主蒸汽温度调节方案

合集下载

M701F4型燃气-蒸汽联合循环机组主蒸汽旁路系统控制策略介绍及优化

M701F4型燃气-蒸汽联合循环机组主蒸汽旁路系统控制策略介绍及优化

M701F4型燃气-蒸汽联合循环机组主蒸汽旁路系统控制策略介绍及优化发布时间:2021-03-25T02:24:39.647Z 来源:《河南电力》2020年9期作者:黄永昆[导读] 随着当前环保压力不断加大,燃气-蒸汽联合循环电厂在当前形势下有了长足的发展。

本文主要介绍的是M701F4型燃气轮机联合循环机组的旁路系统,该机组主要由M101F4型燃气轮机以及配套的燃机发电机、余热锅炉、蒸汽轮机以及配套的汽机发电机等主设备组成,采用 “一拖一,双轴”的布置方式,单套机组装机容量为460MW。

(广东粤电中山热电厂有限公司广东中山 528445)摘要:旁路系统是蒸汽轮机主蒸汽系统的重要组成部分,它在燃气-蒸汽联合循环机组启停过程以及甩负荷时起着十分重要的作用。

本文主要介绍了M701F4型燃气轮机联合循环机组的主蒸汽旁路系统的主要作用,通过对主蒸汽旁路系统几种控制模式的介绍,描述旁路系统在机组运行过程中的控制过程,并通过介绍机组运行过程中一次特殊工况,分析现有旁路系统控制逻辑存在的问题,并提出解决方案。

关键词:M701F4燃气轮机;联合循环;旁路系统;控制模式随着当前环保压力不断加大,燃气-蒸汽联合循环电厂在当前形势下有了长足的发展。

本文主要介绍的是M701F4型燃气轮机联合循环机组的旁路系统,该机组主要由M101F4型燃气轮机以及配套的燃机发电机、余热锅炉、蒸汽轮机以及配套的汽机发电机等主设备组成,采用 “一拖一,双轴”的布置方式,单套机组装机容量为460MW。

在燃气-蒸汽联合循环机组中,旁路系统在机组启停过程以及甩负荷时起着重要作用,它的功能是,当余热锅炉产生的主蒸汽不满足蒸汽轮机运行需求时,这部分主蒸汽会通过旁路系统回到凝汽器,从而防止余热锅炉蒸汽管路超温、超压;另外,在汽轮机跳闸或甩负荷时,旁路系统可以联锁快开从而有效抑制主蒸汽压力、温度参数波动,防止汽包水位波动,维持余热锅炉及燃汽轮机正常运行,从而缩小事故范围,减少机组损失。

循环流化床锅炉主汽温度偏低的原因及解决方案

循环流化床锅炉主汽温度偏低的原因及解决方案

循环流化床锅炉主汽温度偏低的原因及解决方案一、原因分析:1.燃烧不完全:燃烧不完全是主汽温度偏低的常见原因之一、可能是燃料不均匀供给或供气不足导致的。

燃料不均匀供给会造成部分燃料燃烧不完全,从而影响主汽温度。

2.循环系统问题:循环系统中可能存在泄漏或堵塞等问题,导致循环介质流速偏低,无法将热量有效地传递到主汽中。

3.过量空气:过量的空气会稀释燃烧中的热量,导致主汽温度偏低。

可能是燃烧风机调节不当或控制系统故障导致的。

4.锅炉负荷不足:如果锅炉负荷较低,燃烧产生的热量不足以满足主汽的温度需求,从而导致主汽温度偏低。

二、解决方案:1.检查燃料供给系统:确保燃料供给均匀,可以使用燃料供给均衡装置进行调整。

同时,检查燃气供应系统,确保燃气供应充足。

2.检查循环系统:定期检查循环水系统,清洗水管,消除堵塞现象。

及时修复和防止泄漏,确保循环介质流速正常。

3.优化燃烧调节系统:调整燃烧风机的转速和空气送风量,使之能够满足燃料燃烧所需的氧气供应,避免过量空气的情况发生。

4.提高锅炉负荷:通过调整燃料供给量和燃烧条件,适时提高锅炉负荷,以提高燃烧产生的热量,从而提高主汽温度。

5.检查主汽调节系统:检查主汽调节系统的工作状态,确保主汽温度控制精度和稳定性。

如果发现故障,及时修复或更换故障部件。

6.定期检查锅炉烟气流动情况:定期检查锅炉烟气流动情况,确保烟道内无过多的烟灰积聚,防止烟气流动受阻,影响热量传递效果。

7.定期进行锅炉清灰:锅炉内积灰会影响热量传递效果,导致主汽温度偏低。

定期使用合适的方法进行清灰,保持锅炉内部清洁。

8.考虑采用余热回收技术:考虑采用余热回收技术,利用废气和废热产生的热量进行热能回收。

增加热量输入,提高主汽温度。

以上是主汽温度偏低的原因及解决方案的一些建议。

要解决主汽温度偏低的问题,需要综合考虑锅炉的各个方面,从燃料供给、循环系统、燃烧调节、锅炉负荷等多个方面入手进行检查和调整。

同时,及时维护和保养锅炉设备,定期进行清洁和检查。

蒸汽温度自动控制系统

蒸汽温度自动控制系统

WT1S
1
1
时,1
21K
1
2.21K
;Ti1
T1K 1.2
WT1S
1
1
1
1 Ti1S
时,
(3)主、副回路投入后再作适当调整。
能源与动力工程学院 (二)衰减曲线法
步骤与临界曲线法略同,不同之处要注意!
串级控制系统产生共振效应的条件是:
1.副回路的工作频率ω2接近于共振频率ω; 2.主回路的工作频率ω1接近于副回路的工作频率ω2,即 T1P≈3T2P 。
实际生产中,通常把两种过热器结合使用,对流方式下吸收 的热量比辐射方式下吸收的热量要多,因此综合而言,过热器出 口汽温是随流量D的增加而升高的。
能源与动力工程学院
(2)动态特性 影响汽温变化的扰动因素很多,例如蒸汽负荷,烟气温度和
流速,给水温度,炉膛热负荷,送风量,给水母管压力和减温 水量。
归纳: 蒸汽流量,烟气传热量和减温水三个方面的扰动。 1)蒸汽流量扰动
能源与动力工程学院
(二)现场试验整定法
1、边界稳定法(临界曲线法) (1)先决定副调节器的比例带
主、副回路全部投入闭环,主调节器的参数设置:δ1置于较大位 置,Ti1=∞,Td1=0,副调节器的δ2 置于较大位置,且Ti2=∞,Td2=0, 而后便将副调节器的比例带由大往小调,使副回路产生不衰减振荡 (同时观察2),并记下此时的δ2K(临界比例带),T2K(振荡周 期),则副调节器的参数设置为:
2、锅炉过热汽温串级控制系统原理图
温度定值
主P调I1
副P调I2 执行器
内扰 阀门
θ2
减 导温前器区
过惰热性器区
θ1
变送器
变送器

利用DCS的过热汽温系统控制系统设计

利用DCS的过热汽温系统控制系统设计

利用DCS的过热汽温系统控制系统设计一、集散控制系统分析集散控制系统是以微处理器为基础的集中分散控制系统。

自70年代中期第一套集散控制系统问世以来,集散控制系统己经在工业控制领域得到广泛的应用,越来越多的仪表和控制工程师已经认识到集散控制系统必将成为过程工业自动控制的主流。

集散控制系统的主要特性是它的集中管理和分散控制,而且,随着计算机技术的发展,网络技术己经使集散控制系统不仅主要用于分散控制,而且向着集成管理的方向发展。

系统的开放不仅使不同制造厂商的集散控制系统产品可以互相连接,而且使得它们可以方便地进行数据交换。

DCS集散式温度控制系统图二、DCS系统主要技术指标调研(1)操作员站及工程师站:CPU PⅢ850以上内存128M以上硬盘40G以上软驱 1.44M以太网卡INTEL 100M×2块加密锁组态王加密锁鼠标轨迹球键盘工业薄膜键盘显示器21寸显示器分辨率1280×1024过程控制站:CPU PⅢ850以上内存128M以上硬盘40G以上电子盘8M以上软驱 1.44M以太网卡INTEL 100M×1块串行通讯卡485卡×1块(可选)(2)I/O站技术指标1)EF4000网络EF-4000网络是多主站、双冗余高速网络,通信波特率为312.5K和1.25M可编程;EF4000网络配合EF4000系列测控站(前端),可以完成工业现场各类信号的采集、处理和各类现场对象的控制任务。

EF4000网络的主要技术指标如下:挂网主站数≤31挂网模块数≤100(不带网络中继器),最多240通讯速率 1.25MBPS和312.5KBPS可编程基本传输距离 1.2MBPS时≥500m,312.5KBPS时≥1600m允许中继级数≤4级双网冗余具备两个通信口互为冗余的功能网络通讯方式半双工同步传输介质聚乙稀双绞线网络隔离度≥500Vrms通信物理层全隔离、全浮空、平衡差动传输方式有效传输字节不小于34K字节/S(1.25MBPS通讯速率)2)通讯网卡主要技术参数型号EF-4000网络─ EF4001安装方式计算机PC总线扩展插槽插卡安装尺寸160×75mm宿主计算机具有AT插槽的IBM-PC及其兼容机I/O地址硬件任选100、120、140、160、180、1A0、1C0七种中断向量软件任意设定IRQ3、5、7、10、11、12、15或不使用耗电不大于1W工作方式连续可靠性指标MTBF80000Hr运行环境温度0~60C°,相对湿度≤80%3)模拟量输入前端模块型号EF4101输入通道数16路通道隔离电压400V(峰—峰值)网络隔离度≥500Vrms通道采样时间80mSA/D分辨率17位测量精度〈0.2%被测信号类型T/C、RTD、mV、mA4)模拟量输出前端模块型号EF4601输出通道数6路(全隔离)通道隔离电压500V网络隔离度≥500Vrms电压输出范围-10V ~ +10V电流输出范围0 ~ 20 mA控制精度0.2级5)数字量输入前端模块型号EF4201输入通道数28路通道隔离电压350V网络隔离度≥500Vrms计数速率≤500次/秒(低频通道)计数速率≤8000次/秒(高频通道)事件分辨率1mS(低频通道)计数长度24位(三字节)测频范围0 Hz ~ 8000 Hz(高频通道)6)数字量输出前端模块型号EF4203输出通道数16路(EF4203)通道隔离电压350V网络隔离度≥500Vrms结点开关电流≤100 mA结点开关电压≤350 V结点隔离电压≤350 V结点闭合时间≤0.6 mS结点断开时间≤0.15 ms7)执行器脉冲控制单元输出结点电压≤380 V输出结点电流≤5A系统网络采用国际上通用的Ethernet 网,通信速率为100Mbps,遵循IEEE 802.3协议。

350MW锅炉培训课件汽水系统方案

350MW锅炉培训课件汽水系统方案
汽水系统流程主汽水流程:
省煤器下部螺旋水冷壁过渡段水冷壁上部垂直水冷壁遮焰角汽水分离器顶棚过热器包墙过热器低温过热器屏式过热器高温过热器储水罐低温再热器高温再热器
省煤器
350MW锅炉培训课件__汽水系统方案
省煤器、水冷壁、各集箱、储水罐、汽水分离器、361阀、疏水扩容器、 疏水泵作用及规范;
省煤器作用:吸收烟气热量降低排烟温度;提高锅炉效率节省燃料。水冷壁作用:吸收火焰的辐射传热加热炉水;保护炉墙。集箱作用:将工质混合,减少工质热偏差。储水罐及分离器作用:在锅炉启停及低负荷运行期间,汽水分离器湿态运行,起汽水分离作用;在锅炉正常运行期间,汽水分离器只作为蒸汽通道。361阀作用:调节疏水罐水位。疏水泵作用:将炉水输送至凝汽器回收或排至循环水管道。
锅炉开始上水后的注意事项1. 锅炉上水时通知化学值班员投入
锅炉启动冲洗及要求
冷态开式清洗:1)用辅汽加热除氧器,维持除氧器出口水温在80℃左右。2)锅炉储水罐水位通过溢流阀控制,排放到循环水回水母管,储水罐水位控制在2200~6500mm左右。检查疏水出口至凝汽器电动门关闭,至循环水回水母管电动门开启。清洗流程如下:凝汽器→除氧器→给水泵→高加→省煤器→水冷壁→汽水分离器→储水罐→至循环水回水管。3)维持给水流量284t/h进行开式清洗,当储水罐下部出口水质达到下表标准,冷态开式清洗结束。项目Fe浊度油脂PH值标准≤500μg/l≤3ppm≤1μg/l≤9.54)冷态清洗期间要密切注意凝汽器、除氧器水位,凝结水泵及汽泵组运行正常。 冷态循环清洗1)开启疏水至凝汽器电动门,关闭疏水至循环水回水管电动门,清洗水切换至凝汽器。冷态循环清洗流程:凝汽器→除氧器→给水泵→高加→省煤器→水冷壁→汽水分离器→储水罐→→至凝汽器。2)维持给水流量(省煤器入口流量)284t/h进行循环清洗,直至省煤器进口水质达到下列表指标,冷态循环清洗完毕。项目FeSiO2油脂PH值硬度O2电导率标准≤50μg/l≤30μg/l≤0.3μg/l9.3~9.50≤30μg/l≤0.5μg/cm

1000MW机组主、再热蒸汽温度波动原因分析及其优化方案

1000MW机组主、再热蒸汽温度波动原因分析及其优化方案

rao s o e eauefutaino e ets a esn r mp rtr lcu t frh a t m.T ed ti do t z t np o oas r oa js tew trfe rt f t o e h eal pi ai rp sl aet dut h ae u l ai e mi o o
煤 比 ( ae u l ai,WF 、给 水 流 量 以及 逻 辑 设 计 时 A、B侧 再 热调 节挡 板 单独 控 制 等 。优 化 后 ,机 组 温 度 w tr e t f r o R)
控 制 系统 性 能 大 幅 度 提 高。
关键 词 :超 超 临 界 机 组 ;水 煤 比 控 制 ; 中 间点 温 度 ;主 、再 热 蒸 汽 温 度 ;优 化 方 案
gr tov r ho n a t m a i ea e s ot i u o tc ope aton ofr g atng va v orde up he tng w a e r i e ul i l e f s er a i t r,a om a i ut tc ope a i a am pe r r ton ofg s d ra e
第2 4卷 第 3期
2 1 年 3月 01
广 东 电 力
GUAN GDONG ELECTRI POW ER C
V Ol24 N o. _ 3 M a 。 011 r2
10 0MW 机 组 主 、再 热蒸 汽 温 度 波 动原 因分 析 0
及 其优 化 方 案
邓 安来
p it adp o lmsnsrtg o e tr euainaemao esn o ie e eau e lcu t n f i s a ons n rbe t e yfr e dwae g lt r jr ao s r d mp rtr u tai s n t m; i a f r o r f w t f o o ma e

锅炉各项小指标控制措施及注意事项

锅炉各项小指标控制措施及注意事项

锅炉专业各项小指标控制措施机组转入正式生产运营以来,集团公司对我厂机组的经济运行又提出了新的要求,将每月的经济指标与工资总额挂钩,当月指标不能完成,便考核工资总额的20%,因此,机组运行指标的好坏,便与我们每个人息息相关。

在保证机组安全运行的基础上,为保证每月指标的顺利完成,部门出台锅炉专业各项小指标的具体控制措施,供各位值班员参考,各值班员当班期间应采取措施积极调整,保证各项小指标尽量达到或靠近目标值。

一、主汽压力:在机组顺序阀投入以后,主汽压力每降低1MPa,将使发电煤耗增加2.012g/kwh,因此各值在顺序阀投入以后应尽量使主汽压力接近滑压设定值。

在机组单阀控制期间,由于主汽压力提高,会使调门关小,增大节流损失,故主汽压力适当放低。

注意:主汽压力过高会使汽机调节级压力升高,给机组安全运行带来威胁。

二、主汽温度:主蒸汽温度每降低10℃,将使发电煤耗增加0.88 g/kwh,因此各值应积极调整主蒸汽温度,使之尽量接近设计值571℃(机侧566℃),具体控制措施:1、合理配风,消除由于磨煤机分配器问题导致的热量不均带来的蒸汽偏差;2、积极调整,关注减温水自动跟踪情况,及时干预,合理调整汽温设定值以消除减温水自动跟踪迟缓对汽温调整带来的影响;3、启停磨煤机时缓慢操作,并关注磨煤机启停对汽温的影响,尽量使磨煤机启停操作对汽温的影响减到最小;4、注意煤质突变对汽温、汽压的影响,及时干预调整;5、重点关注分离器出口过热度,适当改变分离器出口过热度偏置以改变煤水比例,维持分离器出口过热度稳定,以稳定主汽温度;6、注意给水温度对主汽温度的影响。

注意:调整主汽温度时,防止单侧汽温及受热面管壁超温。

三、再热汽温度:再热汽温度每降低10℃,将使发电煤耗增加0.78g/kwh,因此各值应积极调整再热汽温度,使之尽量接近设计值569℃(机侧566℃),具体控制措施:1、保持燃烧稳定,积极调整烟气挡板开度,注意再热汽温的变化趋势,做到超前调节;2、合理利用燃尽风;3、启停磨煤机时缓慢操作,并关注磨煤机启停对再热汽温的影响,尽量使磨煤机启停操作对再热汽温的影响减到最小;4、注意给煤量突变及一次风压改变对再热汽温的影响;5、改变煤粉细度,提高火焰中心有利于提高再热汽温。

660MW超临界机组过热蒸汽温度的控制系统及运行调整

660MW超临界机组过热蒸汽温度的控制系统及运行调整

660MW超临界机组过热蒸汽温度的控制系统及运行调整摘要:大型火电站当中,一项较重要的运行调整就是过热蒸汽温度控制和调整。

过热蒸汽温度控制系统,对于火电机组热效率的提升具有重要意义,能够保障机组发电过程中所产生的热量得到应有的利用,使发电效率大大提升。

因此在本文当中就将对某火力发电企业机组过热蒸汽温度控制系统设计工作进行分析,将设计工作当中对过热蒸汽温度控制系统大延迟、大惯性以及时变性和非线性内在机理问题,进行攻克的过程进行研究,同时对过热蒸汽温度的运行调整提出相关建议。

关键词:660MW;超临界机组;过热蒸汽温度;控制:调整1.前言浙能乐清一期2*660MW超临界机组,锅炉为超临界参数变压运行螺旋管圈直流炉,单炉膛、一次中间再热、采用四角切圆燃烧方式、平衡通风、固态排渣、全钢悬吊Π型结构、露天布置燃煤锅炉。

DCS系统用的是北京ABB贝利控制系统有限公司的Industrial IT Symphony 系统。

在本文当中,将主要对机组当中的过热蒸汽温度控制系统进行研究,过热蒸汽温度控制系统主要存在大延迟,大惯性以及时变性和非线性内在机理问题,并提出相应的运行调整分析。

2.过热蒸汽温度控制系统解析2.1工艺流程分析过热器喷水减温系统工艺流程:炉膛上部布置有前屏过热器和后屏过热器,水平烟道依次布置高温再热器和高温过热器,共有二级喷水减温器,将每一级减温器都进行左右两侧均匀布置。

在第一级减温器当中,主要是将减温器布置在后屏过热器的入口处,该级减温器的喷口量达到了总设计喷水量的2/3,对第一级减温器进行控制的是两个喷嘴和调节阀门。

在第二级减温器当中,主要是将其设置在末级过热器的入口处,该级减热器喷水量达到了总设计排水量的1/3。

图一过热减温水DCS画面2.2过热汽温控制系统2.2.1减温控制系统在第一级减温控制系统(以此为例)当中,进行温度调节时的被调量是前屏过热器出口处的气温,同时该控制系统还能够保护屏式过热器的管壁不会出现温度过高的现象,并与末级过热汽温控制系统进行配合协同工作,保证整体控制系统温度得以调节。

汽轮机调试方案

汽轮机调试方案

目录一、概述 2二、汽机主要技术规范 31.主机的主要参数 32.调节系统的主要参数 4三、机组整套启动具体条件: 6四、机组冷态启动 61.启动前的准备工作 62、暖管升压 83、冲转、升速、暖机、定速 93.1汽轮机冲转 93.2热态启动应遵守: 114、汽轮机转速达额定转速后,应做的工作 11 4.1主汽门严密性试验 114.2高压调门严密性试验 124.3喷油试验 124.4主汽门活动试验 124.5调门活动试验 134.6超速保护试验 144.7 OPC电磁阀试验 144.8 103%超速试验 144.9 110%超速试验 144.10机械超速试验: 155、汽轮机接带负荷 156、带负荷试验 166.1真空系统严密性试验 166.2甩负荷试验 16五、正常停机 161、机组停运前的准备 172、减负荷停机 173、停机后做下列工作 17六、机组蒸汽参数超过正常规范的规定 18 汽轮机蒸汽规范: 181、主蒸汽压力 182、主蒸汽温度 18七、故障停机的规定 191、破坏真空停机条件 192、不破坏真空停机条件 193、破坏真空紧急停机操作步骤 204、不破坏真空,故障停机操作步骤 20一、概述12MW直接空冷抽汽式汽轮机为南京汽轮电机(集团)有限责任公司生产。

其型号为czk12-3.43/0.981型中压、单缸、单抽汽、冲动式汽轮机,发电机型号为QFJ-15-2型采用自偱环封闭式空气冷却。

汽轮机结构包括静止部分,和转子部分,静止部分包括前、中、后缸隔板,前后轴承座,前后轴承,和前后汽封等,前汽缸措助前端的猫爪与前轴承座相连,前轴承座支承在前座架上,后汽缸则支承后汽缸座架上。

转子部分包括主轴和套装叶轮叶片以及联轴器,它前后支承在前轴承和后轴承上,在汽缸中与喷嘴组及各级隔板组成了汽轮机的通流部分,借助刚性,联轴器与发电机转子相连。

汽轮机转子由一级复速级和十一压力级组成,叶片均分为根据全三元流原理设计的全四维叶片。

浅析过热汽温串级控制的控制方案

浅析过热汽温串级控制的控制方案

浅析过热汽温串级控制的控制方案过热汽温串级控制是一种重要的控制方式,可用于调节电站的发电过程。

本文将从两个方面浅析过热汽温串级控制的控制方案。

一、控制模型过热汽温串级控制是基于PID控制方法的,通过PID控制器对控制对象进行调节。

PID控制器包括三个部分,分别为比例、积分和微分。

其中,比例控制器根据误差信号与设定值之间的差别来计算输出量,积分控制器维护一个累积误差的变量,并将其与比例控制器计算出的输出量相加,最终输出调节量。

而微分控制器根据误差变化率的变化来计算输出量,用以预测未来的误差变化情况,从而更好地改善控制系统的稳定性。

过热汽温串级控制中,PID控制器通常通过串级的方式进行连接。

该控制方式通常是将一个PID控制器插入另一个PID 控制器的反馈路径中,以此方式逐层调节。

首先,我们需要使用第一级PID控制器来实现对主蒸汽温度的调节。

第二个PID 控制器负责进一步调节再热蒸汽温度,以保持其稳定性。

通过这种方式,系统可以快速地调整过热汽温度以保持其稳定性。

二、控制算法在过热汽温串级控制中,控制器的选择至关重要。

控制器需要具有快速响应、准确性和可靠性,以确保系统的稳定性。

目前,最常用的控制器算法是基于模型预测控制(MPC)的控制方式。

MPC控制器需要建立一个过热汽温度的动态模型,并通过该模型来预测未来的状态。

在预测过程中,MPC控制器考虑了过去、现在和未来三个时段,根据这些信息对控制系统进行调节,以实现最优的温度控制。

MPC控制器使用优化算法来搜索最优解,以尽可能地减小系统误差。

总体而言,MPC是一种有前途的过热汽温度控制方法,具有一定的优势和实用价值。

然而,对于普通电站和控制系统的实际应用,MPC控制器的计算复杂度很高,需要大量的计算资源。

因此,目前还需要针对MPC控制器展开更多的研究,以提高其效率和实用性。

综上所述,过热汽温串级控制是一种有效的控制方式,可以帮助调节电站发电过程的稳定性,优化系统的能耗效率。

自抗扰控制在火电厂主蒸汽温度控制中的应用

自抗扰控制在火电厂主蒸汽温度控制中的应用

4 7
r ( )一 l k ,d ( )一 2 k e = 1k ( ) e = 2k ( )
{o ka( , ) ka(dt8) = Jz , 6 + Jle,d d O,
【 k 。 z ( / 。 ( )= 一 , ) 6
() 6
式 中 :e,e 是 安 排 过 渡 过 程 与 系 统 输 出 估计 Y 之 间 的误 差 和 该 误 差 的 微 分 ,合 理 选 择 非 线 性 参 数 , , ,艿以及 参 数 k ,k 实 现 对 “ 分 串 来 积 联 型 ” 对 象 的非 线 性 控 制 ,实 际 控 制 量 为 U ,其 中 一z/ 。 扰 动 厂 ( ), 曼( ) W( ) 未 建 模 ,6 将 ( t , ) 和
摘 要 : 大型 火 电厂 锅 炉主 蒸汽 温度 控 制 系统 ,是 提 高 电厂 经 济 效 益 、保 证 机 组 安 全 运 行 不 - ̄ 少 的 环 节 . . j - .
针 对火电厂 主蒸汽温度控制 系统 的大时滞、大惯性 以及 动态特性 随工况 变化 的不确 定性 等特 点 ,设 计 了
收 稿 日期 :2 1 0 2 。 0 2— 3— 3
作者简 介 :竹瑞博 (9 7一 ,男 ,硕士研究生 ,从事控制 理论 及其在过 程控制 中的应用等方 面的研究 ,Ema :zuubf i 18 ) — i h rioar l l
@ qq o 。 .t m
第 5期
竹瑞博 ,等 自抗扰控制在火 电厂主蒸汽温度控制 中的应用
性 设 计 的 控 制 器 往 往 趋 于 保 守 ,也 难 保 证 控 制
品质。
图 1 目抗 扰 控 制器 结构
Fi 1 S r t e ofAD RC g. t uc ur

蒸汽温度控制系统

蒸汽温度控制系统
(6) MFT (7) 汽机跳闸 (8) 锅炉负荷低于10%
第四节 再热汽温控制
一、再热蒸汽温度控制任务
保持再热器出口汽温为给定值。
二、再热汽温的影响因素
(1)机组负荷的变化(蒸汽流量变化)对再热汽温有很大的 影响;
(2)烟气热量变化也是影响再热蒸汽温度的重要因素。 由于再热器是纯对流布置,再热器入口工质状况取决
二、过热汽温对象特性
主要扰动有三种: (1)烟气热量扰动:燃烧器运行方式变化、
燃料量变化、燃料种类或成分变化、风量 变化等等这些变化最终均反映在烟气热量 的变化; (2)蒸汽流量(负荷)扰动; (3)减温水流量扰动。
D
GD(s)
Q
GQ(s)
W
GW(s)
+ θ
+ +
1.蒸汽流量(负荷)扰动下的汽温特性
γθ2
γθ1
+ f1(x) - PI1
D 蒸汽流量D

+ +-
PI4

+ -
PI2
KZ
一级减温水调 节阀
二级减温 水调节阀
KZ
θ0
图13 按温差控制的过热汽温分段控制系统
D
第三节 举例
一、过热蒸汽流程
一级减温器 初级过热器
分割屏过热器 后屏过热器二级减温器
θ5
θ4
θ3
θ2
末级过热器 θ1 至汽机
蒸汽
(s) Q(s)
KQ 1 TQS
e Q s
0
τQ
t
图 4 烟气热量扰动下过热汽温响应曲线
3.减温水量扰动下的过热汽温特性
Wj
0
t
ΔWj
θ
TC
G(s) (s) K es

锅炉汽温调节系统

锅炉汽温调节系统

汽包锅炉蒸汽温度自动调节系统一、蒸汽温度自动调节系统锅炉蒸汽温度自动调节包括过热蒸汽温度和再热蒸汽温度调节。

调节的任务是维持锅炉过热器及再热器的出口汽温在规定的允许范围之内。

1、过热汽温调节任务和特点过热汽温是锅炉运行质量的重要指标之一。

过热汽温过高或过低都会显著地影响电厂的安全性和经济性。

过热汽温过高,可能会造成过热器、蒸汽管道和汽机的高压部分金属损坏,因为超温会引起汽轮机金属内部过大的热应力,会缩短使用寿命,还可能导致叶片根部的松动;过热汽温过低,会引起机组热耗上升,并使汽机轴向推力增大而可能造成推力轴承过载。

过热汽温过低还会引起汽轮机尾部叶片处蒸汽湿度增加,从而降低汽轮机的内效率,并加剧对尾部叶片的水蚀。

所以,在锅炉运行中,必须保持过热汽温长期稳定在规定值附近(一般范围为额定值541±5℃)。

过热汽温调节对象的静态特性是指过热汽温随锅炉负荷变化的静态关系。

过热器的传热形式、结构、布置都将直接影响过热器的静态特性。

对流式过热器和辐射式过热器的过热汽温静态特性完全相反。

对于对流式过热器,当负荷增加时,通过其烟气的温度和流速都增加,因而使过热汽温升高。

而对于辐射式过热器,由于负荷增加时炉膛温度升高不多,而炉膛烟温升高所增加的辐射热量小于蒸汽负荷增大所需要的吸热量。

我们的过热器系统采取了对流式、辐射式和屏式(半辐射式)交替串联布置的结构,这有利于减小过热器出口汽温的偏差,并改善了过热汽温调节对象的静态特性。

引起过热蒸汽温度变化的原因很多,如蒸汽流量变化、燃烧工况变化、进入过热器的蒸汽温度变化、流过过热器的烟气温度和流速变化等。

归结起来,过热汽温调节对象的扰动主要来自三个方面:蒸汽流量变化(机组负荷变化),加热烟气的热量变化和减温水流量变化(过热器入口汽温变化)。

过热汽温调节对象的动态特性是指引起过热汽温变化的扰动与过热汽温之间的动态关系。

在各种扰动下的过热汽温调节对象动态特性的特点是有迟延和惯性,典型的过热汽温阶跃反应曲线如下图所示。

350MW机组整套启动方案解析

350MW机组整套启动方案解析

2 X 350MW机组整套启动方案1. 机组启动原则1.1汽轮机启动状态的规定汽轮机的启动状态划分是以高压内缸上半调节级处内壁金属温度为依据的,具体可分为:a)冷态启动:金属温度W121℃;b)温态启动:金属温度在121〜250℃;c)金属温度在250〜450℃之间;d)极热态启动:金属温度三450℃。

1.2汽轮机启动规定1.2.1汽轮机在冷态启动时,进入汽机的主蒸汽过热度符合规定要求,即高压主汽阀入口处的蒸汽温度应具有56℃的过热度,但最高汽温不得超过427℃,主汽阀入口蒸汽温度和压力应在“启动时的主蒸汽参数曲线”所示区域内,同时,根据哈尔滨汽轮机厂的“汽轮机转速保持推荐值表”将转子升速到允许的加热转速范围内的一个转速进行暖机,在任何情况下不得减少中速暖机时间,以防转子发生脆性断裂;1.2.2汽轮机在热态启动时,蒸汽进入汽轮机至少有56℃的过热度,并满足“主汽阀前启动蒸汽参数曲线”的要求,根据哈尔滨汽轮机厂的“热态启动曲线”决定升速率和5%负荷暖机时间。

1.3机组首次冷态启动程序整套启动前的条件确认一辅机分系统投入一机组冲动一盘车脱扣检查一摩擦及低速检查(400r/min) -中速暖机(1000r/min)-高速暖机(2040r/min) 一阀切换一定速(3000r/min)一打闸试验一安全装置在线试验一机械飞锤压出试验一油泵切换试验一DEH参数点调整一电气试验。

机组并网一带18〜35MW运行3〜4小时一机组解列一做汽门严密性试验一做超速试验。

机组并网一负荷70MW、投高加一负荷175MW、洗硅运行、启动汽泵,机组甩50%负荷试验。

机组并网一负荷210MW,做进汽阀门试验一负荷265MW、锅炉洗硅、真空系统严密性试验、试投CCS协调控制系统一负荷350MW、RB试验、做机组甩100%负荷试验。

冷态、温态、热态和极热态启动试验一机组带负荷350MW连续168 小时运行一进入试生产阶段。

2. 整套启动前应具备的条件2.1汽轮发电机组安装工作全部完毕,辅机单体和分系统试运工作已完成,热工调节控制、联锁保护、报警信号及运行监视系统静态调试完;2.2厂房内地面平整,道路畅通,照明充足,通讯联络可靠;2.3主要系统管道的吊架和支架完整、牢固,弹簧吊架的固定销钉应拆除;2.4调整试验用的临时堵板,手脚架,接地线,短路线,工作牌等临时安全设施已拆除,恢复常设的警告牌和护栏;2.5设备、管道、阀门的标牌经确认无误,工质流向标示正确;2.6消防设施齐全,消防水系统压力充足处于备用状态;2.7不停电电源切换试验做完,投入备用;2.8机组各系统的控制电源、动力电源、信号电源已送上,且无异常;2.9确认厂用计算机工作正常,供电电源可靠并完成电源切换工作,DCS 显示与设备实际状态相符;2.10启动用的工具、离线监测仪器、运行记录已准备好;2.11整套启动电气试验方案已经报调度审批完毕;2.12建立整套启动电气试验检查确认单,并确认完成;2.13编制试验程序,绘制系统图;2.14准备好设计、设备图纸及定值单,以备查看;2.15按照组织机构,通知有关人员到岗;2.16保安电源切换试验完毕,经验收合格,可靠投入。

关于阜新发电公司350MW机组主汽压力精细化调整措施

关于阜新发电公司350MW机组主汽压力精细化调整措施

关于阜新发电公司350MW机组主汽压力精细化调整措施赵晓军【摘要】目前大型汽轮机组的热力计算工况多数都取额定工况,为此机组的设计工况和额定工况成为同一个工况.在实际运行中,很难使参数严格地保持设计值,这种与设计工况不符合的运行工况,称为汽轮机的变工况.这时进入汽轮机的蒸汽参数、流量和凝结器真空的变化,将引起各级的压力、温度、焓降、效率、反动度及轴向推力等发生变化.这不仅影响汽轮机运行的经济性,还将影响汽轮机的安全性.所以在日常运行中,应该认真监督汽轮机初、终参数的变化.讨论阜新发电公司350MW机组运行的主蒸汽压力调整的技术和管理措施.【期刊名称】《黑龙江科技信息》【年(卷),期】2016(000)032【总页数】2页(P61-62)【关键词】主汽压力;焓降;经济性;轴向推力【作者】赵晓军【作者单位】阜新发电有限责任公司,辽宁阜新123000【正文语种】中文机组的主蒸汽压力升高或降低都会对设备产生较大影响,它直接影响到机组的安全性与经济性。

在主蒸汽温度不变时,主蒸汽压力升高,整个机组的焓降就增大,运行的经济性提高。

但当主蒸汽压力升高超过规定变化范围的限度,将会直接威胁机组的安全。

主蒸汽压力降低会降低机组的经济性,同时还会造成蒸汽湿度增加,损害设备。

1.1 主蒸汽压力升高的影响(1)机组末几级的蒸汽湿度增大,使末几级动叶片的工作条件恶化,水冲刷严重。

(2)主蒸汽压力升高时,要维持负荷不变,需减小调速汽阀的总开度,但这只能通过关小全开的调速汽阀来实现。

在关小到第一调速汽阀全开,而第二调速汽阀将要开启时,蒸汽在调节级的焓降最大,会引起调节级动叶片过负荷,甚至可能被损伤。

(3)主蒸汽压力升高会引起主蒸汽承压部件的应力升高,将会缩短部件的使用寿命,并有可能造成这些部件的变形,以至于损坏部件。

1.2 主蒸汽压力降低的影响(1)在主蒸汽温度不变时,主蒸汽压力降低,凝结器真空不变,整个机组的焓降就减小,蒸汽比容将增大,机组负荷降低,运行的经济性降低。

电厂主蒸汽调节阀压力的调节方法

电厂主蒸汽调节阀压力的调节方法

主题:电厂主蒸汽调节阀压力的调节方法随着工业发展的进步,电厂的建设和运行越来越重要。

在电厂中,主蒸汽调节阀是控制蒸汽进入涡轮机的关键设备之一。

它负责调节蒸汽的压力,保证涡轮机运行的稳定性和安全性。

掌握主蒸汽调节阀的压力调节方法对电厂的正常运行具有重要意义。

本文将介绍电厂主蒸汽调节阀压力的调节方法,以期为相关从业人员提供一些参考。

1.了解主蒸汽调节阀的结构和原理主蒸汽调节阀是一种用于控制蒸汽压力的阀门设备。

它通常由阀体、阀盖、阀瓣、阀座等部件组成。

在蒸汽压力升高时,阀瓣会向关闭方向移动,减小阀门流通面积,从而降低蒸汽的流量和压力。

相反,当蒸汽压力降低时,阀瓣会向打开方向移动,增大阀门流通面积,提高蒸汽的流量和压力。

了解主蒸汽调节阀的结构和工作原理,有助于根据实际情况进行调节。

2.依据运行实际情况进行调节对于电厂主蒸汽调节阀的压力调节,首先要根据电厂的运行实际情况进行调节。

在不同的负荷和工况下,蒸汽需求和压力要求都有所不同。

需要根据实际情况对主蒸汽调节阀进行相应的调节。

一般来说,可以通过改变阀门的开启度和阀座的位置来控制蒸汽的流量和压力。

3.定期检查和维护主蒸汽调节阀定期的检查和维护是保证主蒸汽调节阀正常工作的重要环节。

电厂工作环境复杂,蒸汽压力和流量变化大,这就要求主蒸汽调节阀具有较高的稳定性和可靠性。

定期对主蒸汽调节阀进行检查,清洁和润滑,及时发现并处理阀门漏气、卡阻、磨损等问题,确保主蒸汽调节阀的正常运行。

4.配合其他设备进行调节在电厂中,主蒸汽调节阀的压力调节不是孤立的,还需要与其他设备配合进行调节。

在蒸汽锅炉和涡轮机之间,还存在着其他调节设备和阀门,这些设备需要协调配合,以保证电厂系统的正常运行。

在进行主蒸汽调节阀的压力调节时,还需要考虑其他设备的影响和配合,做到整个系统的协调运行。

电厂主蒸汽调节阀的压力调节方法非常重要,它直接关系到电厂系统的安全稳定运行。

通过了解设备的结构和工作原理,根据实际情况进行定期的调节和维护,以及与其他设备的配合,才能保证主蒸汽调节阀的正常工作。

基于阀门非线性补偿的亚临界机组主蒸汽温度控制

基于阀门非线性补偿的亚临界机组主蒸汽温度控制

DOI:10.15913/ki.kjycx.2024.07.022基于阀门非线性补偿的亚临界机组主蒸汽温度控制王航(国家能源投资集团有限责任公司,北京100011)摘要:为保证火电机组的安全稳定运行,需维持主蒸汽温度处在正常范围内。

利用减温水调节主蒸汽温度,若在设计控制方案时不考虑减温水调节阀的流量特性,会出现由于减温水调节阀的非线性特性导致控制品质下降。

通过搭建某亚临界机组的主蒸汽温度超前区、惰性区和阀门对象仿真模型,研究了带有阀门非线性补偿的主蒸汽温度控制。

通过采集阀门输入输出数据,拟合阀门流量特性曲线,设计了基于多项式拟合方法的阀门开度补偿器。

仿真结果表明,此方法可在一定程度上克服阀门流量特性引起的非线性,使整个系统的控制效果更加快速和平稳,提升主蒸汽温度控制的品质。

关键词:火电厂亚临界机组;主蒸汽温度;阀门流量特性;非线性补偿中图分类号:TP273;TM621 文献标志码:A 文章编号:2095-6835(2024)07-0085-04根据中国当前电力能源结构的构成,火电机组在国内总装机容量中仍占50%以上[1]。

主蒸汽温度控制对于火电机组的安全、稳定和高效运行起着非常关键的作用,而主蒸汽温度对象是一个非线性、大惯性、大迟延对象,其参数会随着工况的变化而变化,要建立其精确的数学模型相对困难[2-3],从而导致主蒸汽温度的有效控制成为火电机组运行中的一个难题。

目前火电机组主要通过调节减温水调节阀来进行主蒸汽温度控制。

阀门是工业生产中广泛使用的流量控制设备。

阀门具有非线性特性,在控制系统分析设计过程中,如果不将其非线性加以考虑,会导致控制品质下降,甚至对工艺回路系统造成冲击,导致控制系统的预期控制效果与实际控制效果出现较大差异[4]。

常见的阀门非线性因素包括限位、死区、间隙、行程时间、开关特性、黏滞特性和流量特性[5]。

针对阀门死区的非线性特性,文献[6]通过对阀门模型的非线性特性进行辨识,确定了模型的相关参数,通过克服死区非线性特性对系统的影响,提高了系统的动态性能;文献[7]对阀门的非线性特性进行建模,以模拟阀门的限位、死区、黏滞和开关特性等非线性特性,从而更深入地分析调节阀的非线性动态模型。

过程控制课程设计600MW超临界直流锅炉主汽温控制系统-主汽温控制-.

过程控制课程设计600MW超临界直流锅炉主汽温控制系统-主汽温控制-.

课程设计报告(2013—2014年度第二学期)名称:过程控制技术与系统题目:600MW超临界直流锅炉主汽温控制系统院系:控制与计算机工程学院班级:姓名:学号:设计周数: 1 周日期: 2014 年6月30日《过程控制》课程设计任务书一、目的与要求“过程控制课程设计”是“过程控制”课程的一个重要组成部分。

通过实际工业过程对象控制方案的选择、控制功能的设置、工程图纸的绘制等基础设计和设计说明的撰写,培养学生基本控制系统工程设计能力、创新意识,完成工程师基本技能训练。

二、主要内容1.根据对被控对象进行的分析,确定系统自动控制结构,给出控制系统原理图;2.根据确定控制设备和测量取样点和调节机构,绘制控制系统工艺流程图(PID图);3.根据确定的自动化水平和系统功能,选择控制仪表,完成控制系统SAMA图(包括系统功能图和系统逻辑图);4.对所设计的系统进行仿真试验并进行系统整定;5.编写设计说明书。

三、进度计划四、设计(实验)成果要求1.绘制所设计热工控制系统的SAMA图;2.根据已给对象,用MATABL进行控制系统仿真整定,并打印整定效果曲线;3.撰写设计报告五、考核方式提交设计报告及答辩学生姓名:简一帆指导教师:张建华2014年 6月 30 日一、课程设计目的与要求1. 通过实际工业过程对象控制方案的选择、控制功能的设置、工程图纸的绘制等基础设计和设计说明的撰写,培养学生基本控制系统工程设计能力、创新意识,完成工程师基本技能训练。

2. 掌握过程控制系统设计的两个阶段:设计前期工作及设计工作。

2.1设计前期工作(1)查阅资料。

对被控对象动态特性进行分析,确定控制系统的被调量和调节量。

(2)确定自动化水平。

包括确定自动控制范围、控制质量指标、报警设限及手自动切换水平。

(3)提出仪表选型原则。

包括测量、变送、调节及执行仪表的选型。

2.2设计工作(1)根据对被控对象进行的分析,确定系统自动控制结构,给出控制系统原理图。

汽机侧主蒸汽超温经处理无效解列处理反事故演练

汽机侧主蒸汽超温经处理无效解列处理反事故演练

汽机侧主蒸汽超温经处理无效解列处理反事故演练一、汽机侧主蒸汽超温事件的突发性与紧急处理大家都知道,电厂的运行可是得小心翼翼的,特别是汽机这块儿,稍不留神,就可能出个大麻烦。

蒸汽锅炉那么大的系统,一旦蒸汽温度超标,简直就像是火山爆发前的震动,特别是主蒸汽超温,影响不仅仅是机器本身,搞不好还会影响整个电厂的安全,甚至有可能影响到周围的居民和环境。

所以咱们得格外警觉,不仅要早早发现问题,还得有个像样的应急预案。

你看这主蒸汽超温的原因嘛,可能是因为系统某个环节出问题了,像阀门失灵、传感器数据异常,或者控制系统调节失误,都会让蒸汽温度蹭蹭往上涨,最终超标。

一旦发生这种情况,锅炉的蒸汽温度就会超过设计的安全范围,那后果可想而知。

为了防止这种情况发生,大家在操作的时候都得小心再小心,稍有疏忽,后果可能就是一场大“事故”了。

好在咱们有了应急处理方案,看到蒸汽温度升高,控制系统会第一时间发出警报。

这时候,值班人员必须迅速反应,按照预定的处理程序,进行一系列紧急操作。

这个过程就像是打游戏时候按下暂停键——不管发生了什么,都得立刻停下来,确保机器不会“暴走”。

如果是蒸汽超温处理无效,那就得立马采取解列措施,解列,就是把系统与电厂其他部分进行分离,减轻蒸汽系统的压力,防止问题蔓延。

这个时候,操作人员不仅要冷静,还得像医生给病人打针一样精准,不能有任何马虎。

二、反事故演练:为不测做好准备所以你看,咱们做反事故演练,就是为了应对万一真的发生了啥事,大家都能按部就班地处理,避免手忙脚乱,出问题的时候连自己都不知道该怎么办。

反事故演练就像是一场模拟考试,目的就是让大家提前熟悉操作步骤,确保出了意外,大家都能做到心中有数。

你知道的,一场演练下来,不仅能检验大家的操作熟练度,还能找出系统中可能存在的问题。

反事故演练通常在厂区内进行,大家都在指定的岗位上进行模拟操作,尤其是汽机岗位的工作人员。

这时候,值班人员可得紧盯着设备,任何异常都不放过。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蒸汽温度是火电机组安全、高效、经济运行的重要参数,因此对蒸汽温度控制的要求相当严格,蒸汽温度过高会使过热器和汽轮机高压缸承受过高的热应力而损坏,汽温偏低会降低机组的热效率,影响经济运行。

而蒸汽温度控制一直是热控方面的一大难题,主要表现在以下几个方面:1)要求控制精度高(±);2)系统滞后大;3)干扰因素较多,包括:给水温度的变化、减温水扰动、负荷扰动、燃烧扰动、风煤配比变化等;4)对象特性的不确定性,过热器在不同负荷、不同燃烧工况下,对象特性差异较大;5)控制手段单一,目前主要以喷水减温为主要控制手段。

目前所采用的控制方案主要包括串级控制、导前微分、相位补偿、分段式控制、温差控制等,但投运效果均不理想。

基于上述因素,尽管国内外许多控制专家在这一方面做了很多研究,也提出了不少新的、先进的控制方案,但由于工程实现存在困难,应用甚少,火电厂汽温控制问题也一直未能彻底解决。

某发电有限责任公司2#机组现汽温控制方案一直采用德国SIEMENS公司原设计方案,投云效果不很理想,特别是近一段时间,由于燃烧等各种运行工况的变化,汽温控制效果更差。

针对汽温控制系统存在的问题,我们对目前所采用的常规的和先进的控制方案进行了分析,认为:常规控制方案无法克服系统的大滞后和诸多不确定的外扰因素;先进控制方案大多数依赖于对象的数学模型,而汽温对象特性的不确定性,使许多先进控制方案的工程实现存在较大的困难。

为了彻底解汽温控制这一难题,我们根据其特点进行了认真的分析,认为削减系统的大滞后以克服内扰;采用多种前馈控制方案以克服各种外扰因素;采用模糊控制理论克服系统的不确定性是解决这一问题的思路。

为此,我们在不同的机组进行了大量的试验,收集了不同制造厂家和设计单位的控制方案,并进行了比较分析、综合和可行性论证,研究决定在原常规导前微分控制方案的基础上,结合思密斯予估控制理论,通过拟合过热器的对象特性,形成“特性补偿式”汽温控制方案,可有效克服系统的大滞后和减温水侧的扰动;引用“锅炉负荷指令”、“锅炉热量”等多种前馈控制可最大程度克服外扰因素;同时采用模糊控制理论克服系统的不确定性。

原理框图如下图1所示:
“特性补偿式”汽温控制方案实施的关键是在对象特性试验的基础上,进行模型辨识,通过数学模型拟合过热器的对象特性。

为此,我们已在阳光发电有限责任公司2#机组,在不同的工况下进行大量的对象特性试验,并将试验数据在我院仿真系统进行了模型辨识,得到不同工况下过热器的数学模型:
1)二级过热器
G(s)=0.58/(1+TcS)4 其中Tc与机组负荷的关系如下:
G(s)=1.2/(1+TcS)2 其中Tc与机组负荷的关系如下:
根据辨识结果,将该方案首先在仿真系统进行了大量的仿真试验和改进、完善,并进行了各种工况的定值扰动及负荷扰动试验,结果表明:各项控制指标均高于采用其他控制方案。

题。

“特性补偿式”汽温控制方案是将常规控制方案与现代控制理论相结合,有效克服了对象的大滞后对控制系统的影响,可完全克服系统的内扰,并通过前馈控制方案以最大程度克服系统的外扰,解决了汽温控制系统长期存在的问题。

相关文档
最新文档