连铸坯主要表面缺陷类型
连铸坯缺陷的产生与防止措施 Microsoft Word 文档1
连铸坯裂纹的产生与防止措施连铸坯裂纹的分类 :铸坯表面裂纹包括表面纵裂纹、表面横裂纹、网状裂纹(星裂)、发裂、角部纵裂纹、角部横裂纹等;铸坯内部裂纹包括中间裂纹、角部裂纹、中心线裂纹、三角区裂纹、皮下裂纹、矫直裂纹等。
1.1 铸坯表面裂纹部纵裂纹等几种主要的缺陷形式。
铸坯表面裂纹主要有表面纵裂纹、表面横裂纹、网状裂纹、角部横裂纹、边铸坯表面裂纹是在结晶器内产生的,在二冷段得到扩展。
它会导致轧制板材表面的微细裂纹,影响最终产品的表面质量。
图1为表面裂纹示意图图 1 铸坯表面裂纹示意图1-表面纵裂纹;2-表面横裂纹;3-网状裂纹;4-角部横裂纹;5-边部纵裂纹1.1.1 表面纵裂纹连铸坯表面纵裂纹是指沿着拉坯方向在铸坯表面上发生的裂纹。
它可由工艺因素或设备因素引起。
由工艺因素引起的纵裂,大多出现在铸坯宽面的中央部位,是表面裂纹中最常见的一种裂纹缺陷。
纵裂主要是由于初生坯壳在结晶器内冷却强度不均匀,造成应力的集中,在坯壳相对较薄的地方坯壳厚度不足以承受这种应力,致使坯壳裂开而产生裂纹,并在二冷区得到扩展,形成表面纵裂纹。
图2 图3 图4为表面纵裂纹示意图图2图3 图41.影响连铸坯表面纵裂纹因素:实际生产过程中,主要有以下因素影响连铸坯表面纵裂纹的产生:1) 成品成分及钢水质量(1) 成品钢中碳含量处在亚包晶和包晶反应区时,由于初生坯壳在结晶器弯月面内激冷时收缩较大,容易造成初生坯壳厚薄不均,从而使铸坯发生纵裂纹的倾向增加。
因此,在实际生产中各连铸厂家都尽量控制其成品钢中碳含量,使其避开亚包晶和包晶反应区,从而减少铸坯纵裂纹的发生机率。
(2) 成品钢中硫、磷含量也会影响铸坯纵裂纹的产生。
钢中硫、磷含量增加时,钢的高温强度和塑性明显降低,在应力作用下就容易产生裂纹,因此,在实际生产中各连铸厂家都尽量控制其成品钢中硫、磷含量,尽量控制在0.02%以内。
(3) 钢中微合金如铌、钒等对铸坯纵裂纹的产生也有重要影响,因为微合金而产生的铸坯纵裂纹在铸坯表面上分布不规则,缺陷较短、数量较多。
连铸坯质量缺陷
连铸坯的质量缺陷及控制摘要连铸坯质量决定着最终产品的质量。
从广义来说所谓连铸坯质量是得到合格产品所允许的连铸坯缺陷的严重程度,连铸坯存在的缺陷在允许范围以内,叫合格产品。
连铸坯质量是从以下几个方面进行评价的:(1)连铸坯的纯净度:指钢中夹杂物的含量,形态和分布。
(2)连铸坯的表面质量:主要是指连铸坯表面是否存在裂纹、夹渣及皮下气泡等缺陷。
连铸坯这些表面缺陷主要是钢液在结晶器内坯壳形成生长过程中产生的,与浇注温度、拉坯速度、保护渣性能、浸入式水口的设计,结晶式的内腔形状、水缝均匀情况,结晶器振动以及结晶器液面的稳定因素有关。
(3)连铸坯的内部质量:是指连铸坯是否具有正确的凝固结构,以及裂纹、偏析、疏松等缺陷程度。
二冷区冷却水的合理分配、支撑系统的严格对中是保证铸坯质量的关键。
(4)连铸坯的外观形状:是指连铸坯的几何尺寸是否符合规定的要求。
与结晶器内腔尺寸和表面状态及冷却的均匀程度有关。
下面从以上四个方面对实际生产中连铸坯的质量控制采取的措施进行说明。
关键词:连铸坯;质量;控制1 纯净度与质量的关系纯净度是指钢中非金属夹杂物的数量、形态和分布。
夹杂物的存在破坏了钢基体的连续性和致密性。
夹杂物的大小、形态和分布对钢质量的影响也不同,如果夹杂物细小,呈球形,弥散分布,对钢质量的影响比集中存在要小些;当夹杂物大,呈偶然性分布,数量虽少对钢质量的危害也较大。
此外,夹杂物的尺寸和数量对钢质量的影响还与铸坯的比表面积有关。
一般板坯和方坯单位长度的表面积(S)与体积(V)之比在0.2~0.8。
随着薄板与薄带技术的发展,S/V可达10~50,若在钢中的夹杂物含量相同情况下,对薄板薄带钢而言,就意味着夹杂物更接近铸坯表面,对生产薄板材质量的危害也越大。
所以降低钢中夹杂物就更为重要了。
提高钢的纯净度就应在钢液进入结晶器之前,从各工序着手尽量减少对钢液的污染,并最大限度促使夹杂物从钢液中排除。
为此应采取以下措施:⑴无渣出钢。
连铸圆坯缺陷类型
连铸圆坯的缺陷类型主要包括以下几种:
1. 表面缺陷:包括裂纹、气孔、夹渣、震痕和凹陷、成分偏析等。
这些缺陷会影响连铸圆坯的力学性能、耐磨性和耐腐蚀性,进而影响其使用性能。
2. 内部缺陷:包括裂纹、气孔、夹渣、缩孔和缩松、成分偏析等。
这些缺陷对连铸圆坯的强度和韧性产生负面影响。
3. 形状缺陷:包括菱变、鼓肚、凹陷等。
这些缺陷会导致连铸圆坯的形状不规则,影响其使用性能。
为了减少这些缺陷,可以采取一些措施,例如提高浇注温度和冷却速度,改善钢水的纯净度,采用合适的保护渣,避免操作不当等。
连铸坯缺陷
连铸坯缺陷已轧成的钢材质量多数情况由最初的铸坯质量决定。
本文研究了连铸坯一系列缺陷的形式、影响缺陷形成和发展的因素,以及它们在热轧过程中的转化。
铸坯断面的畸变或它周边个别区段几何形状的变化(图1)可能是铸坯受裂纹损伤的间接标志。
除此之外,铸坯断面的畸变,即使它们不伴有裂纹,也会在后续加工中造成一系列困难。
图1 连铸坯形状的畸变缺陷缺陷名称缺陷形式定量估计导致缺陷形成和发展的因素菱 变100)(5.0100)(2121⨯+⨯⨯+AaD D D D结晶器工作空间不适当的形状;不适当的二次冷却; 金属流向结晶器的偏心浇注; 在结晶器中不均匀润滑。
椭圆度)(5.0100)(2121D D D D +⨯-铸坯边的凸度(凹度)100⨯Lb结晶器工作空间不适当形状;不适当的二次冷却; 支承系统损坏。
弯曲 (新月形)100⨯LC拉校机不适当校正;铸坯不适当的第三次冷却;扭 曲Lα铸坯不适当的第三次冷却菱变是坯壳渐增扭曲的结果,它起源于结晶器内且在离弯月面100~150mm 已显现。
与结晶器壁未接触的钝角区中的坯壳比在已接触的锐角区中的以更低的速度凝固。
这种情况在坯壳处于结晶器内的所有时间过程中都保持着。
所以在其他条件相同情况下,结晶器越长,铸坯菱变越大。
菱变在铸坯处于二冷区的头几分钟内显著增大。
此后,当坯壳厚度沿横断面均匀之后,菱变扩大趋势被终止了。
在弱二冷下,坯壳从结晶器出来之后,菱变扩大被减缓了。
这样一来,在连铸坯中菱变的形成乃是在熔融金属液面附近形成的坯壳不均匀厚度自动催化扩大的过程。
横截面形状的畸变是在浇注过程中由于在某一棱角区中形成坯壳的接触中断而使结晶器内散热中断情况下发生的。
其起因可能是:不均匀的润滑,或由于结晶器工作空间不适当的形状导致坯壳和结晶器接触中断或由于坯壳扭曲(不均匀二次冷却、装备工艺轴线的偏移)引发的变形。
在近代连铸装置中,防止菱变发展的有效方法——在结晶器下安装支承辊(足辊),这些支承辊牢固地支撑结晶器机架。
连铸坯表面质量缺陷及处理措施
连铸坯表面质量缺陷及处理措施【摘要】对于连铸板坯而言,振痕和裂纹是其主要的质量缺陷问题。
虽然这个缺陷在大多数情况下对连铸坯的质量影响不大,但是如果不及时有效的处理调还会带来很多附加的质量问题。
尤其是在生产不锈钢和高强度钢品种时,这种质量缺陷所带来的弊端更加明显。
【关键词】连铸坯;振痕;质量影响1振痕形成机理在连铸坯生产中,振痕和裂纹是两种最为常见的质量缺陷问题,主要是由于弯月面顶端溢流造成的,该缺陷形成以后会附带其他质量缺陷一并产生。
2振痕对铸坯质量的影响振痕对连铸坯的质量影响会导致后期出现列裂纹,包括横裂纹、角部横裂纹及矫直裂纹。
如果连铸坯内掺杂的杂质较多,会导致大规模网状裂纹的出现,甚至出现穿钢现象。
如果在连铸坯出现振痕的地方晶粒很大,就会产生晶间裂纹现象,在这样的情况下需要对连铸坯修磨,从而提高成材率。
3影响振痕深度的因素振动参数对振痕形状和深度有重要影响。
其中振幅、频率、负滑脱时间及振动方式最为重要;结晶器保护渣的耗量、粘度、保温性能及表面性能等有着重要影响;.钢的凝固特性对振痕有着重要影响,特别是当钢中碳含量和钢中Ni/Cr 比影响最突出。
当钢中碳含量为0.1%左右,Ni/Cr≈0.55左右,铸坯表面振痕最深。
4减少振痕深度的措施采用小振幅(s)、高频率(f)及减少负滑脱时间(tN),可以有效的减少振痕的深度;采用非正弦振动方式可以减少振痕的深度,这是因为非正弦振动其负滑脱时间tN比正弦振动短;采用渣耗量低,粘度高的保护渣,可以使振痕深度变浅。
采用保温性能好和能增加弯月面半径的保护渣可以减少振痕深度;提高不锈钢、钢液的过热度,尤其是含钛和含铝的不锈钢对减少该钢表面振痕深度是有效的。
提高结晶器进出冷却水的温差,对减少振痕深度是有利的。
5铸坯表面裂纹5.1表面纵裂纹铸坯表面纵裂纹是铸坯最主要表面缺陷,对铸坯质量影响极大,特别是板坯和圆坯最为突出,报废量和整修量很大。
5.1.1纵裂纹类型铸坯表面沟槽纵裂纹。
连铸坯缺陷及预防措施
连铸坯缺陷及预防措施1、方坯晶间裂纹、根源☐Cu 、Ni、Sn、Nb 与Al等元素的影响;☐铸机表面凹限,即使轻微凹限也会引起裂纹;☐保护渣不合适;☐结晶器液面波动严重;☐菱变严重;☐结晶器锥度太小;措施减少杂质元素含量;导致晶间裂纹的最主要原因是粗大晶粒结构以及沿晶粒边界的沉析,所以防止其产生的主要措施是在结晶器初始凝固阶段得以形成细小而均匀的结构;防止产生凹馅;用多水口代替直水口;2、气泡及针孔铸坯皮下通气孔称为针孔,而皮下闭气孔称为气泡根源☐脱氧不好,氢、氮含量高;☐润滑过度,油中含水;☐保护渣中含水;☐中间塞棒吹氩过度;结晶器波动措施☐有效地脱氧;☐注流及钢液面进行有效保护;☐加热润滑油及保护渣;☐采用EMS可有效减少针孔与铸坯表面皮下气泡的数量;☐减少结晶器液面波动3、铸坯表面夹渣根源☐钢水脱氧不够;☐钢水中氧化铝含量高,SiO2、MnO与FeO含量低(铝镇静钢);☐耐火材料质量差;结晶器喂铝线;☐中包水口及结晶器中形成的块渣进入钢水。
措施☐采用无渣出钢;☐对钢水进行有效脱氧,采用保护浇注;☐中间包碱性覆盖剂;☐加深中包,增大中包钢液深度;☐中包采用挡堰;☐采用能快速吸收钢水夹杂的保护渣(高碱度);☐加大保护渣的用量;☐减少结晶器液面波动,水口侵入深度必须100-150mm4、横向裂纹横向裂纹通常出现在角部,但中部区域也会出现,横向裂纹一般出现在振痕的底部。
1、因热脆而形成的表面裂纹☐C含量0.17-0.25%;☐S含量高;☐随合金元素含量增加,如:Al、Nb、V 及大于1%Mn,裂纹数量增加;☐Al、Nb、N及C沉析于晶粒表面;☐二冷区冷却不挡导致晶粒粗大;☐二冷区支撑辊对中不好;☐保护渣选择不当;☐负滑脱时间过长。
2、横向角部裂纹角部冷却过度;☐结晶器冷却不当;☐结晶器和支撑辊对中不好;☐矫直温度过低;☐高如:Al、Nb、V 及大于1%Mn含量钢水非常敏感,加入钛能有效降低裂纹的程度;☐二冷区冷却不均或冷却过度;☐保护渣不合适;☐铜管弯月面区域变形过大;☐钢水温度过低;☐结晶器锥度过大。
连铸板坯缺陷对下工序的质量影响
连铸板坯缺陷对下工序的质量影响摘要:为满足用户对产品质量越来越严格的要求,生产价格便宜高质量产品是人们追求的目标。
而轧制产品质量是与连铸坯缺陷紧密相联系的。
关键字:连铸坯;质量控制引言:在现代的工业发展中,质量的高低已逐渐决定着企业的命运。
市场竞争以价格竞争为主转向以质量竞争为主,为了达到提高连铸板坯质量更好的为下工序服务的目标,使我们的产品在下游客户的手中能更好的体现使用价值。
一、连铸板坯缺陷的分类与分析1、连铸板坯缺陷的分类炼钢-精炼-连铸工艺流程生产的连铸板坯作为半成品共给轧钢,轧制成不公规格的板材以满足不同单位的需求。
只有提供高质量的连铸板坯,才能轧制出高质量的产品。
连铸板坯缺陷包括以下几个方面:连铸板坯的纯净度:主要是钢中夹杂物类型、形貌、尺寸和分布。
(1)连铸板坯的表面缺陷:主要是指连铸板坯的表面纵裂纹、横裂纹、网状裂纹、夹渣、气泡等。
缺陷严重的会造成废品,甚至会已传至轧制产品内。
(2)连铸板坯的内部缺陷:主要是指连铸板坯内部裂纹、中心疏松、缩孔、偏析等。
缺陷严重者会影响轧制产品的力学性能和使用性能。
2、连铸板坯缺陷的分析2.1连铸板坯夹杂物的主要来源钢中夹杂物数量要少,钢中总氧要低,在钢中的夹杂物呈弥散分布而避免成链状串簇状分布(1)内生夹杂物:主要是脱氧产物。
其特点是溶解氧增加,脱氧产物增多。
(2)外来夹杂物:钢水与环境(空气、包衬、炉渣、水口等)作用下的二次氧化产物,其特点为夹杂物粒径大、组成复杂的氧化物、来源广泛、在连铸板坯中成偶然性分布、对产品危害大。
2.2连铸板坯表面裂纹缺陷连铸板坯裂纹包括表面裂纹(纵裂纹、横裂纹、网状裂纹)和内部裂纹(三角区裂纹、中心线裂纹)。
连铸板坯裂纹的形成是一个复杂冶金、物理过程。
是传热、传质、凝固和应力的相互结果。
带液芯的高温铸坯在连铸机运行过程中,各种力作用于高温坯壳产生变形,超过了钢的允许强度和应是产生裂纹的外因,钢对裂纹敏感性是产生裂纹的内因,而连铸机热工做状态和工艺操作是产生裂纹的条件。
211172579_连铸方坯的常见表面缺陷及控制
管理及其他M anagement and other连铸方坯的常见表面缺陷及控制康旭辉摘要:连铸方坯表面的质量直接影响材料轧制后成品的质量,而近年来,我国部分企业在连铸方坯生产的过程中,存在诸多的表面缺陷问题,不能确保生产的质量和效果。
基于此,本文分析连铸方坯常见表面缺陷问题,提出几点表面缺陷控制的建议和措施,旨在为增强连铸方坯的表面质量提供帮助。
关键词:连铸方坯;常见表面缺陷;控制全面掌握方坯缺陷的类型、形成机理和消除途径是方坯质量控制的关键。
目前,国内外钢铁企业在钢坯质量控制方面取得了可喜的成绩,并获得了大量的生产数据和实际操作经验。
全面提高方坯质量,对提高连铸方坯成品率、改善钢材质量、节能降耗、降低成本具有重要意义。
连铸钢属于直接浇注钢水的工艺。
它的出现从根本上改变了主导了一个世纪的钢锭开坯过程。
液态金属连铸钢的概念早在19世纪中叶就被提出。
1840年,美国的销售商获得了连铸铅管的专利。
1846年,转炉的发明者贝塞默使用水冷旋转双辊连铸机生产锡箔、铅板和玻璃板。
1872年,David提出了移动式结晶器连铸的概念。
1886年~1889年,提出了立式连铸机的设计方案。
1921年,皮尔逊提出了结晶器振动的概念,即结晶器振动使板坯和结晶器之间连续的相对运动。
1933年,连铸的先驱德国准噶斯人建造了第一台1700t/月振动结晶器立式连铸机。
20世纪30年代,第一个成功铸造铜铝合金的有色金属连铸应用于生产。
目前,部分企业在连铸方坯生产的过程中,方坯表面的质量波动幅度很高,存在脱方缺陷、凹陷,缺陷和渣沟缺陷等,不能确保整体结构表面质量符合标准要求,对特钢产品生产质量造成一定的危害,因此,在连铸方坯实际生产的过程中需结合具体表面缺陷问题的发生原因与实际情况,采用有效的措施进行控制,确保连铸方坯表面质量符合标准规范,为特钢产品高质量生产夯实基础。
1 连铸方坯的常见表面缺陷和发生原因1.1 渣沟缺陷与原因从实际情况而言,连铸方坯表面出现渣沟缺陷问题,轧制以后线材表面出现裂纹缺陷问题的发生存在直接联系,从表面观察可以发现坯件有纵向贯通性的沟状缺陷问题,具体是在连铸方坯的内弧部分分布,很小一部分会在侧弧的位置,采用跟踪性轧制12.5mm绞丝钢实验的方式,可以发现线材的表面存在裂纹问题。
连铸坯表面裂纹缺陷分析
《 中国重型装备》
C I A H A Y E UP N H N E V Q I ME T
从 图 4可 以看 出 , 轧 态 、 火 态 和 调 质 态 热 正 6 S2 n钢 8 0C亚温 淬 火 的 转 变 产物 为 马 氏体 0 iM 0 ̄
体延 伸形成 的三 角 区部 位 晶粒 明显要 比裂 纹的 另 侧 晶粒要 细 , 纹两侧 组织 不 同 , 明裂纹 两侧 裂 说
一
端存 在沿 奥 氏体 晶界 向基体 延 伸 的 现象 , 明横 说
裂是 沿 晶开裂 , 钢水 结 晶成 固体 以后 产生 的 , 是 是
一
形成 组织 的温度不 同。三角 区部位 晶粒 细说 明该
钢亚 温淬火 后韧性 好 、 度高 的原 因之一 。 强
双相合 金 中双 相 的形 态对 试样 的力学性 能有
影响 , 主要表 现 在 对 裂纹 扩 展 的 阻碍 作 用 上 。当
铁 素体 呈针状 时 , 氏体 被铁 素 体 最 大限 度 的分 马 开 , 裂纹 的扩展 不仅 通过 马氏体 , 故 还必然 通过 铁 素体 。铁素 体在 断裂前会 产生 大量 塑性变形 而 消
若铁 素体呈 块状 形 态 时 , 则裂 纹 容 易 只沿 着 马 氏 体基 体扩展 , 而不 与孤立 的铁 素体相 遇 , 从而 使试 样 的韧性变 差 。另外 , 素体 呈针状 、 氏体 为细 铁 马
小板条 状时 , 晶界 总面积 较块状 时要 大 的多 , 也有 利 于力学性 能 的提 高 。针状组 织 比颗 粒状组 织细 小 , 材料变 形 和断 裂 的过 程 中能 吸收 更 多 的能 在
耗较 多 能量 , 而 对 裂 纹 的 扩 展 起 到 阻碍 作 用 。 从
连铸板坯缺陷图谱及产生的原因分析(新)
第二篇连铸板坯缺陷(AA)第二篇连铸板坯缺陷(AA) (1)2.1表面纵向裂纹(AA01) (4)2.2表面横裂纹(AA02) (6)2.3星状裂纹(AA03) (7)2.4角部横裂纹(AA04) (8)2.5角部纵裂纹(AA05) (10)2.6气孔(AA06) (11)2.7结疤(AA07) (12)2.8表面夹渣(AA08) (13)2.9划伤(AA09) (14)2.10接痕(AA13) (15)2.11鼓肚(AA11) (16)2.12脱方(AA10) (17)2.13弯曲(AA12) (18)2.14凹陷(AA14) (19)2.15镰刀弯(AA15) (20)2.16锥形(AA16) (21)2.17中心线裂纹(AA17) (22)2.18中心疏松(AA18) (23)2.19三角区裂纹(AA19) (25)2.20中心偏析(AA20) (27)2.21中间裂纹(AA21) (28)2.1表面纵向裂纹(AA01)图2-1-11、缺陷特征表面纵向裂纹沿浇注方向分布在连铸板坯上下表面,裂纹深度一般为2mm~15mm,裂纹部位伴有轻微凹陷。
在连铸浇注过程中,当连铸板坯坯壳在结晶器内所受到的应力超过了坯壳所能承受的抗拉强度时,即产生表面纵向裂纹。
表面纵向裂纹缺陷在结晶器内产生,出结晶器后若二次冷却不良,裂纹将进一步加剧。
2、产生原因及危害产生原因:①钢中碳含量处于裂纹敏感区内;②结晶器钢水液面异常波动。
当结晶器钢水液面波动超过10mm时,表面纵向裂纹缺陷易于产生;③结晶器保护渣性能不良。
保护渣液渣层过厚、过薄或渣膜厚薄不均,使连铸板坯凝固壳局部过薄而产生表面纵向裂纹;④中间包浸入式水口与结晶器对中不良,钢水产生偏流冲刷连铸板坯凝固壳,而产生表面纵向裂纹。
危害:轻微的表面纵裂纹经火焰清理后均能消除;表面纵向裂纹严重时可能会造成漏钢;表面纵向裂纹若送热轧进行轧制可能导致热轧产品出现分层、开裂缺陷。
连铸坯缺陷及对策
连铸坯在凝固过程中形成裂纹的原因随着市场竞争的日趋激烈,产品的质量已经成为占有市场的主要砝码,连铸坯作为炼钢厂的终端产品,其质量直接影响着轧材单位的产量和轧材质量,据统计炼钢厂连铸坯质量缺陷中约70%为连铸坯裂纹,连铸坯裂纹成为影响连铸坯产量和质量的重要缺陷之一,下面将对铸坯在凝固过程中裂纹的形成做简要分析:一、铸坯凝固过程的形成铸坯在连铸机内的凝固可看成是一个液相穴很长的钢锭,而凝固是沿液相穴的固液界面在液固相温度区间把液体转变为固体把潜热释放出来的过程。
在固液界面间刚凝固的晶体强度和塑性都非常小,当作用于凝固壳的热应力、鼓肚力、矫直力、摩擦力、机械力等外力超过所允许的外力值时,在固液界面就产生裂纹,这就形成了铸坯内部裂纹。
而已凝固的坯壳在二冷区接受强制冷却,由于铸坯线收缩,温度的不均匀性,坯壳鼓肚、导向段对弧形不准,固相变引起质点如(AlN)在晶界的沉淀等,容易使外壳受到外力和热负荷间歇式的突变,从而产生裂纹就是表面裂纹。
二、连铸坯裂纹形态和影响因素连铸坯裂纹形态分为表面裂纹和内部裂纹,表面裂纹有纵向、横向角部裂纹、表面横裂和纵裂、网状裂纹和凹陷等,内部裂纹有中间、中心和矫直裂纹等。
连铸坯裂纹的影响因素:连铸坯表面裂纹主要决定于钢水在结晶器的凝固过程,它是受结晶器传热、振动、润滑、钢水流动和液面稳定性所制约的,铸坯内部裂纹主要决定于二冷区凝固冷却过程和铸坯支撑系统(导向段)的对弧准确性。
铸坯凝固过程坯壳形成裂纹,从工艺设备和钢凝固特性来考虑影响裂纹形成的因素可分为:1、连铸机设备状态方面有:1)结晶器冷却不均匀2)结晶器角部形状不当。
3)结晶器锥度不合适。
4)结晶器振动不良。
5)二冷水分布不均匀(如喷淋管变形、喷咀堵塞等)。
6)支承辊对弧不准和变形。
2、工艺参数控制方面有:1)化学成份控制不良(如C、Mn/S)。
2)钢水过热度高。
3)结晶器液面波动太大。
4)保护渣性能不良。
5)水口扩径。
6)二次冷却水分配不良,铸坯表面温度回升过大。
连铸板坯轧制中板的表面缺陷
连铸板坯轧制中板的表面缺陷
连铸板坯轧制中板的表面缺陷包括:1.毛刺:在轧制过程中,板坯表面可能会出现毛刺,这是由于轧辊表面不光滑或轧制压力不均匀造成的。
2.滚痕:滚痕是指板坯表面出现的长条状凹陷,通常是由于轧辊表面不平整或轧制压力不均匀造成的。
3.气泡:气泡是指板坯表面出现的圆形或椭圆形凸起,通常是由于板坯内部存在气体或轧制过程中气体被挤压到表面造成的。
4.裂纹:裂纹是指板坯表面出现的线状或网状裂缝,通常是由于板坯内部存在缺陷或轧制过程中应力过大造成的。
5.毛洞:毛洞是指板坯表面出现的小孔,通常是由于板坯内部存在气体或轧制过程中气体被挤压到表面造成的。
6.氧化皮:氧化皮是指板坯表面出现的氧化物层,通常是由于板坯表面暴露在空气中长时间造成的。
连铸坯缺陷
38
1.7 钢中残余有害元素对性能影响
5
1.1 裂纹分类方法综述
裂纹的种类
➢ 出现的位置 表面裂纹和内部裂纹
➢ 按裂纹的走向 横向裂纹和纵向裂纹
➢ 按尺寸大小 宏观裂纹和微观裂纹
➢ 按出现的温度范围 热裂纹和冷裂纹
➢ 按形成机理 热裂纹、冷裂纹、再热裂纹、层状撕裂和应力腐蚀裂纹
2021/3/12
6
1.2 各种裂纹的形成机理及其特征
20
1.5 裂纹类型与微观结构和脆性温度区间的关系
2021/3/12
21
1.5 裂纹类型与微观结构和脆性温度区间的关系
裂纹类型
A:内裂纹: 中间裂纹 中心裂纹
B:凹陷形纵裂纹、 星形裂纹(表面与心部) 网状裂纹(表面与心部)
微观结构 柱状晶
粗大奥氏体
“脆性”温度区 Ⅰ
(Ⅰ)、Ⅱ
C:表面横裂纹
沿粗大奥氏体晶界析 (Ⅰ)、Ⅱ、Ⅲ 出物或层片状铁素体
我司是根据钢液凝固成坯壳的铁素体比例来选用结晶器保护渣的: ➢ 铁素体比≧0.85,铁素体比高,铸坯收缩大,防铸坯凹陷,用包晶钢渣。 ➢ 铁素体比= 0.8~0.5,用锰钢渣。 ➢ 铁素体比≦ 0.5,用45钢渣。
2021/3/12
30
1.6 钢的裂纹敏感性评价
Cp=0.08-0.16% 表裂 内裂 FP=0.85-1.05 /凹陷 /粘结
连铸坯缺陷
目录
第一部分 裂纹缺陷 第一章综述
1.1 裂纹分类方法 1.2 各种裂纹的形成机理及其特征 1.3 铸坯裂纹类型与形成位置的关系 1.4 连铸坯形成裂纹的必要条件 1.5 裂纹类型与微观结构和脆性温度区间的关系 1.6 钢的裂纹敏感性评价 1.7 钢中残余有害元素对性能影响 第二章 表面裂纹 2.1 网状裂纹 2.2 星形裂纹 2.3 纵裂纹 2.4 横裂纹
连铸方坯常见表面缺陷及控制
刘桂秋,工程师,2008年毕业于辽宁科技大学冶金工程专业。
E-mail :***********************连铸方坯常见表面缺陷及控制刘桂秋1,姜晓楠2,高财1,朱永泉1(1.凌源钢铁股份有限公司,辽宁凌源122500;2.中华人民共和国鞍山海关,辽宁鞍山114002)摘要:针对凌源钢铁股份有限公司炼钢厂方坯连铸生产过程中出现的脱方、渣沟、凹陷等表面缺陷进行了跟踪轧制,根据取样检验结果分析了缺陷产生的原因。
采取了优化结晶器铜管倒锥度、优化配水、优化保护渣性能等相应的措施后,上述缺陷得到了有效解决,提高了连铸方坯的表面质量。
关键词:连铸;方坯;脱方;渣沟;凹陷中图分类号:TF777文献标识码:A文章编号:1006-4613(2021)01-0053-06Common Defects on Surface of Continuous Casting Square Billetsand Control of the DefectsLiu Guiqiu 1,Jiang Xiaonan 2,Gao Cai 1,Zhu Yongquan 1(1.Lingyuan Iron &Steel Co.,Ltd.,Lingyuan 122500,Liaoning ,China ;2.Anshan Customs District P.R.China ,Anshan 114002,Liaoning ,China )Abstract :With regard to the defects such as rhombic contours,slag runners and concaveson surface of continuous casting square billets produced in Steelmaking Plant of Lingyuan Iron and Steel Co.,Ltd.,the billets were tracked during rolling and then the causes leading to the defects were analyzed based on the inspection results of tested samples.After taking the corresponding measures such as optimizing the inverted taper of the mold copper tube,carrying out the optimal allocation of water and optimizing the properties of mold powder,the above-mentioneddefects were effectively controlled and the surface quality of the continuous casting square billetswas improved.Key words 院continuous casting;square billet;rhombic contour;slag runner;concave铸坯表面缺陷对轧制后成品材的影响较复杂,相同铸坯表面缺陷对不同钢种、不同轧制规格、不同坯型的影响各不相同。
连铸板坯缺陷特征和缺陷图谱
连铸板坯缺陷特征和缺陷图谱首钢京唐板坯质检编制2010年8月8日一.连铸坯质量特征综述1.1连铸坯质量定义和特征所谓连铸坯质量是指的到合格产品所允许的铸坯缺陷的严重程度。
对铸坯质量要求而言,主要有四项指标,即连铸坯几何形状、表面质量、内部组织致密性和钢的洁净性;而这些质量要求与连铸机本身设计,采取的工艺以及凝固特点密切相关。
1.2铸坯的检查和清理的意义提高钢的质量,降低成本,加强产品市场的竞争力是企业追求的目标,生产无缺陷连铸坯以保证高附加值产品优良的性能是永恒的主题,连铸坯的裂纹和夹杂物所产生的缺陷可以说是影响产品质量的两大障碍,生产无缺陷或缺陷不足以影响产品质量的连铸坯,这是要努力达到的目标,而连铸坯裂纹和夹杂物所产生的缺陷是受设备、工艺、管理等多种因素制约的。
因此设备、工艺和管理的现代化加上人的质量意识是提高产品质量的关键。
,但是在连铸生产中,铸坯的各种缺陷总是无法避免的,铸坯清理对钢厂保障铸坯质量、降低废品比例具有重要意义。
(1)火焰铸坯清理的注意事项1)一般对表面质量要求较高的钢种,铸坯清理的目的以检查铸坯表面和皮下质量为主,包括夹杂物、气泡、裂纹等分布情况,在清理检查的基础上提供铸坯的进一步处理(清除缺陷、决定铸坯表面质量级别、是否送机器去皮、决定钢种是否达到热送条件等)的意见。
2)微合金钢如Nb、V微合金钢和包晶钢等容易产生角部横裂纹,往往位于铸坯振痕谷底,也需要用火焰清理才能发现。
这方面也应引起足够重视。
3)对于包晶钢、中碳钢等钢种,则以人工清理肉眼可见缺陷为主,包括铸坯常见的表面缺陷,如纵裂、角横裂、重接、凹陷、夹渣、毛刺等,以便尽量降低铸坯判废损失。
(2)不良的火焰清理的危害虽然火焰清理是检查和去除连铸坯表面缺陷的一个极好的方法。
但是,这项操作的确需要掌握一定的技巧,一旦能够正确地操作可确保最终产品不产生额外的表面缺陷。
连铸坯表面上的深槽、凸脊和界面必须平滑以确保清理操作本身不造成额外表面缺陷。
连铸方坯缺陷图谱PDF
�4� 保证结晶器钢水流动合理性 ◆结晶器液面波动±3�±5mm ◆水口对中 ◆合适的水口插 入深度。
�5� �6�
�7�
保证结晶器初始坯壳均匀生长 ◆合适结晶器锥度◆结晶器弱冷◆热顶结晶器。 合适的结晶器振动 ◆合适的负滑脱值 ◆合适的频率和振幅 ◆振动偏差�纵向、横向� 0.2mm�。 良好的连铸机设备状况�保证出结晶器铸坯运行良好 ◆结晶器与零段、二冷区上部对弧要 准 ◆冷却均匀性良好。
锥度不合适��7�结晶器钢液流动 ◆水口不对中�◆水口插入深度不合适。�8�结晶器振动 ◆振痕深�
◆负滑脱时间增大。
裂纹严重时会造成漏钢和钢坯废品。
预防及消除方法
防止纵裂纹产生的根本措施就是使结晶器弯月面区域坯壳厚度均匀生长。
�1� �2� �3�
尽量降低钢中[S]、[P]含量�提高 Mn/S。 合适的拉坯速度。 合适的保护渣 ◆ η·ν=2�4 ◆液渣层厚度 10�15mm ◆高结晶温度的保护渣 ◆均匀 渣膜厚度�150μm/0.3�0.5kg/m2�。
1.表面纵裂纹
连铸方坯缺陷图谱
定义与外观
沿拉坯方向�铸坯表面中心位置附近产生的裂纹�裂纹长 10�1500mm�宽 0.1�3.5mm�深�5mm。 成因及危害
在结晶器弯月面区�钢液面下 170mm�左右�钢液凝固在固相线以下发生δ→γ转变�导致凝固 厚度生产的不均匀性�由于热收缩使坯壳产生应力梯度�在薄弱处产生应力集中�坯壳在表面形成纵向
4
5.星状裂纹
定义与外观 裂纹位于铸坯表面常被 FeO 覆盖�经酸洗后才能被发现�表面之�结晶器弯月面区凝固壳厚度不均匀性是产生表面纵裂纹的根本原因�
在二冷区铸坯裂纹进一步扩展。导致表面纵裂纹指数增加的因素有��1�钢水成分 ◆[S]�0.020%�[P]
连铸坯主要表面缺陷类型
连铸坯主要表面缺陷类型
连铸坯主要表面缺陷有:深振痕、凹陷、裂纹等。
1、深振痕
连铸坯的振痕有凹陷形振痕、钩形振痕两种类型。
连铸坯振痕较浅时,一般不会对最终成品产生影响;振痕较深时,在振痕波谷处,由于受到的冷却强度较弱,铸坯皮下晶粒粗大,就可能成为连铸坯横向裂纹的根源。
影响振痕深度的因素主要有润滑方式、钢种成分、保护渣性能、结晶器振动模式等。
减小结晶器内钢液初始凝固坯壳的弯曲变形程度可以降低连铸坯的振痕深度。
2、表面凹陷缺陷
连铸坯的表面凹陷有横向凹陷和纵向凹陷两种类型。
横向凹陷的形成与结晶器内液位上升有关,当液位波动峰值超过渣圈时,带动渣圈下移,此时形成横向凹陷。
纵向凹陷是结晶器上部锥度太小和刚性的角部转动,使小偏离角凹陷形成,由于结晶器下部锥度太大,结晶器压向坯壳使凹陷增加,从而在宽面出现偏离角凹陷。
降低结晶器冷却强度,提高结晶器内凝固坯壳所受冷却强度的周向均匀性,防止结晶器液位波动过大,可以消除铸坯的表面凹陷缺陷。
3、表面裂纹缺陷
表面裂纹主要有横向裂纹、纵向裂纹、星型裂纹等。
结晶器内初始凝固坯壳厚度不均匀,在坯壳薄弱处产生应力集中,会产生纵向裂纹。
表面横裂纹一般出现在振痕波谷处。
星型裂纹一般在铸坯表面去除氧化铁皮或渣膜后才会发现,与铸坯表面吸收了结晶器的Cu,同时铸坯表面Fe的选择性氧化,使残存元素(Cu、Sn 等)残留,沿晶界渗透形成星型裂纹。
保证结晶器内初始凝固坯壳厚度的均匀性是控制纵向裂纹的关键。
控制横向裂纹的关键是降低铸坯振痕深度,避免铸坯在低温脆性区弯曲或矫直。
控制星型裂纹的关键是结晶器内壁状态是否良好,铸坯温度控制是否合理。
连铸坯缺陷分析
10 11.A , B,C 类 超 尺寸
若一个试场同类夹杂物有粗有细,应按它们的总长度评级,细系夹杂物的长度之 和大于粗系,则按细系评级. 若一个 A 类,B 类或 C 类夹杂物在长度或宽度上超尺寸,那么位于试场内的夹杂 物部分应按最接近的细系或粗系测量并计入评级结果,并且应分别单独记录。 若一个试 场内出现 一个超大 的 D 类夹 杂, 则它应 作为 D 类 粗系参加 评级, 且应 单独记录。
12. D 类 超 尺寸
若一个试场内出 现一个超大的 D 类夹杂,则参照 ISO4967 评 级 图 Ds 系列评级。
若一个试场内 出现一个超大 的 D 类夹杂, 则按标准评级 图 Ds 系列评 级。
若一个试场 内出现一个 超大的 D 类 夹杂,则参照 ISO4967 评级 图 Ds 系列评 级。
按图谱序列表 的第 8 系列评 级
8
若一个试场中的夹杂物含量处于评级图的 相邻两结级别之间,应评为较低的那一级.
一个试场中夹 杂物的长度符 合哪个尺寸系 数就评哪个。
9
若一个夹杂物宽度沿长度方向 由细变粗, 且长度的一半以上属 于粗系,则应按粗系评级。
一个串状夹杂物的宽度不同, 则应将最大夹杂物的宽度视为 该串状夹杂物的宽度
一个夹杂物有 细有粗, 粗的长 则按粗的评级
技术中心内部资料
连铸优特钢缺陷
石钢京诚装备技术有限公司质量部
封面说明:X-轴方向1%宏观应变载荷产生的等价塑性应变的理论分布。
创建时间:2014-12-12 13:22:00
Page 1 of 缺陷 Ⅰ 1
1.1 导言 1 1.2 连铸坯质量 1 1.2.1 钢坯纯洁度 5 1.2.1.1 常规检测方法 5 1.2.1.2 测定钢纯洁度的间接方法 9 1.2.1.3 连铸生产钢坯夹杂物 10 1.3 夹杂物分析 12 1.3.1 连铸坯夹杂物 13 1.3.2 整个浇次连铸板坯夹杂物含量的变化规律 13 1.3.3 轴承钢夹杂物属性与来源分析 13 1.3.4 采用“6 西格玛原理” 质量控制钢中非金属夹杂物 18 1.4 钢中气泡 19 1.4.1 轴承钢中气泡 19 1.5 钢中气体 20 1.5.1 钢中氧 20 1.5.1.1 炼钢过程氧的控制 21 1.5.1.2 RH 处理低碳钢过程钢水中总氧预测模型…………………………..22 1.5.2 钢中的氢 23 1.5.2.1 精炼-连铸过程氢的控制 23 1.5.2.2 高氢量,高 Mn 与 Ni 及大规格的钢材中的“白点” 23 1.5.2.3 减小白点敏感性的措施 25 1.5.3 钢中的氮 25 1.5.4 钢中的硫 27 参考文献 28
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连铸坯主要表面缺陷类型
连铸坯主要表面缺陷有:深振痕、凹陷、裂纹等。
1、深振痕
连铸坯的振痕有凹陷形振痕、钩形振痕两种类型。
连铸坯振痕较浅时,一般不会对最终成品产生影响;振痕较深时,在振痕波谷处,由于受到的冷却强度较弱,铸坯皮下晶粒粗大,就可能成为连铸坯横向裂纹的根源。
影响振痕深度的因素主要有润滑方式、钢种成分、保护渣性能、结晶器振动模式等。
减小结晶器内钢液初始凝固坯壳的弯曲变形程度可以降低连铸坯的振痕深度。
2、表面凹陷缺陷
连铸坯的表面凹陷有横向凹陷和纵向凹陷两种类型。
横向凹陷的形成与结晶器内液位上升有关,当液位波动峰值超过渣圈时,带动渣圈下移,此时形成横向凹陷。
纵向凹陷是结晶器上部锥度太小和刚性的角部转动,使小偏离角凹陷形成,由于结晶器下部锥度太大,结晶器压向坯壳使凹陷增加,从而在宽面出现偏离角凹陷。
降低结晶器冷却强度,提高结晶器内凝固坯壳所受冷却强度的周向均匀性,防止结晶器液位波动过大,可以消除铸坯的表面凹陷缺陷。
3、表面裂纹缺陷
表面裂纹主要有横向裂纹、纵向裂纹、星型裂纹等。
结晶器内初始凝固坯壳厚度不均匀,在坯壳薄弱处产生应力集中,会产生纵向裂纹。
表面横裂纹一般出现在振痕波谷处。
星型裂纹一般在铸坯表面去除氧化铁皮或渣膜后才会发现,与铸坯表面吸收了结晶器的Cu,同时铸坯表面Fe的选择性氧化,使残存元素(Cu、Sn 等)残留,沿晶界渗透形成星型裂纹。
保证结晶器内初始凝固坯壳厚度的均匀性是控制纵向裂纹的关键。
控制横向裂纹的关键是降低铸坯振痕深度,避免铸坯在低温脆性区弯曲或矫直。
控制星型裂纹的关键是结晶器内壁状态是否良好,铸坯温度控制是否合理。