空冷系统冬季防冻
间接空冷系统冬季调试防冻措施
5.1有下列情况之一时,空冷系统禁止起动
5.1.1空冷系统主要保护试验不合格(安全排水阀联开保护)。
5.1.2安全排水阀不能远方开关。
5.1.3任一扇形段进、出口阀不严、漏水严重。
5.1.4充水泵、补水泵不能远方、就地启停。
5.1.5百叶窗无法关闭或关闭不严。
5.2下列情况之一,扇形段禁止充水
5.2.1冬季百叶窗不能远方关闭。
5.2.2冬季扇形段不能程控排水。
5.2.3冬季扇形段竖管加热装置不能投入。
5.2.4扇形段冷却三角形或排水阀严重泄漏。
5.2.5冬季扇形段自动排水保护失灵(温度低、无流量)。
5.3扇形段充水过程中注意事项
5.3.1充水时应观察扇形段各阀门动作情况,出现异常情况及时处理。
3间接空冷系统其优缺点
3.1间接空冷系统其优点:
3.1.1设备较少,系统较简单。
3.1.2冷却水系统与凝结水系统分开,水质按各自标准处理,冷却系统采用除盐水,且闭式运行,基本杜绝凝汽器管束内结垢堵塞情况,大大提高换热效率。
3.1.3循环水系统处于密闭状态,循环水泵扬程低,消耗功率少,厂用电率低。
3.1.4冷却水在循环过程中完全为密闭循环运行,基本不产生水的损耗,理论上该系统耗水为零。
在正常情况下,各扇区百叶窗应投自动,加强监视自动动作情况,在自动调节缓慢或有异常情况时,应及时解除自动并进行手动调节。在自动或手动情况下都必须保证各扇区出水温度满足以下要求:环境温度在0℃~-10℃时,保持扇区出水温度不低于30℃;环境温度在-11℃~-20℃时,保持扇区出水温度不低于35℃;环境温度在-21℃~-30℃时,保持扇区出水温度不低于38℃;环境温度低于-31℃时,保持扇区出水温度不低于40℃。
云冈热电公司直接空冷系统冬季运行防冻问题分析
[摘要]:本文对云冈热电公司直接空冷机组历年来冬季防冻出现的问题进行总结并结合现场实际情况提出了一些应对方法和解决措施,并提出一些冬季运行经验,给同类型机组提供借鉴。
[关键词]:直接空冷凝汽器防冻1、前言云冈热电公司一期两台200MW机组是东方汽轮机CZK220/160-12.7/0.294/535/535型单轴三缸两排汽超高压一次中间再热供热抽汽凝汽式汽轮机,其排汽由直接空冷系统冷却,采用美国GE公司技术;二期两台300MW机组是东方汽轮机CZK300\258-16.67\0.4\537/537型亚临界中间再热两缸两排汽直接空冷供热凝汽式汽轮机,其排汽由直接空冷系统冷却,采用国电龙源公司技术,直接空冷系统的运行状态直接影响机组运行的经济性和安全性,从2003年投产,四台机组能够连续长周期运行,在空冷防冻方面积累了一些经验,以供参考。
1.1 直接空冷系统冬季防冻问题空冷凝汽器管内流动的流体是水蒸汽、水和不凝性气体的混合物,随着水蒸汽的凝结,水蒸汽不断减少,不凝性气体(主要是漏入负压系统内的空气)所占组分不断增加,同时,管内流体温度也逐渐降低。
水蒸汽减少就意味着水蒸汽的分压降低,当水蒸气的分降低至蒸汽分压为0.6KPa时,管内流体温度达到0℃,水就会结冰。
1.2 影响直接空冷系统冬季运行的因素1)环境因素(北方地区冬季环境气温较低)。
2)直接空冷系统真空严密性,各列阀门的严密性。
3)机组的负荷情况,尤其在低负荷情况。
4)直接空冷系统的运行方式。
1.3 直接空冷系统冬季冻结的现象及后果1)空冷管束弯曲变形,管束间密封效果差,造成冷却效果差。
2)管束变形后反复挤压导致管束裂开,系统漏入大量空气加剧冻结情况,机组运行背压上升,导致机组跳机。
3)空冷系统频繁的冻结、对整个系统的真空严密性是一个挑战,对夏季运行会造成很大影响。
2、直接空冷系统防冻措施2.1 采用在线测温装置对空冷散热器进行检测采集空冷散热器组件外侧安装温度测点,覆盖空冷系统各列组件的所有散热面积,采集关键区域散热器表面温度,进行散热器温度直接测量,实现冬季空冷系统冻结预警,可为运行操作提供原始信息方面的依据。
80MW机组空冷岛系统冬季防冻措施
关于空冷岛系统冬季运行的改善建议电站总装机容量80*2MW,地处中亚缺水地区,冬季最低温度-40℃,夏季最高温度42-45℃。
配套两套GEA的直接空冷式凝汽器(下简称空冷岛)。
设备概况1、设计参数设计流量: 225023.6X1.06 kg/h空冷器入口压力: 0.3 bar abs汽轮机出口压力 : 0.295 bar abs环境温度: 39℃海拔高度: 300m焓值: 2624.6kJ/kg最小蒸汽流量 : 27000 Kg/h@ -45℃ and 0.3 bar abs2、布置空冷器由如下设备互相连接组成:三个屋顶12个单元包括:72台管束、12套风机、其中2侧的屋顶配有电动隔离阀、1个中间的屋顶配有百叶窗(并配有全逆流系统);三个76”的蒸汽汇流管、一个126”的排汽母管、两个60”的全逆流蒸汽管道关于*****电站空冷岛系统每年冬季的防冻问题,我们查阅了历年冬季空冷岛系统的运行数据(部分DCS系统的运行画面截图),并结合其它类似电站空冷岛系统冬季运行的防冻经验,针对我厂机组情况,制定如下空冷岛系统防冻、防护的操作措施:当环境温度低于+2℃时,从严格意义上空冷系统已进入冬季运行期。
机组在遇有启动和停机操作时,必须提前了解并监视环境气象条件的变化,机组在冬季运行期间,严格控制汽轮机的背压值。
空冷岛系统的防冻措施主要分三个环节:机组启动过程阶段、机组停运(包含事故停机)阶段、机组运行阶段。
一、机组启动阶段的空冷岛系统防冻措施:汽轮发电机组冬季启动初期蒸汽流量偏低,不能满足空冷岛系统防冻要求,为防止空冷岛系统冻坏,启动中采取以下运行措施:1、冬季机组正常启动无特殊情况应尽量安排在白天进行,合理控制启动时间保证空冷岛系统进汽时间尽量在一天中气温比较高的时间段进行。
2、机组启动前的试验中,必须进行对空冷岛系统抽空气阀、抽汽隔离蝶阀、凝结水回水阀进行开关活动试验,保证正常,开关到位、动作灵活。
3、尽可能缩短汽轮机抽真空的时间。
直接空冷机组冬季启停冻结问题及防范措施探讨
直接空冷机组冬季启停冻结问题及防范措施探讨和湿冷机组相比,高寒地区的直接空冷机组在启、停机过程中空冷凝汽器会发生大面积冻结、损坏等事故。
影响空冷凝汽器冻结的主要原因有:①环境条件;②空冷凝汽器的进汽量、进汽参数、进汽时间;③空冷风机运行方式的控制;④排汽参数的控制;⑤旁路系统的配合。
1 、冬季滑参数停机中运行参数的控制情况允许的条件下,要尽可能安排直接空冷机组在白天进行滑参数停机。
可利用相对高的环境气温和日照条件,有效地推迟和缓解空冷凝汽器内部结冰的进度,同时必须尽可能地减弱其内部结冰的程度,为机组启动创造良好的条件。
当环境温度降到2℃以下时,在空冷凝汽器管束中就有可能出现内部结冰的现象。
目前,直接空冷系统设计的温度监测点少,单从表计监视不能及时发现空冷凝汽器散热管束受冻。
实际经验表明,当表计显示出温度异常时,空冷凝汽器内部已发生大面积受冻。
所以运行中必须加强监视、调整和就地检查。
(1)、机组运行背压。
当环境温度越低时,根据空冷凝汽器防冻要求,需要的最小热量应越大。
机组负荷一定时,运行背压越高,排汽温度和排汽量越大,有利于防冻。
为了保证空冷凝汽器的安全,适当提高机组运行背压是非常必要的。
但是,必须限制汽轮机在对应工况下背压保护曲线的报警值以内。
(2)、各逆流式凝汽器真空抽气温度。
它是空冷凝汽器整体运行情况的反映,即使此温度比较高,也不能保证所有逆流管束的防冻安全。
运行中曾发现在环境温一15℃时,真空抽气温度高于40℃的情况下,空冷凝汽器逆流管束内部曾出现部分结冰现象。
(3)、加强就地检查。
运行中监视的参数是反映空冷凝汽器整体运行情况,不能反映局部冻结特征,而散热管束内部结冰是渐进形成的。
加强对空冷凝汽器散热管束表面温度的实测检查,可以及时掌握空冷凝汽器内部蒸汽分配以及局部冻结的情况。
(4)、凝结水收集联箱的表面实测温度。
直接空冷凝汽器采用一定的顺、逆流面积配置合理时(国电怀安热点有限公司为4:1),绝大多数蒸汽在顺流凝汽器中凝结成水,而逆流式凝汽器仅有少量的蒸汽,以便于最大限度地回收蒸汽。
防止间接空冷系统冰冻措施
防止间接空冷系统冰冻措施07间接空冷系统防冻措施编制:米艳涛审核:批准:我厂间接空冷系统投运时间下赶在冬季,为防止间接空冷系统冷却三角发生冰冻损坏。
特制定间冷系统冬季投运及运行防冻措施。
一、扇段投运前1.扇段投运前该扇段各阀门状态:2.扇段进水隔离阀、扇段1号退水隔离阀、扇段2号退水隔离阀关闭;3.扇段百叶窗关闭;4.扇段进、退水管疏水门开启;5.扇段排气至空气主环管门开启;6.地下水箱水位不高于L(11-X)(X为运行扇段数);7.间冷循环水温不小于55℃(在机组真空低允许下尽量高);8.在X<2(X为运行扇段数)时一台间冷循环水泵运行,两个主管环旁路门全开;9.扇段投运的顺序是先投离主管环旁路门近的扇段,再投运离主管环旁路门远的扇段;(防止当扇段投运一定数量后关主管环旁路门,造成循环水形成死水,再投扇段时发生冰冻)二、扇段投运步骤1、向地下水箱水位补水到不高于L(11-X)(X为运行扇段数);2、开启一台充水泵;选择要充扇段的高位水箱阀开启。
3、将高位水箱水位补到L3(6.52米)4、充水泵到该高位水箱出水门;5、停止充水泵6、关闭投运扇段疏水门(两个;)7、先开启扇段退水隔离阀(两个),延时一定时间后开启扇段进水隔离阀。
8、一定时间后,高位水箱水位降到L2不再下降且地下水箱水位不涨,扇段投入运行。
三、运行中防冻1、当环境温度低于5,冷却塔进入保护模式。
2、当扇段退水管温度低于(12个测点-6个为冷水隔离阀前的、3个为上层扉段的、3个为下层扇段的进行相互认定)15℃时开始关扇段百叶窗;3、当百叶窗关严后扇段退水管温度仍低于12度时,启动扇段疏水。
扇段疏水如果失败,应启动紧急疏水程序,(如果两台机组都启动紧急疏水)应做好厂用电全停的事故预想。
4、每班23:00对各扇段两边的冷却三角进行实地测温。
发现冷却三角壁温低于15度时关闭扇段百叶窗;5、每小时进行一次百叶窗同步;6、当环境温度低于3度时,检查扇段到主空气环管管道电伴热投入。
空冷防冻措施
辽宁调兵山煤矸石发电有限责任公司LIAONING DIAOBINGSHAN COAL GANGUE POWER PLANT CO.,LTD发电部技术措施(FDB-QJ091102)执行单位:发电部运行值主题:直接空冷系统防冻措施编写:孙佳喜审批: 王新蕾批准:王伟技术措施内容:一、总则1.环境温度低于+1℃空冷系统进入冬季运行期。
应联系检修备好苫布、碳炉等防冻物资。
2.机组在遇有启动和停机操作时,必须提前了解并监视环境气象条件的变化。
冬季启动时,蒸汽流量没有达到空冷最小防冻流量,空冷岛禁止进汽,冬季启、停机尽量选的择在白天气温高时进行。
3.在任何情况下,必须保证空冷岛各列散热器端部小门以及各冷却单元的隔离门在关闭位置。
4.机组在冬季运行期间,汽轮机的背压控制值任何情况不允许低于15 KPa。
5.凝结水过冷度:根据直接空冷系统冬季运行的特点,凝结水过冷度定义为汽轮机低压缸排汽压力对应的饱和温度与各列下联箱的凝结水的差值。
在冬季防冻期间,过冷度作为安全指标进行监控。
同时注意观察凝结水回水总管温度应与各列下联箱的凝结水的温度基本一致.6.冬季遇有大风降温或风力较大的气象情况,运行人员应适当增加机组负荷或提高运行背压等手段,防止大风、降温、再加上散热器热量分布不均发生管束冻坏事故。
二、机组启动时空冷系统的防冻措施(仅限于手动启动)1.冬季启停机过程中应设专人对空冷岛各列散热器下联箱及散热器管束表面各部进行就地温度实测,有异常时应增加检查和测量次数。
2.机组启动抽真空前,保持真空破坏门在开启状态,关闭至排汽装置及疏水扩容器的全部疏水门,开启汽轮机主再热汽管道疏水导定排门。
适当开启所有进入排气装置减温水阀门,尽量使排气装置温度最低.防止热蒸汽飘入空冷岛,使空冷岛发生冻结.3.锅炉点火后,高、低旁保持关闭状态,控制炉膛出口烟温不超过538℃,关闭排气装置至抽真空母管电动门1、2及抽真空旁路门(快速建立真空时开启此门),然后汽机启动真空泵抽真空,当背压达20Kpa以下时,关闭空冷岛10、20、50、60列散热器进汽蝶阀,各列凝结水回水阀保持开启状态。
关于空冷岛冬季防冻的措施方案
关于空冷岛冬季防冻的措施方案
一、目的
结合系统特点、设备性能采取外部防护和运行控制的办法保证空冷设备冬季安全运行。
二、方案
(1)空冷岛隔离阀、真空阀、凝结水阀装拌热加保温壳。
(2)大排汽管道疏水管加保温。
(3)逆流管束外部采用帆布加彩条布遮盖,帆布主要起保温,彩条布防雨雪水。
三、防范措施
(1)系统设有冬季运行保护模式程序,即根据凝结水温度、抽真空温度、环境温度来自动进入保护模式,避免空冷系统
发生冻结,冬季工况下可根据室外风向和风力投入自动。
(2)冬季机组启动先启动汽轮机,后启动空冷风机。
即启动真空泵――暖空冷凝汽器翅片管束群――启动汽轮机――待
汽轮机背压到一定值时,再启动空冷风机。
(3)按厂家冬季启动时最小防冻热负荷(启动两小时达到负荷)和周围环境温度的关系表执行,关系表见后附。
(4)入冬前测试各列蒸汽隔离阀严密性,以保证关闭后不漏汽入管束。
(5)每天巡检必须测量隔离列上部节分配管和下部联箱温差。
温差异常增大说明有汽漏入管束。
内蒙古京海煤矸石发电有限责任公司工程部:茹军卫
发电部:刘建成
二〇一〇年十月十三日。
空冷岛冬季运行
空冷岛冬季运行冬季空冷岛防冻措施及基本概念冬季空冷岛防冻措施及基本概念冬季空冷岛防冻措施及基本概念一、直接空冷抽汽供热机组冬季防冻的概念1.防冻保护措施的目的:为了防止冬季运行时空冷系统过冷或冰,避免翅片管束内结冰,杜绝管束冻结损坏设备;2.防冻期:当环境温度低于+2℃时,从严格意义上空冷系统已进入冬季运行期。
机组在遇有启动和停机操作时,必须提前了解并监视环境气象条件的变化,机组在冬季运行期间,汽轮机的背压控制值以两个低压缸背压较低值进行控制;3.凝结水过冷度:根据直接空冷系统冬季运行的特点,与原有的(湿冷机组)凝结水“过冷度”概念不同,直接空冷凝结水过冷度定义为:汽轮机低压缸排汽压力对应的饱和温度与各列下联箱的凝结水平均温度的差值。
在冬季防冻期间,过冷度作为重要参数进行监控;4.供热期机组负荷:因供热期抽汽供热量较大,而随着环境温度的下降,供热抽汽量增大的同时空冷岛防冻工作将更加严峻,所以在供热期机组负荷将以汽轮机进汽量参考,例如:70%额定负荷(231MW)应以额定主蒸汽量的70%来参考,即710T/h,以此来进行供热、防冻的参考基本依据。
5.空冷岛进汽量:凝结水流量与排汽装置补水流量之差即为空冷岛进汽量,或直接参考空冷岛凝结水回水流量。
6.管束弹性变形:指换热管束发生弯曲变形,经过调整管束可以自由恢复;7.管束变形:指管束发生永久弯曲,已无法恢复。
此种情况原因较多,主要原因是空冷岛设计、安装过程中存在不合理,导致个别管束膨胀、收缩受阻或通流面积不够造成,运行中加强测温工作,及时提前发现后作为重点监视调整对象,利用运行调节手段控制管束表面温度,降低管束温差减少管束变形概率;8.换热面过冷:指空冷换热管束外表面温度低于排汽温度,但还在0℃以上。
此时预示着管束冰冻前兆,若不及时采取措施,管束将很快发生冰冻;9.管束冰冻:指空冷换热管束外表面温度低于0℃,此时换热管束内部已经发生结冰现象,积冰没有阻断管束通流面。
直接空冷系统防冻措施
直接空冷系统防冻措施当环境温度小于1℃时,直接空冷系统便进入冬季运行。由于空冷岛散热面积大,冬季防冻工作非常重要,机组在启、停、正常运行和事故情况下防冻措施各不相同,现总结如下:一、机组启动时空冷系统的防冻措施1.冬季启动分析及锅炉注意事项1.1.1空冷机组,冬季启动要特别重视锅炉上水系统和空冷系统局部冻结堵塞问题。冬季环境温度低,如果排汽凝结放热量小于其管线对环境的散热量,排汽就在未到达空冷散热片时就已全部凝结成水,不能实现正常的汽水循环流动。具体现象表现为:在起初的一段时间内排汽压力偏低,严重时可达到3~4KPa,凝结水过冷度大;一定时间后,由于大量凝结水不断集聚储藏于排汽管道中,排汽装置水位偏低,凝结水系统回收水量低,汽水流量严重不平衡,除氧器或排汽装置补水量不正常增加;排汽管道积水严重时,可能阻塞空冷设备汽水工质的正常凝结和流动过程,造成低压排汽压力与空冷散热片内压力偏差大,汽水工质失去热自拔能力,排汽管线和散热片中出现涌水现象,局部出现水击现象和积水冰冻现象;处理不得当,可能因管道机械负载大和冲击振动以及大面积冰冻而造成设备损坏。1.1.2冬季启动初期,空冷防冻措施中规定:空冷开始进汽后,空冷进汽量必须在30分钟内达到其额定汽量(680 t/h)的20%(大约135t/h)。1.1.3 启动初期,由于空冷不能进汽,低旁关闭,再热器处于无蒸汽流状态,因此必须注意过、再热器的保护。启动点火过程中,要特别注意炉膛出口烟温探针指示温度≯538℃,打开锅炉主汽5%疏水。1.1.4 由于空冷最低进汽量的限制,因此可能因机组启动状态不同,汽压和汽温会不匹配:机组冷态启动时可能出现汽压低、汽温高,蒸汽流量小的现象,难以同时满足汽机冲车和空冷岛进汽量的要求,因此锅炉必须尽量压低火焰中心,汽压低于6MPa以前,锅炉尽量保持过热器排汽阀开启,汽机尽量开大高旁,提高循环速度。必须有意识的限制升温速度;温态或热态时,可能会出现汽压高、汽温低的现象,因此锅炉可以适当抬高火焰中心,汽压高于6MPa以后,汽机1尽量开大旁路。1.1.5 针对各受热面、汽包金属温度较低、个别管子可能有积水结冰现象,锅炉上水、点火及升温升压期间必须严密监视、严格控制金属温升速度;在蒸汽未达到阀门规定的关闭参数前,必须认真检查各管路畅通;如启动过程不顺利,无法排除管路结冰可能时,必须加强检查并采取管道疏水等方法。冬季环境温度低于4℃时,锅炉上水时间可适当延长,但要防止启动时间太长,管道容器结冰;上水温度控制在40~50℃左右,并严密监视上水管道膨胀和汽包壁温变化情况;锅炉上水后立即开始水冷壁底部排污,汽包见水后应适当开启连续排污门,汽包压力在0.2Mpa 以前必须始终保持一定的给水量,定排联箱和定排底部放水门开启,以防水流停滞而冻结。1.1.6针对屏式受热面内集水较多,点火启动时,必须控制好初投燃料量,进行充分暖炉,将集水蒸干后锅炉方可继续升压。1.1.7 冬季停运时间较长的电机在送电投运前,必须测量绝缘合格,特别是室外设备。1.1.8当汽包压力达到0.7Mpa,逐步开大高旁。汽包压力达到1.0Mpa后,利用高旁控制再热器升压率不大于0.05Mpa/分,维持再热汽压在0.4Mpa以下,关闭高过入口集箱疏水门,保持高温再热器出口空气门开启。1.1.9在锅炉主汽流量低于 135t/h前,维持以上状态,利用炉膛出口烟温探针,监测烟气指示温度≯538℃。1.1.10 主汽压力未达到6Mpa时,必须逐渐开大高旁,以尽量增加锅炉蒸发量,限制蒸汽升温率。当锅炉主汽流量达到135t/h后,再热汽压超过0.4Mpa后,关闭高再出口空气门,当再热汽压达到1.0 Mpa时,蒸汽温度接近汽机冲转参数而锅炉蒸发量不足135t/h时,必须进一步压低火焰中心。1.1.11在锅炉主汽流量达到135t/h后,逐渐开启低旁,并开大高旁。将排外疏水倒入排汽装置。关闭过热器环型集箱疏水,同时增加燃料,在25分钟内,将锅炉蒸发量增加至175t/h,控制各受热面金属不超温,过、再热汽升温率、升压率符合冷态启动曲线要求。控制各受热面金属不超温,过、再热汽升温率、升压率符合冷态启动曲线要求(为了满足空冷进汽量,不得已时可考虑适当偏离过、2再热汽升温率、升压率及冷态启动曲线要求)。1.1.12 低旁开启后,达到冲车条件时汽轮机冲转。机组未并网前,维持锅炉蒸发量17% BMCR(190t/h),并网后,应尽快增加负荷至20%(225t/h)以上。1.1.13 机组在短时间内不具备并网加负荷条件时,必须维持锅炉蒸发量在17% BMCR(190t/h)以上,并保持高低压旁路开启;如锅炉蒸发量低于13% BMCR(146t/h)且30分钟内不能恢复,必须关小高旁,降低再热汽压力至1.0Mpa以下,关闭低旁,停止向空冷排汽。1.1.14 当汽轮机的进汽量大于7O%额定进汽量时.采暖供热可以投入运行。环境温度越低,采暖抽汽量越大,进入空冷岛的蒸汽量越少,对空冷岛的防冻更加困难。但由于供热负荷仍为执行,现暂时执行在启动后负荷低于50%时(165MW),严禁向热网供汽。2.冬季冷态启动方法:1.2.1 接到机组启动命令后,空冷选择“手动运行”模式,检查关闭到排汽装置扩容器的全部疏水。我公司现没有主汽和再热器管道的排地沟或排空疏水,希望以后安装。1.2.2 冬季启停机过程中应设专人对空冷岛各排散热器下联箱及散热器管束进行就地温度实测,有异常时应增加检查和测量次数。(我公司冬季工况首次启动应有专人在空冷检查,现正常运行时冬季要求2小时巡检一次)1.2.3检查开启汽轮机主汽管道、再热管道对空排汽(对空排汽炉侧根据情况)和疏水门。1.2.4 检查开启其它排地沟疏水门,用门的开度控制排汽量。1.2.5锅炉上水过程中,应投入空冷抽真空系统,开启抽真空旁路门,开始建立真空。1.2.6 锅炉上水结束后,当排汽压力低于30KPa时,开启空冷各列抽空气阀,关闭抽真空旁路阀锅炉开始点火,在此阶段禁止开启低旁。1.2.7 关闭空冷岛各排散热器进汽蝶阀及凝结水回水阀,各蝶阀要求处于手动位置。1.2.8机组启动时根据真空及凝结水疏水管温度逐列投入空冷,投入次序为10-20-30-40-50-60列,已投入的列凝结水温度均大于35℃时方可投入下一列,并投入启动列逆流风机、顺流风机。顺流风机按5,1,4,2的顺序启动。投完一列后再投下一列。(因现在#1机60列蒸汽隔离阀不严所以现暂时按30-40-50-60-10-20的顺序依次解列各列空冷运行,#2机50列、60列蒸汽隔离阀故障所以现暂时按30-40-50-60-的顺序依次解列各列空冷运行)1.2.9在锅炉主汽流量达到135t/h,将主、再热汽排外疏水倒入排汽装置。开启低旁约10%,旁路初始的进汽量应控制在10%额定进汽量左右,对空冷进行加热,当各凝结水温度及抽汽温度都大于35℃时,再逐渐开大低旁直至100%,同时用高旁维持再热汽压为1.0MPa。1.2.10排汽流量可由给水流量估算,当空冷散热器凝结水温度高于35℃时,相应的空冷风机启动后。维持真空在40-45 Kpa,就地检查散热器管束表面温度均应上升且无较大偏差,否则停运风机。1.2.11旁路系统投入后,控制低旁减温器后温度在100-150℃,在保证空冷岛进汽温度小于121℃情况下,尽量提高空冷岛进汽温度。1.2.12低旁开启后,蒸汽参数合格,锅炉运行稳定,汽轮机开始冲车;从低旁开始开启至汽轮机开始冲车,时间应控制在15分钟之内,以防止空冷系统因进汽量小冻结堵塞。1.2.13 当空冷从计时进汽到30分钟期间,锅炉应加强燃烧,保证空冷进汽量的供给。1.2.14 机组并列后,根据汽缸金属温度尽快带至最小防冻流量所对应的负荷。二.机组停机及事故情况下时空冷系统的防冻措施2.1机组在停机过程中,将空冷退出自动调整,手动均匀降低各列风机转速,维持凝结水温度在35℃以上,无法维持时,集合当前真空情况按照60-50-40-30-20-10的顺序依次解列各列空冷运行。(因现在#1机40列、60列蒸汽隔离阀不严所以现暂时按50-30-60-40-20-10的顺序依次解列各列空冷运行,#2机50列、60列蒸汽隔离阀不严所以现暂时按40-30-60-50-20-10的顺序依次解列各列空冷运行)2.2 负荷解至100MW以下,主汽流量小于135 t/h,可以开启高、低旁向空冷系统充汽,但要控制低旁减温器后温度在100-150℃,在保证空冷岛进汽温度小于121℃情况下进行。降低再热汽压力至1.0Mpa以下。高、低旁开启时注意保持真空不低于-65Kpa。谨防旁路开度过大造成排汽安全门动作。(注意需要开启高低旁时,注意高排温度,防止高排温度高跳机,和退出高排压比保护)2.3 机组负荷到零后,立即关闭所有至排汽装置的疏水,将疏水倒至室外或排地沟。(主汽、再热汽疏水,辅汽联箱疏水,轴封系统疏水等)。2.4汽轮机打闸后立即关闭高、低旁路系统。检查关闭所有列的蒸汽隔离阀。2.5破坏真空,确认进汽蝶阀在完全关闭状态。必须用专用测温仪器就地测量门后温度。以确认门关闭,并严密。2.6 冬季启停机时,尽量安排在白天气温高时进行。2.7 每班定期检查空冷凝汽器进汽蝶阀、凝结水管道及仪表伴热带的投入情况。进汽蝶阀伴热带在蝶阀关闭时投入,蝶阀开启后退出,凝结水管道伴热带在凝结水管道内温度低于25℃时投入,高于35℃时退出。抽汽管道伴热带根据现场情况要求投入。2.7机组因故甩负荷到零:冬季机组因故甩负荷,立即将空冷切手动控制,停止所有空冷风机,将3、4、5、6列进汽蝶阀及相应的凝结水门、抽空气门关闭。适度开启旁路门,进行空冷岛防冻,注意进入排汽装置的蒸汽不超温,超压,排汽安全门不动作。旁路开启后应注意锅炉侧参数,若机组能立即带负荷,要迅速接带,按启动措施投入各列空冷运行。若机组要较长时间不能带负荷,要保证空冷的最小流量。认真检查30、40、50、60列进汽蝶阀及凝结水门是否关严,发现不严或空冷结冰或温度过低,无法提高进入空冷的蒸汽流量时,达到停机要求时,要迅速打闸停机。将疏水倒至室外或排地沟。2.8机组因故打闸:要立即将空冷切手动控制,迅速停止所有空冷风机,关闭各列进汽蝶阀和凝结水门,检查旁路门关闭,将进入排汽装置的疏水倒至室外或排地沟。切断一切可以进入空冷的汽源。机组重新启动按冬季启动方式进行。2.9 锅炉灭火:冬季锅炉灭火,主汽流量会很快下降,此时空冷岛会很快结冰,所以锅炉灭火要迅速解列30、40、50、60列空冷运行,只留启动列来维持机组带初负荷运行,根据空冷参数逐步投入各列空冷。如果炉跳机不投,尽量少开或不开旁路,以防止主汽参数下降过快造成停机。锅炉灭火时疏水可以正常排入排汽装置。一旦打闸,要迅速将疏水倒至室外或排地沟。三、空冷系统正常运行时的防冻措施由于我厂空冷散热面积达82万多平米,冬季机组正常运行的防冻工作也很艰巨。结合空冷经济运行考虑,进入冬季空冷系统应投入自动运行。自动控制逻辑见3.5条,进入严冬空冷系统除采取强制防冻措施外还要在外部加装防冻装置。具体措施如下:3.1 进入严冻,停用#1、2号空冷岛的周边共30台风机,用苫布将风机口封住,避免冷风对流。#1号空冷60列蒸汽隔离阀管道变形,#2号空冷60列蒸汽隔离阀未调整严密。隔离3.2空冷岛凝结水管道需进行保温,空冷岛上温度及压力表管加伴热。3.3空冷岛正常运行期间,尽量保持同排中各风机的频率相同,低负荷时尽可能保持各排风机多投、低频运行。3.4 机组正常运行时,应尽量控制机组负荷高于空冷岛在不同环境温度下机组运行的最低负荷(见附表)。附表:空冷岛在不同环境温度下应保证的最小进汽量和运行中最低负荷:(6列散热器全部投入时)现因负荷紧张达不到这个条件,且我公司机组还属于供热机组,排汽量不能保障。3.5 空冷投自动控制进行初冬的防冻,控制逻辑如下:机组冬季保护、回暖程序3.5.1顺流凝汽器冬季保护的触发条件:a) 逆流凝汽器的冬季保护未触发。b) 本列的任一个凝结水温度<25℃延时20秒。c) 环境温度<1℃。3.5.2顺流凝汽器冬季保护的动作过程:触发动作列逆流风机被闭锁在当时的转速不变,触发动作列顺流风机以额定转速7%/min的速度下降,若温度不回升,转速一直降到0%的额定转速;只有当本列的凝结水温度回升且达到32℃时,顺流风机转速才停止下降(否则将使顺流风机降到最低转速,直至断开停转)。3.5.3逆流凝汽器冬季保护的触发条件:a) 顺流凝汽器保护未触发。b) 抽气温度<25℃延时20秒。c) 环境温度<1℃。3.5.4逆流凝汽器冬季保护的动作过程:触发动作列的顺流风机将被闭锁在当时的运行转速不变,触发动作列逆流风机以额定转速7%/min的速度下降,直至逆流风机转速降到0%的额定转速;此时顺流风机保持当前转速不变;3.5.5逆流凝汽器的回暖循环条件:当环境温度<-2℃时,逆流风机的回暖循环将被启动。动作过程:a)第一排的逆流管束风机以10%的额定速度减速下降直到全停,并停止10分钟;然后以10%的额定速度升速至降速前的转速。延时10分钟后,下一排逆流风机以同样的方式动作回暖。直至第六排也停运进行加暖后完成一个循环;如果环境温度仍低于-2℃,则此回暖循环继续进行。只要环境温度>2℃时,回暖程序立即结束。b)当环境温度低时,且逆流风机已停止运行,叶片处于静止状态后,可手动将逆流风机置于反转,利用热空气加热空空冷散热器,在此期间应特别注意真空和环境温度的变化;当环境温度上升加热结束后,应将风机停运,叶片静止后,方可投入风机的自动运行。注:#1号空冷06列,#2号空冷05列在风机停用后最好不参与自动控制。且回暖逻辑已改,可任意进行某一列回暖不需要启动这列所有风机,但回暖时要最少启动一台相邻侧风机。3.6进入严冬,如果空冷投自动不能维持凝结水及抽汽温度在15℃以上时,空冷防冻退出自动,手动进行控制。机组正常运行时,调节风机转速,使各排散热器下联箱凝结水温度均高于35℃(最低不得小于25℃)且各排散热器凝结水过冷度均小于5℃。3.7 运行中空冷散热器凝结水的任一温度降至25℃以下,应及时查找原因,温度继续降低至15℃以下时,降低该列风机转速,使真空降低3KPa,若30min内温度不上升,则增开一台真空泵运行,当空冷散热器凝结水温度上升至20℃且空冷岛进汽温度与空冷散热器凝结水温度之差小于6℃时停运一台真空泵。3.8空冷任何一列抽气口温度低于15℃时,停运该列的逆流风机,10min后,若抽气口温度继续下降,启动逆流风机反转,温度有明显回升时停止反转。3.9机组正常运行时,每隔4h将各列逆流风机依次停运20min,然后以反转10min。逆流风机不得相邻两列同时反转。隔排可以最多两列同时反转,反转结束停运10min后按正转方式启动风机并将频率调整到与该列其他风机相同。3.10机组正常运行时,调节空冷风机转速,维持机组真空-75~-70 Kpa,并监视凝结水温度不超过59℃,否则适当提高机组真空。3.11冬季运行期间,每两小时实测各列散热器及联箱表面温度一次,并做好空冷岛巡检记录,要求记录各散热器最低温度值,发现投运散热器最低温度低于0℃时,及时汇报。降低该散热器对应的风机转速或停止风机运行。当风机转速低于12HZ时,按5-1-4-2的顺序停运该列风机。3.12每班就地实测环境温度一次,发现差异大时及时通知热工校对,以免影响空冷自动运行。每两小时实测各空冷凝结水回水管和空气管外表面温度一次,发现各列温度偏差大时,及时查找原因。进行调整。3.13冬季运行期间,加强对凝结水箱、除氧器的补水量及水位的监视,发现排汽装置水位下降,补水量异常增大时,应分析空冷散热器以及凝结水管道是否冻结。并检查排汽装置水位是否异常升高。发现异常及时调整风机运行方式。3.14 如蒸汽分配阀能够关严,可以在严冬时解列#1号空冷30列或50列,#2号空冷30列或40列运行。以保证其它列更有效的防冻。(因为这几列阀门相对严密)3.15空冷岛运行期间,关闭空冷岛各排散热器端部小门及同一排中各冷却单元隔离门。防止冷风进入和窜流。3.16 低负荷时要求滑压运行,一个是提高经济性,另一个是增大排汽量空冷防冻。。
关于电厂汽机专业空冷防冻措施
关于空冷冬季防冻措施目前,天气已逐渐转凉,夜间温度已逼近0℃。
我厂空冷已进入冬季运行模式,为确保空冷安全正常运行,空冷运行方式为:1、适当降低真空范围(-60~-65KPa),提高背压,提高凝结水温度。
2、凝结水过冷度控制在3—5℃以下,凝结水温度控制在50℃以上。
3、抽汽温度控制在45℃以上。
具体操作调整方法如下:1、各排空冷风机转速尽量维持相等,保证各风机进风量相同。
2、当凝结水温度低于50℃时,需降低顺流风机转速,但不一定就是该列风机,其他列也可适当降低。
3、当抽汽温度降低时,需降低该列逆流风机转速或反转风机,若无效或效果不佳时,可适当降低顺流风机转速。
4、调整时需综合考虑抽汽、凝结水、真空三者之间的关系,保证机组运行安全。
若环境温度降低到-5℃以下或更低时,蒸汽流量无法满足空冷正常运行时需结合实际情况进行以下调整:a、10排、20排维持正常运行。
b、30排、40排蒸汽隔离门、凝结水隔离门、抽空气隔离门全开。
C、各排风室之间的隔离风门应关闭,防止窜风。
d、10排、20排散热器温度低于50℃时需要30排、40排之间相互切换运行(切换时间为1小时一次,方法为各风机转速设定后,尽量不调整,风机启30、40排停10、20排,循环定期切换)以此来保证散热器的不冻结。
e、冬季运行期间,每班班中一次,由司机进行还应就地实测各排散热器上、中、下部温度,且温差不超过5℃,顺流散热器下部不得低于50℃,凝结水联箱温度不得低于50℃(防止空冷散热器在运行中造成局部过冷)。
f、在减负荷过程中,随着负荷降低,凝结水温度降低,逐渐进行风机转速的降速操作,保证凝结水温度在50℃以上。
g、随着机组负荷的降低,当风机全部停运后,应逐渐停止单排散热器运行,停运顺序为:4-1-3-2,关单列散热器进汽隔离阀。
但抽空气门、凝结水门全开,DCS画面进行强制,以防凝结水积聚造成冻结。
h、在机组运行中发生跳闸事故后,检查各列蒸汽隔离阀应按规定顺序关闭,其凝结水阀与抽空气阀保持全开。
冬季空冷岛该如何防冻西安智源电气来教您(2024)
提高电厂经济效益
空冷岛防冻措施的实施,可以确保电 厂在冬季正常运行,避免因冻害事故 造成的停机损失,提高电厂的经济效 益。
2024/1/30
5
西安智源电气防冻方案简介
智能控制
采用先进的智能控制技术,实时监测 空冷岛的运行状态和环境温度,自动 调整冷却水流量和温度,确保空冷岛 在低温环境下正常运行。
耐低温金属材料
选用耐低温性能优异的金属材料,如低温钢、铝合金等,提高空 冷岛在低温环境下的结构强度和稳定性。
抗冻涂层技术
在空冷岛关键部位涂覆抗冻涂层,降低设备表面结冰温度,提高 抗冻能力。
20
先进加热技术引入
电伴热技术
采用电伴热带对空冷岛进 行加热,通过温度控制器 实现智能控温,确保设备 在低温环境下正常运行。
、调整运行参数等,确保空冷岛安全稳定运行。
故障排查与修复
03
对异常情况进行深入排查,找出根本原因并及时修复,防止问
题扩大或复发。
17
与其他系统协同运行优化
1 2
系统联动
实现空冷岛与其他相关系统的联动控制,如与锅 炉、汽轮机等设备的协同运行,提高整体运行效 率。
能源管理
将空冷岛纳入企业能源管理体系,通过优化运行 策略、降低能耗等措施,提高企业能源利用效率 。
多重保护
设置多重保护机制,包括低温报警、 自动停机等功能,确保在极端低温环 境下空冷岛的安全运行。
2024/1/30
高效加热系统
配备高效的加热系统,对冷却水进行 预热处理,提高冷却水的温度,防止 其在散热器内结冰。
定制化服务
根据客户的实际需求和空冷岛的具体 配置,提供定制化的防冻方案设计和 实施服务,确保防冻措施的有效性和 可靠性。
空冷岛防冻措施
空冷岛防冻措施1 总则1.1 环境温度低于2℃空冷系统进入冬季运行期,应联系设备部人员备好苫布、碳炉等防冻物资。
1.2 机组在遇有启动和停机操作时,必须提前了解并监视环境气象条件的变化,环境温度达-25℃,空冷岛禁止进汽,冬季启、停机尽量选择在白天气温高时进行。
1.3 在任何情况下,必须保证空冷岛各列散热器端部小门以及各冷却单元的隔离门在关闭位置,防止窜风,发现有缝隙和孔洞的及时联系检修人员进行封堵。
1.4 机组在冬季运行期间,空冷系统的防寒防冻工作是重中之重,机组供热后,随着环境温度下降,供热量增加,进入空冷岛汽量减少,应及时通过提高背压等手段确保空冷系统运行安全。
1.5 根据直接空冷系统冬季运行的特点,机组过冷度定义为汽轮机低压缸排汽压力对应的饱和温度与凝结水泵入口温度的差值,空冷过冷度定义为空冷进汽压力对应的饱和温度与各列下联箱的凝结水母管温度的差值,在冬季防冻期间,空冷过冷度作为重要安全指标进行监控。
1.6 冬季遇有大风降温或风力较大的气象情况,运行人员应采取增加机组负荷或提高运行背压等手段,防止大风、降温、再加上散热器热量分布不均发生管束冻坏事故。
1.7 冬季空冷岛运行后,视环境温度及气候条件,安排专人到就地检查散热器管束温度、凝结水集水箱温度变化。
1.8 启、停机、事故状态下及正常运行中空冷岛各参数测点做为重点监视参数,尤其是空冷凝汽器各列凝结水温度和抽真空管温度,发现温度有异常变化,要及时分析原因,若有结冻能正确判断出部位,以便通过提高机组出力、提高机组背压、回暖、封堵、烘烤等方法及时进行解冻。
1.9 在启、停机及正常运行中,背压控制方式应投入自动,并尽可能保持空冷岛风机同步转速运行,升温循环不得随意解除,异常情况下按自动投停规定执行。
1.10 冬季期间,加强防冻管理,在强调运行人员做好防冻工作的同时,管理人员要经常深入现场,随时掌握空冷岛运行状态。
1.11 冬季机组正常情况下的启停机,应与调度做好沟通,以便能尽量安排在白天进行,防止因蒸汽隔离阀不严而造成空冷岛发生冻结。
350MW超临界间接空冷机组冬季防冻措施
350MW超临界间接空冷机组冬季防冻措施1. 引言1.1 350MW超临界间接空冷机组冬季防冻措施350MW超临界间接空冷机组是一种高技术含量的发电设备,其在冬季寒冷的环境下需要采取有效的防冻措施,以确保设备的正常运行和安全性。
冬季是空冷机组受到冻结和结冰影响最为严重的季节,如果不采取适当的防冻措施,可能会导致设备损坏和生产延误。
制定科学合理的冬季防冻措施对于机组的稳定运行至关重要。
在本文中,将介绍350MW超临界间接空冷机组的冬季防冻措施,包括背景介绍、防冻措施、设备保养、操作注意事项和应急处理等内容。
通过对这些方面的深入分析和研究,可以提高机组在冬季的抗冻能力,减少发生故障的可能性,保障设备安全运行。
本文还将总结目前常用的防冻措施并展望未来在这一领域的发展方向,为机组运行管理提供参考和借鉴。
通过不断优化和完善防冻措施,可以更好地保护350MW超临界间接空冷机组,在寒冷冬季中保持高效稳定运行。
2. 正文2.1 背景介绍350MW超临界间接空冷机组是一种高效节能的电力发电设备,它采用空冷技术来降低燃料消耗和减少环境污染。
在冬季寒冷的气候条件下,机组的防冻工作显得尤为重要。
防冻工作不仅可以保证机组正常运行,还可以延长设备的使用寿命,提高发电效率。
随着气候变化和能源需求的增加,350MW超临界间接空冷机组在电力行业中扮演着重要的角色。
在严寒冬季,机组的冷却水循环系统容易受到低温冻结的影响,从而影响到机组的正常运行。
制定科学可行的冬季防冻措施对于保障机组安全稳定运行至关重要。
为了解决冬季防冻问题,需要对机组的冷却水循环系统进行全面检查和维护,及时更新防冻液,加强操作人员的培训和安全意识等措施。
只有加强防冻工作,确保机组在严寒冬季依然可以高效稳定运行,才能更好地满足电力供应的需求。
2.2 防冻措施在冬季寒冷的环境下,350MW超临界间接空冷机组的防冻工作显得尤为重要。
以下是该机组在冬季防冻的具体措施:1. 阀门保温:安装保温套对阀门进行保温,避免结冰。
空冷岛防冻措施
空冷系统防冻措施为确保机组空冷系统安全过冬,防止空冷凝汽器发生冰冻损坏,要求运行人员必须严格执行运行规程及以下补充安全措施。
一、 冬季机组启停(环境温度达到-3℃):1. 锅炉点火后,应检查高,低旁关闭,主、再热蒸汽管道、本体疏水及空冷岛进汽电动门关闭。
2. 启机过程主汽流量达到或大于最小防冻热量后,背压已抽至18KPa 以下空冷岛方可进汽。
开始进汽时 低旁一次开至15%并保持不变,并控制背压升高不超过2KPa/min 。
当背压开始下降后说明排汽装置与空冷散热器之间压差已建立,应再开大低旁,当开大低旁后背压升高到30KPa 时应再投入一列,如此类推。
尽量缩短开始进汽到全部列投入的时间,防止个别列进汽电动门不严,小流量进汽而结冻。
3. 当空冷岛进汽后,锅炉应加强燃烧,保证空冷岛进汽量,并严密监视凝结水及抽气温度。
4. 高、低旁系统投入后,控制低旁减温器后温度在100—130℃,控制三级减温器后温度不超80℃,尽量提高空冷岛进汽温度。
5. 各列风机启动顺序:先逆流,后顺流。
6. 逆流和顺流风机的转速要保持一致。
7. 机组并网后,根据汽缸金属温度使机组在尽可能短的时间内带到较高的负荷,要尽力避免小流量,低负荷,长时间运行。
8. 尽可能加快启动速度,尽量缩短小流量进入空冷系统的时间。
9. 机组启动过程中,应严格执行空冷岛最小允许进汽量。
10. 停机时尽量缩短停机时间,发现蒸汽流量低于最小防冻热量时,果断打闸停机,锅炉开启对空排气。
关闭低旁及至排汽装置各疏水门,禁止空冷岛进汽。
停机后及时检查空冷岛进汽电动门及凝结水后水管道电伴热是否投入,并且检查抽汽温度和凝结水温度是否升高。
二、 冬季正常运行中的防冻措施(环境温度达到-3℃)1. 空冷系统中蒸汽进汽阀及凝结水回水管道的电伴热,冬季运行期间应可靠投入。
2. 加强对空冷温度场的监视,发现空冷受热面温度有偏低的情况,应及时调整风机转速必要时启动备用真空泵或采取回暖等措施使其正常。
直接空冷系统防寒防冻原理及解决方法
直接空冷系统防寒防冻原理及解决方法摘要:本文介绍了大型火力发电厂直接空冷系统防寒防冻原理及解决办法关键词:直接空冷;防寒防冻;超临界1 背景我国是一个严重缺水的国家,水资源分布极不均衡。
在我国北方大部分地区,水资源紧缺严重制约着北方地区的经济发展,尤其是电力行业。
目前水冷机组冷端效率高,应用十分普遍,但在高效率的同时也存在着电厂选址的局限性,所以发展直接空冷机组能够改变原有的“以水定电”的格局,对我国调整现有能源结构,发展富煤缺水地区电力行业有着深远的意义。
直接空冷技术早在上世纪80年代末期开始应用于国内化工、电力领域,但在大型火力发电机组应用起步较晚,2008年7月,华电灵武电厂投运标志着直接空冷技术正式应用于大型火力发电机组中。
2013年底,某厂4×660MW大型直接空冷项目正式动工建设,笔者时任该厂发电运行部汽机主管,全程主持、参与直接空冷系统的基建、调试、运营工作。
该厂超临界直接空冷系统(ACC)通过向大气释放热量对汽机排汽进行冷凝,直接空冷系统每台机组由8列8排共64个空冷单元组成,每列由3个逆流单元与5个顺流单元组成。
大多数蒸汽在顺流单元凝结,少部分蒸汽在逆流单元中凝结,凝结水向下流入联箱汇集进入排气装置继续进行汽水循环,不凝结气体在逆流单元顶部汇集,由水环式真空泵抽出。
本文针对直接空冷系统冬季易冻结特点,对空冷岛翅片管束冻结原理进行了研究,得出了造成空冷系统结冻的主要原因,通过对原因的分析在运行中进行调整与改造,大大降低了空冷岛翅片冻结的风险。
2 直接空冷系统管束冻结原理2.1 单排管空冷管束的换热特点:单排管截面结构及汽水分布如图2-1所示,在单排管截面结构中,蒸汽分布在管束上方,由于凝结作用的影响,凝结水分布在管束的下方,若出现过冷现象,在水底部过冷度最高的区域会出现冻结现象。
2.2 冬季管束内蒸汽流动过程如下:如图2-2(a)所示,在顺流管束内,蒸汽和凝结的水经空气换热同时向下流动,随着流动进程蒸汽越来越少,而凝结的水不断增多。
空冷凝汽器的防冻措施
空冷凝汽器的防冻措施空冷凝汽器的防冻措施空冷凝汽器的防冻措施当环境温度低于-3℃时,直接空冷系统进入冬季运行,空冷系统防冻按如下措施执行。
无论任何情况只要当冷却空气温度降到-3℃延时5分钟后,ACC防冻保护启动,凝结水的过冷保护成为空冷凝汽器重要的内容。
凝结水的过冷很容易因结冰导致空冷散热器基管的堵塞,如果频繁发生,散热器基管就可能变形甚至被损坏。
因此,直接空冷机组在接近冰点的温度下运行期间,要严格采取一切措施避免凝结水过冷现象。
在正常运行期间并且当环境温度低于某一结霜点时,在逆流凝汽管束的上部会发现结霜,这是由于那里有不可凝气体的过冷现象发生。
如果这种状况持续一段时间,比如在24小时内环境温度始终低于冰点,就可能会逐渐地堵塞逆流散热器基管的下端,并且妨碍不可凝气体的排出。
1.空冷凝汽器正常运行时的防冻措施:ACC防冻保护是用于在设备运行期间防止管道冻结。
当测量的环境温度持续低于-3℃延时五分钟后,防冻保护启动;当环境温度持续高于+3℃延时五分钟后,防冻保护停止。
1.1当运行中的半数列(共8列)管排(蒸汽阀打开时)的凝结水温度低于25℃(可调整),汽轮机背压设定值增加3kPA(a)。
1.2如果凝结水温度仍然低于25℃,则需要在30分钟后将汽轮机背压再增加3kPA(a)。
1.3在汽轮机背压设定值改变后,当所有8列凝结水温度都高于30℃,则在延时60分钟之后将汽轮机背压设定值降低3kPA(a)。
1.4当所有64台风机转速低到15HZ时,按008-001-007-002-005-004排的顺序停运顺流空冷风机(每次停8台),若机组背压设定值不变时检查停运第008排顺流风机后剩余7排×8列共56个顺、逆流风机的转速同时升高(大于15Hz),当剩余7排×8列共56个顺、逆流风机的转速减速到15Hz时停运第001排顺流风机,若机组背压设定值不变时,检查剩余6排×8列共48个顺、逆流风机的转速同时升高(大于15Hz),依此类推直到直到只有003和006排×8列共16个逆流风机在运行。
冬季空冷岛防冻措施
冬季空冷岛系统的防冻措施空冷机组在冬季环境温度低于0℃运行时,容易发生空冷岛冻结故障,尤其在机组启动、停运阶段及机组低负荷运行阶段。
运行中必须针对冬季机组运行的各种恶劣工况制定相应的措施,防止空冷岛发生冻结。
针对我厂机组情况,制定如下措施:一、机组启动阶段的空冷岛防冻措施:空冷机组冬季启动初期蒸汽流量偏低,不能满足空冷岛防冻要求,为防止空冷岛冻坏,启动中采取以下运行措施:1.冬季机组正常启动无特殊情况应尽量安排在白天进行,合理控制启动时间保证空冷岛进汽时间尽量在一天中气温比较高的时间段进行。
2.机组启动前的试验中,必须进行对空冷岛抽空气阀、抽汽隔离蝶阀、凝结水回水阀进行开关活动试验,保证正常,开关到位、动作灵活。
3.锅炉点火和汽机抽真空的时间要配合好,最好做到锅炉侧排空门关闭时,汽机侧抽真空结束具备开旁路进汽条件。
此阶段中锅炉侧要做到暖炉均匀、膨胀均匀、油枪试投正常和制粉系统可靠能用,具备快速增加燃烧的条件。
4.汽机抽真空结束后(以排汽压力低于20KPA为标准),快速开启高低旁进行升温升压,锅炉侧增加燃烧,启动制粉系统,保证升温升压速率满足要求,保证快速提升空冷岛进汽量;旁路的控制要求为:低压旁路全开,高压旁路开度维持在50%以上。
5.汽机参数满足冲转要求后应尽快冲转,同时保证电气系统满足机组并网条件,一旦冲转定速正常后立即进行机组并网操作,机组并网后根据缸温尽快接带高负荷以满足空冷岛进汽要求。
6、一单元机组汽机冲转方式为高压缸启动方式,冲转过程中要求高旁在关闭位置,这种冲转方式下空冷系统进汽量少,更容易导致空冷发生冻结,因此,应尽量减少暖机环节,缩短冲转、并网时间,机组并网后快速提升负荷,增加蒸汽流量以满足空冷岛进汽要求。
机组并网后低压旁路不要立即关闭,保持开度以增加空冷岛进汽量,机组负荷到40%额定负荷以上时,逐步关闭。
7、二单元机组汽机冲转方式为高中压缸联合启动方式,冲转过程中,应通过锅炉增加燃烧调节进汽参数,尽量避免关小高低旁调节,必须保证高低旁的开度;机组并网后快速提升负荷,增加蒸汽流量以满足空冷岛进汽要求。
空冷系统冬季防冻补充措施20060108汇总
空冷系统冬季防冻反措补充规定1.严格按照下发的空冷系统冬季防冻措施执行,设置的各个风机的偏置应小于30%,如认为转速需调整时,应适当调节排汽压力的调定值来调节。
2.在保证抽汽温度、凝结水温度的前提下,升高转速时应优先升高逆流风机的转速;降低转速时,应先降低顺流区的风机转速,以保证各列凝汽器进汽。
但逆流区风机的转速也不能太高,以防发生抢汽的现象,导致凝结水温度下降。
3.不允许出现所有逆流风机转速都为零或者一味提高逆流风机而不顾及顺流区风机转速的操作, 以防冻结。
4.注意观察各测点温度符合规定及保持各列风机的转速均匀,使各列凝汽器都均匀进汽以防止冻结。
5.靠近主排汽管道的凝汽器风机的转速可适当降低,以让汽给后面的凝汽器。
6.就地定期检查空冷平台的运行情况,管路振动情况。
记录各列凝汽器的金属表面温度(主要记录凝汽器的外侧温度),发现异常及时汇报。
7.发现背压在低的环境气温,高风机转速下,不正常地升高时,不论凝结水温度与抽汽温度多高,应及时去就地对其凝汽器表面金属温度测温,对风机的转速进行调节。
同时立即通知汽机主管,汇报总值长。
8.当发现凝汽器表面金属温度低于0℃以下时,就相应降低该风机转速,同时降低该列其它凝汽器金属温度较高的风机转速。
9.发现逆流风机单元冻结情况,应尽快将逆流风机投入反转运行,待冻结消除后,再恢复正常运行。
10.发现顺流风机单元冻结情况,应尽快将顺流风机投入反转运行,待冻结消除后,再恢复正常运行。
附:空冷系统背压设定值对照表:上表所述应由运行人员根据机组实际情况,参考机组负荷、环境温度、凝汽器表面温度、凝结水温、抽气温度等参数综合考虑,进行合理的背压调整,在保证安全运行的前提下,尽量提高机组的经济性。
2006-1-7空冷系统冬季防冻反措补充规定批准:审核:编写:2006-1-7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直接空冷防冻措施(试行)上都发电直接空冷系统防冻措施为了确保空冷系统的安全稳定运行,为了确保我厂空冷系统的安全过冬,针对我厂实际情况,进入冬季针对我厂空冷系统的投、停及正常运行维护、异常处理,特制定以下防冻措施,望各值严格执行。
一、机组启动过程中:1、机组在冬季启动前(环境温度≤0℃),应检查空冷凝汽器各列进汽隔离阀关闭,各列逆流区两个抽空气手动阀及电动阀开启,各列凝结水阀开启。
2、锅炉点火前,将机组管道疏水一、二次电动门关闭并―挂起‖。
3、锅炉点火前,机组送轴封后启动三台水环真空泵开始抽真空,当机组背压降至50PKa时关闭抽真空旁路阀。
利用ACC逆流区抽真空系统继续降低机组背压,此时锅炉点火。
4、当机组背压<10.2Kpa. a时停运一台真空泵。
5、锅炉点火后,一次汽采用对空排汽的方法进行升温、升压,当主蒸汽流量达到空冷单列凝汽器的最小防冻流量时(-10℃时,排汽流量≥15T/H;-15℃时,排汽流量≥23T/H;-20℃时,排汽流量≥36T/H;-25℃时,排汽流量≥61T/H;-30℃时,排汽流量≥90T/H)方可投入旁路系统运行,并投入三级减温水,关闭炉一次汽对空排汽,同时将机组管道疏水倒入排气装置。
在投入旁路后将机组背压逐渐升高到25~30Kpa. a。
此时,第四列空冷凝汽器已投入运行,控制其凝结水温度在55~65℃之间;抽空气温度在50℃~55℃之间运行,并维持ACC系统过冷度在3~5℃之间。
6、旁路系统投入后,根据排汽缸温度投入汽缸喷水,控制排汽缸温度在60~70℃之间。
7、投入疏扩减温水,控制高、低压疏水扩容器温度在70~80℃之间。
8、当主控制器PID输出>55%时,第五列空冷凝汽器将会自动投入运行。
9、随着机组负荷的升高按照ACC自动控制顺序依次投入其他各列空冷凝汽器运行。
10、在空冷系统投运前两小时投入空冷凝汽器进汽隔离阀电加热,确保阀门开关灵活。
空冷系统停运前一小时投入空冷凝汽器进汽隔离阀电加热,待停机后四小时停运电加热。
11、在空冷系统投入运行后其逆流区抽空气管道伴热带必须投入运行,机组停运两小时后停运抽空气管道伴热带。
12、随着主控制器PID输出的不断增加,运行人员注意检查逆、顺流风机应根据ACC自动控制曲线的顺序依次启动。
13、冬季启动后,还应注意ACC冬季保护程序、回暖程序的自动投入情况,发现异常,手动进行控制。
14、当机组启动时,在真空系统的排汽压力未降到30KPa.a以下前,应杜绝一切蒸汽进入排汽装置。
主汽管道、再热管道可利用锅炉对空排汽门进行排汽,其它疏水排入锅炉定扩。
15、锅炉点火后,锅炉应在保证安全的前提下,尽快增加燃烧率以满足空冷系统的要求,保证空冷凝汽器不发生冻结。
16、当空冷凝汽器从进汽计时到30分钟期间,锅炉应加强燃烧,汽机逐渐开大高、低旁,保证空冷凝汽器最小防冻进汽量的供给。
二、机组正常运行中:1、严密监视空冷凝汽器各列凝结水温度,应控制在50℃以上运行,并保证其系统过冷度在3~5℃之间。
2、严密监视空冷凝汽器各列逆流区抽空气温度,应控制在40℃以上运行。
3、机组正常运行中负荷应控制在400MW以上运行。
4、当ACC自动控制故障时,应切―手动模式‖运行,尽快联系热工处理,并汇报有关领导。
当ACC在―手动模式‖下运行时按以下方案进行调整:当在冬季工况下只有当环境温度>5℃,持续1小时后,此时,工况将由冬季转到夏季。
以下分别讲述夏季,冬季工况下个阀门和风机的动作。
空冷系统在投运行时按照此顺序实现自动控制的(风机和阀门启动参见附表):夏季条件(环境气温≥3.0℃):ACC系统已经启动,执行如下动作:1.打开立管阀 1 ~ 8列。
2.打开冷凝阀1 ~ 8列。
3.打开抽真空阀1 ~ 8列。
冬季条件(环境气温<+3.0℃):1.ACC已经启动2.汽轮机旁路关闭3."Pre-evacuation over" 信号未出现执行如下动作:1.打开立管阀1 ~ 8列2.打开冷凝阀1 ~ 8列3.打开抽真空阀1 ~ 8列如果旁路站不在关闭状态或者出现了预抽真空完成信号,执行如下动作:1.―Pre-evacuation over(预抽真空完成)‖ 反馈信号出现或者汽轮机旁路站已开,即蒸汽开始进入ACC系统。
执行如下动作(初始阀位等待下步控制动作):1.关闭立管阀1 ~ 8列2.关闭冷凝阀1 ~ 8列3.打开抽真空阀1 ~ 8列阀门控制顺序:只要环境气温 £ 3.0°C,各列设备的打开和关闭都受主蒸汽流量控制(额定蒸汽流量1831t/h)。
打开或关闭蒸汽立管阀即可投用ACC各列设备。
只有蒸汽立管阀关闭之后,相关冷凝阀和抽真空阀才能关闭。
参见下页的表格:阀门打开顺序列1 列2 列3 列5 列6 列7 列8主蒸汽流(%)MAG20AA001LCA15AA001MAG30AA001LCA25AA001MAG40AA001LCA35AA001MAG60AA001LCA55AA001MAG70AA001LCA65AA001MAG80AA001LCA75AA001MAG90AA001LCA85AA001蒸汽立管阀冷凝阀蒸汽立管阀冷凝阀蒸汽立管阀冷凝阀蒸汽立管阀冷凝阀蒸汽立管阀凝阀蒸汽立管阀冷凝阀蒸汽立管阀冷凝阀> 20 C.O C.O> 40 C.O C.O O O> 60O O O O C.O C.O> 80 C.O C.O O O O O O O> 85O O O O O O O O C.O C.O> 90 C.O C.O O O O O O O O O O O> 95O O O O O O O O O O O O C.O C.O阀门关闭顺序列1 列2 列3 列5 列6 列7 列8主蒸汽流(%)MAG20AA001LCA15AA001MAG30AA001LCA25AA001MAG40AA001LCA35AA001MAG60AA001LCA55AA001MAG70AA001LCA65AA001MAG80AA001LCA75AA001MAG90AA001LCA85AA001蒸汽立管阀冷凝阀蒸汽立管阀冷凝阀蒸汽立管阀冷凝阀蒸汽立管阀冷凝阀蒸汽立管阀冷凝阀蒸汽立管阀冷凝阀蒸汽立管阀冷凝阀< 50 C.C C.C < 45 C.C C.C C C< 40C C C.C C.C C C< 32C C C.C C.C C C C C< 25C C C C C.C C.C C C C C< 18C C C C C.C C.C C C C C C C< 10C C C C C C C.C C.C C C C C C C 注释:1、先开冷凝阀,再开立管阀。
2、立管阀关闭之后15分钟,再关冷凝阀。
3、ACC系统启动后,抽真空阀保持开位。
4、C.O = 指令打开; O= 反馈打开5、C.C = 指令关闭; C = 反馈关闭风机:转换变速风机0%,50%及100% 三档开关:无论自动或者手动状态下为了保护电机,在高-低速转换运行中应该设置一个时间延迟(5-15秒可调),顺序如下:1.关闭高速2.由DCS控制延迟5-15秒3.延迟时间过后启动低速从关闭向高速的转换:自动操作不能直接将风机从关闭向高速转换,手动操作仅当低速开着时,才能将风机直接从关闭向高速转换,并且是自动进行转换的。
按下高速按钮,首先低速会自动打开,大约8秒(可调)的延迟后,系统自动从低速转到高速1. 直接启动高速是通过低速进行自动过渡的。
如开启高速开关,首先启动低速,大约8秒钟后,系统自动调为高速。
2. 为减少从―高到低速‖的转化,应停止风机传动机构。
大约5秒钟后,它会自动调为低速3. 从任何一挡关闭风机可没有时间延时风机自动控制转换次序:风机电机的自动控制是通过排汽压力差进行PID的。
排汽压力控制回路的主控制器输出值在设定的范围Y = 0——100% 变动。
1.在夏季环境温度高于3℃时,应该采用修改版风机图表的第8步(矩阵8)。
当然此时各蒸汽立管阀,冷凝阀和抽真空阀都是打开的。
2.在冬季环境温度小于或等于3℃时,按照矩阵1先投用列4设备,如果蒸汽流量加大,当然要按照8.2章所述增加投用的设备列数。
后续列数设备开通运行后(例如相应蒸汽立管阀打开),可以按照下表增减变化。
步骤运行列数相应矩阵编号该步向上切换条件该步向下切换条件1 4 1 MAG60AA001 OPEN n.a.24+5 2 MAG40AA001 OPEN MAG60AA001 CLOSED34+5+3 3 MAG70AA001 OPEN MAG40AA001 CLOSED44+5+3+6 4 MAG30AA001 OPEN MAG70AA001 CLOSED54+5+3+6+2 5 MAG80AA001 OPEN MAG30AA001 CLOSED64+5+3+6+2+7 6 MAG20AA001 OPEN MAG80AA001 CLOSED74+5+3+6+2+7+1 7 MAG90AA001 OPEN MAG20AA001 CLOSED84+5+3+6+2+7+1+8 8 n.aMAG90AA001 CLOSED故障(跳机—无论手动或者自动情况下均适用):1.当相关的振动开关一动作,相关联的风机就就直接被关机(1—8列均适用),只有当待处理的风机在故障原因被查清后,才可按振动复位按钮复位。
只有当待处理的风机在故障原因被查清后,才可按振动复位按钮复位。
2.在系统工作期间,相关的变速箱油压开关一动作,相关联的风机就直接被关机(1—8列均适用)--只有当故障原因被查清且所需的最小油压重新升至规定值,风机才能由控制系统重新启动。
(在风机启动阶段,油压保护要屏蔽10秒,直到合适的油压已经形成。
)NOTE:当相关的风机由于油压或者震动影响到某些风机,该风机将会自动切换到手动模式, 只有消除故障后才能进行下一步的操作。
警报:1.―冷凝或抽真空温度过低‖,例如1列/1区:冷凝温度之一< 25°C,或抽真空温度< 25°C 并且环境温度> 3°C 如果上述条件满足便执行以下动作:1―冷凝温度过低 2 ―抽真空温度过低‖ 风机驱动无任何连带反应。
2.警报信号复位的发生条件如下:只有1.2个冷凝温度必须高于35°C 和2.抽真空温度必须高于35°C条件均满足,―冷凝温度过低和―抽真空温度过低‖报警解除。
防冻保护:冬季保护措施只在环境温度低于3°C时被启动。
(现z冬季保护措施的目的是为了防止冬季运行时空冷过冷或冻结, 防冻保护的复位动作只在自动模式下有效。