电磁学基础知识(专业相关)

合集下载

电磁学基础知识汇总

电磁学基础知识汇总

电磁学基础知识汇总要理解电磁学必须要理解矢量标量,因为电磁学涉及到物理量中的矢量很多。

什么是“标量”和“矢量”?要学好电磁学还需要掌握“场”的思考方法。

如果能在脑海中形成印象就很容易了。

电磁学一:标量与矢量要理解电磁学必须要理解矢量标量,因为电磁学涉及到物理量中的矢量很多。

什么是“标量”和“矢量”?标量:只有大小和正负、没有方向的物理量。

比如:时间、质量、温度、功、能量等等矢量:即有大小和又有方向的物理量,又称向量。

比如:位移、速度、加速度、力等等。

但是,电磁学所涉及的物理量都是肉眼看不见的,所以很难想象。

笛卡尔坐标和矢量的成分表示真正的电磁学中,电磁场中矢量的正确计算十分有必要。

但是用箭头表示矢量的方法其实不能得出正确的计算结果。

这个时候我们应该怎么办呢?其实是可以用成分来表示矢量,再转换成代数计算。

下面来说明一下方法。

首先,画一个坐标,使x轴和y轴垂直。

这是因发明者名字命名的“笛卡尔坐标”,最基本的坐标系(除此之外,还有“极坐标”和“圆柱坐标”等,是根据我们考虑的问题的对称性进行区分的。

这类的单位矢量的计算太复杂,所以我们现在集中来看笛卡尔坐标)。

接下来,画出一个朝着坐标轴方向的单位矢量。

像这样,二元平面中的任何矢量都可以用含有和的单位矢量和标量的组合来表示:如果想表示三维空间,可以使用Z轴方向的单位矢量。

矢量的加减法矢量的乘积内积:计算结果为标量,所以也叫“数量积”,又因为用表示,也被叫做“点积”、“标积”。

比如:矢量和矢量的内积是指:的值与的值乘以和的夹角θ的余弦值。

由上可以看出相:相互垂直的两个矢量的内积为0。

外积:计算结果为矢量,所以也叫“矢量积”,又因为用表示,也被叫做“叉乘”。

比如:矢量和矢量的外积是矢量。

的大小:的值与的值乘以和的夹角θ的正弦值,即为。

的方向:含有矢量和矢量的面中的法线,为由到的右螺旋方向。

外积的结果是和的垂直方向,所以二元空间中没有外积。

“右螺旋方向”指:用右手沿着矢量到矢量的方向握住后,大拇指所指的方向。

电磁学—电磁的基本知识(电工电子课件)

电磁学—电磁的基本知识(电工电子课件)
一般说来对于铁磁性材料来说磁导率 不是常数,所以Rm不是
常数所以上述公式只能用来定性分析,不的基本概念 2.掌握变压器结构和工作原理 3.了解汽车继电器的典型应用 能力目标 1.能够进行磁路分析 2.能够分辨直流电磁铁、交流电磁铁
历史人物
法拉第——电学之父
迈克尔·法拉第(Michael Faraday,1791—1867年) 是19世紀电磁学领域中最伟大的实验物理电家。由 于家境贫苦,他只在7岁到9岁读过两年小学。法拉 第的贡献之一是提出了场的概念。他反对超距作用 的说法,设想带电体、磁体周围空间存在一种物质, 起到传递电、磁力的作用,他把这种物资称为电场、 磁场.1852年,他引入了电力线(即电场线)、磁力 线(即磁感线)的概念,并用铁粉显示了磁棒周围的 磁力线形状。场的概念和力线的模型,对当时的传 统观念是一个重大的突破。为了纪念他,用他的名 字命名电容的单位——法拉。
磁感应强度的数学式为
2)磁通 在均匀磁场中,磁感应强度B与垂直于磁场方向的面积S的
乘积,称为通过该截面的磁通Ф ,又称为磁通密度。

磁通的单位是韦伯,简称韦,用字母Wb表示。
3)磁导率μ 磁导率μ是用来表征物质导磁能力的物理量,它的单位是H/m
(亨/米)。实验测出,真空(或空气)的磁导率是一个常数,为
磁路和电路具有相似之处,电路中的电 动势是形成电流的原因,磁路中的磁动 势是产生磁通的原因
磁动势:
Fm=NI
式中Fm——磁动式,安培(A) N——线圈匝数 I——通过线圈的电流。
电路中有电阻,磁路中亦有磁阻。它是磁通通过磁路时受Rm的阻碍 作用,磁阻Rm的大小与磁路的长度L成正比,与磁路的横截面积S成反 比,并与组成磁路材料的磁导率有关。 磁通和磁动式磁阻之间的关系为:

电磁学基础知识

电磁学基础知识

电磁学基础知识电场一、场强E (矢量,与q 无关)1.定义:E = 单位:N/C 或V/m方向:与+q 所受电场力方向 电场线表示E 的大小和方向 2.点电荷电场:E =静电力恒量 k = Nm 2/C 2匀强电场:E = d 为两点在电场线方向上的距离 3.E 的叠加——平行四边形定则4.电场力(与q 有关) F =库仑定律:F = (适用条件:真空、点电荷) 5.电荷守恒定律(注意:两个相同带电小球接触后,q 相等) 二、电势φ(标量,与q 无关)1.定义:φA = = = 单位:V说明:φ=单位正电荷由某点移到φ=0处的W ⑴沿电场线,电势降低 ⑵等势面⊥电场线;等势面的疏密反映E 的强弱 2.电势叠加——代数和 3.电势差:U AB = = 4.电场力做功:W AB = 与路径无关5.电势能的变化:Δε=W 电场力做正功,电势能 ;电场力做负功,电势能需要解决的问题:①如何判电势的高低以及正负(由电场线判断) ②如何判电场力做功的正负(由F 、v 方向判)③如何判电势能的变化(由W 的正负判) 三、电场中的导体 1.静电平衡:远端同号,近端异号2.静电平衡特点 ⑴E 内=0;⑵E 表面⊥表面;⑶等势体(内部及表面电势相等);⑷净电荷分布在外表面 四、电容器1.定义:C = (C 与Q 、U 无关) 单位:1 F =106 μF =1012 pF 2.平行板电容器: C =3.两类问题:①充电后与电源断开, 不变;②始终与电源相连, 不变 五、带电粒子在电场中的运动 1.加速:qU =2.偏转:v ⊥E 时,做类平抛运动位移:L = ; y = = =速度:v y = = ; v = ; tan θ= 六、实验:描绘等势线1.器材: 2.纸顺序:从上向下恒定电流一、概念及规律1.电流:⑴产生条件:①有自由电荷;②有电压⑵定义:I=微观:I=2.电阻定律:R=说明:金属的电阻率随温度升高而半导体的电阻率随温度升高而3.欧姆定律⑴部分电路:I=闭合电路:I=(或:E====⑵路端电压(电源输出电压、电源两极间电压、外电路总电压等)①U==断路:I=0,U=E短路:EIr=短,U=0内阻为零:r=0,U=E(恒压)②U随R增大而4.⑴电功:W=电功率:P=⑵电热:Q==电热功率:P热==⑶注意:①纯电阻电路中,W=Q,即:IE=②非纯电阻电路中,W>Q,即:IE=;而IU=二、电路1.串联电路:I=U=R=2.并联电路:I=U=1R=(两电阻并联:R=)3.电表改装:⑴电压表=G 联电阻R=⑵电流表=G 联电阻4.电源的最大输出功率:当Rr时,P最大,P m=三、本章实验1.伏安法测电阻:⑴测小电阻时,用电流表接,R测==;R测R x⑵测大电阻时,用电流表接,R测==;R测R x1 R =线性元件的伏安特性曲线电源的U-I图象电源输出功率与外电阻的关系x 电流表外接x 电流表内接2.描绘小灯泡的伏安特性曲线⑴在方框1内画出实验电路原理图⑵注意:应采用电流表 接法, 电路 ⑶小灯泡的伏安特性曲线是 线 3.测定金属的电阻率⑴用 测金属丝的直径d ;用 测金属丝的长度L ⑵在方框2内画出实验电路原理图注意:应采用电流表 接法,分压电路或限流电路均可 ⑶金属丝的电阻率ρ= 4.把电流表改装为电压表⑴在方框3内画出测电流表内阻的实验电路原理图 简要实验步骤:①闭合S 1,调 ,使电流表满偏 ②闭合S 2,调 ,使电流表半偏 ③当R 比R /大很多时,有R g R /⑵计算改装成量程为U 的电压表所需的电阻R = , 并从电阻箱上调出所需的电阻值,然后将电阻箱与电流表 G 联⑶在方框4内画出核对电压表的实验电路原理图 ①注意:应采用 电路②满刻度时的百分误差的计算式是;百分误差= 5.测定电源的电动势和内电阻⑴在方框5内画出实验电路原理图⑵改变R 的阻值,测出两组I 、U 数值,由闭合电路欧姆定律得: E = ;E = ;联立可求得E 、r⑶多测几组I 、U 数值,作U -I 图象由图象可得:直线与U 轴交点= ;r = = = 6.练习使用示波器7.用多用电表探索黑箱内的电学元件(掌握多用电表的读数)磁场一、磁感应强度B :单位:T1.方向:小磁针静止时 极的指向;小磁针 极的受力方向或磁感线上的 方向 2.磁感线表示磁感应强度的大小和方向,是 曲线 3.电流的磁场( 定则判定)直线电流的磁场 环形电流的磁场 通电螺线管的磁场二、磁场力( 定则判定)1.安培力(磁场对电流的作用力)⑴大小:I ⊥B 时,F = I ∥B 时,F = ⑵同向电流相互 ,反向电流相互× ×× × × × ···· · ·方框22.洛仑兹力(磁场对运动电荷的作用力)⑴大小:v⊥B时,F=v∥B时,F=⑵F洛不做功三、带电粒子在匀强磁场中运动1.仅受F洛,v⊥B时,作匀速圆周运动,有:①轨道半径:R=②运动周期:T==(T与v无关)③运动时间:t===⑴如何找圆心?求半径R2.电场、磁场知识的综合应用⑴速度选择器(图1)原理:粒子作匀速直线运动时,有:⑵磁流体发电(电磁流量计、霍尔效应)图2等离子体通过时,+q向上偏,-q向下偏,稳定时有:⑶质谱仪(图3)经加速电场:;经速度选择器:经偏转磁场:;解得:q/m=⑷回旋加速器(图4)最大动能:E km==交流电频率:f电=f粒=加速次数:n=加速时间:t=××××××××v+q-q×××2图1 图2图3 图4电磁学基础知识 参考答案电场一、1.F E q =;相同 2.2Q E k r =;9×109;UE d = 4.F =qE ;122q q F k r= 二、1.AO AA AO W U qq εϕ=== 3.AB AB A B WU qϕϕ==- 4.W AB =qU AB 5.Δε=W ;减小;增加四、1.Q C U =2.4πS C kd ε= 3.电荷量;电势差 五、1.212qU m =v2.0L t =v 222111222qE qU y at t t m md==⋅=⋅y at ==v=v 0tan y θ=v v六、1.木板、白纸、复写纸、导电纸、灵敏电流计、探针、尺子、圆柱形电极两个、直流电源(6 V )、导线若干、图钉 2.导电纸、复写纸、白纸恒定电流一、1.⑵q I t =;I =nqS v 2.LR S ρ=;升高;降低 3.⑴U I R =;E I R r =+;或:()r UE U U U Ir I R r U r R=+=+=+=+⑵①U =E -Ir =IR ②增大4.⑴W =IUt ;P =IU ; ⑵22U Q I Rt t R ==;22U P I R R==热 ⑶①2()IE I R r =+;②2IE IU I r =+;2IU P I R =+机机 二、1.I =I 1=I 2=I 3;U =U 1+U 2+U 3;R =R 1+R 2+R 32.I =I 1+I 2+I 3;U =U 1=U 2=U 3;1231111R R R R =++ (1212R R R R R =+) 3.⑴串;大;g g UR R I =- ⑵并;小;g g gI R R I I =- 4.=;24m E P r=三、1.⑴外;V V R R U R I R R ⋅==+测;< ⑵内;A U R R R I==+测;> 2.⑴如图1 ⑵外;分压 ⑶曲3.⑴螺旋测微器;刻度尺 ⑵如图2;外 ⑶2π4Ud ILρ=4.⑴如图3;①R ;②R /;③= ⑵g gUR R I =-;串 ⑶如图4;①分压;②改装表示数-标准表示数百分误差=%改装表示数5.⑴如图5;⑵E =U 1+I 1r ;E =U 2+I 2r ; ⑶电动势;tan E U r I Iθ∆===∆短 磁场一、1.北(或N );北;切线 2.闭合 3.安培二、左手 1.⑴F =BIL ;0 ⑵吸引;排斥 2.⑴F =qB v ;0三、1.2qB m R=v v ;①m R qB =v ;②2π2πR m T qB ==v ;③2πR mt T qB θθθ===v2.⑴qB v =qE ⑵UqqB d=v ⑶2112qU m =v ;21U q qB d=v ;22qB m R =v v ;212U q m B B Rd =⑷2222122kmm q B R E m m ==v ;2πqB f f m ==电粒;km E n qU =;2T t n =图1图2图3图4图5。

电磁学知识点

电磁学知识点

电磁学知识点引言:电磁学是物理学领域中的一个重要分支,研究电荷和电流所产生的电场与磁场及它们之间的相互作用。

本文将重点介绍电磁学的基础知识点,包括库仑定律、安培定律、麦克斯韦方程组以及电磁波等内容,以帮助读者更好地理解电磁学的基本原理和应用。

一、库仑定律库仑定律是电磁学的基础之一,描述了两个电荷之间的相互作用力。

根据库仑定律,两个电荷之间的力与它们的电荷量成正比,与它们之间的距离的平方成反比。

这一定律可以用以下公式表示:F = k * |q1 * q2| / r^2其中F是两个电荷之间的作用力,q1和q2分别是这两个电荷的电荷量,r是它们之间的距离,k是一个常数,被称为库仑常数。

二、安培定律安培定律是描述电流所产生的磁场的原理。

根据安培定律,通过一段导线的电流所产生的磁场的大小与电流的大小成正比,与导线到磁场点的距离成反比,磁场的方向则由右手螺旋定则确定。

安培定律可以用以下公式表示:B = (μ0 / 4π) * (I / r)其中B是磁场的大小,μ0是真空中的磁导率,约等于4π x 10^-7 T·m/A,I是电流的大小,r是观察点到电流所在导线的距离。

三、麦克斯韦方程组麦克斯韦方程组是电磁学的基本方程组,总结了电磁学的基本定律和规律。

麦克斯韦方程组包括四个方程,分别描述了电荷和电流的电场和磁场之间的关系,以及它们的传播规律。

这些方程是:1. 麦克斯韦第一方程(电场高斯定律):∇·E = ρ / ε02. 麦克斯韦第二方程(磁场高斯定律):∇·B = 03. 麦克斯韦第三方程(法拉第电磁感应定律):∇×E = -∂B/∂t4. 麦克斯韦第四方程(安培环路定律):∇×B = μ0 * J + μ0ε0 *∂E/∂t其中E是电场,B是磁场,ρ是电荷密度,ε0是真空中的介电常数,J是电流密度。

四、电磁波电磁波是由电场和磁场相互作用而形成的一种传播现象。

大一电磁学知识点第一章

大一电磁学知识点第一章

大一电磁学知识点第一章第一章电磁学基础知识电磁学是物理学的一个分支,研究电荷与电流所产生的电场和磁场现象以及它们之间的相互作用。

在大一的学习中,我们首先需要了解一些电磁学的基础知识。

本文将为大家介绍第一章中的几个关键知识点。

一、电荷与电场电荷是物质所具有的基本属性之一,分为正电荷和负电荷。

同性电荷相互排斥,异性电荷相互吸引。

电场是电荷周围的一种物理场,具有方向和强度的特点。

我们可以通过电场线来描述电场的性质,电场线由正电荷沿着电场方向指向负电荷。

二、库仑定律库仑定律是描述静电相互作用力的数学关系,它表明两个点电荷之间的力与它们之间的距离成反比,与它们之间的电荷量平方成正比。

库仑定律的公式为:F = k * (|q1| * |q2|) / r^2其中,F代表两个电荷之间的力,k是比例常数,q1和q2分别代表两个电荷的电荷量,r是两个电荷之间的距离。

三、电场强度电场强度是电场对单位正电荷的作用力大小,用E表示。

在电场中,可以通过电场强度来计算电荷所受的力。

电场强度的计算公式为:E =F / q其中,E表示电场强度,F表示电荷所受的力,q表示电荷量。

四、高斯定理高斯定理是描述电场的一个重要定律,它通过电场线的通量来描述电荷的分布情况。

高斯定理的公式为:∮E·dA = Q / ε0其中,∮E·dA表示电场线在闭合曲面上的通量,Q表示闭合曲面内的电荷量,ε0是真空介电常数。

五、电势差在电磁学中,电势差是描述电场能量转化的一个重要概念。

电势差是指电场中从一点移到另一点所需的功,单位为伏特(V)。

电势差的计算公式为:ΔV = W / q其中,ΔV表示电势差,W表示电场对电荷所做的功,q表示电荷量。

六、电容和电容器电容是描述电路元件存储电荷能力的物理量,单位为法拉(F)。

电容器是一种用于存储电荷的装置,由两个导体之间的绝缘介质隔开。

电容的计算公式为:C = Q / ΔV其中,C表示电容,Q表示存储的电荷量,ΔV表示电势差。

电磁基本知识

电磁基本知识

电磁基本知识一、电流的磁场1.磁的性质人们把具有吸引铁、镍、钴等物质的性质称为磁性。

具有磁性的物体叫作磁体。

磁铁具有N极和S极,称为磁极。

磁极附近区域的磁性最强。

如图1-7所示,用细条线把条形磁铁悬挂起来进行实验,可知同性磁极互相排斥,异性磁极互相吸引。

2.磁场和磁力线磁体周围存在的磁力作用的空间称为磁场。

互不接触的磁体之间具有的相互作用力,就是通过磁场这一特殊物质进行传递的。

图1-7 磁铁的同性相斥,异性相吸磁场是用磁力线进行形象描述的,在磁体外部,磁力线由N极指向S极;在磁体内部,磁力线由S极指向N极。

这样磁力线在磁体内外形成一条闭合曲线,在曲线上任何一点切线方向就是磁针在磁力作用下N极所指的方向。

磁力线可以用实验方法显示出来。

如果在条形磁铁上放一块玻璃或纸板,当撒上一些铁屑并轻敲时,铁屑便会有规则地排列成图1-8所示的线条形状。

同时还可以看出,在磁极附近磁力线最密,表示磁场最强;磁体中间磁力线较稀,则磁场较弱。

因此,我们可以用磁力线根数的多少和疏密程图1-8 磁力线度来描绘磁场的强弱。

电流产生磁场电流周围存在着磁场,产生磁场的根本原因是电流。

磁场总是伴随着电流而存在,而电流则永远被磁场所包围。

我们把电流产生磁场的现象称为电流的磁效应。

通电导线(或线圈)周围磁场(磁力线)的方向,可用安培定则(右手螺旋定则)来判断。

(1)通有电流的直导线,其周围的磁场可以用同心圆环的磁力线来表示。

电流愈大,线圆环愈密,磁场愈强。

磁场的方向可用右手螺旋定则来描述:用右手握直导线,大姆指伸直,指向电流的方向,则其余四指弯曲所指方向即为磁场的方向。

如图1-9所示。

图1-9 通电直导线周围的磁场方向(右手螺旋定则之一)单根通电导线通过电流时产生磁场的方向也可以用图1-10的平面图来表示。

图中1-10中 表示电流的方向对准拇指内,⊙表示电流的方向从拇指内指向读者。

导线周围的磁力线呈圆环状,其方向如箭头所示。

如电流方向改变,则磁场方向也改变。

电磁学的基础知识

电磁学的基础知识

电磁学的基础知识电磁学是物理学中的一个重要分支,研究电荷和电磁场之间的相互作用。

从静电学到电动力学,从麦克斯韦方程组到电磁辐射,掌握电磁学的基础知识对于理解电磁现象和应用电磁技术具有关键意义。

一、电荷和电场在电磁学中,最基本的概念是电荷和电场。

电荷是物质的基本属性,可以分为正电荷和负电荷。

正负电荷之间相互吸引,同类电荷之间相互排斥。

电场则是电荷周围所产生的力场,负责传递相互作用力。

二、库仑定律库仑定律描述了电荷之间的相互作用力。

根据库仑定律,电荷对之间的相互作用力与电荷之间的距离成正比,与电荷的大小成正比。

三、电场强度电场强度是电场中单位正电荷所受的力,用E表示。

对于点电荷,电场强度的大小与距离的平方成反比。

由于电荷的性质,电场是以向外的径向方向存在。

四、电势差和电位电势差是指电场中两点之间的电势能差,用V表示。

单位正电荷从一个点移动到另一个点时所做的功,就是电势差。

电势差与电场强度的积成正比。

五、电场线电场线是描述电场空间分布的图形。

电场线以电场强度方向为切线,线的密度表示电场强度的大小。

电场线从正电荷出发,进入负电荷或者无穷远。

六、电荷分布电荷分布可以分为均匀分布和非均匀分布。

对于均匀分布的电荷,可以通过积分来求解电场。

对于非均匀分布的电荷,则需要运用高斯定律或者数值计算来求解。

七、电场能量电场能量是指电荷在电场中所具有的能量。

电场能量与电荷的大小和电势差的平方成正比。

八、电场的叠加原理在多个电荷存在的情况下,各电荷所产生的电场可以叠加。

即总电场等于各电荷所产生的电场之和。

九、电流和电阻电流是指电荷在单位时间内通过导体的数量,用I表示。

电流的方向被约定为正电荷从正极流向负极。

电阻则是导体对电流的阻碍程度。

根据欧姆定律,电流与电压成正比,与电阻成反比。

十、电阻与电导率电阻与电导率成反比,电导率是导体的属性。

电导率越大,电阻越小。

常见的导体包括金属和电解质。

十一、麦克斯韦方程组麦克斯韦方程组是描述电磁场的基本方程。

电磁知识点归纳总结图解

电磁知识点归纳总结图解

电磁知识点归纳总结图解电磁学是物理学的一个重要分支,研究电荷和电流在空间中的相互作用以及由此产生的电磁力和电磁场。

它是自然界中最重要的力之一,广泛应用于现代科技和工程领域。

电磁学的基本知识点包括电场、磁场、电磁感应、电磁波、电磁辐射等。

本文将对这些知识点进行归纳总结,并附上图解,以便读者更好地理解和掌握电磁学的基本概念。

一、电场电场是指由电荷所产生的力场。

在电场中,电荷会受到电场力的作用,电场力的大小和方向取决于电荷的大小和所处位置的电场强度。

电场强度的大小与电荷量成正比,与距离的平方成反比,可用矢量表示。

电场强度的方向与电荷的正负有关,正电荷产生的电场是由正电荷指向外向外,由负电荷指向负电荷。

图1为电场强度的示意图。

二、磁场磁场是由电流产生的力场。

在磁场中,电流会受到磁场力的作用,磁场力的大小和方向取决于电流的大小和所处位置的磁场强度。

磁场强度的大小与电流强度成正比,与距离的平方成反比,可用矢量表示。

磁场强度的方向随着电流方向和空间位置变化而变化。

图2为磁场强度的示意图。

三、电磁感应电磁感应是指磁场中的电流或变化的磁场产生的电动势和感生电流。

根据法拉第电磁感应定律和楞次定律,当导体穿过磁场时,会在导体两端产生感生电动势,从而产生感生电流。

电磁感应现象是电磁学中的重要现象,广泛应用于发电、变压器等领域。

图3为电磁感应的示意图。

四、电磁波电磁波是由振动的电场和磁场相互作用产生的波动现象。

根据麦克斯韦方程组,电场和磁场之间有一定的关系,它们可以相互转换并传播。

电磁波包括电磁谱中的各种波长范围,如无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。

电磁波在空间中的传播速度为光速,是一种横波。

图4为电磁波的示意图。

五、电磁辐射电磁辐射是指由运动的电荷所产生的电磁波。

根据麦克斯韦方程组,加速运动的电荷会产生电场和磁场的振荡,从而产生电磁波辐射。

电磁辐射包括可见光、紫外线、X射线和γ射线等,它们具有不同的波长和能量。

电磁学基础知识

电磁学基础知识

(1)
此时线圈的感应电动势为
式(1)不仅表明了感应电动势的大小,而且可以表明其方向。
2、自感L
当闭合线圈通电流,就会产生磁场,那么当电流交变,就会
使磁场交变,从而在线圈自身产生感应电动势,这种现象称为
自感现象,这种电动势称为自感电动势eL。
电流通过线圈时产生的磁链ψ与电流i在大小上成正比,为
磁导率远远大于真空磁导率,即 r >> 1 ,可达
到几百到上万。材料如铁、钴、镍及其合金等。 所以电器设备如变压器、电机都将绕组套装在铁磁 性材料制成的铁心上。 注意
铁磁性物质的磁导率µ是个变量,它随磁场的强弱而变化。
7.1.3 磁场强度
磁场强度H :介质中某点的磁感应强度 B 与介

磁导率
之比。
设主磁通 msin t, 则
e
N
d
dt
N
d dt
(msin t)
N mcos t
2πfNmsin(t 90) Emsin( t 90)
有效值 E
Em 2
2
fN m
2
4.44
fN m
由于线圈电阻 R 和感抗X(或漏磁通)较小,
其电压降也较小,与主磁电动势 E 相比可忽略,故有
U E
计算上极为重要,其为非线性曲
线,实际中通过实验得出。
OB和与H的关系H
3.2.3 磁滞性
磁滞性:磁性材料中磁感应强度B的变化总是滞后

磁性材外料磁在场交变变化磁的场性中质反。复磁化,其B-H关系曲
线是一条回形闭合曲线,称为磁滞回线。 B
剩磁感应强度Br (剩磁) : 当线圈中电流减小到零
Br •
I2

电磁学知识点归纳

电磁学知识点归纳

电磁学知识点归纳
1. 电磁学概述
- 电磁学是物理学的一个分支,研究电场和磁场的现象和规律。

- 电磁学是电荷、电流和电磁辐射之间相互作用的研究。

2. 静电学
- 静电学研究电荷在静止或准静止情况下的行为。

- 电荷的性质、库仑定律、电场、电势能和电势差是静电学的
重要知识点。

3. 电流和电路
- 电流是电荷在单位时间内通过导体的量度。

- 电路是由电源、导线和电阻等组成的电流路径。

- 欧姆定律、电阻、电源、串联和并联电路是电流和电路的重
要概念。

4. 磁场和电磁感应
- 磁场是由磁体产生的物理现象。

- 电磁感应是磁场对电荷运动的影响。

- 磁场线、洛伦兹力、法拉第电磁感应定律和磁场的产生是磁场和电磁感应的关键内容。

5. 电磁波
- 电磁波是电磁场的一种传播形式。

- 电磁波的特点、光的本质和电磁波的产生与传播是电磁波的核心知识。

6. 麦克斯韦方程组
- 麦克斯韦方程组是描述电磁现象和规律的基本方程组。

- 麦克斯韦方程组包括麦克斯韦定律和安培定律等。

以上是电磁学的主要知识点归纳,希望对您有所帮助。

物理学电磁学基础(知识点)

物理学电磁学基础(知识点)

物理学电磁学基础(知识点)电磁学是物理学中的重要分支,研究电荷之间的相互作用及其产生的电磁现象。

它与我们日常生活息息相关,如电力、电子设备、无线通信等都离不开电磁学知识。

本文将介绍电磁学的基础知识点,包括电磁场、电磁波以及电磁感应等。

一、电磁场电磁场是一种在空间中存在的物理场,由电荷和电流产生。

电磁场有两个基本特点:电场和磁场。

1. 电场电场是由电荷产生的一种物理场,描述了电荷对其他电荷的作用力。

电场的性质由库仑定律描述,即两个电荷之间的作用力正比于它们的电荷量,反比于它们之间的距离的平方。

电场可以通过电场线表示,它们是沿着电场中的力线方向的连续曲线。

2. 磁场磁场是由电流产生的一种物理场,描述了电流对其他电流的作用力。

磁场的性质由安培定律描述,即通过导线的电流产生的磁场与电流成正比,与距离成反比。

磁场可以通过磁力线表示,它们是沿着磁场中的力线方向的连续曲线。

二、电磁波电磁波是一种由变化的电场和磁场相互作用而产生的波动现象。

电磁波具有电场和磁场的振荡,并在空间中传播。

根据波长的不同,电磁波可分为不同的类型,如射线、微波、红外线、可见光、紫外线、X射线和γ射线等。

电磁波的速度是光速,即30万千米/秒。

电磁波在我们生活中有广泛的应用,如无线通信、广播电视、雷达、医疗影像等。

其中,可见光是我们能够感知的,它的波长范围约为380纳米到760纳米。

三、电磁感应电磁感应是指当导体中的磁场发生变化时,在导体中产生感应电动势的现象。

根据法拉第电磁感应定律,当导体与磁场相对运动或者磁场的强度发生变化时,在导体中会产生感应电动势。

感应电动势的大小与变化速率有关。

在电磁感应中,也可以根据磁场变化产生的电动势来制造电动机和发电机等设备。

电动机利用电磁感应产生的力来将电能转化为机械能,而发电机则利用机械能转化为电能。

总结电磁学是物理学非常重要的分支,涉及到了电磁场、电磁波以及电磁感应等多个知识点。

了解电磁学的基础知识,有助于我们更好地理解和应用电磁现象。

大学物理电磁学基础知识点汇总

大学物理电磁学基础知识点汇总

大学物理电磁学基础知识点汇总一、电场1、库仑定律库仑定律描述了真空中两个静止点电荷之间的相互作用力与它们电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着它们的连线。

其表达式为:$F = k\frac{q_1q_2}{r^2}$,其中$k$为库仑常量,$q_1$和$q_2$为两个点电荷的电荷量,$r$为它们之间的距离。

2、电场强度电场强度是描述电场力的性质的物理量,定义为单位正电荷在电场中所受到的力。

其表达式为:$E =\frac{F}{q}$。

对于点电荷产生的电场,其电场强度的表达式为:$E = k\frac{q}{r^2}$,方向沿径向向外(正电荷)或向内(负电荷)。

3、电场线电场线是用来形象地描述电场的一种工具。

电场线的疏密表示电场强度的大小,电场线的切线方向表示电场强度的方向。

静电场的电场线不闭合,始于正电荷或无穷远,终于负电荷或无穷远。

4、电通量电通量是通过某一面积的电场线条数。

对于匀强电场,通过平面的电通量为:$\Phi = ES\cos\theta$,其中$E$为电场强度,$S$为平面面积,$\theta$为电场强度与平面法线的夹角。

5、高斯定理高斯定理表明,通过闭合曲面的电通量等于该闭合曲面所包围的电荷量的代数和除以$\epsilon_0$。

即:$\oint_S E\cdot dS =\frac{1}{\epsilon_0}\sum q$。

高斯定理是求解具有对称性电场分布的重要工具。

二、电势1、电势电势是描述电场能的性质的物理量,定义为把单位正电荷从电场中某点移动到参考点(通常取无穷远处)时电场力所做的功。

某点的电势等于该点到参考点的电势差。

点电荷产生的电场中某点的电势为:$V = k\frac{q}{r}$。

2、等势面等势面是电势相等的点构成的面。

等势面与电场线垂直,沿电场线方向电势降低。

3、电势差电场中两点之间的电势之差称为电势差,也称为电压。

其表达式为:$U_{AB} = V_A V_B$。

电磁学知识点归纳

电磁学知识点归纳

电磁学知识点归纳电磁学是物理学的一个重要分支,研究电荷、电流产生电场和磁场的规律,以及电场和磁场的相互作用。

以下是对电磁学主要知识点的归纳。

一、库仑定律库仑定律是描述真空中两个静止点电荷之间相互作用力的定律。

其表达式为:$F = k\frac{q_1q_2}{r^2}$,其中$F$是库仑力,$k$是库仑常量,$q_1$和$q_2$分别是两个点电荷的电荷量,$r$是两个点电荷之间的距离。

库仑定律是电学发展史上的第一个定量规律,它使电学的研究从定性进入定量阶段。

二、电场1、电场强度电场强度是描述电场强弱和方向的物理量。

定义为放入电场中某点的电荷所受的电场力$F$与电荷量$q$的比值,即$E =\frac{F}{q}$。

电场强度是矢量,其方向与正电荷在该点所受电场力的方向相同。

2、电场线电场线是为了形象地描述电场而引入的假想曲线。

电场线的疏密表示电场强度的大小,电场线上某点的切线方向表示该点电场强度的方向。

常见的电场线分布如正点电荷、负点电荷、等量同种电荷、等量异种电荷等。

3、匀强电场匀强电场是电场强度大小和方向都相同的电场。

两块平行金属板,分别带等量异种电荷时,它们之间的电场就是匀强电场。

三、电势和电势能1、电势电势是描述电场能的性质的物理量。

电场中某点的电势等于单位正电荷在该点所具有的电势能。

电势是相对的,其大小与零电势点的选取有关。

2、电势能电荷在电场中具有的势能称为电势能。

电势能的大小与电荷的电荷量和所在位置的电势有关,即$E_p = q\varphi$。

四、电容1、定义电容器所带电荷量$Q$与电容器两极板间的电势差$U$的比值,称为电容器的电容,即$C =\frac{Q}{U}$。

2、平行板电容器的电容平行板电容器的电容与两极板的正对面积$S$成正比,与两极板间的距离$d$成反比,与介质的介电常数$\epsilon$成正比,即$C =\frac{\epsilon S}{4\pi kd}$。

五、电流1、电流的形成电荷的定向移动形成电流。

物理学电磁学知识点

物理学电磁学知识点

物理学电磁学知识点电磁学是物理学中的重要分支,研究电荷、电场、磁场和其相互作用等电磁现象。

下面将介绍一些电磁学的基础知识点。

1. 电荷和电场电荷是电磁学研究的基本对象,分为正电荷和负电荷。

电荷的量子化是由基本电荷单位e决定的。

当电荷静止时,产生了一个电场。

电场是描述电荷相互作用的物理量,它的特征是有方向和大小。

2. 静电场和库仑定律静电场是指电荷分布不随时间变化的电场。

库仑定律描述了静电相互作用的力。

根据该定律,两个电荷之间的电力与它们之间的距离成反比,与它们的电荷量的乘积成正比。

这意味着相同电荷之间的力是斥力,异种电荷之间的力是吸引力。

3. 电场线和电场强度为了更好地描述电场的性质,我们可以画出电场线。

电场线的密度反映了电场的强弱,它们会从正电荷流向负电荷。

电场强度是描述某一点电场强弱的物理量,它的方向与电场线的方向相同。

4. 高斯定律高斯定律是静电场研究中非常重要的定律,它给出了电场的产生与分布与电荷分布有关的数学关系。

根据高斯定律,通过闭合曲面的电通量与该曲面内的电荷量成正比,符号上可以表示为∮E·dA = Q/ε0,其中E是电场强度,A是曲面的面积,Q是闭合曲面内的总电荷,ε0是真空中的介电常数。

5. 磁场和洛伦兹力磁场是由运动电荷或电流产生的,并且只对运动中的电荷或电流有影响。

电流是电荷的流动,产生磁场的效应。

洛伦兹力描述了磁场对运动中的电荷或电流产生的力。

洛伦兹力的方向垂直于磁场方向和电荷(电流)的运动方向,并遵循左手定则。

6. 安培定律安培定律是研究磁场的重要定律之一,它描述了电流对磁场的产生和磁场对电流元产生的力。

按照安培定律,两个平行电流元之间的力与它们的距离和电流的乘积成正比,与它们之间的夹角的正弦值成正比。

7. 法拉第电磁感应和楞次定律法拉第电磁感应定律描述了磁场变化时在闭合线圈中感应出电动势的现象。

楞次定律告诉我们,感应电动势的方向总是使得感应电流产生一个磁场,以阻碍引起感应电动势的磁场变化。

电磁学复习总结(知识点)

电磁学复习总结(知识点)

电磁学复习总结(知识点)电磁学复总结(知识点)知识点1: 电荷和电场- 电荷是基本粒子的属性,可能为正电荷或负电荷。

- 电场是由电荷产生的力场,它描述了在某一点周围的电荷受到的力。

知识点2: 高斯定律- 高斯定律是电磁学中的重要定律,描述了电场通过一个封闭曲面的总通量与该曲面内的电荷之间的关系。

知识点3: 电势和电势能- 电势是电场在某一点的势能大小,与正电荷的势能增加和负电荷的势能减少相关。

- 电势能是电荷在电场中具有的能量,可以通过电势差来计算。

知识点4: 静电场中的电场分布- 静电场中的电场分布可通过库仑定律计算。

- 静电场中的电场线是指示电场方向的线条,其切线方向为电场的方向。

知识点5: 电容和电- 电容是描述电储存电荷能力的物理量。

- 电是由两个导体之间存在的绝缘介质隔开的装置,用于储存电荷。

知识点6: 电流和电阻- 电流是电荷在单位时间内通过导体横截面的数量。

- 电阻是导体对电流的阻碍程度,可通过欧姆定律计算。

知识点7: 磁场和磁感应强度- 磁场是由电流产生的力场,描述了电流受到的力。

- 磁感应强度是描述磁场强度的物理量,可通过安培定律计算。

知识点8: 磁场中的磁场分布- 磁场中的磁力线是指示磁场方向的线条,其切线方向为磁场的方向。

- 安培环路定律描述了磁场中磁场强度沿闭合路径的总和为零。

知识点9: 电磁感应和法拉第定律- 电磁感应是指磁场与闭合线圈之间产生的感应电动势。

- 法拉第定律描述了感应电动势与磁场变化速率和线圈导线的关系。

知识点10: 自感和互感- 自感是指电流变化时产生的感应电动势。

- 互感是指两个线圈之间产生的相互感应电势。

知识点11: 交流电路和交流电源- 交流电路是指电流方向和大小周期性变化的电路。

- 交流电源是产生交流电的电源,如发电机。

知识点12: 电磁波- 电磁波是由振动的电场和磁场沿空间传播的波动现象。

- 电磁波根据波长可分为不同的频段,如无线电波、微波、可见光等。

电磁学知识点总结

电磁学知识点总结

电磁学知识点总结1. 静电学- 电荷与库仑定律- 基本电荷的定义- 电荷守恒原理- 库仑定律的表述及应用- 电场与电场强度- 电场的物理意义- 电场强度的计算- 电场线的概念- 电势与电势能- 电势的定义- 电势能与电势差- 电势的计算- 电容与电容器- 电容的定义- 电容器的工作原理- 并联与串联电容器的计算- 静电感应与电介质- 静电感应现象- 电介质的极化- 电位移矢量D2. 直流电路- 欧姆定律- 欧姆定律的表述- 电阻的概念与计算- 基尔霍夫定律- 基尔霍夫电流定律- 基尔霍夫电压定律- 直流电路分析- 节点分析法- 环路分析法- 电功率与能量- 电功率的计算- 能量守恒原理3. 磁场- 磁场与磁力线- 磁场的描述- 磁力线的绘制- 安培定律与毕奥萨法尔定律 - 安培定律的表述- 毕奥萨法尔定律与磁矩 - 磁通与磁感应强度- 磁通的定义- 磁感应强度B的计算- 电磁感应- 法拉第电磁感应定律- 楞次定律- 互感与自感- 互感的概念- 自感系数的计算- RLC串联电路的谐振4. 交流电路- 交流电的基本概念- 交流电的周期与频率- 瞬时值、有效值与峰值- 交流电路中的电阻、电容与电感 - 阻抗的概念- 电容与电感在交流电路中的行为 - 交流电路分析- 相量法- 功率因数与功率- 变压器原理- 变压器的工作原理- 理想变压器的电压与功率变换5. 电磁波- 电磁波的产生- 振荡电路与电磁波的产生- 电磁波的传播- 电磁波的性质- 波长、频率与速度的关系- 电磁谱的分类- 电磁波的应用- 无线通信- 医学成像6. 电磁学的现代应用- 微波技术- 微波的特性与应用- 光纤通信- 光纤的工作原理- 光纤通信的优势- 电磁兼容性- 电磁干扰的来源与影响- 电磁兼容性设计的原则本文提供了电磁学的基础知识点总结,涵盖了从静电学到电磁波及其应用的主要内容。

每个部分都详细列出了关键概念、定律和应用,旨在为读者提供一个全面且系统的电磁学知识框架。

物理学电磁学基础知识点清单

物理学电磁学基础知识点清单

物理学电磁学基础知识点清单本文旨在提供物理学电磁学基础知识点的清单,以帮助读者快速了解与掌握该领域的核心概念与原理。

以下是一些重要的知识点:1. 电荷与电场:- 电荷的属性和种类(正电荷、负电荷)- 库伦定律:描述电荷之间相互作用的关系- 电场:电荷周围的物理场,描述它对其他电荷的作用力2. 静电学:- 静电力:由于电荷之间的相互作用产生的力- 静电场:由于静电力产生的场- 高斯定律:计算电荷通过一个闭合曲面的电场通量- 电势能:电荷在电场中具有的能量3. 电流与电阻:- 电流:电荷通过导体单位时间内通过的数量- 电阻:材料对电流流动的阻碍程度- 电阻和电导率的关系:欧姆定律(U=IR)4. 电路基本理论:- 串联电路与并联电路- 电阻、电流和电压之间的关系- 电路中的功率和能量转换- 电容器:存储电荷的装置,电容和电压关系(Q=CV)5. 磁场与磁力:- 磁场:磁力产生的区域- 磁场的表示方法:磁感应线- 洛伦兹力:带电粒子在磁场中受到的力- 毕奥-萨法尔定律:描述磁场环路定律6. 电磁感应与安培定律:- 电磁感应:通过磁场产生电流- 法拉第定律:描述电磁感应现象- 安培环路定理:计算通过闭合回路的磁场通量- 自感:电流在自身的环路上产生的电磁感应7. 电磁波:- 电磁波的特点和性质- 电磁波谱:不同频率的电磁波的分类- 光的电磁波性质:折射、反射、干涉、衍射8. 电磁辐射与相对论:- 电磁辐射的基本原理- 狭义相对论:电磁场与观察者的相对性- 麦克斯韦方程组:电磁场的基本方程这些知识点覆盖了物理学电磁学的基础内容,希望读者能够通过本文快速了解和掌握相关知识,并为进一步学习提供了基础。

高考电磁学常考知识点

高考电磁学常考知识点

高考电磁学常考知识点电磁学是物理学中的重要分支,主要研究电荷和电流所产生的电场和磁场,以及它们之间的相互作用。

在高考中,电磁学是一个重要的考点,考生需要掌握一定的电磁学知识来解答相关题目。

本文将介绍一些常考的电磁学知识点。

一、库伦定律库伦定律描述了电荷之间的相互作用力,它是电磁学的基本定律之一。

根据库伦定律,两个电荷之间的作用力正比于它们之间的距离的平方,反比于它们的电荷量的乘积。

具体表达式为:F=k*(q1*q2)/r²其中,F表示作用力,k是库伦常量,q1和q2分别表示两个电荷的电荷量,r表示它们之间的距离。

二、电场强度电场是由电荷产生的,它在空间中有一定的分布。

电场强度描述了电场的强弱,定义为单位正电荷所受的力。

电场强度是一个矢量量,方向与力的方向相同。

根据库伦定律,电场强度与电荷量成正比,与距离的平方成反比。

表达式为:E= k*q/r²其中,E表示电场强度,k是库伦常量,q表示电荷量,r表示距离。

三、电势差电势差体现了电场对电荷的作用。

单位正电荷从某点A移动到另一点B所做的功,与沿路径所受的电场力的大小和方向有关。

电势之差表示单位正电荷从A点移动到B点所获得的能量变化。

电势差的计算公式为:ΔV=Vb-Va=-∫E·dl其中,ΔV表示电势差,Va和Vb分别表示A点和B点的电势,E 表示电场强度,l表示路径。

四、安培环路定理安培环路定理描述了电流产生的磁场与电流所围成的环路的关系。

它表明,沿着一条闭合路径的磁场强度之和等于该路径所包围的电流的代数和的乘以一个常数μ0,即:∮B·dl=μ0*I其中,∮B·dl表示沿闭合路径的磁场强度之和,μ0是磁导率,I表示电流。

五、法拉第电磁感应定律法拉第电磁感应定律描述了磁场变化引起的感应电动势。

根据该定律,当一个线圈中的磁通量发生变化时,将在线圈中产生感应电动势。

感应电动势的大小与磁通量变化率成正比。

法拉第电磁感应定律可以表示为:ε=-dΦ/dt其中,ε表示感应电动势,dΦ/dt表示磁通量的变化率。

电磁学基础知识要点整理

电磁学基础知识要点整理

电磁学基础知识要点整理在我们的日常生活中,电磁现象无处不在,从家用电器的运行到通信技术的发展,电磁学都发挥着至关重要的作用。

下面,让我们一起来梳理一下电磁学的一些基础知识要点。

一、电场电场是由电荷产生的一种物理场。

电荷分为正电荷和负电荷,同种电荷相互排斥,异种电荷相互吸引。

库仑定律是描述两个静止点电荷之间相互作用力的规律。

其表达式为:$F = k\frac{q_1q_2}{r^2}$,其中$F$ 是库仑力,$k$ 是库仑常量,$q_1$ 和$q_2$ 分别是两个点电荷的电荷量,$r$ 是它们之间的距离。

电场强度则是用来描述电场强弱和方向的物理量。

定义为置于电场中某点的电荷所受到的电场力$F$ 与电荷量$q$ 的比值,即$E =\frac{F}{q}$。

电场线是用来形象地描述电场的一种工具。

电场线的疏密表示电场强度的大小,电场线的切线方向表示电场的方向。

二、电势和电势能电势是描述电场能的性质的物理量。

在电场中,某点的电势等于单位正电荷在该点所具有的电势能。

电势能是电荷在电场中所具有的势能。

电荷在电场中移动时,电势能会发生变化,其变化量等于电场力所做的功。

三、电容电容是表征电容器容纳电荷本领的物理量。

电容器所带电荷量$Q$ 与电容器两极板间的电势差$U$ 的比值,称为电容,即$C =\frac{Q}{U}$。

常见的电容器有平行板电容器,其电容大小与极板面积$S$、极板间距$d$ 以及介质的介电常数$\epsilon$ 有关,公式为:$C =\frac{\epsilon S}{4\pi kd}$。

四、电流电流是电荷的定向移动形成的。

单位时间内通过导体横截面的电荷量称为电流强度,简称电流,即$I =\frac{Q}{t}$。

电流的方向规定为正电荷定向移动的方向。

金属导体中,电流是由自由电子的定向移动形成的,其方向与电子定向移动的方向相反。

五、电阻电阻是反映导体对电流阻碍作用的物理量。

电阻的大小与导体的材料、长度、横截面积以及温度有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

严选课件
14
3.2.2 磁饱和性
严选课件
5
材料分类: 非磁性材料
磁导率与真空磁导率近似相等,即 r ≈ 1 。如空气、
木材、纸、铝等。
铁磁性材料
磁导率远远大于真空磁导率,即 r >> 1 ,可达到
几百到上万。材料如铁、钴、镍及其合金等。 所以电器设备如变压器、电机都将绕组套装在铁磁 性材料制成的铁心上。 注意
铁磁性物质的磁导率µ是个变量,它随磁场的强弱而变化。
法拉第电磁感应定律和楞次定律分别从大小和方向两方面阐 述了感应电动势与磁通的关系。
严选课件
9
为了便于分析、表达感应电动势,通常设定感应电动势与磁通的参
考方向符合右螺旋关系,则电磁感应定律可用下式表达:对于一匝
线圈由电磁感应所产生的感应电动势为:
Φ e(t)
e N d d (N) d
dt
dt
dt
磁性材料的磁导率通常都很高,即 r 1 (如坡 莫合金,其 r 可达 2105 ) 。
磁性材料能被强烈的磁化,具有很高的导磁性
能。
磁性物质的高导磁性被广泛地应用于电工设备
中,如电机、变压器及各种铁磁元件的线圈中都 放有铁心。在这种具有铁心的线圈中通入不太大 的励磁电流,便可以产生较大的磁通和磁感应强 度。
第三章 电磁学基础
3.1 磁场与电磁感应
3.2 铁磁性材料 3.3 磁路基本定律 3.4 含有铁心线圈交流电路 3.5 变压器 3.6 点火线圈与汽车传统点火系统的工作过程
严选课件
1
第三章 电磁学基础
本章要求:
1)了解磁场的四个基本物理量和电磁感应概
念。
2)了解铁磁性材料特性及其应用。
3)理解磁路欧姆定律和磁路的基尔霍夫定律。
严选课件
6
7.1.3 磁场强度
磁场强度H :介质中某点的磁感应强度 B 与介质
磁导率 之比。 H B
磁场强度H的单位 :安培/米(A/m)
磁场强度的大小取决于电流的大小、载流导体的形状及几 何位置,而与磁介质无关。
H和B同为矢量。H的方向就是该点B的方向。在后面学到 的磁路问题中,常常用到磁场强度这个物理量。
单位: 特斯拉(T),1T = 1Wb/m2
均匀磁场: 各点磁感应强度大小相等,方向
相同的磁场,也称匀强磁场。
严选课件
3
2、 磁通
磁通 :穿过垂直于B方向的面积S中的磁力线总数。 在均匀磁场中 = B S 或 B= /S
说明: 如果不是均匀磁场,则取B的平均值。
磁感应强度B在数值上可以看成为与磁场方向垂直 的单位面积所通过的磁通,故又称磁通密度。
严选课件
11
当自感系数L为一个常数,即不随磁链ψ与电流I的改变而改变,这种电感元件 称为线性电感元件,否则即为非线性电感元件。
非线
对于铁心线圈来说,电感L不为常数。
性电

若为线性电感元件
eL
d
dt
d(Li) dt
L di dt
(2)

式(1)与式(2)是电动势的两种表达式,

一般当电感L为常数时,多采用式(2)。 而分析非线性电感时,由于L可变,一般采用式(1)。
严选课件
7
3.1.4 安培环路定律(全电流定律)
Hdl I
I1 H
式中: H d l 是磁场强度矢量沿任意闭合
I2
线(常取磁通作为闭合回线)的线积分;
I 是穿过闭合回线所围面积的电流的代数和。
安培环路定律电流正负的规定:
任意选定一个闭合回线的围绕方向,凡是
电流方向与闭合回线围绕l = IN 或 H IN l
安培环路定律将电严选流课件与磁场强度联系起来。8
3.1.2 电磁感应
1、电磁感应定律
法拉第电磁感应定律:
在1831年英国科学家法拉第发现:,变化的磁场能使闭合的回路产生感应 电动势和感应电流。感应电动势的大小正比于回路内磁通对电流的变化率。
楞次定律:
式中,磁通的单位为Wb;时间的单位为S;电动势的单位为V。 若线圈匝数为N匝,每匝线圈内穿过的磁通为φ,则与此线圈相交
链的总磁通称为磁链,用ψ表示,即
(1)
此时线圈的感应电动势为
式(1)不仅表明了感应电动势的大小,而且可以表明其方向。
严选课件
10
2、自感L
当闭合线圈通电流,就会产生磁场,那么当电流交变,就会 使磁场交变,从而在线圈自身产生感应电动势,这种现象称为 自感现象,这种电动势称为自感电动势eL。
4)了解变压器的基本结构,掌握变压器的基
本工作原理。
5)了解点火线圈与汽车传统点火系统的工作
过程。
6)了解电磁铁的工作特性。
严选课件
2
3.1 磁场与电磁感应 3.1.1 电磁学的基本物理量
1、磁感应强度B
表示磁场内某点磁场强弱和方向的物理量。
方向: 与电流的方向之间符合右手螺旋定则。
大小:
B F lI
电流通过线圈时产生的磁链ψ与电流i在大小上成正比,为了 便于分析、计算,引入一个参数L,称为线圈的自感系数,即
e d N Li
dt
式中,ψ为磁链;L为自感系数,简称为电感或自感。通 常选择磁链ψ与电流 i在方向上满足右手螺旋定则。
假设线圈中的电阻等于零(由无电阻的导线绕制而成),那么这 个线圈就称之为电感元件,显然它是一个理想元件。
严选课件
12
3、电感元件上电压与电流的关系
习惯上选择电感元件上的电流、电压、自感
电动势三者参考方向一致,则
电感的欧姆 定律
u e L di dt
注意
在直流电路中,由于电流变化率为零,所以电 感电压等于零,电感元件相当于短路。
严选课件
13
3.2铁磁性材料
磁性材料主要指铁、镍、钴及其合金等。
3.2.1 高导磁性
1833年,楞次对法拉第电磁感应定律进行补充:闭合回路中感应 电流的方向,总是使它所产生的磁场阻碍引起感应电流的原磁通的变 化。这就是楞次定律。
具体地说,如果回路由于磁通增加而引起的电磁感应,则感应电流的磁场与原 来的磁场反向;如果回路由于磁通减少引起电磁感应,则感应电流的磁场与原 来的磁场相同。简要地说,感应电流总是阻碍原磁通的变化。
磁通 的单位:韦[伯](Wb) 1Wb =1V·s
严选课件
4
3、磁导率μ 磁导率μ来表示物质的导磁性能。μ的单位是H/m(亨/米)。
真空的磁导率为常数,用 0表示,有:
0 4π 107 H/m
相对磁导率 r: 任一种物质的磁导率 和真空的磁导率0的比值。
r
0
注意
不同的介质,磁导率µ也不同。磁导率值大的材料,导磁性能好。
相关文档
最新文档