分子生物学1
分子生物学第一章绪 论
Avery 在1944年更精密的实验设计
• 提取可能的转化因子:DNA、RNA、蛋白质、荚膜进行试 验
• 分别用降解DNA、RNA、蛋白质的酶作用于S型菌细胞抽 提物
• 组分提纯试验结果:DNA组分纯度越高,转化效率越高。
结论:使R型菌变为S型菌的物质是S型菌的DNA
• Avery在1944年的报告中这样写道:当溶 液中酒精的体积达到9/10时,有纤维状物 质析出;如稍加搅动,这种物质便会像棉 线绕在线轴上一样绕在硬棒上,溶液中的 其他成分则以颗粒状沉淀留在下面。溶解 纤维状物质并重复沉淀数次,可提高其纯 度。这一物质具有很强的生物学活性,初 步实验证实它很可能就是DNA。
4.假基因 不能合成出功能蛋白质的失活基因 。
5.重叠基因 不同基因的核苷酸序列有时是可以共用的 即重叠 的。
1983年,McClintock由于在50年代提出并发 现了可移动遗传因子(jumping gene或称 mobile element)而获得Nobel奖。
Barbra McClintock
• 阐明这些复杂的结构及结构与功能的关系是分子生 物学的主要任务。
一、基因的发展
1. Mendel的遗传因子阶段 2. 摩尔根的基因阶段 3. 顺反子阶段 4. 现代基因阶段
Mendel的遗传因子阶段
• Mendel提出:生物的某种 性状是由遗传因子负责传 递的。是颗粒性的,体细 胞内成双存在,生殖细胞 内成单存在。遗传因子是 决定性状的抽象符号。
T2噬菌体感染试验 (1952年,Hershey & Chase)
病毒重建试验
杂种病毒的感染 特征和蛋白质外 壳的特性是由其 中的RNA决定的, 而不是蛋白质决
定的
结论
分子生物学习题1
习题1一、名词解释或概念比较1. DNA 复制. 2. 前导链和后滞链3. DNA 聚合酶III 的核心酶和全酶4 DNA 突变. 5. 点突变和移码突变6. 复制子7. 复制起始点8同源重组和位点特异性重组二、in Fill the blank(填空题)1. 中心法则是Crick 于1956年提出的,其内容可概括为DNA 转录得到RNA ,RNA 翻译得到蛋白质。
2. 所有冈畸片段的延伸都是按5’→3’方向进行的。
3. 每个冈畸片段是借助于连在它的5’末端上的一小段RNA 为引物而合成的。
4. 前导链的合成是连续的,其合成方向与复制叉移动的方向一致;后随链的合成是不连续的,其合成方向与复制叉移动方向相反。
5. 在一系列特殊的起始子蛋白作用下,大肠杆菌静止的复制起点转化为复制中心。
6. 核外DNA 主要有原核细胞中的质粒、真核细胞中的线粒体、叶绿体和病毒的RNA 。
7. 引物酶与转录中的RNA 聚合酶之间的差别在于它对利福平不敏感,并可以dNTP 作为底物。
8. DNA 聚合酶Ⅰ的催化功能有3’→5’方向核酸外切酶活性、、和。
9. DNA gyrase (DNA 促旋酶)又叫,它的功能是。
10. 细菌的环状DNA 通常在一个开始复制,而真核生物染色体中的线形DNA 可以在起始复制。
11. 大肠杆菌DNA 聚合酶Ⅲ的活性使之具有功能,极大地提高了DNA 复制的保真度。
12. 大肠杆菌中已发现种DNA 聚合酶,其中负责DNA 复制,负责DNA 损伤修复。
13. DNA 切除修复需要的酶有、、和。
14. 14. DNA DNA 合成时,先由引物酶合成,再由在其3’端合成DNA 链,然后由切除引物并填补空隙,最后由连接成完整的链。
15. 真核细胞中编码蛋白质的基因多为。
编码的序列还被保留在成熟mRNA 中的是,编码的序列在前体分子转录后加工中被切除的是。
在基因中____________被被__________分隔,而成熟的分隔,而成熟的mRNA 中外显子转录的序列被拼接起来。
分子生物学PPT课件
04 蛋白质的结构与功能
蛋白质的化学组成与结构
蛋白质的基本组成单 位
氨基酸,具有氨基和羧
基的有机化合物。
氨基酸的种类
20种常见氨基酸,根据 侧链R基的不同进行分 类。
蛋白质的一级结构
氨基酸的线性排列顺序 ,包括肽键和二硫键的 连接。
蛋白质的高级结构
二级结构(α-螺旋、β折叠等)、三级结构和 四级结构。
01
其他RNA
如miRNA、snRNA等,在基因表达调控、 RNA加工等方面发挥作用。
04
03
RNA的合成与加工
01
02
03
转录
以DNA为模板,通过RNA 聚合酶的作用,合成RNA 的过程。
加工
新合成的RNA需要经过一 系列加工过程,如剪接、 修饰等,才能成为成熟的 RNA分子。
转录后调控
通过RNA干扰、RNA编辑 等方式对RNA进行转录后 水平的调控,影响基因的 表达。
03
DNA连接酶的种类和应用
04
重组DNA分子的构建和筛选
PCR技术及其应用
01
PCR技术的原理及步骤
02
03
04
引物的设计与优化
PCR反应体系的组成及优化
PCR技术的应用举例
基因克隆与基因工程
基因克隆的定义和原理 基因表达载体的构建和选择
基因工程的基本步骤 基因工程的应用举例
分子生物学在医学、农业等领域的应用
医学领域的应用
基因诊断、基因治疗、药物研 发等
工业领域的应用
酶工程、发酵工程、生物制药 等
农业领域的应用
转基因作物、基因编辑育种、 农业生物技术等
环境领域的应用
环境监测、污染治理、生态修 复等
分子生物学习题1(包含答案和提示)
第一章基因的结构与功能自测题(一)选择题A型题1. 关于基因的说法错误..的是A. 基因是贮存遗传信息的单位B. 基因的一级结构信息存在于碱基序列中C. 为蛋白质编码的结构基因中不包含翻译调控序列D. 基因的基本结构单位是一磷酸核苷E. 基因中存在调控转录和翻译的序列2. 基因是指A. 有功能的DNA片段B. 有功能的RNA片段C. 蛋白质的编码序列及翻译调控序列D. RNA的编码序列及转录调控序列E. 以上都不对3. 结构基因的编码产物不.包括A. snRNAB. hnRNAC. 启动子D. 转录因子E. 核酶4. 已知双链DNA的结构基因中,信息链的部分序列是5'AGGCTGACC3',其编码的RNA相应序列是A. 5'AGGCTGACC3'B. 5'UCCGACUGG3'C. 5'AGGCUGACC3'D. 5'GGUCAGCCU3'E. 5'CCAGUCGGA3'5. 已知某mRNA的部分密码子的编号如下:127 128 129 130 131 132 133GCG UAG CUC UAA CGG UGA AGC以此mRNA为模板,经翻译生成多肽链含有的氨基酸数目为A.127B.128C.129D.130E.1316. 真核生物基因的特点是A. 编码区连续B. 多顺反子RNAC. 内含子不转录D. 断裂基因E. 外显子数目=内含子数目-17. 关于外显子说法正确的是A. 外显子的数量是描述基因结构的重要特征B. 外显子转录后的序列出现在hnRNA中C. 外显子转录后的序列出现在成熟mRNAD. 外显子的遗传信息可以转换为蛋白质的序列信息E. 以上都对8. 断裂基因的叙述正确的是A. 结构基因中的DNA序列是断裂的B. 外显子与内含子的划分不是绝对的C. 转录产物无需剪接加工D. 全部结构基因序列均保留在成熟的mRNA分子中E. 原核和真核生物基因的共同结构特点9. 原核生物的基因不.包括A. 内含子B. 操纵子C. 启动子D. 起始密码子E. 终止子10. 原核和真核生物的基因都具有A. 操纵元件B. 顺式作用元件C. 反式作用因子D. 内含子E. RNA聚合酶结合位点11. 原核生物不.具有以下哪种转录调控序列A. 增强子B. 终止子C. 启动子D. 操纵元件E. 正调控蛋白结合位点12. 原核和真核生物共有的转录调控序列是A. poly (A) 信号B. 启动子C. 操纵子D. 终止子E. 增强子13. 哪种不.属于真核生物的转录调控序列A. 反式作用因子的结合位点B. RNA聚合酶的结合位点C. 阻遏蛋白的结合位点D. 信息分子受体的结合位点E. 转录因子的结合位点14. 关于启动子叙述错误..的是A. 原核和真核生物均有B. 调控转录起始C. 与RNA聚合酶结合D. 都不能被转录E. 位于转录起始点附近15. 关于终止子叙述错误..的是A. 具有终止转录的作用B. 是富含GC的反向重复序列C. 转录后在RNA分子中形成茎环结构D. 原核和真核生物中的一段DNA序列E. 位于结构基因的3' 端16. 关于操纵元件叙述错误..的是A. 一段DNA序列B. 发挥正调控作用C. 位于启动子下游,通常与启动子有部分重叠D. 原核生物所特有E. 具有回文结构17. 转录激活蛋白的作用是A. 识别和结合启动子B. 激活结构基因的转录C. 原核和真核生物均有D. 与RNA聚合酶结合起始转录E. 属于负调控的转录因子18. 顺式作用元件主要在什么水平发挥调控作用A. 转录水平B. 转录后加工C. 翻译水平D. 翻译后加工E. mRNA水平19. 能够与顺式作用元件发生相互作用的是A. 一小段DNA序列B. 一小段mRNA序列C. 一小段rRNA序列D. 一小段tRNA序列E. 某些蛋白质因子20. 顺式作用元件的本质是A. 蛋白质B. DNAC. mRNAD. rRNAE. tRNA21. 真核生物的启动子A. 与RNA聚合酶的σ因子结合B. tRNA基因的启动子序列可以被转录C. 位于转录起始点上游D. II类启动子调控rRNA编码基因的转录E. 起始转录不需要转录因子参与22. II类启动子调控的基因是A. U6 snRNAB. 28S rRNAC. mRNAD. tRNAE. 5S rRNA23. I类启动子调控的基因不.包括A. 5S rRNAB. 5.8S rRNAC. 18S rRNAD. 28S rRNAE. 45S rRNA24. 若I类启动子突变,哪种基因的转录不.受影响A. 16S rRNAB. 5.8S rRNAC. 18S rRNAD. 28S rRNAE. 以上都不对25. I类启动子突变可影响合成A. 核糖体30S亚基B. 核糖体40S亚基C. 核糖体50S亚基D. 70S核糖体E. 以上都不对26. 不.属于真核生物启动子特点的是A. 分为I、II、III类B. 与之结合的RNA聚合酶不只一种C. 转录因子辅助启动子与RNA聚合酶相结合D. 5S rRNA编码基因的转录由I类启动子控制E. II类启动子可调控大部分snRNA编码基因的转录27. 原核生物的启动子A. 根据所调控基因的不同分为I、II、III类B. 与RNA聚合酶全酶中的σ因子结合C. 不具有方向性D. 涉及转录因子-DNA的相互作用E. 涉及不同转录因子之间的相互作用28. 原核生物和真核生物启动子的共同特点是A. 需要反式作用因子辅助作用B. 本身不被转录C. 与RNA聚合酶I、II、III相结合D. 转录起始位点由RNA聚合酶的σ因子辨认E. 涉及DNA-蛋白质的相互作用29. 真核生物与原核生物的启动子的显著区别是A. 具有方向性B. 启动子自身被转录C. 需要转录因子参与作用D. 位于转录起始点上游E. 与RNA聚合酶相互作用30. 真核生物的启动子不.能控制哪个基因的转录A. snRNAB. hnRNAC. 5S rRNAD. 16S rRNAE. U6 snRNA31. I类启动子叙述错误..的是A. 不能调控5.8S rRNA结构基因的转录B. 与RNA聚合酶I的亲和力弱C. 与TF IA、IB、IC等相互作用D. 富含GCE. 包括核心元件和上游调控元件32. 启动子位于A. 结构基因B. DNAC. mRNAD. rRNAE. tRNA33. 关于TATA盒叙述错误..的是A. 看家基因不具有TATA盒结构B. 是II类启动子的组成部分C. 受阻遏蛋白调控D. 与转录的精确起始有关E. 位于转录起始点上游34. 关于II类启动子说法错误..的是A. 调控mRNA编码基因的转录B. 调控大部分snRNA编码基因的转录C. 不一定含有TATA盒D. 包含转录起始位点E. 可以被转录35. TATA盒存在于下列哪种结构中A. 增强子B. 启动子C. 反应元件D. 沉默子E. 终止子36. III类启动子的叙述不.正确的是A. 调控真核生物5S rRNA编码基因的转录B. 调控U6 snRNA编码基因的转录C. 调控tRNA编码基因的转录D. 位于转录起始点下游E. 启动子自身不一定被转录37. III类启动子不.具有以下特点A. 调控III类基因的表达B. III类启动子突变会影响核糖体40S亚基的装配C. 与RNA聚合酶III结合D. 需要TF IIIA、IIIB、IIIC参与作用E. 真核生物所特有38. 上游启动子元件是A. 一段核酸序列B. TATA盒的组成部分C. 位于转录起始点下游D. 不一定被转录E. 转录后可以被剪接加工39. 哪项不.是上游启动子元件的特点A. 位于TATA盒上游B. 与TATA盒共同组成启动子C. 提供转录后加工的信号D. 包括CAAT盒、CACA盒、GC盒等E. 可以与反式作用因子发生相互作用40. 增强子是A. 一段可转录的DNA序列B. 一段可翻译的mRNA序列C. 一段具有转录调控作用的DNA序列D. 一段具有翻译调控作用的mRNA序列E. 一种具有调节作用的蛋白质因子41. 关于增强子叙述错误..的是A. 位置不固定B. 可以增强或者抑制转录C. 真核生物所特有D. 能够与反式作用因子结合E. 与核酸序列发生相互作用42. 与增强子发生相互作用的是A. 蛋白质B. snRNAC. 顺反子D. 核酶E. TATA盒43. 反应元件能够结合A. 激素B. 信息分子的受体C. 蛋白激酶D. 阻遏蛋白E. 操纵基因44. 反应元件属于A. 反式作用因子B. 内含子C. 转录因子D. 上游启动子元件E. 转录调控序列45. poly (A) 加尾信号存在于A. I类结构基因及其调控序列B. II类结构基因及其调控序列C. III类结构基因及其调控序列D. 调节基因E. 操纵基因46. 关于加尾信号叙述错误..的是A. 真核生物mRNA的转录调控方式B. 位于结构基因的3' 端外显子中C. 是一段保守的AATAAA序列D. 转录进行到AATAAA序列时终止E. 与加poly (A) 尾有关47. poly (A) 尾的加入时机是A. 转录终止后在AAUAAA序列下游切断RNA、并加尾B. 在转录过程中同时加入C. 转录出AAUAAA序列时终止、并加入其后D. 转录出富含GU(或U)序列时终止、并加入其后E. 以上都不对48. 能编码多肽链的最小DNA单位是A. 内含子B. 复制子C. 转录子D. 启动子E. 操纵子49. 与顺反子化学本质相同的是A. 核酶B. 反应元件C. 5' 端帽子结构D. 转录因子E. DNA酶50. 关于顺反子叙述错误..的是A. 原核生物基因的转录产物主要是多顺反子RNAB. 真核生物基因的转录产物不含有多顺反子RNAC. 顺反子是DNA水平的概念D. 多顺反子RNA可能由操纵子转录而来E. 以上都不对51. 转录产物可能是多顺反子RNA的是A. 真核生物mRNA的结构基因B. 真核生物tRNA的结构基因C. 真核生物snRNA的结构基因D. 真核生物rRNA的结构基因E. 以上都不对52. 有关mRNA的叙述正确的是A. hnRNA中只含有基因编码区转录的序列B. 在3' 端具有SD序列C. mRNA的遗传密码方向是5' → 3'D. 在细胞内总RNA含量中所占比例很大E. mRNA碱基序列与DNA双链中的反义链一致53. 关于开放读框叙述正确的是A. 是mRNA的组成部分B. 内部有间隔序列C. 真核生物的开放读框往往串联在一起D. 内部靠近5' 端含有翻译起始调控序列E. 由三联体反密码子连续排列而成54. 开放读框存在于A. DNAB. hnRNAC. mRNAD. rRNAE. tRNA55. 原核生物的mRNA中含有A. 内含子转录的序列B. 帽子C. poly (A)D. 核糖体结合位点E. 以上都不对56. 关于帽子结构说法错误..的是A. 真核生物mRNA的特点B. 位于5' 端C. 与翻译起始有关D. 常含有甲基化修饰E. 形成3',5'-磷酸二酯键57. hnRNA和成熟mRNA的关系是A. 前者长度往往长于后者B. 二者长度相当C. 二者均不含有由内含子转录的序列D. 二者的碱基序列互补E. 前者的转录产物是后者58. 真核细胞mRNA的合成不.涉及A. 生成较多的稀有碱基B. 3' 端加poly (A) 尾巴C. 5' 端加帽子D. 去除非结构信息部分E. 选择性剪接59. 真核生物mRNA的5' 端帽子结构为A . pppmGB. GpppGC. mGpppGD. GpppmGE. pppmGG60. 有关遗传密码的叙述正确的是A. 一个碱基的取代一定造成它所决定的氨基酸的改变B. 终止密码是UAA、UAG和UGAC. 连续插入三个碱基会引起密码子移位D. 遗传密码存在于tRNA中E. 真核生物的起始密码编码甲酰化蛋氨酸61. 密码子是哪一水平的概念A. DNAB. rRNAC. tRNAD. mRNAE. snRNA62. poly (A) 尾的功能包括A. 与翻译起始因子结合B. 形成特殊结构终止转录C. 与核糖体RNA结合D. 使RNA聚合酶从模板链上脱离E. 增加mRNA稳定性63. 除AUG外,原核生物的起始密码子还可能是A. UCGB. UGCC. GUGD. GCGE. GUC64. 下列哪个密码子为终止密码子A.GUAB.UGGC.UGAD.AUGE.UAC65. 不能编码氨基酸的密码子是A.UAGB.AUGC.UUGD.GUGE.UGC66. 下列哪种氨基酸的密码子可作为起始密码子A.S-腺苷蛋氨酸B.甲硫氨酸C.酪氨酸A.B.苏氨酸C.异亮氨酸67. 原核生物未经修饰的新生多肽链的N端是A.fMetB.LeuC.PheD.AspE.His68. 真核生物合成初始出现在多肽链N端的氨基酸是A. methionineB. valineC. N-formylmethionineD. leucineE. isoleucine69. tRNA的分子结构特征是A. 密码环和5' 端CCAB. 密码环和3' 端CCAC. 反密码环和5' 端CCAD. 反密码环和3' 端CCAE. 三级结构呈三叶草形70. 稀有核苷酸含量最高的核酸是A.rRNAB.mRNAC.tRNAD.DNAE.snRNA71. 已知某tRNA的反密码子为ICU,它识别的密码子为A.AGGB.GGAC.UGAD.AGCE.TGA72. 遗传密码的摆动性常发生在A. 反密码子的第1位碱基B. 反密码子的第2位碱基C. 反密码子的第3位碱基D. A+CE. A+B+C73. 关于起始tRNA叙述错误..的是A. 起始tRNA在蛋白质合成的延伸阶段继续转运蛋氨酸B. 原核生物的起始tRNA携带N-甲酰蛋氨酸C. 真核生物的起始tRNA携带甲硫氨酸D. 起始蛋氨酰-tRNA结合到核糖体的P位E. 以上都不对74. 下列哪个不.是tRNA的特点A. 稀有碱基含量多B. 活化的氨基酸连接于5' 端CCAC. 与密码子之间的碱基配对不严格D. 分子量小E. 反密码环和氨基酸臂分别暴露于倒L形的两端75. tRNA携带活化的氨基酸的部位是A. 反密码环B. TψC环C. DHU环D. 额外环E. CCA76. 哺乳动物核糖体大亚基的沉降常数是A.30SB.40SC.50SD.60SE.70S77. 原核和真核生物共有的rRNA为A.5SB. 5.8SC.16SD.18SE.23S78. 真核生物的核糖体中不.包含A.5S rRNAB. 5.8S rRNAC.16S rRNAD.18S rRNAE.28S rRNA79.关于核糖体叙述错误..的是A. 30S亚基由16S rRNA和21种蛋白质组成B. 40S亚基由18S rRNA和33种蛋白质组成C. 50S亚基由5S rRNA、23S rRNA和34种蛋白质组成D. 60S亚基由5S rRNA、5.8S rRNA、28S rRNA和45种蛋白质组成E. 以上都不对80. 关于rRNA的叙述错误..的是A. 分子量相对较大B. 与核糖体蛋白结合C. 5S rRNA的结构基因属于III类基因D. 真核生物rRNA结构基因转录的产物均为单顺反子RNAE. 与mRNA、tRNA均可发生相互作用81. 有关snRNA的叙述错误..的是A. 真核细胞所特有B. 富含尿嘧啶C. 位于细胞质内D. 与mRNA的剪接加工有关E. 与蛋白质结合形成snRNP82. 信号识别颗粒的成分包括A. snRNAB. 7SL RNAC. snRNPD. SRP受体E. ribozyme83. 反义RNA的作用主要是A. 抑制转录B. 降解DNAC. 降解mRNAD. 封闭DNAE. 封闭mRNA84. 关于核酶叙述正确的是A. 化学本质是RNAB. 分为DNA酶和RNA酶C. 属于核酸酶D. 底物只能是DNAE. 由核酸和蛋白质组成85. 如果基因突变导致其编码的蛋白质分子中一个氨基酸残基发生变异,出现的结果是A. 二级结构一定改变B. 二级结构一定不变C. 三级结构一定改变D. 功能一定改变E. 以上都不对86. 下列哪种物质不是核酸与蛋白质的复合物A. 核糖体B. snRNPC. SRPD. 核酶E. 端粒酶87. 结构基因的突变可能导致A. 同义突变B. 错义突变C. 无义突变D. 移码突变E. 以上都包括88. 点突变是指A. 一个碱基对替换一个碱基对B. 插入一个碱基对C. 缺少一个碱基对D. 改变一个氨基酸残基E. 以上都包括89. 如果转录调控序列发生突变,则可能出现A. 蛋白质一级结构改变B. 蛋白质空间结构改变C. 蛋白质的比活性改变D. 蛋白质的总活性改变E. 蛋白质的功能改变90. 关于基因突变说法正确的是A. 由点突变引起的错义突变能够使蛋白质序列变短B. 产生同义突变的原因是密码子具有简并性C. 插入或者缺失碱基必定改变开放阅读框D. 嘌呤和嘧啶互相替代的点突变称为转换E. 结构基因的突变导致蛋白质表达量改变91. 哪种情况会导致移码突变A. 倒位B. 颠换C. 插入一个碱基D. 连续缺失三个碱基E. 以上都不对92. 基因突变致病的可能机制是A. 所编码蛋白质的结构改变,导致其功能增强B. 所编码蛋白质的结构改变,导致其功能减弱C. 所编码蛋白质的结构虽不变,但其表达量过多D. 所编码蛋白质的结构虽不变,但其表达量过少E. 以上都包括B型题A. DNAB. mRNAC. rRNAD. tRNAE. 蛋白质93. 顺式作用元件的化学本质是94. 反式作用因子的化学本质是95. 终止子的化学本质是96. 启动子的化学本质是97. 操纵子的化学本质是A. mRNAB. 5S rRNAC. 16S rRNAD. 18S rRNAE. 23S rRNA98. I类启动子调控的结构基因编码99. II类启动子调控的结构基因编码100. III类启动子调控的结构基因编码A. 增强子B. 单顺反子RNAC. 多顺反子RNAD. 内含子E. 操纵元件101. 原核生物的基因含有102. 原核生物结构基因转录的产物通常是103. 真核生物的结构基因含有104. 真核生物结构基因转录的产物通常是105. 调控原核生物基因转录的是106. 调控真核生物基因转录的是A. DNA聚合酶B. RNA聚合酶C. 信息分子的受体D. 阻遏蛋白E. 信号识别颗粒107. 与启动子相互作用的是108. 与操纵元件相互作用的是109. 与反应元件相互作用的是A. pGTCGAB. pAGCTGC. pGUCGAD. pTCGACE. pAGCUG已知DNA双链中,模板链的部分碱基序列为pCAGCT,问:110. 编码链的相应碱基序列是111. 转录出的相应mRNA序列是A. CCAB. 帽子C. poly (A)D. 反密码子E. SD序列112. 真核生物mRNA的3' 端结构包含113. 原核生物mRNA的5' 端结构包含114. 原核生物tRNA的3' 端结构包含A. 剪接加工B. 携带活化的氨基酸C. 翻译的模板D. 识别信号肽E. 蛋白质合成的场所115. mRNA的功能是116. tRNA的功能是117. rRNA的功能是A. 甲硫氨酸B. 异亮氨酸C. 脯氨酸D. 甲酰蛋氨酸E. 色氨酸118. 真核生物未经修饰的新生多肽链的N端为119. 原核生物未经修饰的新生多肽链的N端为A. DNAB. cDNAC. mRNAD. rRNAE. tRNA120. 密码子位于121. 反密码子位于A. 5S rRNAB. 16S rRNAC. 18S rRNAD. 23S rRNAE. 28S rRNA122. 原核生物的核糖体小亚基含有123. 真核生物的核糖体小亚基含有X型题124. 关于基因的说法正确的是A. 基因是DNA或者RNAB. mRNA的遗传密码信息只可能来自DNAC. 基因包含结构基因和转录调控序列两部分D. 结构基因中贮存着RNA和蛋白质的编码信息E. 转录调控序列中包含调控结构基因表达的所有信息125. 结构基因的特点是A. 病毒的结构基因是连续的B. 病毒的结构基因由于含有内含子而间断C. 原核生物的结构基因转录后无需剪接加工D. 病毒的结构基因与其侵染的宿主无关E. 真核生物的结构基因由外显子和内含子构成126. 内含子是指A. 通常具有转录调控作用的核酸序列B. 往往是非编码的DNA序列C. 一般在成熟mRNA中不存在相应的序列D. 与RNA的剪接加工相关E. 部分内含子可能变为外显子127. 真核生物的转录调控序列包括A. 启动子B. 上游启动子元件C. 操纵元件D. poly (A) 信号E. 反应元件128. 原核生物的基因可以与哪些蛋白质发生相互作用A. RNA聚合酶B. 转录激活蛋白C. 阻遏蛋白D. 反式作用因子E. 转录因子129. 真核生物基因转录时所需的蛋白质包括A. 转录因子B. 阻遏蛋白C. TATA因子D. CAP蛋白E. RNA聚合酶130. 大肠杆菌基因转录的启动子包括A. 转录起始位点B. -10 bp区C. -40 bp区D. -35 bp区E. + 20 bp区131. 顺式作用元件是A. 调控基因转录的蛋白质因子B. 结构基因的一部分C. 核酸片段D. 具有调控基因转录的作用E. 真核生物所特有132. 基因的结构包括A. 操纵子B. 顺式作用元件C. 反式作用因子D. 复制子E. 转录子133. 顺式作用元件发挥调控作用不.涉及A. DNA-DNA相互作用B. DNA-RNA相互作用C. RNA-蛋白质相互作用D. DNA-蛋白质相互作用E. 蛋白质-蛋白质相互作用134. I类启动子调控的基因包括A. 5.8S rRNAB. 16S rRNAC. 18S rRNAD. 23S rRNAE. 28S rRNA135. 若I类启动子突变,受影响的是A. 核糖体30S亚基B. 核糖体40S亚基C. 核糖体50S亚基D. 核糖体60S亚基E. 以上都包括136. 能够与启动子结合的是A. 转录因子B. RNA聚合酶C. 阻遏蛋白D. CAP蛋白E. 操纵元件137. 真核生物的结构基因包括A. 内含子B. 外显子C. 开放读框D. 非翻译区E. 转录调控序列138. 上游启动子元件的调控机制包括A. 与转录激活蛋白相互作用B. 调节转录因子与TATA盒的结合C. 调节RNA聚合酶与启动子的结合D. 控制转录起始复合物形成E. 与TATA盒共同调控转录起始139. 与增强子化学本质相同的是A. 转录因子B. 复制子C. 核酶D. 顺反子E. 内含子140. 关于类固醇激素诱导基因转录,说法正确的是A. 类固醇激素的受体是转录因子B. 调节阻遏蛋白与操纵元件的结合C. 类固醇激素受体与激素形成复合体后被活化D. 活化的激素受体与类固醇激素反应元件相互作用E. 在转录水平调控基因表达141. 原核生物基因的启动子一般不.包括以下组分A. 转录起始位点B. 增强子C. -10 bp区D. 基因内启动子E. -35 bp区142. 关于真核生物mRNA的加尾修饰,说法正确的是A. 不需要模板B. 转录最初生成的mRNA 3' 末端长于成熟mRNA 3' 末端C. 加尾可以增加mRNA的稳定性D. poly (A) 加在转录终止处E. 转录后需切去一小段mRNA序列才能加尾143. 真核生物的成熟mRNA中不.包含A. 内含子转录的序列B. 外显子转录的序列C. SD序列D. 帽子结构E. poly (A) 尾144. 原核生物和真核生物的mRNA都具有A. 非翻译区B. SD序列C. poly (A) 尾D. 密码子E. 开放读框145. 有关帽子结构说法正确的是A. 核内hnRNA中没有帽子结构B. 含有甲基化鸟嘌呤C. 形成5',5'-磷酸二酯键D. 分为0型、1型和2型E. 原核生物含有与真核生物类似的帽子结构146. hnRNA和mRNA共同含有的结构是A. 内含子转录的序列B. 外显子转录的序列C. 启动子D. SD序列E. 帽子结构147. 密码子可能存在于A. intronB. tRNAC. mRNAD. UTRE. ORF148. 可作为原核生物起始密码子的是A. AUGB. GUGC. GCGD. UCGE. UUG149. 大肠杆菌的核糖体大亚基包含A. 5S rRNAB. 5.8S rRNAC. 16S rRNAD. 18S rRNAE. 23S rRNA150. 核糖体60S亚基不.包含A. 5S rRNAB. 5.8S rRNAC. 18S rRNAD. 23S rRNAE. 28S rRNA151. 可能导致移码突变的基因突变是A. 转换B. 颠换C. 缺失D. 插入E. 倒位152. 属于转换的点突变是A. A →GB. T → CC. G→ TD. A →TE. G →C(二)名词解释1. 基因(gene)2. 结构基因(structural gene)3. 断裂基因(split gene)4. 外显子(exon)5. 内含子(intron)6. 多顺反子RNA(polycistronic/multicistronic RNA)7. 单顺反子RNA(monocistronic RNA)8. 核不均一RNA(heterogeneous nuclear RNA, hnRNA)9. 开放阅读框(open reading frame, ORF)10. 密码子(codon)11. 反密码子(anticodon)12. 顺式作用元件(cis-acting element)13. 启动子(promoter)14. 增强子(enhancer)15. 核酶(ribozyme)16. 核内小分子RNA(small nuclear RNA, snRNA)17. 信号识别颗粒(signal recognition particle, SRP)18. 上游启动子元件(upstream promoter element)19. 同义突变(same sense mutation)20. 错义突变(missense mutation)21. 无义突变(nonsense mutation)22. 移码突变(frame-shifting mutation)23. 转换(transition)24. 颠换(transversion)(三)简答题1. 顺式作用元件如何发挥转录调控作用?2. 比较原核细胞和真核细胞mRNA的异同。
分子生物学前沿(一)2024
分子生物学前沿(一)引言概述:分子生物学是研究生物体内生物大分子如DNA、RNA和蛋白质以及其相互作用的学科领域。
近年来,随着技术的不断进步和新的研究方法的出现,分子生物学进入了一个前所未有的前沿阶段。
本文将探讨分子生物学的五个前沿领域,包括基因组编辑、表观遗传学、蛋白质组学、CRISPR技术以及单细胞测序。
一、基因组编辑1. CRISPR-Cas9系统的原理和应用2. TALEN和ZFN技术的优势与局限性3. 基因编辑在疾病治疗中的潜力4. 基因修饰在农业领域的应用5. 基因组编辑的道德和伦理问题二、表观遗传学1. DNA甲基化和染色质重塑2. 表观遗传修饰对基因表达的调控3. 表观遗传学在疾病治疗中的作用4. 可逆性表观遗传变化的研究进展5. 表观遗传学与环境因素的关联研究三、蛋白质组学1. 蛋白质组学的研究方法和技术2. 大规模蛋白质互作网络的构建与分析3. 蛋白质定量与定位的新方法4. 蛋白质组学在疾病研究中的应用5. 蛋白质药物研发的新进展四、CRISPR技术1. CRISPR在基因治疗中的应用2. CRISPR用于疾病模型建立的优势3. CRISPR修饰哺乳动物基因组的技术挑战4. CRISPR技术的新进展和改进5. CRISPR应用的道德和安全性问题五、单细胞测序1. 单细胞测序技术的原理和方法2. 单细胞测序在发育生物学中的应用3. 单细胞测序揭示人体组织和器官的异质性4. 单细胞测序在肿瘤研究中的突破5. 单细胞测序的数据分析方法和挑战总结:分子生物学在基因组编辑、表观遗传学、蛋白质组学、CRISPR 技术以及单细胞测序等前沿领域取得了重要突破。
这些研究对于理解生命的基本机制、疾病的发生发展以及药物研发具有重要意义。
然而,这些领域仍面临着许多挑战,包括伦理道德问题、技术和方法的改进以及数据分析的挑战等。
随着进一步的研究和发展,分子生物学前沿领域将不断拓展我们对生物的认识和应用。
分子生物学 (1)
分子生物学1.名词解释(5题,每题3分,共15分),3个中文,2个英文。
2.不定向选择题(10题,每题2分,共20分),注意仔细审题,有单选也有多选。
3.判断题(10题,每题1分,共10分)4.简答题(5题,每题5分,共25分)5.论述题(2题,每题15分,共30分)信号肽(signal peptide):在起始密码子后有一段编码疏水性氨基酸序列的RNA区域,该氨基酸序列就被称为信号肽序列,它负责把蛋白质导引到细胞含不同膜结构的亚细胞器内。
后随链(lagging strand):在DNA复制过程中,与复制叉运动方向相反的方向不连续延伸的DNA链被称为后随链或滞后链。
操纵子(operon):是指原核生物中包括结构基因及其上游的启动基因、操纵基因以及其他转录翻译调控元件组成的DNA片段,是转录的功能单位。
冈崎片断(Okazaki fragment):是在DNA半不连续复制中产生的长度为1000~2000个碱基的短的DNA片段,能被连接形成一条完整的DNA链。
复制叉(replication origin):复制时,双链DNA要解开成两股链分别进行DNA合成,所以,复制起点呈叉子形式,被称为复制叉。
编码链(coding strand):指DNA双链中与mRNA序列(除T/U替换外)和方向相同的那条 DNA链,又称有意义链(sense strand)。
反义RNA:是指与mRNA互补的RNA分子,也包括与其他RNA互补的RNA分子。
由于核糖体不能翻译双链的RNA,所以反义RNA与mRNA特异性的互补结合,即抑制了该mRNA 的翻译。
通过反义RNA控制mRNA的翻译是原核生物基因表达调控的一种方式。
半保留复制(semiconservative replication):DNA在复制过程中,每条链分别作为模板合成新链,产生互补的两条链。
这样新形成的两个DNA分子与原来的DNA分子的碱基顺序完全一样。
因此,每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,这种复制方式被称为DNA的半保留复制。
分子生物学(1)
第一章(绪论)1.目前临床分子生物学检验最常用的分子靶标是( )(本题1分)A.基因组DNAB.cDNAC.RNAD.蛋白质E.代谢物[解析]正确答案:A2. 某DNA片段与5'-ATCGT的互补片段是( )(本题1分)A.5'-TAGCAB.5'-ACGATC.5'-ACGAUD.5'-UAGCAE.5'-ATCGT[解析]正确答案:B3.真核mRNA的特点不包括( )(本题1分)A.有5'-m7GpppG帽B.有3'-polyA尾C.含量多,更新慢D.包含有遗传密码E.为单顺反子结构[解析]正确答案:C4.关于microRNA(miRNA)的特征描述不正确的是( )(本题1分)A.大小长约20~25ntB.主要发挥基因录后水平的调控C.在血清中稳定存在D.不具有组织特异性E.初始产物具有帽子结构和多聚腺苷酸尾巴[解析]正确答案:D5. 下列关于原核生物基因结构的说法错误的是( )(本题1分)A.一般以操纵子形式存在B.由编码区和非编码区组成成C.编码区可能含多种蛋白遗传信息D.编码区通常是不连续的,分外显子和内含子E.启动子、终止子、操纵元件均位于非编码区[解析] 正确答案:D6. 下列关于真核生物基因结构的描述,不正确的是( )(本题1分)A.真核生物的基因大多数是由非编码序列隔开的断裂基因B.编码区能够转录为相应的RNA,经加工参与蛋白质的生物合成C.非编码区对基因的表达起调控作用D.启动子、侧翼序列均位于非编码区E.只有内含子序列是不能编码蛋白质的序列[解析]正确答案:E7. 下列哪种情况不属于表观遗传现象?( )(本题1分)A.DNA插入/缺失突变B.组蛋白乙酰化修饰C.DNA甲基化修饰D.RNA干扰E.miRNA调控[解析] 正确答案:A8. 在人类基因组DNA序列中,DNA甲基化主要发生在( )(本题1分)A.腺嘌呤的N-6位B.胞嘧啶的N-4位C.鸟嘌呤的N-7位D.胞嘧啶的C-5位E.鸟嘌呤的C-5位[解析] 正确答案:D9.下列不属于原核生物基因组结构特点的是( )(本题1分)A.基因组相对较小,基因数目少B.结构基因多以操纵子形式存在,不含内含子C.转录产物为多顺反子D.具有编码同工酶的基因E.基因组序列不可移动[解析]正确答案:E10. 下列哪项不能被列入可移动基因的范畴( )(本题1分)A.插入序列B.质粒C.染色体DNAD.转座子E.可转座噬菌体[解析]正确答案:C11. 病毒的遗传物质是( )(本题1分)A.DNAB.DNA和蛋白质C.RNA和蛋白质D.RNA和DNAE.DNA或RNA[解析] 正确答案:E12. 在人类基因组中指导蛋白质合成的结构基因大多数为( )(本题1分)A.单一序列B.散在重复序列C.串联重复序列D.多基因家族成员E.回文结构[解析] 正确答案:A第二章1. 一种标记核酸与另一种核酸单链进行配对形成异源核酸分子双链,这一过程称为( )(本题1分)A.变性B.复性C.复杂性D.杂交E.探针[解析]正确答案:D2.硝酸纤维素膜的最大优点是( )(本题1分)A.脆性大B.本底低C.共价键结合D.非共价键结合E.吸附核酸能力强[解析]正确答案:B3.以等位基因特异的寡核苷酸探针杂交法诊断某常染色体隐性遗传病时,若能与突变探针及正常探针结合,则该样本为( )(本题1分)A.正常人B.杂合体患者C.纯合体患者D.携带者E.不能确定[解析]正确答案:D4.最常用的DNA探针标记方法是( )(本题1分)A.随机引物标记B.DNA缺口平移标记C.全程RNA探针标记D.PCR法标记E.末端标记[解析]正确答案:A5.下列关于Southern印迹杂交的描述正确的是( )(本题1分)A.不仅可以检测DNA样品中是否存在某一特定基因,而且还可以获得基因片段大小及酶切位点的分布信息B.检测目标是RNAC.常用于基因定位分析D.可用于阳性菌落的筛选E.可用于蛋白水平的检测[解析]正确答案:A6.荧光原位杂交可以用于( )(本题1分)A.快速确定是否存在目的基因B.检测目标是RNAC.常用于基因定位分析D.常用于阳性菌落的筛选E.常用于蛋白水平的检测[解析]正确答案:C7.下列关于核酸探针的描述正确的是( )(多选题)A.可以是DNAB.可以是RNAC.可用放射性标记D.可用非放射性标记E.必须是单链核酸[解析]正确答案:A,B,C,D8. 关于RNA探针的优点描述正确的是( )(本题1分)A.制备方法简便B.不易被降解C.标记方法比较成熟D.杂交效率和杂交体的稳定性高E.非特异性杂交较少[解析]正确答案:D,E9. DNA分子中A-T含量越高,Tm值越高。
分子生物学基础第一章绪论 第二节分子生物学发展简史
第二节 分子生物学发展简史
4.生物分类学与分子生物学
分类和进化研究是生物学中最古老的领域,它们同样由于分子生物 学的渗透而获得了新生。过去研究分类和进化,主要依靠生物体的形态, 并辅以生理特征,来探讨生物间亲缘关系的远近。现在,反映不同生命 活动中更为本质的核酸、蛋白质序列间的比较,已被大量用于分类和进 化的研究。由于核酸技术的进步,科学家已经可能从已灭绝的化石里提 取极为微量的DNA分子,并进行深入的研究,以此确证这些生物在进化 树上的地位。
从学科范畴上讲,分子生物学包括生物化学;从研究的 基本内容讲,遗传信息从DNA到蛋白质的过程,其许多内容 又属于生物化学的范畴。
第二节 分子生物学发展简史
2.分子生物学与细胞生物学 细胞生物学是在细胞、细胞超微结构和分子水平等不同 层次上,以研究细胞结构、功能及生命活动为主的基础学科。 分子生物学是细胞生物学的主要发展方向,也就是说,在分 子水平上探索细胞的基本生命规律,把细胞看成是物质、能 量、信息过程的结合,而且着重研究细胞中的遗传物质的结 构、功能以及遗传信息的传递和调节等过程。 3.遗传学与分子生物学 遗传学是分子生物学发展以来受影响最大的学科。孟德 尔著名的皱皮豌豆和圆粒豌豆子代分离实验以及由此得到的 遗传规律,纷纷在近20年内得到分子水平上的解释。越来越 多的遗传学原理正在被分子水平的实验所证实或摈弃,许多 遗传病已经得到控制或矫正,许多经典遗传学无法解决的问 题和无法破译的奥秘,也相继被攻克,分子遗传学已成为人 类了解、阐明和改造自然界的重要武器。
第二节 分子生物学发Hale Waihona Puke 简史三、分子生物学的现状与展望
1.功能基因组学 2.蛋白质组学 3.生物信息学
分子生物学基础
第一章 绪 论
分子生物学考点整理1
分子生物学考点整理符广勇朱兰第一章.绪论一、分子生物学概念分子生物学是从分子水平研究生命本质为目的的一门新兴边缘学科,是研究核酸、蛋白质等所有生物大分子结构与功能相互关系的科学,是人类从分子水平上真正揭开生物世界奥秘、由被动地适应自然界转向主动地改造和重组自然界的基础学科。
二、重组DNA技术又称基因技术,是20世纪70年代初兴起的技术科学,目的是将不同的DNA片段按照人们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。
三、基因表达的调控基因表达的调控主要表现在信号传导研究、转录因子研究及RNA剪辑三个方面。
四、转录因子转录因子是能与基因5`端上游特定序列专一结合,从而保证目的基因以特定的强度在特定的时间与空间表达的蛋白质分子。
第二章.染色体与DNA一、染色体上的蛋白质染色体上的蛋白质主要包括组蛋白和非组蛋白。
根据凝胶电泳性质可以把组蛋白分为H1、H2A、H2B、H3、H4。
这些组蛋白都含有大量的赖氨酸和精氨酸。
二、组蛋白的特性1.进化上的极端保守性不同种生物组蛋白的氨基酸组成是十分相似的,特别是H3、H4。
2.无组织特异性到目前为止,仅发现鸟类、鱼类及两栖类红细胞不含H1而带有H5,精细胞染色体的组蛋白是鱼精蛋白这两个例外。
3.肽链上氨基酸分布的不对称性碱性氨基酸集中分布在N端的半条链上。
4.组蛋白的修饰作用包括甲基化、乙酰化、磷酸化、泛素化及ADP核糖基化。
5.富含赖氨酸的组蛋白H5三、HMG蛋白叫高迁移率蛋白四、真核细胞DNA序列的分类1.不重复序列2.中度重复序列3.高度重复序列重复序列的意义:若某一重复序列出现错误,对基因的影响不大,稳定性较高;在短时间内可同时产生大量的基因产物。
重复序列的应用:应用于分子标记的作用:卫星DNA(便于分子标记)和微卫星DNA五、真核生物基因组与原核生物基因组的区别1.真核基因组庞大,原核生物基因组小2.真核基因组存在大量的重复序列,原核基因组没有重复序列3.真核基因组大部分是非编码序列,原核基因组大多是编码序列4.真核基因组的转录产物为单顺反子,原核基因组转录产物多为多顺反子5.真核基因是断裂基因,有内含子结构,原核基因为连续基因,几乎没有内含子结构6.真核基因组存在大量的顺式作用原元件,包括启动子、增强子和沉默子等,原核基因组基本没有增强子和沉默子7.真核基因组存在大量的DNA多态性,原核基因组很少有8.真核基因组具有端粒结构,原核基因组没有端粒结构六、重叠基因(Overlapping gene)指两个或两个以上的基因共有一段DNA序列,或是指一段DNA序列成为两个或两个以上的基因的组成部分。
什么是分子生物学分子生物学发展简史(一)2024
什么是分子生物学分子生物学发展简史(一)引言概述:分子生物学是研究生命现象的最基本单位——分子的结构、功能和相互作用的学科。
它不仅为理解生命活动的机制提供了深入的认识,还在医学、农业、环境保护等领域发挥着重要作用。
本文将从分子生物学的起源开始,概述其发展的历史,并详细介绍分子生物学的五个重要方面。
一、分子生物学的起源1. DNA的发现和结构解析2. 基因的概念和遗传物质的特性3. DNA复制、转录和翻译的基本过程4. 蛋白质合成的分子机制5. 早期的技术手段对分子生物学研究的贡献二、基因调控1. 转录调控的基本原理2. 转录因子和启动子的结构和功能3. 转录后修饰对基因调控的影响4. 遗传密码和翻译的调控机制5. 长非编码RNA在基因调控中的作用三、基因突变与人类遗传疾病1. 点突变和染色体突变的分类和特征2. 突变对基因功能的影响3. 遗传疾病的发生机制4. 分子诊断技术在遗传疾病中的应用5. 基因治疗在遗传疾病中的前景四、基因工程技术1. 重组DNA技术的原理和方法2. 基因克隆和表达的应用3. 基因编辑技术的发展和应用4. 基因转导和基因治疗的原理5. 基因工程在农业和工业上的应用五、系统生物学1. 生物大分子相互作用网络的构建和分析2. 代谢通路的数学模型与仿真3. 生物系统的建模和模拟4. 生物大数据分析在系统生物学中的应用5. 系统生物学对药物筛选和疾病治疗的意义总结:分子生物学作为一门进展迅速的学科,通过研究分子结构和功能揭示了生命的奥秘。
从基因调控到基因突变与遗传疾病,再到基因工程技术和系统生物学,分子生物学在各个领域都发挥着重要的作用。
随着技术的不断发展,分子生物学将继续推动科学的进步,为人类的健康和未来的发展带来更多的希望。
分子生物学-第一章-第五节
分子克隆技术
1973年,Cohen等人首次在体外将重组的DNA分子导入 大肠杆菌中,成功地进行了无性繁殖,从而完成了DNA 分子体外重组和扩增的全过程,这是基因工程发展史上 第一个克隆转化并取得成功的例子。
5
基因工程技术
基因工程技术经历了安全问题的争论和改造载体阶段, 当前已将突破点集中于外源基因在宿主细胞内的表达问 题上,确切地说,更集中于真核基因在原核细胞表达的 基因工程技术。
10
PCR技术
PCR技术传统的应用领域:医学、农业、生物工程学。 随着PCR诞生而直接出现的新兴学科中的三个:生物分子 考古学,分子生态学以及DNA法医学。
11
8
PCR技术
Kary Mullis 1990年在《科学美国人》上的一篇文章,及1998 年的自传《心灵裸舞》(Dancing Naked in the Mind Field) , 都曾提到PCR这个构想的起源。
PCR技术
1985年某一天晚上,Kary Mullis在驾车沿着California海岸 线兜风时,灵机一动,发明了聚合酶链反应 (polymerase chain reaction,PCR)。这一灵感所带来的 结果就是:这项非常简单的技术,作为基因克隆的完美补 充,在分子生物学的发展上发挥了关键的作用,引起了分 子生物学研究的一场革命。
第一章 前 言
1
第一章 前 言
第五节 现代分子生物学技术
2
生命科学实验技术概况
生命科学是实验的科学,分子生物学的飞速发展不仅 渗透和影响着生命科学的各个分支,也全面推动着生 命科学实验技术的纵深发展。
3
第一个体外重组的人工DNA分子
1972年,美国斯坦福大学(Stanford University)的Berg等首 次用限制性核酸内切酶EcoR Ⅰ切割猴子身上的病毒SV40 DNA 和噬菌体λDNA,又将两者连接在一起,成功地构建了第一个 体外重组的人工DNA分子。
分子生物学(第五版)(一)2024
分子生物学(第五版)(一)引言概述:分子生物学是现代生物学中的一个重要分支,它研究生命体内分子层面的结构、功能和相互作用。
本文将介绍《分子生物学(第五版)》的内容,旨在帮助读者深入理解分子生物学的基本原理和应用。
本文将从分子结构、遗传物质、基因表达、基因调控和遗传变异等五个方面进行阐述。
正文内容:一、分子结构:1. 生命分子的组成:a. 碳水化合物的结构和功能;b. 蛋白质的结构和功能;c. 脂质的结构和功能;d. 核酸的结构和功能。
2. 分子间相互作用:a. 氢键的形成和性质;b. 范德华力的作用机制;c. 疏水作用和疏水效应;d. 离子间相互作用的重要性。
3. 分子的空间结构:a. 氨基酸序列和蛋白质的三维结构;b. DNA的双螺旋结构及其稳定性;c. RNA的次级结构和功能。
二、遗传物质:1. DNA的复制:a. DNA的准备过程;b. DNA的复制酶及其功能;c. DNA复制的机制。
2. RNA的合成和加工:a. 转录的步骤和参与者;b. RNA的修饰和加工过程;c. RNA的转运和翻译。
3. 遗传密码和蛋白质合成:a. 遗传密码的排列和读取;b. 蛋白质合成的过程和调控;c. 翻译后修饰对蛋白质功能的影响。
三、基因表达:1. 转录的调控:a. 转录因子的作用和调控网络;b. DNA甲基化和表观遗传调控;c. 过程中的转录激活和抑制。
2. RNA的稳定性和降解:a. RNA降解的机制和相关酶;b. RNA稳定性的调控;c. RNA降解与基因表达的关系。
3. 蛋白质合成的调控:a. 翻译前的调控机制;b. 翻译后的调控机制;c. 蛋白质翻译和功能的关联。
四、基因调控:1. 染色质结构和基因组编码:a. 染色质的组织和压缩;b. 染色质修饰和基因组编码;c. 基因组重复序列的功能和调控。
2. 转录组学方法和技术:a. 基于RNA-seq的转录组学分析;b. 谷氨酰-tRNA合成酶中的嵌合体络合物;c. 转录因子和miRNA调控研究进展。
分子生物学复习题1【可编辑全文】
可编辑修改精选全文完整版生物信息的传递(上)——从DNA到RNA一、名词解释1、增强子:DNA上能强化转录起始的序列,能够在启动子任何方向以及任何位置(上游或下游)作用。
2、RNA编辑:某些RNA,特别是mRNA的一种加工方式,发生编辑后,导致DNA所编码的遗传信息的改变。
3、不对称转录:DNA片段转录时,双链DNA中只有一条链作为转录的模板,这种转录方式称为不对称转录。
4、转录泡:是由DNA双链,RNA聚合酶与新合成的转录本RNA局部形成的结构,它贯穿于延长过程的始终。
5、转录单位:DNA链上从启动子直到终止子为止的长度称为一个转录单位。
一个转录单位可以包括一个基因,也可以包括几个基因。
6、选择性剪接:在mRNA前体的剪接过程中,参加剪接的外显子可以不按其线性次序剪接,内含子也可以不被切除而保留,即一个外显子或内含子是否出现在成熟mRNA中是可以选择的,这种剪接方式称为选择性剪接。
二、选择题1、有关RNA转录合成的叙述,其中错误的是 A 。
A、转录过程RNA聚合酶需要引物B、转录时只有一股DNA作为合成RNA的模板C、RNA链的生长方向是5'3'D、所有真核生物RNA聚合酶都不能特异性地识别promoter2、以下有关大肠杆菌转录的叙述,哪一个是正确的? B 。
A、-35区和-10区序列间的间隔序列是保守的B、-35区和-10区序列距离对转录效率非常重要C、转录起始位点后的序列对于转录效率不重要D、-10区序列通常正好位于转录起始位点上游10bp处3、真核生物转录过程中RNA链延伸的方向是 A 。
A、5'3'方向B、3'5'方向C、N端C端D、C端N端4、真核生物mRNA转录后加工不包括 A 。
A、加CCA—OHB、5'端“帽子”结构C、3'端poly(A)尾巴D、内含子的剪接5、以下对DNA聚合酶和RNA聚合酶的叙述中,正确的是: B 。
A、RNA聚合酶的作用需要引物B、两种酶催化新链的延伸方向都是5'3'C、DNA聚合酶能以RNA作模板合成DNAD、RNA聚合酶用NDP作原料三、判断题1、在真核生物中,所有rRNA都是由RNA聚合酶Ⅱ转录的。
简述分子生物学的主要研究内容(一)
简述分子生物学的主要研究内容(一)分子生物学的主要研究内容引言在生物学的广阔领域中,分子生物学作为其中的重要分支,致力于研究生物体内分子的结构、功能和相互作用。
通过对生物体内分子的研究,分子生物学揭示了生命的本质和生物体的运行方式。
本文将简要介绍分子生物学的主要研究内容。
分子生物学的主要研究内容分子生物学研究的内容广泛,包括以下几个方面:1.DNA与基因–DNA结构与功能:研究DNA的双螺旋结构、碱基配对、序列特征以及转录和复制过程中的功能;–基因表达调控:探究基因转录、后转录修饰以及DNA甲基化等调控机制,揭示基因表达的调控网络;–基因突变与遗传疾病:研究DNA突变的原因与机制,解析遗传疾病的发生与发展。
2.RNA与蛋白质–RNA结构与功能:研究RNA的二级、三级结构及其在转录后调节、翻译等方面的功能;–蛋白质合成与调控:揭示蛋白质的合成、折叠过程以及翻译后修饰、定位等方面的调控机制;–蛋白质间相互作用:研究蛋白质与蛋白质、蛋白质与核酸等之间的相互作用,解析细胞内信号传导和调控网络。
3.遗传工程与基因编辑–基因工程技术:利用DNA重组技术进行基因组改造、外源基因的表达等;–基因编辑技术:应用CRISPR-Cas9等工具对生物体进行精确基因组编辑,研究基因功能与表达调控的关系。
4.细胞信号传导–细胞信号通路:研究生物体内细胞外信号的传导机制和细胞内响应过程,揭示生命活动的调控网络;–信号分子与受体:研究激素、细胞因子、细胞外基质等信号分子与受体之间的相互作用,理解信号转导的病理机制。
5.分子进化与生物多样性–分子系统学:通过分析生物体内分子间的差异与相似性,探究不同物种之间的亲缘关系与演化历史;–病原体与宿主:研究病原体与宿主之间的相互作用,阐明感染、免疫等生物学过程。
结论分子生物学作为生物学的重要分支,通过对生物体内分子的研究,深入揭示了生命的奥秘。
从DNA与基因、RNA与蛋白质、细胞信号传导、遗传工程到分子系统学与生物多样性,分子生物学提供了丰富的理论和技术支持,推动了生命科学的发展。
《分子生物学》教案
《分子生物学》教案第一章:分子生物学概述1.1 分子生物学的定义和发展历程1.2 分子生物学的研究内容和方法1.3 分子生物学的重要性和应用领域第二章:DNA与基因2.1 DNA的结构和功能2.2 基因的概念和作用2.3 基因的表达和调控第三章:RNA与蛋白质3.1 RNA的结构和功能3.2 蛋白质的结构和功能3.3 蛋白质合成和调控第四章:酶与催化作用4.1 酶的定义和特性4.2 酶的分类和作用机制4.3 酶的研究方法和应用第五章:分子生物学实验技术5.1 分子克隆与基因工程5.2 PCR技术及其应用5.3 蛋白质分离和鉴定技术5.4 生物信息学在分子生物学中的应用第六章:基因表达调控6.1 基因表达的转录和翻译过程6.2 真核生物的转录调控机制6.3 翻译调控和后修饰机制第七章:蛋白质结构与功能7.1 蛋白质结构的基本层次7.2 蛋白质功能的多样性7.3 结构决定功能的原则第八章:信号传导与细胞代谢8.1 细胞信号传导的基本概念8.2 细胞信号传导的主要途径8.3 信号传导与细胞代谢的调控第九章:基因组学与遗传变异9.1 基因组学的基本概念和方法9.2 基因组结构和变异类型9.3 遗传变异在疾病和进化中的作用第十章:分子生物学在生物技术与医学中的应用10.1 基因克隆与基因治疗10.2 重组蛋白药物的开发与应用10.3 分子诊断与个性化医疗10.4 生物芯片技术及其应用第十一章:分子生物学实验设计与分析11.1 实验设计的原则和方法11.2 实验数据的收集与分析11.3 实验结果的验证与解释第十二章:蛋白质相互作用与网络12.1 蛋白质相互作用的机制12.2 蛋白质相互作用网络的构建与分析12.3 蛋白质相互作用在生物学中的意义第十三章:RNA干扰与基因沉默13.1 RNA干扰机制及其作用13.2 基因沉默技术在研究中的应用13.3 RNA干扰在医学和生物技术领域的应用第十四章:病毒分子生物学14.1 病毒的基本结构与生命周期14.2 病毒基因组的复制与表达14.3 病毒与宿主细胞的相互作用第十五章:分子生物学在生物技术与医学中的应用案例分析15.1 基因治疗与基因编辑技术的应用15.2 生物制药与重组蛋白的应用15.3 分子诊断与个性化医疗的实践案例重点和难点解析第一章:分子生物学概述重点:分子生物学的定义和发展历程,研究内容和方法,重要性和应难点:分子生物学研究方法的理解和应用。
分子生物学第一章
四、三链DNA
1957年发现在基因的调控区或染色质的 重组部位有DNA的三螺旋结构
Hoogsteen配对
• 在三股螺旋中,通常是一条同型寡聚核苷酸与 寡聚嘧啶核苷酸-寡聚嘌呤核苷酸双螺旋的大沟 结合。第三股的碱基可与Watson-Crick碱基对 中的嘌呤碱形成Hoogsteen配对。
• 第三股螺旋与寡聚嘌呤核苷酸同向平行。 • 类型:Py.Pu*Py Py.Pu*Pu
生物学意义
• DNA二级结构的各种构象间、二级结构和 高级结构间、以及高级结构间的各种构象 变化,始终处于一个动力学平衡中,是基 因表达调控的基础
三、DNA的三级结构
• 概念:指在DNA双螺旋结构基础上,进一步扭曲折叠所形 成的特定空间结构。 • 超螺旋DNA:指DNA双螺旋通过弯曲和扭转所形成的特 定构象,是DNA三级结构的一种结构模式。
生物学意义
• DNA一级结构决定了DNA分子的多样性
– 由1000个脱氧核苷酸组成的DNA,有41000个排列组合, 即有41000个DNA分子
• DNA一级结构的不同是物种间差异的根本原因。
• “基因”与“DNA”
– 不同的基因,其DNA顺序不同
二、DNA的二级结构
☆概念:
指两条脱氧核苷酸链(DNA单链/一级 结构)以反向平行的形式,围绕一个中心 轴盘绕所形成的双螺旋结构。
真核生物和原核生物mRNA结构比较
真核生物 mRNA
原核生物 mRNA
(二)tRNA的结构与功能
tRNA一级结构特点
• 70-90个核苷酸组成 • 3′端:CCA序列( CpCpAOH )
– 氨基酸通过与3′-OH端连接,形成氨基酰-tRNA分子
• 含稀有碱基
分子生物学1
复制子或复制单元(replicon):DNA复制从起始点开始直到终点为止,每个这样的DNA单位称为复制子或复制单元(replicon)。复制起始点(origin of replication:复制是从DNA分子上的特定部位开始的,这一部位叫做复制起始点(origin of replication)常用ori或O表示。缺刻平移(nick translation):DNA polⅠ的5'→3'聚合活性和5'→3'外切酶活性协同作用,可以使DNA一条链上的切口从5'→3'方向移动,这种反应叫做缺刻平移(nick translation)核小体(Nucleosome,核体或核仁小体)是组成真核生物染色质的基本单位1、每个核小体单位包括200bp左右的DNA和一个组蛋白八聚体及一个分子的组蛋白H1。2、组蛋白八聚体构成核小体的核心颗粒,由H2A、H2B、H3、H4各两分子形成。3\DNA分子以左手螺旋缠绕在核心颗粒表面。4、相邻核心颗粒之间为一段连接DNA,连接DNA上有组蛋白H1和非组蛋白。CpG甲基化CpG methylation.哺乳动物细胞中5’-CG-3’顺序的胞嘧啶碱基C-5的甲基化这种重要的化学修饰可能给出信号显示被表达基因位点的染色体包装的合适水平,这种修饰通常被称为CpG甲基化.The Telomere (端粒):端粒是形成真核生物染色体线性DNA分子末端的特化了的序列.端粒是端粒酶以独立于正常DNA复制的机制合成的.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1..弱化子当操纵子被阻遏,RNA合成被终止时,起终止转录信号作用的那一段核苷酸被称为弱化子; 或DNA中可导致转录过早终止的一段核苷酸序列(123-150区)。
2.前导序列:在trp mRNA5'端trpE基因的起始密码前一个长162bp的mRNA片段。
3.基因家族来源相同、结构相似、功能相关的基因组成为单一的基因簇或称基因家族。
4. 操纵子:是基因表达的协调单位,由启动子、操纵基因及其所控制的一组功能上相关的结构基因所组成。
5.重叠基因翻译终止时核糖体立即处在起始环境中,这种重叠的密码子保证了同一核糖体对两个连续基因进行翻译的机制。
6.基因重排将一个基因从远离启动子的地方移到距它很近的位点从而启动转录,这种方式被称为基因重排。
7. 看家基因:某些基因在一个个体的几乎所有细胞中持续表达,通常被称为管家基因8.复制子:生物体的复制单位称为复制子。
9.逆转录10.沉默突变11.致死突变12. 无义突变:在蛋白质的结构基因中,一个核苷酸的改变可能使代表某个氨基酸的密码子变成终止密码子(UAG、UGA、UAA),使蛋白质合成提前终止,合成无功能的或无意义的多肽,这种突变就称为无义突变。
13. 端粒14. TATA框:Hogness等发现类似Pribnow区的Hogness区,在转录起始点上游–25~–30 bp 处,保守序列为TATAAA,也称TATA区。
15.切除修复:一些碱基在自发或诱变下会发生脱酰胺,然后改变配对性质,造成氨基转换突变16.错配修复:错配修复是按模板的遗传信息来修复错配碱基的,修复时先要区分模板链和复制链。
这是通过碱基的甲基化来实现的。
17.重组修复机体细胞对在起始复制时尚未修复的DNA损伤部位可以先复制再修复。
18.SOS修复SOS反应是细胞DNA受到损伤或复制系统受到抑制的紧急情况下,细胞为求生存而产生的一种应急措施。
主要包括:(1)DNA的修复;(2)产生变异。
19. 基因组学是指研究并解析生物体整个基因组的所有遗传信息的学科。
20. 顺式作用元件:由若干可以区分的DNA序列组成,并与特定的功能基因相连,组成基因转录的调控区,通过与相应的反式作用因子结合,实现对基因转录的调控。
21.DNA有义链编码链(coding strand): 与mRNA序列相同的那条DNA链, 或称有意义链(sense strand).22.-35序列(Sextama box)科学家又从噬菌体的左、右启动子PL及PR和SV40启动子的–35 bp附近找到了另一段共同序列:TTGACA。
其保守序列为TTGACA,与-10序列相隔16-19bp。
23.-10序列其保守序列为TATAAT,位于-10bp左右,其中3′端的―T‖十分保守。
A.T 较丰富,易于解链。
它和转录起始位点I一般相距5bp。
序列分析发现,在被保护区内有一个由5个核苷酸组成的保守序列,是聚合酶结合位点,称为Pribnow区,其中央大约位于起点上游10bp处,所以又称为–10区。
24.增强子(enhancer) :已在SV40的转录单元上发现其转录起始位点上游约200bp处有两段72bp长的重复序列,它们不是启动子的一部分,但能增强或促进转录的起始,因此,称这种能强化转录起始的序列为增强子或强化子(enhancer)。
25. 核酶是指一类具有催化功能的RNA分子,通过催化靶位点RNA链中磷酸二酯键的断裂,特异性地剪切底物RNA分子,从而阻断基因的表达。
26. 安慰诱导物如果某种物质能够促使细菌产生酶而本身又不被分解,这种物质被称为安慰诱导物,如IPTG(异丙基- β–D-硫代半乳糖苷)。
27. SD 序列28.RNA引物酶29.冈崎片段前导链(leading strand):随着亲本双链体的解开而连续进行复制的链,称为前导链;后随链(lagging strand):一段亲本DNA单链首先暴露出来,然后以与复制叉移动相反的方向、按照5 ‘→3‘方向合成一系列短DNA片段,然后再将它们连接成完整的链,称为后随链。
后随链不连续合成形成的短DNA片段,称为冈崎片段(Okazaki fragment)。
30. C 值反常.C-值(C-value):一种生物单倍体基因组DNA的总量。
C-值矛盾(C-value paradox):C值往往与种系进化的复杂程度不一致。
二思考题1.试述E.coli的RNA聚合酶的结构和功能。
E. coli只有一个DNA-directed RNA聚合酶,来合成所有类型的RNA。
由5种subunits 组成聚合酶全酶(holoenzyme),包括 2 α, 1 β, 1β‘, 1 ω以及 1 σsubunits 。
Αsubunit:是核心酶中的两个相同的亚单位;由rpoA基因编码;与核心酶的组装有关;参与RNA聚合酶和部分调节因子的相互作用β和β‘分别由rpoB和rpoC基因编码。
由β和β‘亚基组成了聚合酶的催化中心。
它们在序列上与真核生物RNA聚合酶的两个大亚基有同源性。
β亚基能与模板DNA、新生RNA 链及核苷酸底物相结合。
rpoB和rpoC基因的突变会影响转录所有的阶段。
σfactor负责模板链的选择和转录的起始:与σ因子的结合使RNA聚合酶从核心酶转变为聚合酶全酶。
是启动子识别的关键的酶,不仅增加聚合酶对启动子的亲和力(提高103倍),还可降低它对非专一位点的亲和力(降低104倍),使酶底复合物的半衰期小于1s。
在细胞中对σ因子量的需求少于聚合酶中其它亚单位。
2.试述原核生物DNA复制的特点。
原核生物每个DNA 分子只有一个复制原点。
复制原点序列特征4个9 bp重复序列,3个13 bp重复序列,都富含A-T对(1)DNA双螺旋的解旋:DNA的解链过程,首先在拓扑异构酶I的作用下解开负超螺旋,并与解链酶共同作用,在复制起点处解开双链。
一旦局部解开双链,就必须有单链结合蛋白(SSB)来稳定解开的单链,以保证核苷酸局部不会恢复成双链。
接着由引发酶等组成的引发体迅速作用于两条单链DNA上a、DNA解链酶DNA解链酶能通过水解ATP获得能量来解开双链DNA。
大部分解链酶沿后随链模板的5´→3 ´方向并随着复制叉的前进而移动;另一种解链酶Rep蛋白是沿前导链模板的3 ´→ 5 ´方向移动。
b、单链结合蛋白:SSB以四聚体的形式结合在单链DNA的复制叉处,其作用是保证被解链酶解开的单链在复制完成前保持单链结构。
SSB与DNA的结合能力在原核生物中表现协同效应,而在真核生物中则不表现协同效应。
(2)、DNA复制的引发DNA 复制时,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由DNA聚合酶从RNA引物3,端开始合成新的DNA链。
后随链的引发过程由引发体来完成,引发体由6种蛋白质n、n, 、n,, 、DnaB、C和I共同组成,6种蛋白质合在一起形成引发前体,引发前体与引发酶进一步组装成引发体才能发挥其功效。
(3)冈崎片段与半不连续复制两股新合成链都是按5‘~3‘方向合成。
后随链不连续合成形成的短DNA片段,称为冈崎片段(4)、DNA复制的终止:当复制叉遇到约22个碱基的重复性终止子序列(Ter)时,Tus-Ter 复合物能使DnaB不再将DNA解链,阻挡复制叉的继续前移,等到相反方向的复制叉达到后停止复制。
(5)、DNA聚合酶DNA聚合酶Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ3.试述乳糖操纵子的阻遏作用、诱导作用及正调控。
Z编码β-半乳糖苷酶:将乳糖水解成葡萄糖和半乳糖Y编码β-半乳糖苷透过酶:使外界的β-半乳糖苷(如乳糖)能透过大肠杆菌细胞壁和原生质膜进入细胞内。
A编码β-半乳糖苷乙酰基转移酶:乙酰辅酶A上的乙酰基转到β-半乳糖苷上,形成乙酰半乳糖。
机制:阻遏蛋白的负性调节无乳糖: lac操纵子处于阻遏状态(repression)有乳糖: lac操纵子即可被诱导诱导剂(inducer): 别乳糖、半乳糖、IPTG(异丙基硫代半乳糖苷安慰诱导物:如果某种物质能够促使细菌产生酶而本身又不被分解,这种物质被称为安慰诱导物,如IPTG(异丙基- β–D-硫代半乳糖苷三、乳糖操纵子调控模型主要内容:①Z、Y、A基因的产物由同一条多顺反子的mRNA分子所编码②这个mRNA分子的启动子(P)紧接着操纵基因(O),而位于调节基因(I)与O之间的启动子P,不能单独启动合成β-半乳糖苷酶和透过酶的生理过程。
③操纵基因(O)是DNA上的一小段序列(仅为26bp),是阻遏物的结合位点。
④当阻遏物与操纵基因结合时,lac mRNA的转录起始受到抑制。
⑤诱导物通过与阻遏物结合,改变它的三维构象,使之不能与操纵基因结合,从而激发lac mRNA的合成。
当有诱导物存在时,操纵基因区没有被阻遏物占据,所以启动子能够顺利起始mRNA的合成。
本底水平的组成型合成:非诱导状态下有少量的lac mRNA合成。
如果将葡萄糖和乳糖同时加入培养基中,lac操纵子处于阻遏状态,不能被诱导;一旦耗尽外源葡萄糖,乳糖就会诱导lac操纵子表达分解乳糖所需的三种酶。
代谢物阻遏效应:葡萄糖对lac操纵子表达的抑制是间接的,不是葡萄糖本身而是其降解产物抑制lac mRNA的合成,科学上把葡萄糖的这种效应称为代谢物阻遏效应cAMP与代谢物激活蛋白:代谢物激活蛋白(CAP)/环腺甘酸受体蛋白(CRP)CRP+cAMP----CAPATPcAMP(环腺苷酸)腺苷酸环化酶大肠杆菌中:无葡萄糖,cAMP浓度高;有葡萄糖,协调调节:当阻遏蛋白封闭转录时,CAP 对该系统不能发挥作用;如无CAP 存在,即使没有阻遏蛋白与操纵序列结合,操纵子仍无转录活性。
cAMP —CAP 复合物与启动子区的结合是转录起始所必需的。
单纯乳糖存在时,细菌利用乳糖作碳源;若有葡萄糖或葡萄糖/乳糖共同存在时,细菌首先利用葡萄糖。
4. 在RNA 转录中σ因子起什么作用?在某些细菌中含有识别不同启动子的σ因子,以适应不同生长发育阶段的要求,控制不同基因转录的起始。
大肠杆菌中的σ因子能识别并与启动子区的特异性序列相结合• σ70 当与核心酶结合时会改变其结构,以释放其DNA-结合区域. • σ70 与 –35 和 –10 序列均结合。
5. 真核生物的RNA 聚合酶有哪几种?分布在细胞的什么位置?各有什么功能? 有3类RNA 聚合酶;结构比大肠杆菌RNA 聚合酶复杂;在细胞核中的位置不同;负责转录的基因不同,对α-鹅膏蕈碱的敏感性也不同。
真核生物RNA 聚合酶一般有8-14个亚基所组成,相对分子质量超过5×105。
真核细胞中三类RNA 聚合酶特性比较因子 基因 功能 -35区 间隔(bp )-10区 σ70 rpoD广泛TTGACA16-18 TATAATσ32rpoH热休克TCTCNC CCTTGAA 13-15 CCCCAT NTA σ54rpoN 氮代谢CTGGN A6TTGCAhnRNA: heterogeneous muclearRNA,核内不均一RNA, RNA 的前体 线粒体和叶绿体RNA 聚合酶活性不受α-鹅膏蕈碱所抑制。