连铸坯缺陷

合集下载

防止连铸坯夹渣杂缺陷的措施及规定

防止连铸坯夹渣杂缺陷的措施及规定

防止连铸坯夹渣杂缺陷的措施及规定在连铸生产过程中,坯料夹杂或夹渣是一个常见的问题。

坯料夹渣或夹杂会造成铸造坯料表面缺陷,严重的情况下会导致铸坯折断。

为了防止连铸坯夹杂或夹渣缺陷,我们制定了以下的措施及规定。

坯料的质量控制坯料的质量是影响连铸坯料夹杂或夹渣的一个重要因素。

为了保障坯料质量的稳定,需要做到以下几点:1.选择原材料时,需要严格按照规定采购车间标准,增加试做,检查原材料质量的合格率。

2.要求原材料供应商提供合格证明和检验报告,保证原材料的质量符合车间标准要求。

3.对原材料的人工检验和自动检验要做好记录,及时发现和解决问题。

4.对重点原材料,比如矿渣等,要做好监测和抽样分析,及时发现问题。

5.对原材料的质量问题,需要做到及时沟通和处理。

连铸机操作规范连铸机操作规范是实现铸造质量控制的重要手段。

以下是进行连铸操作的规定:1.连铸机操作人员需要经过专业的培训和技术能力考核。

2.连铸机操作人员在接班时,需要对前一班的连铸机操作记录进行查看和交接,及时了解连铸机运行情况。

3.对于连铸机在运行过程中出现的异常情况,需要及时进行处理,保证连铸机运行的稳定性。

4.操作人员需要通过联合巡视和自检来发现问题和解决问题。

5.班组和质量检查组应定期开展连铸机检查和检验,及时发现和解决质量问题。

连铸模具的管理连铸模具是保障连铸坯料质量的关键性因素。

以下是连铸模具的管理规定:1.对连铸模具进行清洗和修理,以便发现隐患和进行预防性维护。

2.对连铸模具进行周期性的检测和检验,判断模具的状况和使用寿命。

3.对连铸模具进行标记和记录,以便在使用过程中进行跟踪和管理。

4.严格控制连铸模具的使用寿命和使用次数,保证坯料的质量和稳定性。

坯料质量的检验和测试坯料质量的检验和测试是确保连铸坯料夹渣杂缺陷的措施之一。

以下是坯料质量的检验和测试规定:1.要求在连铸过程中不断地进行袖口检测,确保坯料不夹杂夹渣。

2.对于连铸生产中的中间产品进行定期检验,以便发现和解决质量问题。

防止连铸坯夹渣(杂)缺陷的措施及规定精选

防止连铸坯夹渣(杂)缺陷的措施及规定精选

防止连铸坯夹渣(杂)缺陷的措施及规定连铸质量及干净钢消费决定了提供连铸钢水的温度、成分和纯洁度都要进展操纵,同时平衡有节拍的为连铸机提供合格质量的钢水,也是保证连铸机消费顺利及质量保障的首要条件。

提高质量认识,标准质量行为,使炼钢-连铸消费过程的质量受控,是本规定的主旨。

1连铸坯夹渣(杂)缺陷的成因1.1定义:来自于炼钢和浇注过程中的物理化学产物、耐火材料侵蚀产物或卷入钢液的保护渣被称为非金属夹杂物。

非金属夹杂物在酸浸低倍试样上表现为暗黑色斑点。

而铸坯夹渣是夹杂物镶嵌于铸坯外表(形状不规那么)或皮下(深浅不一)的渣疤。

1.2成因:1.2.1钢水氧化性强、温度高、夹杂物多,流淌性不好,中包水口壁上高熔点的大块附着物忽然脱落进入结晶器钢水。

1.2.2保护渣功能不良,渣条多,渣条未捞净,以及中间包液面、结晶器液面急剧波动,造成中间包下渣、结晶器内卷渣并镶嵌于坯壳处。

1.2.3钢包底吹制度执行不好,造成脱氧产物上浮排除不充分。

1.2.4保护浇注执行不好,造成钢液被二次氧化。

1.2.5中包钢水过热度高,耐火材料质量差。

1.2.6中间包内吹氧、加调温料以及金属料等。

2连铸坯夹渣(杂)缺陷的危害2.1破坏了钢的连续性和致密性,轧制过程不能被焊合消除,对钢材质量造成危害。

2.2夹渣部位坯壳薄,容易破裂导致漏钢;夹渣铸坯轧制后,钢材外表遗留为结疤。

3钢水质量操纵措施及规定3.1在一定的消费条件下,要降低转炉终点溶解氧[O]溶,必须精确操纵终点钢水碳和温度。

3.1.1冶炼Q195及其他钢种,终点[C]操纵≥0.06%。

3.1.2开机第一炉及热换第一炉,终点温度操纵在1735~1755℃,出钢温度操纵在1715~1735℃。

特别情况下按机长要的温度操纵。

连浇时那么按温度制度规定操纵。

3.1.3提高转炉终点碳和温度的命中率,杜绝后吹。

挡渣出钢操纵下渣量。

3.1.4冶炼Q195,开机及热换第一炉,成品[Mn]按0.45%左右操纵,成品[Si]按0.15%左右操纵,锰硅比≥2.8;并按3.0左右操纵。

连铸坯质量缺陷

连铸坯质量缺陷

连铸坯的质量缺陷及控制摘要连铸坯质量决定着最终产品的质量。

从广义来说所谓连铸坯质量是得到合格产品所允许的连铸坯缺陷的严重程度,连铸坯存在的缺陷在允许范围以内,叫合格产品。

连铸坯质量是从以下几个方面进行评价的:(1)连铸坯的纯净度:指钢中夹杂物的含量,形态和分布。

(2)连铸坯的表面质量:主要是指连铸坯表面是否存在裂纹、夹渣及皮下气泡等缺陷。

连铸坯这些表面缺陷主要是钢液在结晶器内坯壳形成生长过程中产生的,与浇注温度、拉坯速度、保护渣性能、浸入式水口的设计,结晶式的内腔形状、水缝均匀情况,结晶器振动以及结晶器液面的稳定因素有关。

(3)连铸坯的内部质量:是指连铸坯是否具有正确的凝固结构,以及裂纹、偏析、疏松等缺陷程度。

二冷区冷却水的合理分配、支撑系统的严格对中是保证铸坯质量的关键。

(4)连铸坯的外观形状:是指连铸坯的几何尺寸是否符合规定的要求。

与结晶器内腔尺寸和表面状态及冷却的均匀程度有关。

下面从以上四个方面对实际生产中连铸坯的质量控制采取的措施进行说明。

关键词:连铸坯;质量;控制1 纯净度与质量的关系纯净度是指钢中非金属夹杂物的数量、形态和分布。

夹杂物的存在破坏了钢基体的连续性和致密性。

夹杂物的大小、形态和分布对钢质量的影响也不同,如果夹杂物细小,呈球形,弥散分布,对钢质量的影响比集中存在要小些;当夹杂物大,呈偶然性分布,数量虽少对钢质量的危害也较大。

此外,夹杂物的尺寸和数量对钢质量的影响还与铸坯的比表面积有关。

一般板坯和方坯单位长度的表面积(S)与体积(V)之比在0.2~0.8。

随着薄板与薄带技术的发展,S/V可达10~50,若在钢中的夹杂物含量相同情况下,对薄板薄带钢而言,就意味着夹杂物更接近铸坯表面,对生产薄板材质量的危害也越大。

所以降低钢中夹杂物就更为重要了。

提高钢的纯净度就应在钢液进入结晶器之前,从各工序着手尽量减少对钢液的污染,并最大限度促使夹杂物从钢液中排除。

为此应采取以下措施:⑴无渣出钢。

防止连铸坯夹渣(杂)缺陷的措施及规定

防止连铸坯夹渣(杂)缺陷的措施及规定

防止连铸坯夹渣(杂)缺陷的措施及规定连铸坯夹渣缺陷是指坯料表面或内部存在杂质、气泡、夹杂等不良缺陷,影响钢材的质量、抗拉强度和弯曲性能等。

为了达到优良的钢材质量,必需实行有效的措施和规定来防止连铸坯夹渣缺陷。

本文将从以下三个方面进行阐述:一、提高原材料采购质量1. 严格掌控原材料入厂质量,切实保证原材料质量符合生产要求。

对于原材料中含有较多夹杂物、矿物质等的,必需进行筛选、洗涤等处理。

2. 检验原材料物理化学性质,特别是对低熔点元素(如锌、铅等)的含量进行监控,以避开因过高的含量而引起的夹渣问题。

3. 尽可能避开原材料采纳较差的杂质来源,如回炉钢、铸造铁水等,以免发生连铸坯夹渣缺陷造成挥霍。

二、加强连铸设备及工艺掌控1. 针对连铸消耗品(如喷嘴、钢水箱等)进行补修或更换,保证其完好无损,确保钢水顺畅流动。

2. 对连铸工作过程中的电子设备进行定期维护保养,避开设备显现失灵情况。

3. 加强连铸实时监控,适时把握连铸过程中的各项参数,特别是钢水温度、流速、液面高度等指标,对显现异常情况要适时进行调整。

4. 订立连铸操作规定,严格掌控好连铸的操作时间、温度、速度等参数,防止显现突发事件,尽力避开连铸坯夹渣缺陷的发生。

5. 对于连铸工艺中加入的各种药剂和保护剂,要严格依照比例和规定加入,以确保连铸炉体内的化学环境稳定,避开发生夹渣现象。

三、加强质量监测与数据分析1. 加强对坯料全过程的监控,包括原材料采购、加工过程、连铸过程等方面,对质量异常情况进行记录,以便进行分析和改进。

2. 严格执行连铸产品检验规定,对检验结果不合格的坯料适时予以退换,避开将有问题的坯料流入后续生产环节。

3. 利用科学的统计方法,对连铸产品(如钢板、钢管等)质量进行分析和统计,发觉质量异常情况时,要适时订立矫正措施。

4. 对每一批次的连铸坯料,要进行全方位的检测与检验,对于可能引发夹渣缺陷的界限要进行特别关注。

为了有效防止连铸坯夹渣缺陷,需要各个环节搭配,形成一个完整的质量管理闭环。

连铸坯的缺陷与控制技术

连铸坯的缺陷与控制技术

目录摘要 (1)ABSTRACT (2)引言 (3)1 连铸坯的形状质量控制 (4)1.1鼓肚变形 (4)1.1.1 鼓肚产生的原因 (4)1.1.2 采取的措施 (4)1.2菱形变形(脱方) (4)1.2.1 脱方成因 (5)1.2.2 减少脱方的措施 (5)1.3圆铸坯变形 (6)1.3.1 椭圆形变形 (6)1.3.2 不规则变形 (6)2 连铸坯的表面质量控制 (7)2.1振动痕迹 (7)2.2表面裂纹 (7)2.2.1 表面纵裂纹 (7)2.2.2 表面横裂纹 (8)2.3表面夹渣 (10)2.3.1 表面夹渣形成的原因 (10)2.3.2 解决表面夹渣的方法[5] (11)2.4保护渣性能对连铸圆坯表面质量的影响[7] (11)3 连铸坯的内部质量控制 (13)3.1连铸坯的中心裂纹 (13)3.1.1内部裂纹产生的原因及预防措施 (13)3.2连铸坯的内部夹杂物 (14)3.2.1夹杂物的分类 (15)3.2.2 夹杂物的来源[9] (15)3.2.3 连铸坯中夹杂物的控制方法[10] (16)结论 (18)致谢 (19)参考文献 (20)摘要连铸坯质量决定着最终产品的质量。

从广义来说所谓的连铸坯质量是得到严格产品所允许范围以内,叫合格产品。

连铸坯质量是从一下几个方面进行评价的:1. 连铸坯的外观形状:是指连铸坯的几何尺寸是否符合规定的要求。

与结晶器内腔尺寸和表面状态及冷却的均匀程度有关。

2. 连铸坯的表面质量:主要是指连铸坯表面是否存在裂纹,夹渣等缺陷。

连铸坯这些表面缺陷主要是钢液在结晶器内坯壳形成生长过程中产生的,与浇注温度,拉坯速度,保护渣性能,浸入式水口的设计,结晶式的内腔形状,水缝均匀情况,结晶器振动以及结晶器液面的稳定因素有关。

3. 连铸坯的内部质量:是指连铸坯是否具有正确的凝固结构,以及裂纹,偏析,疏松等缺陷程度。

二冷区冷却水的合理分配,支撑系统的严格对中是保证铸坯质量的关键。

连铸坯表面质量缺陷及处理措施

连铸坯表面质量缺陷及处理措施

连铸坯表面质量缺陷及处理措施【摘要】对于连铸板坯而言,振痕和裂纹是其主要的质量缺陷问题。

虽然这个缺陷在大多数情况下对连铸坯的质量影响不大,但是如果不及时有效的处理调还会带来很多附加的质量问题。

尤其是在生产不锈钢和高强度钢品种时,这种质量缺陷所带来的弊端更加明显。

【关键词】连铸坯;振痕;质量影响1振痕形成机理在连铸坯生产中,振痕和裂纹是两种最为常见的质量缺陷问题,主要是由于弯月面顶端溢流造成的,该缺陷形成以后会附带其他质量缺陷一并产生。

2振痕对铸坯质量的影响振痕对连铸坯的质量影响会导致后期出现列裂纹,包括横裂纹、角部横裂纹及矫直裂纹。

如果连铸坯内掺杂的杂质较多,会导致大规模网状裂纹的出现,甚至出现穿钢现象。

如果在连铸坯出现振痕的地方晶粒很大,就会产生晶间裂纹现象,在这样的情况下需要对连铸坯修磨,从而提高成材率。

3影响振痕深度的因素振动参数对振痕形状和深度有重要影响。

其中振幅、频率、负滑脱时间及振动方式最为重要;结晶器保护渣的耗量、粘度、保温性能及表面性能等有着重要影响;.钢的凝固特性对振痕有着重要影响,特别是当钢中碳含量和钢中Ni/Cr 比影响最突出。

当钢中碳含量为0.1%左右,Ni/Cr≈0.55左右,铸坯表面振痕最深。

4减少振痕深度的措施采用小振幅(s)、高频率(f)及减少负滑脱时间(tN),可以有效的减少振痕的深度;采用非正弦振动方式可以减少振痕的深度,这是因为非正弦振动其负滑脱时间tN比正弦振动短;采用渣耗量低,粘度高的保护渣,可以使振痕深度变浅。

采用保温性能好和能增加弯月面半径的保护渣可以减少振痕深度;提高不锈钢、钢液的过热度,尤其是含钛和含铝的不锈钢对减少该钢表面振痕深度是有效的。

提高结晶器进出冷却水的温差,对减少振痕深度是有利的。

5铸坯表面裂纹5.1表面纵裂纹铸坯表面纵裂纹是铸坯最主要表面缺陷,对铸坯质量影响极大,特别是板坯和圆坯最为突出,报废量和整修量很大。

5.1.1纵裂纹类型铸坯表面沟槽纵裂纹。

连铸坯表面裂纹缺陷分析

连铸坯表面裂纹缺陷分析
No .1 Mac 2 1 r h 01
《 中国重型装备》
C I A H A Y E UP N H N E V Q I ME T
从 图 4可 以看 出 , 轧 态 、 火 态 和 调 质 态 热 正 6 S2 n钢 8 0C亚温 淬 火 的 转 变 产物 为 马 氏体 0 iM 0 ̄
体延 伸形成 的三 角 区部 位 晶粒 明显要 比裂 纹的 另 侧 晶粒要 细 , 纹两侧 组织 不 同 , 明裂纹 两侧 裂 说

端存 在沿 奥 氏体 晶界 向基体 延 伸 的 现象 , 明横 说
裂是 沿 晶开裂 , 钢水 结 晶成 固体 以后 产生 的 , 是 是

形成 组织 的温度不 同。三角 区部位 晶粒 细说 明该
钢亚 温淬火 后韧性 好 、 度高 的原 因之一 。 强
双相合 金 中双 相 的形 态对 试样 的力学性 能有
影响 , 主要表 现 在 对 裂纹 扩 展 的 阻碍 作 用 上 。当
铁 素体 呈针状 时 , 氏体 被铁 素 体 最 大限 度 的分 马 开 , 裂纹 的扩展 不仅 通过 马氏体 , 故 还必然 通过 铁 素体 。铁素 体在 断裂前会 产生 大量 塑性变形 而 消
若铁 素体呈 块状 形 态 时 , 则裂 纹 容 易 只沿 着 马 氏 体基 体扩展 , 而不 与孤立 的铁 素体相 遇 , 从而 使试 样 的韧性变 差 。另外 , 素体 呈针状 、 氏体 为细 铁 马
小板条 状时 , 晶界 总面积 较块状 时要 大 的多 , 也有 利 于力学性 能 的提 高 。针状组 织 比颗 粒状组 织细 小 , 材料变 形 和断 裂 的过 程 中能 吸收 更 多 的能 在
耗较 多 能量 , 而 对 裂 纹 的 扩 展 起 到 阻碍 作 用 。 从

连铸坯内部缺陷

连铸坯内部缺陷

连铸坯内部缺陷连铸坯的内部质量,主要取决与其中心致密度。

而影响连铸坯中心致密度的缺陷是各种内部裂纹、中心偏析和中心疏松,以及铸坯内部的宏观非金属夹杂物。

连铸坯的内裂、中心偏析和疏松这些内部缺陷的产生,在很大程度上和铸坯的二次冷却以及自二冷区至拉矫机的设备状态有关。

1)内部裂纹形成的原因各种应力(包括热应力、机械应力等)作用在脆弱的凝固界面上产生的裂纹成为内部裂纹。

通常认为内裂纹是在凝固的前沿发生的,大都伴有偏析的存在,因而也把内裂纹称为偏析裂纹。

还有一种说法是内裂纹是在凝固前沿发生的,其先端和凝固界面相连接,所以内裂纹也可以称为凝固界面裂纹。

除了较大的裂纹,一般内裂纹可在轧制中焊合。

连铸坯的内部裂纹是指从铸坯表面一下直至铸坯中心的各种裂纹,其中包有中间裂纹、对角线裂纹、矫直弯曲裂纹、中心裂纹、角部裂纹。

无论内裂文的类型如何,其形成过程大都经过三个阶段:1拉伸力作用到凝固界面;2造成柱状晶的晶界见开裂;3偏析元素富集的钢液填充到开裂的空隙中。

内裂发生的一般原因,是在冷却、弯曲和矫直过程中,铸坯的内部变形率超过该刚中允许的变形率。

通常在压缩比足够大的情况下,且钢的纯净度较高时,内裂纹可以在轧制中焊合,对一般用途的钢不会带来危害;但是在压缩比小,钢水纯净度较低,或者对铸坯心部质量有严格要求的铸坯,内裂就会使轧制材性能变坏并降低成材率。

2)中心裂纹铸坯中心裂纹在轧制中不能焊合,在钢板的断面上会出现严重的分层缺陷,在钢卷或薄板的表面呈中间波浪形缺陷,在轧制中还会发生断带事故,给成品材的轧制和使用带来影响A裂纹的成因分析铸坯裂纹的形成时传热、传质和应力相互作用的结果。

带液芯的高温铸坯在铸机内运行过程中,各种力的作用是产生裂纹的外因,而钢对裂纹的敏感性是产生裂纹的内因。

铸坯是否产生裂纹决定于钢高温力学性能、凝固冶金行为和铸机运行状态,板坯中心裂纹是由于凝固末端铸坯鼓肚或中心偏析、中心凝固收缩产生的。

1控制铸机的运行状态刚的高温力学性能与铸坯裂纹有直接关系,铸坯凝固过程固、液及诶按承受的应力(如热应力、鼓肚力、矫直力等)和由此产生的塑性变形超过允许的高温强度和临界应变值,则形成树枝晶间裂纹,柱状晶越发达,越有利于裂纹的扩展。

连铸板坯缺陷图谱及产生的原因分析(新)

连铸板坯缺陷图谱及产生的原因分析(新)

第二篇连铸板坯缺陷(AA)第二篇连铸板坯缺陷(AA) (1)2.1表面纵向裂纹(AA01) (4)2.2表面横裂纹(AA02) (6)2.3星状裂纹(AA03) (7)2.4角部横裂纹(AA04) (8)2.5角部纵裂纹(AA05) (10)2.6气孔(AA06) (11)2.7结疤(AA07) (12)2.8表面夹渣(AA08) (13)2.9划伤(AA09) (14)2.10接痕(AA13) (15)2.11鼓肚(AA11) (16)2.12脱方(AA10) (17)2.13弯曲(AA12) (18)2.14凹陷(AA14) (19)2.15镰刀弯(AA15) (20)2.16锥形(AA16) (21)2.17中心线裂纹(AA17) (22)2.18中心疏松(AA18) (23)2.19三角区裂纹(AA19) (25)2.20中心偏析(AA20) (27)2.21中间裂纹(AA21) (28)2.1表面纵向裂纹(AA01)图2-1-11、缺陷特征表面纵向裂纹沿浇注方向分布在连铸板坯上下表面,裂纹深度一般为2mm~15mm,裂纹部位伴有轻微凹陷。

在连铸浇注过程中,当连铸板坯坯壳在结晶器内所受到的应力超过了坯壳所能承受的抗拉强度时,即产生表面纵向裂纹。

表面纵向裂纹缺陷在结晶器内产生,出结晶器后若二次冷却不良,裂纹将进一步加剧。

2、产生原因及危害产生原因:①钢中碳含量处于裂纹敏感区内;②结晶器钢水液面异常波动。

当结晶器钢水液面波动超过10mm时,表面纵向裂纹缺陷易于产生;③结晶器保护渣性能不良。

保护渣液渣层过厚、过薄或渣膜厚薄不均,使连铸板坯凝固壳局部过薄而产生表面纵向裂纹;④中间包浸入式水口与结晶器对中不良,钢水产生偏流冲刷连铸板坯凝固壳,而产生表面纵向裂纹。

危害:轻微的表面纵裂纹经火焰清理后均能消除;表面纵向裂纹严重时可能会造成漏钢;表面纵向裂纹若送热轧进行轧制可能导致热轧产品出现分层、开裂缺陷。

连铸板坯和方坯表面缺陷的分析与判定

连铸板坯和方坯表面缺陷的分析与判定

连铸板坯和方坯表面缺陷的分析与判定在钢板、板卷、棒材、型钢上的裂纹和其他等缺陷,大多源于板坯和方坯上的缺陷。

大多数钢厂面临的最大挑战是缺乏如何判定、检查这些缺陷及相应地采取何种对策。

令人遗感的是,目前很多钢厂在遇到表面缺陷问题时所做的一些措施并不恰当,甚至没有对板坯和方坯进行检测分析便作出相应的判定和措施。

板坯和方坯的表面缺陷类型板坯和方坯上的所有表面缺陷几乎可以被分成五大类,并且在世界上大多数铸机上它们的发生位置基本上也是可以预测的。

基于经验,按照发生概率的大小顺序列出了五大类缺陷,即针状气孔/疏松、裂纹、深度振痕、不良清理、结晶器壁污染和刮伤等。

依据加热炉的氧化条件,可以确定板坯和方坯表面缺陷的临界深度,从而判定缺陷是否最终会成为板材、板卷或棒材上的轧制表面缺陷。

大部分加热炉操作会导致1%~2%厚度的铸坯氧化成氧化铁皮。

如果铸坯的厚度为220mm,就意味着在加热过程中会造成2.2mm~4.4 mm的厚度损失。

这个厚度损失同样会传递到表面缺陷。

如果铸坯表面缺陷的深度小于铸坯厚度的1%~2%,那么这些缺陷将在加热过程中稍除。

而那些比成为氧化铁的1%~2%厚度更深的缺陷,最终会造成轧材的表面缺陷。

针状气孔/疏松在所有铸机上。

针状气孔/疏松几乎都是常见的,也是最容易被忽略的铸坯缺陷。

如果钢中的气体得不到合理控制,就会在板坯和方坯表面上产生针状气孔/疏松。

当凝固率达到90%而气体总压力Ar+H2+N2+CO+CO2>1atm时,针状气孔/疏松就会在板坯和方坯表面上形成。

找出表面和皮下针状气孔/疏松的形成原因并不困难。

在实际生产中,皮下通常是指表面以下10mm的深度。

根据经验,针状气孔/疏松是影响钢板、板卷表面质量的最突出问题。

举一个板坯上的针状气孔/疏松的例子,钢种是V和Nb复合微合金化的A572 Gr50结构钢,含0.15%C,在铸坯上角部出现针状气孔/疏松,导致14.3mm厚的成材的上边部出现缺陷。

连铸坯缺陷及对策

连铸坯缺陷及对策

连铸坯在凝固过程中形成裂纹的原因随着市场竞争的日趋激烈,产品的质量已经成为占有市场的主要砝码,连铸坯作为炼钢厂的终端产品,其质量直接影响着轧材单位的产量和轧材质量,据统计炼钢厂连铸坯质量缺陷中约70%为连铸坯裂纹,连铸坯裂纹成为影响连铸坯产量和质量的重要缺陷之一,下面将对铸坯在凝固过程中裂纹的形成做简要分析:一、铸坯凝固过程的形成铸坯在连铸机内的凝固可看成是一个液相穴很长的钢锭,而凝固是沿液相穴的固液界面在液固相温度区间把液体转变为固体把潜热释放出来的过程。

在固液界面间刚凝固的晶体强度和塑性都非常小,当作用于凝固壳的热应力、鼓肚力、矫直力、摩擦力、机械力等外力超过所允许的外力值时,在固液界面就产生裂纹,这就形成了铸坯内部裂纹。

而已凝固的坯壳在二冷区接受强制冷却,由于铸坯线收缩,温度的不均匀性,坯壳鼓肚、导向段对弧形不准,固相变引起质点如(AlN)在晶界的沉淀等,容易使外壳受到外力和热负荷间歇式的突变,从而产生裂纹就是表面裂纹。

二、连铸坯裂纹形态和影响因素连铸坯裂纹形态分为表面裂纹和内部裂纹,表面裂纹有纵向、横向角部裂纹、表面横裂和纵裂、网状裂纹和凹陷等,内部裂纹有中间、中心和矫直裂纹等。

连铸坯裂纹的影响因素:连铸坯表面裂纹主要决定于钢水在结晶器的凝固过程,它是受结晶器传热、振动、润滑、钢水流动和液面稳定性所制约的,铸坯内部裂纹主要决定于二冷区凝固冷却过程和铸坯支撑系统(导向段)的对弧准确性。

铸坯凝固过程坯壳形成裂纹,从工艺设备和钢凝固特性来考虑影响裂纹形成的因素可分为:1、连铸机设备状态方面有:1)结晶器冷却不均匀2)结晶器角部形状不当。

3)结晶器锥度不合适。

4)结晶器振动不良。

5)二冷水分布不均匀(如喷淋管变形、喷咀堵塞等)。

6)支承辊对弧不准和变形。

2、工艺参数控制方面有:1)化学成份控制不良(如C、Mn/S)。

2)钢水过热度高。

3)结晶器液面波动太大。

4)保护渣性能不良。

5)水口扩径。

6)二次冷却水分配不良,铸坯表面温度回升过大。

连铸坯的缺陷及控制

连铸坯的缺陷及控制

二冷段和末端区的电磁搅拌可有效抑制枝晶搭桥形成封闭 的液窝。
连铸主要工艺参数
① 拉坯速度及其控制 ② 铸坯的冷却(结晶器冷却、二次冷却)
连铸坯的内部凝固是在出结晶器后进行的,后继的二次水冷、 弯曲矫直等直接影响内部质量。
连铸坯的缺陷及控制
提高连铸坯内部质量的工艺措施:
① 控制二冷段的传热,使铸坯均匀凝固,提高等轴晶率; 偏析、缩孔、缩松
② 降低浇钢的过热度; ③ 使用性能好的保护渣,防止钢水二次氧化和污染; ④ 控制拉速,保证连铸机正常运行; ⑤ 电磁搅拌(二冷段和末端区)。 偏析、缩孔、缩松
连铸坯的缺陷及控制
连铸坯的缺陷及控制
1. 连铸坯的表面缺陷
裂纹 气孔 夹杂 振痕、凹陷 成分偏析
连铸坯的缺陷及控制
1. 连铸坯的表面缺陷
裂纹 气孔 夹杂 振痕、凹陷 成分偏析
连铸坯的缺陷及控制
1. 连铸坯的表面缺陷 裂纹 气孔 夹杂 振痕、凹陷 成分偏析
钢水在结晶器内形成初凝固壳的状态是决定铸坯表面质量的关键
结晶器电磁搅拌:
(2)扩大等轴晶区改善宏观 偏析,减少粗大柱状晶区 。
软接触电磁连铸:
软接触电磁连铸:
(1)减轻结晶器振动对弯月 面的影响,液态渣膜连续均 匀。
软接触电磁连铸:
(2)减小初凝壳对结晶器的 压力和摩擦力 。
连铸坯的缺陷及控制
2. 连铸坯的内部缺陷
裂纹 气孔 夹杂 缩孔、缩松 成分偏析
连铸坯的缺陷及控制
提高连铸坯表面质量的工艺措施:
① 控制结晶器的传热,使初凝固壳均匀; 裂纹、凹陷
② 控制结晶器的振动;
振痕、横裂纹
③ 使用性能好的保护渣;
气孔、夹杂
④ 优化结晶器结构气孔、夹杂

连铸坯主要表面缺陷类型

连铸坯主要表面缺陷类型

连铸坯主要表面缺陷类型
连铸坯主要表面缺陷有:深振痕、凹陷、裂纹等。

1、深振痕
连铸坯的振痕有凹陷形振痕、钩形振痕两种类型。

连铸坯振痕较浅时,一般不会对最终成品产生影响;振痕较深时,在振痕波谷处,由于受到的冷却强度较弱,铸坯皮下晶粒粗大,就可能成为连铸坯横向裂纹的根源。

影响振痕深度的因素主要有润滑方式、钢种成分、保护渣性能、结晶器振动模式等。

减小结晶器内钢液初始凝固坯壳的弯曲变形程度可以降低连铸坯的振痕深度。

2、表面凹陷缺陷
连铸坯的表面凹陷有横向凹陷和纵向凹陷两种类型。

横向凹陷的形成与结晶器内液位上升有关,当液位波动峰值超过渣圈时,带动渣圈下移,此时形成横向凹陷。

纵向凹陷是结晶器上部锥度太小和刚性的角部转动,使小偏离角凹陷形成,由于结晶器下部锥度太大,结晶器压向坯壳使凹陷增加,从而在宽面出现偏离角凹陷。

降低结晶器冷却强度,提高结晶器内凝固坯壳所受冷却强度的周向均匀性,防止结晶器液位波动过大,可以消除铸坯的表面凹陷缺陷。

3、表面裂纹缺陷
表面裂纹主要有横向裂纹、纵向裂纹、星型裂纹等。

结晶器内初始凝固坯壳厚度不均匀,在坯壳薄弱处产生应力集中,会产生纵向裂纹。

表面横裂纹一般出现在振痕波谷处。

星型裂纹一般在铸坯表面去除氧化铁皮或渣膜后才会发现,与铸坯表面吸收了结晶器的Cu,同时铸坯表面Fe的选择性氧化,使残存元素(Cu、Sn 等)残留,沿晶界渗透形成星型裂纹。

保证结晶器内初始凝固坯壳厚度的均匀性是控制纵向裂纹的关键。

控制横向裂纹的关键是降低铸坯振痕深度,避免铸坯在低温脆性区弯曲或矫直。

控制星型裂纹的关键是结晶器内壁状态是否良好,铸坯温度控制是否合理。

防止连铸坯夹渣杂缺陷的措施及规定

防止连铸坯夹渣杂缺陷的措施及规定

防止连铸坯夹渣杂缺陷的措施及规定连铸是钢铁行业中加工成型最传统和常用的制造方法之一。

随着钢铁生产工艺的不断更新和完善,连铸技术在钢铁行业中的应用也不断加强。

连铸钢坯除了可以满足高效生产需求外,当时也存在着夹杂等质量问题,影响了后续钢材使用的性能和质量。

本文将从连铸钢坯夹渣杂的产生原因出发,结合现有的生产经验和规定,总结防止连铸坯夹渣杂缺陷的措施及规定,最终为连铸生产提供更可靠保障。

连铸钢坯夹渣杂的产生原因1.坯内气体和夹杂物钢水在流动过程中,由于发生溶解、析出、共沸等作用,使得其内部存在大量的气体、夹杂物和颗粒物等杂质。

在连铸过程中,由于浇注速度较快,钢水在流动过程中不断受到挤压,杂质无法顺利排除,最终被带入钢坯中。

2.结晶器和浇口的质量问题结晶器是连铸过程中钢水冷却条件的重要因素,结晶器壁面质量好坏对坯内夹杂物的生成影响巨大。

同时,浇口也是连铸缺陷的重要源头之一,浇注口不好,会说某些杂质残留在浇口内不能排除导致坯内夹杂物的产生。

3.工艺和操作不当连铸工艺和操作中很多细节问题通常会导致连铸缺陷的产生。

例如钢水温度过高,铸坯速度过快,冷却条件不正确等,都有可能促使钢坯内部存在夹杂物。

防止连铸坯夹渣杂缺陷的措施及规定根据连铸钢坯夹渣杂的产生原因,我们可以总结出以下的防止连铸坯夹渣杂缺陷的措施及规定:1.一定要坚持质量第一连铸质量第一的理念对于防止夹渣杂缺陷非常重要。

生产过程中,要将质量考虑为最高优先级,细化和规范各项操作流程。

例如,建立严格的质量控制体系,工艺参数的监控和调整,检验合格的副产品回炉等都是有效的防止夹杂杂的缺陷措施。

2.标准化操作规程制定合理、规范的操作规程可避免由于人为操作错误带入夹杂物。

例如,正确的浇注温度、浇注速度、结晶器设计和维护等都是需要制定标准化操作规程。

3. 灵活可靠的仪器、设备和检测方法为了更好的避免产生夹杂杂缺陷,建议使用适当的仪器设备和检测方法。

例如,实时检测钢水温度、成分等物理指标,以及持续监测结晶器和浇口等设备的运行状态,坚持巡检、维修和更换等规定操作规程。

连铸坯缺陷及预防措施

连铸坯缺陷及预防措施

连铸坯缺陷及预防措施连铸坯缺陷及预防措施1、⽅坯晶间裂纹、根源Cu 、Ni、Sn、Nb 与Al等元素的影响;铸机表⾯凹限,即使轻微凹限也会引起裂纹;保护渣不合适;结晶器液⾯波动严重;菱变严重;结晶器锥度太⼩;措施减少杂质元素含量;导致晶间裂纹的最主要原因是粗⼤晶粒结构以及沿晶粒边界的沉析,所以防⽌其产⽣的主要措施是在结晶器初始凝固阶段得以形成细⼩⽽均匀的结构;防⽌产⽣凹馅;⽤多⽔⼝代替直⽔⼝;2、⽓泡及针孔铸坯⽪下通⽓孔称为针孔,⽽⽪下闭⽓孔称为⽓泡根源脱氧不好,氢、氮含量⾼;润滑过度,油中含⽔;保护渣中含⽔;中间塞棒吹氩过度;结晶器波动措施有效地脱氧;注流及钢液⾯进⾏有效保护;加热润滑油及保护渣;采⽤EMS可有效减少针孔与铸坯表⾯⽪下⽓泡的数量;减少结晶器液⾯波动3、铸坯表⾯夹渣根源钢⽔脱氧不够;钢⽔中氧化铝含量⾼,SiO2、MnO与FeO含量低(铝镇静钢);耐⽕材料质量差;结晶器喂铝线;中包⽔⼝及结晶器中形成的块渣进⼊钢⽔。

措施采⽤⽆渣出钢;对钢⽔进⾏有效脱氧,采⽤保护浇注;中间包碱性覆盖剂;加深中包,增⼤中包钢液深度;中包采⽤挡堰;采⽤能快速吸收钢⽔夹杂的保护渣(⾼碱度);加⼤保护渣的⽤量;减少结晶器液⾯波动,⽔⼝侵⼊深度必须100-150mm4、横向裂纹横向裂纹通常出现在⾓部,但中部区域也会出现,横向裂纹⼀般出现在振痕的底部。

1、因热脆⽽形成的表⾯裂纹C含量0.17-0.25%;S含量⾼;随合⾦元素含量增加,如:Al、Nb、V 及⼤于1%Mn,裂纹数量增加;Al、Nb、N及C沉析于晶粒表⾯;⼆冷区冷却不挡导致晶粒粗⼤;⼆冷区⽀撑辊对中不好;保护渣选择不当;负滑脱时间过长。

2、横向⾓部裂纹⾓部冷却过度;结晶器冷却不当;结晶器和⽀撑辊对中不好;矫直温度过低;⾼如:Al、Nb、V 及⼤于1%Mn含量钢⽔⾮常敏感,加⼊钛能有效降低裂纹的程度;?⼆冷区冷却不均或冷却过度;保护渣不合适;铜管弯⽉⾯区域变形过⼤;钢⽔温度过低;结晶器锥度过⼤。

连铸常见质量缺陷

连铸常见质量缺陷

连铸常见质量缺陷1 连铸工艺流程大包钢水→回转台→中间包→结晶器→二冷室→拉矫机→脱坯辊→中间辊道→夹持辊→火切机→切割平台→翻钢机→冷床→移坯车→(打号)铸坯集积2 常见质量事故的原因及处理连铸过程只是一个保持过程,不可能修正炼钢及设备的问题,因此才有了“炼钢是基础,设备是保证,连铸为中心”。

影响铸坯缺陷的因素归纳为三个方面:①钢水条件:脱氧情况、碳含量、锰硅比、锰硫比和杂质元素含量等。

②操作工艺:钢水温度、拉速、保护浇注方式、冷却水量及分布、钢水吹氩搅拌、喂丝等。

③设备状况:结晶器和二次冷却装置等主要在线设备的运行状况。

最终产品质量决定于所提供的铸坯质量。

根据产品用途的不同,提供合格质量的铸坏,这是生产中所考虑的主要目标之—。

从广义来说,所谓铸坯质量是得到合格产品所允许的铸坯缺陷的严重程度。

所谓铸坯质量的含义是指:铸坯的纯净度(夹杂物含量、形态、分布)、铸坯表面缺陷(裂纹、来渣、皮下气泡等)、铸坯内部缺陷(裂纹、偏析等)。

铸坯的纯净度主要决定于钢水进入结晶器之前的处理过程,也就是说要把钢水搞“干净”些,必须在钢水进入结晶器之前各工序下功夫,如选择合适的炉外精炼,钢包----中间包---结晶器的保护浇注等。

铸坯的表面缺陷主要决定于钢水在结晶器的凝固过程。

它是与结晶器内坯壳的形成、结晶器振动、保扩渣性能、浸入式水口设计及钢液面稳定性等因素有关的,必须严格控制影响表面质量的各参数在合理的目际值以内,生产无缺陷的铸坯,这是热送和直接轧制的前提。

铸坯内部质量主要决定于铸坏在二冷区的凝固冷却过程和铸坯的支撑系统的精度。

合理的二冷水量分布、支承辊的严格对中、防止铸坯鼓肚变形等,是提高内部质量的关键。

因此为了获得良好的铸坯质量。

我们可以根据钢种和产品不同要求,在连铸的不同阶段如钢包、中间包、结晶器、二冷区采用不同的工艺技术,对铸坯质量进行有效的控制,以消除铸坏缺陷或把缺陷降低到不影响产品质量所允许的范围内。

连铸圆坯缺陷类型

连铸圆坯缺陷类型

连铸圆坯缺陷类型摘要:I.引言A.连铸圆坯的概念B.连铸圆坯缺陷类型的重要性II.连铸圆坯的缺陷类型A.表面缺陷1.裂纹2.气孔3.夹渣4.震痕和凹陷5.成分偏析B.内部缺陷1.裂纹2.气孔3.夹渣4.缩孔和缩松5.成分偏析III.连铸圆坯缺陷对产品质量的影响A.表面缺陷对产品质量的影响B.内部缺陷对产品质量的影响IV.防止连铸圆坯缺陷的方法A.改进铸造工艺B.提高原材料质量C.加强质量控制和检验V.结论A.总结连铸圆坯缺陷类型B.强调防止连铸圆坯缺陷的重要性正文:连铸圆坯是钢铁制造过程中的一种重要产品,其质量直接影响到最终产品的质量。

连铸圆坯缺陷类型主要包括表面缺陷和内部缺陷。

表面缺陷主要包括裂纹、气孔、夹渣、震痕和凹陷、成分偏析等。

这些缺陷会影响到连铸圆坯的表面质量,从而影响到后续加工过程的顺利进行。

例如,裂纹和气孔可能会导致产品在加工过程中出现断裂和孔洞,严重影响产品质量。

内部缺陷主要包括裂纹、气孔、夹渣、缩孔和缩松、成分偏析等。

这些缺陷会影响到连铸圆坯的内部质量,从而影响到最终产品的性能。

例如,缩孔和缩松可能会导致产品在加工过程中出现变形和应力集中,严重影响产品的使用寿命。

连铸圆坯缺陷对产品质量的影响是严重的,因此必须采取措施防止连铸圆坯缺陷的出现。

防止连铸圆坯缺陷的方法主要包括改进铸造工艺、提高原材料质量、加强质量控制和检验等。

通过这些措施,可以有效降低连铸圆坯缺陷的产生,提高产品质量。

总之,连铸圆坯缺陷类型包括表面缺陷和内部缺陷,这些缺陷对产品质量的影响是严重的。

为了防止连铸圆坯缺陷的出现,必须采取有效的措施,包括改进铸造工艺、提高原材料质量、加强质量控制和检验等。

连铸坯缺陷分析

连铸坯缺陷分析

10 11.A , B,C 类 超 尺寸
若一个试场同类夹杂物有粗有细,应按它们的总长度评级,细系夹杂物的长度之 和大于粗系,则按细系评级. 若一个 A 类,B 类或 C 类夹杂物在长度或宽度上超尺寸,那么位于试场内的夹杂 物部分应按最接近的细系或粗系测量并计入评级结果,并且应分别单独记录。 若一个试 场内出现 一个超大 的 D 类夹 杂, 则它应 作为 D 类 粗系参加 评级, 且应 单独记录。
12. D 类 超 尺寸
若一个试场内出 现一个超大的 D 类夹杂,则参照 ISO4967 评 级 图 Ds 系列评级。
若一个试场内 出现一个超大 的 D 类夹杂, 则按标准评级 图 Ds 系列评 级。
若一个试场 内出现一个 超大的 D 类 夹杂,则参照 ISO4967 评级 图 Ds 系列评 级。
按图谱序列表 的第 8 系列评 级
8
若一个试场中的夹杂物含量处于评级图的 相邻两结级别之间,应评为较低的那一级.
一个试场中夹 杂物的长度符 合哪个尺寸系 数就评哪个。
9
若一个夹杂物宽度沿长度方向 由细变粗, 且长度的一半以上属 于粗系,则应按粗系评级。
一个串状夹杂物的宽度不同, 则应将最大夹杂物的宽度视为 该串状夹杂物的宽度
一个夹杂物有 细有粗, 粗的长 则按粗的评级
技术中心内部资料
连铸优特钢缺陷
石钢京诚装备技术有限公司质量部
封面说明:X-轴方向1%宏观应变载荷产生的等价塑性应变的理论分布。
创建时间:2014-12-12 13:22:00
Page 1 of 缺陷 Ⅰ 1
1.1 导言 1 1.2 连铸坯质量 1 1.2.1 钢坯纯洁度 5 1.2.1.1 常规检测方法 5 1.2.1.2 测定钢纯洁度的间接方法 9 1.2.1.3 连铸生产钢坯夹杂物 10 1.3 夹杂物分析 12 1.3.1 连铸坯夹杂物 13 1.3.2 整个浇次连铸板坯夹杂物含量的变化规律 13 1.3.3 轴承钢夹杂物属性与来源分析 13 1.3.4 采用“6 西格玛原理” 质量控制钢中非金属夹杂物 18 1.4 钢中气泡 19 1.4.1 轴承钢中气泡 19 1.5 钢中气体 20 1.5.1 钢中氧 20 1.5.1.1 炼钢过程氧的控制 21 1.5.1.2 RH 处理低碳钢过程钢水中总氧预测模型…………………………..22 1.5.2 钢中的氢 23 1.5.2.1 精炼-连铸过程氢的控制 23 1.5.2.2 高氢量,高 Mn 与 Ni 及大规格的钢材中的“白点” 23 1.5.2.3 减小白点敏感性的措施 25 1.5.3 钢中的氮 25 1.5.4 钢中的硫 27 参考文献 28
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013-7-12
1
第三章 内部裂纹 1 近表裂纹 2 中间裂纹 3 中心裂纹 4 控制措施
第四章 切割裂纹
目录
2021/3/12
2
目录
第二部分 连铸坯其它缺陷 第一章 其它外表缺陷
渣沟 渣坑 粘渣 卷渣 气孔 划痕 压痕 夹痕 第二章 其它内部缺陷 气孔 缩孔
2013-7-12
3
目录
中心疏松 中心偏析 第三章 夹杂缺陷 第四章 形状缺陷 1 .椭圆 2. 弯曲 3 .鼓肚 后附: 断口分析 1. 断口分析常用定义 2. T23钢高温拉伸断口扫描电镜形貌比较 3. 连铸坯表面纵裂断口分析方法应用 4. 铸坯纵裂断口案例
➢ 种类 氢致裂纹 淬火裂纹 低塑性脆化裂纹
2021/3/12
10
1.2 各种裂纹的形成机理及其特征
氢致裂纹(延迟裂纹):
这类裂纹是在氢、钢材淬硬组织和拘束应力的共同作用下产生的 ,形成温度一般在 Ms 以下 200℃ 至室温范围,由于氢的作用而具有 明显的延迟特征,故又称为氢致裂纹。
裂纹的产生存在着潜伏期(几小时、几天甚至更长)、缓慢扩展 期和突然开裂三个连续过程。由于能量的释放,常可听到较清晰的开 裂声音(可用声发射仪来监测),常发生在刚性较大的低碳钢、低合 金钢的焊接结构中。
2021/3/12
7
1.2 各种裂纹的形成机理及其特征
结晶裂纹:金属凝固结晶末期,在固相线附近发生的晶间开裂现
象,称为凝固裂纹或结晶裂纹。其形成与凝固末期晶间存在的液膜 有关,断口具有沿晶间液膜分离的特征。裂纹无金属光泽,有明显 的氧化色彩。
液化裂纹:是一种沿奥氏体晶界开裂的微裂纹,一般认为是由于
2013-7-12
4
第一章 综述
1.1 裂纹分类方法 1.2 各种裂纹的形成机理及其特征 1.3 铸坯裂纹类型与形成位置的关系 1.4 连铸坯形成裂纹的必要条件 1.5 裂纹类型与微观结构和脆性温度区间的关系 1.6 钢的裂纹敏感性评价 1.7 钢中残余有害元素对性能影响
2021/3/12
Author
热影响区金属奥氏体晶界上的低熔点共晶,在热源(火焰切割)高 温作用下发生重新熔化,使金属的塑性和强度急剧下降,在拉伸应 力作用下沿奥氏体晶界开裂而形成的。
2021/3/12
8
1.2 各种裂纹的形成机理及其特征
高温失延裂纹
在固相线以下的高温阶段,金属处于不断增长的固相收缩应力 作用之下,变形方式主要是依靠位错或空位沿着晶界的扩散、移动 进行。当沿晶界的扩散变形遇到障碍时(如三晶粒相交的顶点), 就会因应变集中导致裂纹。
空穴开裂理论认为晶界滑动和晶界迁移同时发生,两者共同作 用可形成晶界台阶,进而形成空穴并发展成微裂纹。
σ
A C
裂纹
B
τ
τ
σ
2021/3/12
9
1.2 各种裂纹的形成机理及其特征
冷裂纹 铸坯在室温附近出现的裂纹。
➢ 特征 穿晶断裂或晶间断裂、具有金属光泽或轻微氧化色、外形规 则,常呈光滑曲线或直线状。
16
1.3 铸坯裂纹类型与形成位置的关系

裂纹的深度
2013-7-12
4
1.3 铸坯裂纹类型与形成位置的关系
裂纹的断口
2021/3/12
18
1.3 铸坯裂纹类型与形成位置的关系
连铸坯缺陷
目录
第一部分 裂纹缺陷 第一章综述
1.1 裂纹分类方法 1.2 各种裂纹的形成机理及其特征 1.3 铸坯裂纹类型与形成位置的关系 1.4 连铸坯形成裂纹的必要条件 1.5 裂纹类型与微观结构和脆性温度区间的关系 1.6 钢的裂纹敏感性评价 1.7 钢中残余有害元素对性能影响 第二章 表面裂纹 2.1 网状裂纹 2.2 星形裂纹 2.3 纵裂纹 2.4 横裂纹
5
1.1 裂纹分类方法综述
裂纹的种类
➢ 出现的位置 表面裂纹和内部裂纹
➢ 按裂纹的走向 横向裂纹和纵向裂纹
➢ 按尺寸大小 宏观裂纹和微观裂纹
➢ 按出现的温度范围 热裂纹和冷裂纹
➢ 按形成机理 热裂纹、冷裂纹、再热裂纹、层状撕裂和应力腐蚀裂纹
2021/3/12
6
1.2 各种裂纹的形成机理及其特征
2021/3/12
11
1.2 各种裂纹的形成机理及其特征
氢致裂纹的机理(应力诱导扩散理论)
缺陷
提供裂纹源
应力集中的应力区
促使位错移动或增值
氢向高应力区扩散并聚集
尖端微区的塑性应变量增加
氢浓度达到临界值
裂纹向前扩展
局部开裂
2021/3/12
12
1.2 各种裂纹的形成机理及其特征
淬硬脆化裂纹:
某些淬硬倾向大的钢种,热加工后冷却到Ms 至室温时,因发生 马氏体相变而脆化,在拘束应力作用下即可产生开裂。这种裂纹又称 为淬火裂纹,其产生与氢的关系不大,基本无延迟现象,成形加工后 常立即出现。
热裂纹 在高温阶段发生的开裂现象。是指在钢的凝固过程中,在
300℃以上高温下产生的裂纹为热裂纹。 热裂纹一般有在稍低于凝固温度下产生的凝固裂纹,也有少
数是在凝固温度区发生的裂纹。 它的特征是沿原奥氏体晶界开裂。
➢ 特征 表面呈氧化色、外形曲折而不规则、沿晶断裂特征。
➢ 种类 凝固裂纹 液化裂纹 高温失延裂纹
珠光体耐热钢中的V元素,会使SR裂纹敏感性显著增加;
二是与加热速度和加热时间有关,不同的钢种存在不同的易产生再热
裂纹的敏感温度范围。因此,在制定加热工艺时,应尽量减少坯料在
敏感温度范围内的停留时间。前者是内在因素,后者是外在因素。
2021/3/12
15
1.3 铸坯裂纹类型与形成位置的关系
2021/3/12
2021/3/12
14
1.2 各种裂纹的形成机理及其特征
再加热裂纹:
钢坯在一定温度范围内再次加热(消除应力热处理或其它加热过程)
而产生的裂纹又称消除应力处理裂纹,
也叫SR裂纹。
再热裂纹的产生原因:
一是与钢中所含碳化物形成元素(Cr、Mo、V、Ti及B等)有关。如
这类裂纹常出现在具有强烈淬硬倾向的高(中)碳钢、高强度合 金钢、工具钢的焊件中。
2021/3/12
13
1.2 各种裂纹的形成机理及其特征
低塑性脆化裂纹:
它是某些低塑性材料冷却到较低温度时,由于体积收缩所引起的 应变超过了材料本身所具有的塑性储备量时所产生的裂纹。
这种裂纹通常也无延迟现象,常发生在铸铁或硬质合金构件的成 形加工中。如灰口铸铁在400℃以下基本无塑性,焊接裂纹倾向很大。
相关文档
最新文档