(经典)图像的傅里叶变换18607
经典傅里叶变换讲解ppt课件
![经典傅里叶变换讲解ppt课件](https://img.taocdn.com/s3/m/65a0785c011ca300a6c390c3.png)
)dt
t2 t1
t2 t1
f (t) sin(n1t)dt
6
或
f
(t )
a0 2
(an
n 1
cos n1t
bn
sin n1t)
傅里叶级数的 三角展开式
2
an t2 t1
t2 t1
f (t )cos(n1t )dt
同上式
另一种形式
f
(t )
a0 2
cn
n 1
cos(n1t
n )
t
T 4
,
Fn
T
Sa( n
T
)
1 4
Sa( n
4
)
第一个过零点为n =4 。 Fn 在 2π/ 有 4值1(谱线)
T
f (t)
1
2
o
2
谱线间隔 2π T
1 Fn
4
2
O
T
t
第一个过零点:
Sa(
2
)
0
π 2
2π
23
情况2:
T 8
,
Fn
T
Sa( n
T
)
1 8
Sa( n
8
)
第一个过零点n=8
2
)
21
(2)双边频谱:
1
Fn T
/2
e jn1 tdt
1
e jn1 t
/2
2
sin
n1 2
b
b2 4ac
/ 2
T jn1 / 2 T n1
2a
T
sin
n1 2
n1
2
T
Sa( n1
2
图像处理之傅里叶变换
![图像处理之傅里叶变换](https://img.taocdn.com/s3/m/109d16fbe109581b6bd97f19227916888486b9bd.png)
图像处理之傅⾥叶变换图像处理之傅⾥叶变换⼀、傅⾥叶变换傅⾥叶变换的作⽤:⾼频:变化剧烈的灰度分量,例如边界低频:变化缓慢的灰度分量,例如⼀⽚⼤海滤波:低通滤波器:只保留低频,会使得图像模糊⾼通滤波器:只保留⾼频,会使得图像细节增强OpenCV:opencv中主要就是cv2.dft()和cv2.idft(),输⼊图像需要先转换成np.float32 格式。
得到的结果中频率为0的部分会在左上⾓,通常要转换到中⼼位置,可以通过shift变换来实现。
cv2.dft()返回的结果是双通道的(实部,虚部),通常还需要转换成图像格式才能展⽰(0,255)。
import numpy as npimport cv2from matplotlib import pyplot as pltimg = cv2.imread('lena.jpg',0)img_float32 = np.float32(img)dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)dft_shift = np.fft.fftshift(dft)# 得到灰度图能表⽰的形式magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))plt.subplot(121),plt.imshow(img, cmap = 'gray')plt.title('Input Image'), plt.xticks([]), plt.yticks([])plt.subplot(122),plt.imshow(magnitude_spectrum, cmap = 'gray')plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])plt.show()import numpy as npimport cv2from matplotlib import pyplot as pltimg = cv2.imread('lena.jpg',0)img_float32 = np.float32(img)dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT) #时域转换到频域dft_shift = np.fft.fftshift(dft) #将低频部分拉到中⼼处rows, cols = img.shapecrow, ccol = int(rows/2) , int(cols/2) #确定掩膜的中⼼位置坐标# 低通滤波mask = np.zeros((rows, cols, 2), np.uint8)mask[crow-30:crow+30, ccol-30:ccol+30] = 1# IDFTfshift = dft_shift*mask #去掉⾼频部分,只显⽰低频部分f_ishift = np.fft.ifftshift(fshift) #将低频部分从中⼼点处还原img_back = cv2.idft(f_ishift) #从频域逆变换到时域img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1]) #该函数通过实部和虚部⽤来计算⼆维⽮量的幅值plt.subplot(121),plt.imshow(img, cmap = 'gray')plt.title('Input Image'), plt.xticks([]), plt.yticks([])plt.subplot(122),plt.imshow(img_back, cmap = 'gray')plt.title('Result'), plt.xticks([]), plt.yticks([])plt.show()img = cv2.imread('lena.jpg',0)img_float32 = np.float32(img)dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT) dft_shift = np.fft.fftshift(dft)rows, cols = img.shapecrow, ccol = int(rows/2) , int(cols/2) # 中⼼位置# ⾼通滤波mask = np.ones((rows, cols, 2), np.uint8)mask[crow-30:crow+30, ccol-30:ccol+30] = 0# IDFTfshift = dft_shift*maskf_ishift = np.fft.ifftshift(fshift)img_back = cv2.idft(f_ishift)img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1]) plt.subplot(121),plt.imshow(img, cmap = 'gray')plt.title('Input Image'), plt.xticks([]), plt.yticks([])plt.subplot(122),plt.imshow(img_back, cmap = 'gray')plt.title('Result'), plt.xticks([]), plt.yticks([])plt.show()。
傅里叶变换经典
![傅里叶变换经典](https://img.taocdn.com/s3/m/855f0184970590c69ec3d5bbfd0a79563c1ed4fd.png)
2
2
T
T
{ {
O 1 2 3
n-1n
令 n n1 2 T (与n无关),T 2 0 T ,此时视n为(连续变量)
21
现在是21页\一共有56页\编辑于星期三
f
t
lim
T
1 T
n
T
f2
TT
2
e jn
d
e
jnt
lim 1
2 n 0
n
T
f2
TT
2
e jn
因此
0
cos t 2
sin 2
t
d
0 /
2
et
t 0 t 0 t 0
2.2 单位脉冲函数及其傅氏变换
在物理和工程技术中, 常常会碰到单位脉冲函数. 因为有许多物理现象具有脉冲性质, 如在电学中, 要
研究线性电路受具有脉冲性质的电势作用后产生的电
流; 在力学中, 要研究机械系统受冲击力作用后的运 动情况等. 研究此类问题就会产生我们要介绍的单位
研究周期函数实际上只须研究其中的一个周期内的
情况即可, 通常研究在闭区间[-T/2,T/2]内函数变化的
情况.
fT
t
是以T为周期的函数,在
T2
T ,
2
上满足
Dirichlet条件:
fT t 连续或只有有限个第一类间断点;
fT t 只有有限个极值点;
fT t 可展开成Fourier级数,且在连续点t处成立:
x
12
前面计算出
cn
1 2
sinc
n
n 0, 1, 2,
n
n
n
2
T
n
《傅里叶变换经典》PPT课件
![《傅里叶变换经典》PPT课件](https://img.taocdn.com/s3/m/7a46904d854769eae009581b6bd97f192279bf86.png)
43
2. 位移性质:
若F [f t ] F ,t0 ,0 为实常数,则
F [f t t0 ] ejt0F , F 1[F 0 ] e j0t f t
或F [e j0t f t ] F 0
证明:F
[f
F f t eitdt(实自变量的复值函数)
称为f t 的Fourier变换,记为F [f t ]。
1 F eitd 称为F 的Fourier逆变换,
2 记为F 1[F ] .
26
若F f t F ,则F 1 F f t ; 若F 1 F f t ,则F f t F f t F :一一对应,称为一组Fourier变换对。 f t 称为原像函数,F 称为像函数。
t
具有性质fT(t+T)=fT(t), 其中T称作周期, 而1/T代表
单位时间振动的次数, 单位时间通常取秒, 即每秒重复 多少次, 单位是赫兹(Herz, 或Hz).
2
最常用的一种周期函数是三角函数。人们发现, 所有 的工程中使用的周期函数都可以用一系列的三角函数的 线性组合来逼近.—— Fourier级数
1
2
1
2
1,
t
0
42
§3 Fourier变换与逆变换的性质
这一讲介绍傅氏变换的几个重要性质, 为了叙述方 便起见, 假定在这些性质中, 凡是需要求傅氏变换的函 数都满足傅氏积分定理中的条件, 在证明这些性质时, 不再重述这些条件.
1.线性性质:
F [af t bg t ] aF [f t ] bF [g t ]
19
1.2 Fourier积分公式与Fourier积分存在定理
第5章 图像变换-傅里叶变换
![第5章 图像变换-傅里叶变换](https://img.taocdn.com/s3/m/30f8690702020740be1e9be5.png)
N 1
从上式可以看出,一个二维傅立叶变换 可用二次一维傅立叶变换来实现
(0,0)
f(x,y)
N-1
y
(0,0)
F(x,v)
N-1
v 列变换
(0,0)
F(u,v) u
N-1
v
N-1
x
行变换 N-1
N-1
x
二维傅立叶变换分离成两个一维变换
行变换
列变换
(2)平移性 在空域中,图像原点平移到(x0,y0)时,其对应的频 ux vy j 2π ( ) 谱F(u,v)要乘上一个负的指数项 e N
(5)分配性(线性)和比例性(缩放) 傅立叶变换的分配性表明,傅立叶变换和反变换 对于加法可以分配,而对乘法则不行,即
{ f1 ( x, y ) f 2 ( x, y )} { f1 ( x, y )} { f 2 ( x, y )} { f1 ( x, y ) f 2 ( x, y )} { f1 ( x, y )} { f 2 ( x, y )}
图像傅立叶变换
从幅度谱中我们 可以看出明亮线 和原始图像中对 应的轮廓线是垂 直的。如果原始 图像中有圆形区 域那么幅度谱中 也呈圆形分布
图像傅立叶变换
图像中的颗粒状对 应的幅度谱呈环状, 但即使只有一颗颗 粒,其幅度谱的模 式还是这样。
图像傅立叶变换
这些图像没有特定 的结构,左上角到 右下角有一条斜线, 它可能是由帽子和 头发之间的边线产 生的
例 对比
傅立叶变换的物理意义
梯度大则该点的亮度强,否则该点亮度弱。 这样通过观察傅立叶变换后的频谱图,我们 首先就可以看出,图像的能量分布,如果频 谱图中暗的点数更多,那么实际图像是比较 柔和的(因为各点与邻域差异都不大,梯度 相对较小),反之,如果 频谱图中亮的点数 多,那么实际图像一定是尖锐的,边界分明 且边界两边像素差异较大的。
傅里叶变换图解
![傅里叶变换图解](https://img.taocdn.com/s3/m/6306e096852458fb760b56af.png)
这篇文章的核心思想就是:要让读者在不看任何数学公式的情况下理解傅里叶分析。
傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。
但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。
老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。
(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。
所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。
至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。
-------- 以上是定场诗-----------下面进入正题:抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。
但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。
这样的例子太多了,也许几年后你都没有再打开这个页面。
无论如何,耐下心,读下去。
这篇文章要比读课本要轻松、开心得多一、啥叫频域从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。
这种以时间作为参照来观察动态世界的方法我们称其为时域分析。
而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。
但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。
先举一个公式上并非很恰当,但意义上再贴切不过的例子:在你的理解中,一段音乐是什么呢?这是我们对音乐最普遍的理解,一个随着时间变化的震动。
但我相信对于乐器小能手们来说,音乐更直观的理解是这样的:好的!下课,同学们再见。
是的,其实这一段写到这里已经可以结束了。
图像傅里叶变换ppt课件
![图像傅里叶变换ppt课件](https://img.taocdn.com/s3/m/37e7d2e5f242336c1fb95e60.png)
10
图像傅里叶变换
11
图像傅里叶变换
12
图像傅里叶变换
13
图像傅里叶变换
14
图像傅里叶变换
15
图像傅里叶变换
16
傅里叶变换
图像傅里叶变换
17
傅里叶变换定义
为什么要在频率域研究图像增强
✓ 可以利用频率成分和图像外表之间的对应关系。一 些在空间域表述困难的增强任务,在频率域中变得非
常普通 ✓ 滤波在频率域更为直观,它可以解释空间域滤波的 某些性质
假设M的形式是
M 2n
n为正整数。因此,M可以表示为
M2K
将M=2K带入上式
Fu
1 2K 1
f x W2uxK
2K x0
1 1 K1 图像傅里叶2变换K
u2x 1 K1
u2x1
61
快速傅里叶变换(FFT)
推导:因为
WM ej2/M
所以
W e e W 22 K ux
j2 (2ux)/2K
✓ u=0,1,2,…图,M像傅-里1叶,变换
v=0,1,2,…,N-132
傅里叶变换
F(0,0)表示
F0,0
1 M 1 N 1
f x, y
MN x0 y0
这说明:假设f(x,y)是一幅图像,在原点的傅 里叶变换等于图像的平均灰度级
图像傅里叶变换
33
傅里叶变换
如果f(x,y)是实函数,它的傅里叶变换是 对称的,即
52
傅里叶变换
自相关理论
fx,y fx,yFu,2v Ru2,v Iu2,v fx,y2 Fu,v Fu,v
注:复数和它的复共轭的乘积是复数模的平方
图像傅里叶变换
图像处理技术中的傅里叶变换方法介绍
![图像处理技术中的傅里叶变换方法介绍](https://img.taocdn.com/s3/m/d7489b0e68eae009581b6bd97f1922791688bedf.png)
图像处理技术中的傅里叶变换方法介绍傅里叶变换是一种将信号从时域转换到频域的方法,图像处理中广泛应用的一种数学工具。
傅里叶变换将图像转换为频域信号,使我们能够观察和分析图像中不同频率的成分。
在图像处理领域,傅里叶变换常用于图像的滤波、去噪、增强等任务。
本文将介绍傅里叶变换的原理和在图像处理中的应用。
让我们了解一下傅里叶变换的原理。
傅里叶变换基于傅里叶级数展开的思想,将函数分解成一组正弦和余弦函数的和。
对于一维信号,傅里叶变换可以表示为以下公式:F(u) = ∫ f(x) * e^(-2πiux) dx其中,F(u)表示信号在频域中的复数表示,f(x)表示输入信号在时域中的复数表示,u表示频率,i为虚数单位。
在图像处理中,傅里叶变换可以应用于二维信号,即图像。
图像可以通过对其在两个方向上进行傅里叶变换,得到其在频率域上的表示。
图像的傅里叶变换可以表示为以下公式:F(u,v) = ∬ f(x,y) * e^(-2πi(ux+vy)) dx dy其中,F(u,v)表示图像在频率域中的复数表示,f(x,y)表示输入图像在空域中的灰度值,u和v表示频率,i为虚数单位。
在图像处理中,我们经常使用的是傅里叶变换的逆变换,即将图像从频域转换回空域。
逆傅里叶变换可以表示为以下公式:f(x,y) = ∬ F(u,v) * e^(2πi(ux+vy)) du dv通过逆傅里叶变换,我们可以将对图像进行频域操作后的图像恢复到原始的空域。
在图像处理中,傅里叶变换有着广泛的应用。
其中之一是频域滤波。
通过将图像转换到频域,在频域中对图像进行滤波操作,可以实现一些空域中难以实现的效果。
傅里叶变换后的频域图像中较低频率成分代表图像的平滑部分,较高频率成分代表图像的细节和边缘。
通过选择不同的滤波器,在频域中滤除或增强不同频率的成分,可以实现图像的模糊、锐化、边缘检测等效果。
傅里叶变换还可以用于图像的压缩和去噪。
在图像压缩中,通过对图像进行傅里叶变换,并保留较低频率成分来实现图像的压缩。
(精心整理)图像的傅里叶变换
![(精心整理)图像的傅里叶变换](https://img.taocdn.com/s3/m/83937114fbd6195f312b3169a45177232f60e43c.png)
g(x, y) G( ,) exp[ j2 ( x y)]d d
G( ,)是g(x,y)的频谱,物函数g(x,y)可以看作不同方
向传播的单色平面波分量的线性叠加。G( ,)d d为
权重因子。空间频率 cos , co表s 示了单色平面
波的传播方向。
第14页,共72页。
二维离散傅里叶变换
F (u)
1 4
1 1
j 1
1 1
j
f
(1)Βιβλιοθήκη 1 f (2)1j
1
j
f
(3)
第17页,共72页。
yj
-1
1
x
-j
图像的频谱幅度随频率增大而迅速衰减
许多图像的傅里叶频谱的幅度随着频率的增大而迅速减小,这使得在显 示与观察一副图像的频谱时遇到困难。但以图像的形式显示它们时,其高频项 变得越来越不清楚。
第35页,共72页。
二维离散傅里叶变换的性质
➢ 线性性
f1 f2
x, x,
y y
F1 u, v F2 u, v
c1
f1
x,
y
c2
f2
x,
y
c1F1
u,
v
c2
F2
u,
v
证明:
DFT c1 f1 x, y c2 f2 x, y
M 1 N 1
c1 f1
x, y
c2 f2
第31页,共72页。
主极大的值用Fmax表示,第一个旁瓣的峰值用Fmin表示 R loga (1 KFmax ) loga (1 KFmin )
第32页,共72页。
例题:对一幅图像实施二维DFT,显示并观察其频谱。
解:源程序及运行结果如下:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fourier Transformation For Image
时域分析只能反映信号的幅值随时间的变化 情况,除单频率分量的简谐波外,很难明确揭示 信号的频率组成和各频率分量大小。
图例:受噪声干扰的多频率成分信号
信号频谱X(f)代表了信号在不同频率分量成分的大小,能够提 供比时域信号波形更直观,丰富的信息。
(u,v)=(0,0)位置的傅里叶变换值为
F(0,0)
1
M 1 N 1
f (x, y) f (x, y)
MN x0 y0
即f(x,y) 的均值,原点(0,0) 的傅里叶变换是图像的 平均灰度。F(0,0) 称为频率谱的直流分量(系数), 其它F(u,v) 值称为交流分量(交流系数)。
二维连续傅里叶变换
幅值
时域分析
频域分析
一维FT及其反变换
连续函数f(x)的傅立叶变换F(u):
F (u) f (x)e j2uxdx
傅立叶变换F(u)的反变换:
f (x) F (u)e j2uxdu
一维DFT及其反变换
离散函数f(x)(其中x,u=0,1,2,…,N-1)的傅立叶变换:
N 1
f
g
DFT(f)+DFT(g)
DFT(f+g)
➢ 可分离性
二维DFT可视为由沿x,y方向的两个一维DFT所构成。
M 1 N1
F u,v
f
x, y
e
j
2
ux M
vy N
x0 y0
M 1 N1
j2 vy
j 2 ux
f x, y e N e M
x0 y0
M 1
2
u0 x M
v0 y N
u u0 , v v0
x x0 , y y0
F
u,v e
j
2
ux0 M
vy0 N
证明: (1)频域移位
DFT f
x, y
e j
2
u0 x M
v0 y N
M 1 N 1
f
x, y e e j
2
u0 x M
v0 y N
j 2
ux M
解: %myseparable.m %该程序验证了二维DFT的可分离性质 %该程序产生了冈萨雷斯《数字图像处理》(第二版) %P125 图4.4
f=imread('D:\chenpc\data\thry\chpt4\Fig4.04(a).jpg');
subplot(211)
imshow(f,[]) title('原图') F=fftshift(fft2(f));
一些图像的傅里叶变换
对于xy平面上一点的复振幅分布g(x,y)可由逆傅里叶 变换表示成:
g(x, y) G(,) exp[ j2 ( x y)]dd
G( ,)是g(x,y)的频谱,物函数g(x,y)可以看作不同方
向传播的单色平面波分量的线性叠加。G( ,)d d
为权重因子。空间频率 cos , cos 表示了单色
F=fftshift(fft2(f)); G=fftshift(fft2(g)); subplot(223) imshow(log(abs(F+G)),[]) FG=fftshift(fft2(f+g)); title('DFT(f)+DFT(g)') subplot(224) imshow(log(abs(FG)),[]) title('DFT(f+g)')
vy N
x0 y0
M 1 N 1
f
x, y e
j 2
u u0
M
x v v0
N
y
x0 y0
F u u0 , v v0
结论:
f
x, y
e F j
2
u0 x M
v0 y N
u u0 , v v0
当
M
N
u0 2 , v0 2
e j 2 (u0x / M v0 y / N ) e j ( x y) (1) x y
此过程,得到全部完 整的FT。
离散傅里叶变换及其反变换总存在。 用欧拉公式得 e j cos j sin
N 1
F (u) f (x)[cos 2ux / N j sin 2ux / N ] x0
每个F(u) 由f(x)与对应频率的正弦和余弦乘积和组成;
u 值决定了变换的频率成份,因此,F(u) 覆盖的域 (u值) 称为频率域,其中每一项都被称为FT 的频率 分量。与f(x) 的“时间域”和“时间成份”相对应。
y
Y
0
x
相应的空间频率分别为
X
u 1 cos , v 1 cos
X
Y
思考:噪声、线、细节、 背景或平滑区域对应的空 间频率特性?
对图像信号而言,空间频率是指单位长度内亮度作周 期性变化的次数。
傅里叶变换的意义
傅里叶变换好比一个玻璃棱镜 棱镜是可以将光分成不同颜色的物理仪 器,每个成分的颜色由波长决定。 傅里叶变换可看做是“数学中的棱镜”, 将函数基于频率分成不同的成分。
f=imread('D:\chenpc\data\thry\chpt4\Fig4.04(a).jpg'); g=imread('D:\chenpc\data\thry\chpt4\Fig4.30(a).jpg'); [m,n]=size(g); f(m,n)=0; f=im2double(f); g=im2double(g); subplot(221) imshow(f,[]) title('f') subplot(222) imshow(g,[]) title('g')
一个图像尺寸为M×N的函数f(x,y)的离散傅立叶变换F(u,v):
M 1 N 1
F(u,v)
f ( x, y)e j2 (ux/M vy/N )
x0 y0
F(u,v)的反变换:
f (x, y)
1
M 1 N 1
F (u, v)e j2 (ux/M vy/N )
MN u0 v0
二维DFT傅里叶变换
u0 v0
x 0,1,M 1 y 0,1, N 1
离散的情况下,傅里叶变换和逆傅里叶变换始终存在。
例 设一函数如图(a)所示,如果将此函数在自变量
x0 0.5, x1 0.75, x2 1.00, x3 1.25 取样
并重新定义为图(b)离散函数,求其傅里叶变换。
(a)
(b)
1 1 1 1 f (0)
傅里叶变换的作用
傅里叶变换将信号分成不同频率成份。类似光学中的 分色棱镜把白光按波长(频率)分成不同颜色,称数学 棱镜。
傅里叶变换的成份:直流分量和交流分量
信号变化的快慢与频率域的频率有关。噪声、边缘、 跳跃部分代表图像的高频分量;背景区域和慢变部分 代表图像的低频分量
二维DFT傅里叶变换
平面波的传播方向。
二维离散傅里叶变换
1) 定义
F (u, v)
1
M 1 N 1
f ( x, y)e j 2 (ux / M vy/ N )
MN x0 y0
u 0,1,M 1 v 0,1, N 1
2) 逆傅里叶变换
M 1 N 1
f (x, y)
F (u, v)e j 2 (ux / M vy/ N )
F (u) f (x)e j2ux/ N x0
•F(u)的反变换的反变换:
f (x)
1
N 1
F (u)e j2ux / N
N x0
计算F(u): 1) 在指数项中代入 u=0,然后将所有x 值
相加,得到F(0); 2) u=1,复对所有x 的 相加,得到F(1); 3) 对所有M 个u 重复
j2 vy
y e N
~
y方向的DFT
y0
F u,v
M 1
F
x0
j2 ux
x,v e M
~
x方向的DFT
F
f
u, x,
y y
1 N 1 M
N 1
F u,v
v0
M 1
F u, y
u0
j 2 vy
eN
~
y方向的IDFT
j 2 ux
e M
~
x方向的IDFT
例题:编程验证二维离散傅里叶变换可分离为两个一维离 散傅里叶变换。
j 2 ux
F x, v e M
x0
f
x, y
1
M 1 N 1
F
u, v
ej
2
ux M
vy N
MN u0 v0
1 M 1 1 N1
M
u
0
N
F
v0
u, v
j2 vy
j 2 ux
e N e M
1
M 1
F
u, y
j 2 ux
e M
M u0
其中:
F
x,v
N 1
f
x,
1) 定义
F (u) f (x)e j2uxdx
2) 逆傅里叶变换
F (u, v) f (x, y)e j2 (uxvy)dxdy
f (x) F (u)e j2uxdu
3) 傅里叶变换特征参数
f (x, y) F (u, v)e j2 (uxvy)dudv
F(u,v) R(u,v) jI(u,v)
Fc=fftshift(F); %把频谱坐标原点由左上角移至屏幕中央 subplot(223) Fd=abs(Fc); imshow(Fd,[]) ratio=max(Fd(:))/min(Fd(:)) %ratio = 2.3306e+007,动态范围太大,显示器无法正常显 示 title('幅度谱(频谱坐标原点在屏幕中央)') S2=log(1+abs(Fc)); subplot(224) imshow(S2,[]) title('以对数方式显示频谱')