-优秀教案

5. 学习评价设计(从知识获得、能力提升、学习态度、学习方法、思维发展、价值观念培育等方面设计过程性评价的内容、方式与工具等,通过评价持续促进课堂学习深入,突出诊断性、表现性、激励性。
体现学科核心素养发展的进阶,课时的学习评价是单元学习过程性评价的细化,要适量、适度,评价不应中断学生学习活动,通过学生的行为表现判断学习目标的达成度)6.学习活动设计教师活动学生活动 环节一:(根据课堂教与学的程序安排)教师活动1提出问题:如果测量人员任意选取C 点,,测出BC 的距离是54m ,45B ∠=,60C ∠=.问根据这些数据能解决测量者的问题吗?学生活动1 思考交流:根据题目中的叙述,很明显可以抽象成这样的一个数学模型:在ABC ∆中,54BC =,45B ∠=,60C ∠=.求边长AB活动意图说明:通过实际问题引入,能够很好地激发学生的求知欲望。
在新的问题产生时,学生根据已有的知识是迷茫的,有疑惑的,这个时候也正是产生知识缺陷,急需新知识的时候,恰如其分的勾起了学生求知的欲望。
环节二:教师活动2探究一:直角三角形边角关系如图:在ABC Rt ∆中,C ∠是最大的角,所对的斜边c 是最大的边,探究边角关系。
探究二:斜三角形边角关系 学生活动2 探究一:在ABC Rt ∆中,设c AB b AC a BC ===,,,根据正弦函数定义可得:实验1:如图,在等边ABC ∆中,3π=∠=∠=∠C B A ,对应边的边长1:1:1::=c b a ,验证Cc B b A a sin sin sin ==是否成立? 实验2:如图,在等腰ABC ∆中, 30=∠=∠B A , 120=∠C ,对应边的边长3:1:1::=c b a ,验证Cc B b A a sin sin sin ==是否成立? 实验3:借助多媒体演示,发现随着三角形的任意变换,Cc B b A a sin sin sin 、、的值相等。
通过这样的一些实验,我们可以猜想Cc B b A a sin sin sin ==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《解三角形》单元教学设计
一、单元整体目标分析
本单元教学目标:
本章的中心内容是解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。
通过本章学习,学生应当达到以下学习目标:
1.知识与技能目标:
①掌握正弦定理、余弦定理及面积公式,并能正确应用定理解三角形。
②初步运用正弦定理、余弦定理解决测量距离、物体高度等有关的实际问题。
③通过解三角形培养学生的方程思想、化归思想、函数思想,并培养学生解题的优化意识。
2过程与方法:
①通过对任意三角形边角关系的探索,掌握正弦定理、余弦定理,并能解决些简单的三角形度量问题。
②能应用正弦定理、余弦定理等知识和方法解决一些测量与几何计算有关的实际问题。
③通过解三角形在实际中的一些应用,开放多种思路,引导学生发现问题,培养学生分析问题、解决问题的能力。
3.情感与价值观:
①培养和发展学生数学应用意识,渗透励志教育。
②在经历建立方程模型解决实际问题的过程中,体方程思想、建模思想,并体会方程的应用价值。
③通过学习培养自己学习数学的兴趣和信心;提高学习能力,增强和他人合作的意识,同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力。
二、要素分析
1、数学视角的分析
解三角形一章是在初中“解直角三角形”和前面的“向量”相关内容基础上构建起来的,定理本身的应用十分广泛。
解三角形是三角函数知识和平面向量知
识在三角形中的具体运用,是将生产、生活实际问题转化为解三角形计算问题的重要工具,具有广泛的应用价值。
解三角形问题和大量需要用解三角形为工具的实际问题的存在,以及数学本身和实际问题都在促使正弦定理,余弦定理的产生。
在实际工作中经常遇到很多测量问题,如:在航行途中测出海上两个岛屿之间的距离;测量底部不可到达的建筑物的高度;在水平飞行中的飞机上测量飞机下方山顶的海拔高度;测量海上航行的轮船航速和航向等。
本章知识的介绍将很好的解决这些问题,从而提高学生解决实际问题的能力。
2、《课标》视角的分析
新课程改革中,新普通高中《数学课程标准》(以下简称《标准》)对“解三角形”的教学要求是:通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题,能够运用正弦定理、余弦定理等知识和方法解决-些与测量和几何计算有关的实际问题,《标准》在计算方面降低了要求,取消了“利用计算器解决解斜三角形的计算问题”的要求,而在探索推理方面提高了要求,侧重点放在学生探究和推理能力的培养上,要求“通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理”。
《标准》更关注运用正弦定理、余弦定理等知识和方法解决些与测量和几何计算有关的实际问题。
3、教学内容分析
(1)正弦、余弦定理的证明,培养了学生实践操作能力,以及提出问题、解决问题等研究性学习的能力进步拓展学生的数学活动空间,发展学生“做数学”“用数学”的意识,激发学生的学习兴趣。
(2)体现数学与经济、生活等现实世界的联系,培养和发展学生利用解三角形的知识解决身边实际问题的能力。
在解三角形的应用中,关键是把实际问题转化成数学问题,这种转化对于实际问题的解决是非常重要的,通过本章知识的学习,将进一步提高学生的数学建模能力。
(3)有利于关注数学知识的来龙去脉,解三角形问题是现实的要求,数学本身和实际问题都在促进正弦定理和余弦定理的产生,应用定理解决s角形的边角关系的度量,为学生今后实际工作储备了知识能力
4、学情分析
本章内容的授课对象为高二级学生。
本章之前,学生已经学习了三角函数、向量等基本知识,学生已有一定的知识储备,对观察分析、解决问题的能力有了定的培养,但对前后知识间的联系、理解、应用有一定难度,应用数学知识的意识不强,看待与分析问题不深入,知识的系统性不完善,因此思维灵活性受到制约,学生学习方面有一定困难。
根据这些特点,我采用与新课标要求相一致的新的教学方式,即活动式的教学法和任务型教学法相结合的方法,调动全班学生的积极性,带领学生直接参与分析问题、解决问题并品尝劳动成果的喜悦,在师生互动、生生互动中实现教学任务和目标。
5、教学方法分析
本单元的重点是综合应用正弦定理、余弦定理,难点是运用正弦定理、余弦定理等知识和方法解决-些与测量和几何计算有关的实际问题。
为了突破难点,教学中采用对比研究的方法,“启发、引导、类比”相结合,让学生经历一个“实验、探索、归纳”的科学教学过程,体现从特殊到一般的认识规律,通过学生“动手、动脑、讨论、演练”,增加学生的参与机会,增强参与意识,教给学生获取知江品设备田老问盛故亡生体些生古正战为数学土休在地理精
6、本单元重点、难点分析
重点:掌握正弦定理、余弦定理以及面积公式,并能正确应用定理解三角形。
难点:能应用正弦定理、余弦定理等知识和方法解决一些测量与几何计算有关的实际问题。
三、教学流程设计
课时划分建议:
正弦定理与余弦定理(2个课时);应用举例(1个课时);实习作业(1课时),
四、课例设计
正弦定理教学活动设计方案
在△ABC 中,若b =1,c =3,∠C =2π
3
,则a =________.
解析:由正弦定理,有3sin 2π3
=1
sin B ,
∴sin B =1
2
.∵∠C 为钝角,
∴∠B 必为锐角,∴∠B =π
6
,
∴∠A =π
6.
∴a =b =1.
五、单元教学设计自我反思
本单元从解三角形的问题出发,通过精讲例题,扎实练习,可以很好的巩固正弦定理和余弦定理以及运用定理解决实际问题,但教学中还存在改进的几点:
1.学习了正弦定理、余弦定理及面积公式后,如何建立方程,正确选用正弦定理、余弦定理及其变式解三角形方面存在障碍。
2、三角形的面积公式灵活性运用解题效果欠缺,只能简单套用公用,不能活用、变用公式,教学中适当穿插历年高考真题,引领教学。
3、运用定理解决实际问题时,不能灵活根据两个定理寻找到多种解決问题的方案,尤其是最优解决方案。
4、解决实际问题中抽象概括能力欠缺,即不能从具体问题中抽象得到数学模型,再通过推理演算,得出数学模型的解,再还原成实际问题的解。
5、要重视学生的创造能力和创新意识的培养数学。
教学要设法鼓励学生去探索、猜想和发现,培养学生的问题意识,经常地启发学生去思考,提出问题。
在本章的教学中,应该根据教学实际,启发学生不断提出问题,研究问题。
在对于正弦定理和余弦定理的证明的探究过程中,应该因势利导,根据具体教学过程中学生思考问题的方向来启发学生得到自己对于定理的证明。
6、重视认真完成实习作业。
实习作业是让学生进一步巩固所学的知识,提高学生分析问题解决实际问题的能力、动手操作的能力以及用数学语言表达实习过程和实习结果能力,增强学生应用数学的意识和数学实践能力。
在学习测量这样的内容时安排实习作业,对于学生真正理解和掌握所学的知识是非常必要的。
7、重视新课标理念下,教学方式的转变。
提倡在教师指导下,以学生为中心的教学方式,强调学生是信息加工的主体、知识意义下的主动建构者,教师是建构活动的设计者、组织者和促进者,教师应创设良好的学习环境,形成学生认知冲突,通过协作与会话,充分发挥学生的主观能动性和创造性,从而达到对所学知识的意义建构的目的。