球墨铸铁金相组织成分及其牌号
球墨铸铁标准 附球墨铸铁化学成分(检规附件)
球墨铸铁中国标准:GB/T 1348-1998 球墨铸铁单铸试块的力学性能与金相组织
球墨铸铁单铸试块V形缺口试样的冲击性能
球墨铸铁附铸试块的力学性能与金相组织
球墨铸铁附铸试块V形缺口试样的冲击强度
球墨铸铁的硬度牌号、硬度范围及金相组织
ISO国际标准:ISO 1083:1987 球墨铸铁的牌号与单铸试块的力学性能及组织
球墨铸铁附铸试块V形缺口试样的冲击值
球墨铸铁件的硬度牌号及硬度与组织
表8 铸件的机械加工余量(㎜)
表4 球墨铸铁件化学成分范围(供参考)
表9 单件和一次性小批生产的铸件机械加工余量。
球 墨 铸 铁
图1-11 球墨铸铁高温正火工艺曲线
2)低温正火
球墨铸铁
一般将铸件加热到820 ℃~860 ℃,保温1~4 h, 然后出炉空冷,获得珠光体 和分散铁素体的球墨铸铁。 低温正火后的铸件的塑性和 韧性提高了,但强度比高温 正火略低,其工艺曲线如图 1-12所示。
图1-12 球墨铸铁低温正火工艺曲线
球墨铸铁
球墨铸铁
图1-9 球墨铸铁低温石墨化退火工艺曲线
球墨铸铁
3)高温石墨化退火
由于球墨铸铁白口倾向较大,因而铸态组织中往往 出现自由渗碳体,为了获得铁素体球墨铸铁,需要进行 高温石墨化退火。
高温石墨化退火工艺是将铸件加热到900 ℃~950 ℃,保温2~4 h,使自由渗碳体石墨化,然后炉冷至 600 ℃,再出炉空冷,其工艺曲线如图1-10所示。
球墨铸铁
2)低温石墨化退火
当铸态基体组织为珠光体+铁素体而无自由渗 碳体存在时,为了获得塑性、韧性较高的铁素体球 墨铸铁,可进行低温石墨化退火。
低温石墨化退火工艺是将铸件加热到共析温度 范围附近,即720 ℃~760 ℃,保温2~8 h,使铸 件发生第三阶段石墨化,然后炉冷至600 ℃,再出 炉空冷,其工艺曲线如图1-9所示。
球墨铸铁的化学成分为ωC=3.6%~3.9%,ωSi=2.0% ~2.8%,ωMn=0.6%~0.8%,ωS<0.04%,ωP<0.1%, ωMg=0.03%~0.05%。与灰铸铁相比,球墨铸铁的碳、硅 含量较高,有利于石墨球化。
球墨铸铁
2. 球墨铸铁的显微组织
球墨铸铁按其基体组 织不同,可分为铁素体球 墨铸铁、铁素体+珠光体 球墨铸铁和珠光体球墨铸 铁三种,它们的显微组织 如图1-8所示。
球墨铸铁除了能采用上述热处理工艺外,还可以采用表面强化处 理,如表面淬火和渗氮等。
球墨铸铁基地金相组织
球墨铸铁基地组织光学放大倍数:400×浸蚀剂:4%硝酸酒精材料及状态:球墨铸铁热处理:完全奥氏体化、正火组织及说明:珠光体+牛眼状铁素体 。
牛眼状铁素体 :正火冷却时,若以稍慢的冷却速度通过Ar3~Ar1温度范围,在球墨周围形成环状铁素体 ,冷却速度越慢,牛眼越厚。
光学放大倍数:400×浸蚀剂:4%硝酸酒精材料及状态:球墨铸铁热处理:正火组织及说明:珠光体+破碎状铁素体。
破碎状铁素体 :低于但又接近Ac3临界温度正火时产生,即正火加热时未溶解的铁素体 。
光学放大倍数:400× 浸蚀剂:4%硝酸酒精 材料及状态:球墨铸铁热处理:沃斯回火组织及说明:上贝氏体 光学放大倍数:400× 浸蚀剂:4%硝酸酒精 材料及状态:球墨铸铁热处理: 沃斯回火组织及说明:下贝氏体光学放大倍数:400× 浸蚀剂:4%硝酸酒精 材料及状态:球墨铸铁 热处理:淬火组织及说明:淬火马氏体+残余奥氏体光学放大倍数:400× 浸蚀剂:4%硝酸酒精 材料及状态:球墨铸铁 热处理:淬火+回火组织及说明:回火马氏体光学放大倍数:500× 浸蚀剂:4%硝酸酒精 材料及状态:球墨铸铁 热处理:淬火组织及说明:淬火马氏体+残余奥氏体光学放大倍数:500× 浸蚀剂:4%硝酸酒精 材料及状态:球墨铸铁 热处理:淬火组织及说明:淬火马氏体+残余奥氏体光学放大倍数:500×浸蚀剂:4%硝酸酒精材料及状态:球墨铸铁热处理:淬火组织及说明:淬火马氏体+残余奥氏体Array光学放大倍数:500×浸蚀剂:4%硝酸酒精材料及状态:球墨铸铁热处理:淬火组织及说明:淬火马氏体+残余奥氏体。
金相组织标准
球化等级:1~4级;球径大小:5~8级
铁素体
QT500-7
抗拉强度≥500;延伸率≥7; 硬度:170~230
球化等级:1~4级;球径大小:5~8级
铁素体+珠光体
QT550-6
抗拉强度≥550;延伸率≥6; 硬度:170~230
球化等级:1~4级;球径大小:5~8级
铁素体+珠光体
球墨铸铁最重要指标是抗拉强度和延伸率;其次为球化等级;其余指标为参考数据。
牌号 HT100 HT150 HT200 HT250 HT300 HT350
硬度和抗拉强度
灰铸铁的金相组织实例(体积分数)(%) 石墨
基体
抗拉强度≥100
初晶石墨,长度250~1000μm,无定向分布, 含量12%~15%
珠光体30%~70%粗片状,铁素体 30%~70%,二元磷共晶<7%
抗拉强度≥150
抗拉强度≥400;延伸率≥ 15;硬度:130~180
石墨 球化等级:1~4级;球径大小:5~8级
主要基体组织 铁素体
QT400-18
抗拉强度≥400;延伸率≥ 18;硬度:130~180
球化等级:1~4级;球径大小:5~8级
铁素体
QT450-12
抗拉强度≥450Leabharlann 延伸率≥ 12;硬度:160~210
珠光体>98%中细片状,二元磷共晶 <2%
抗拉强度≥350; 硬度(HBS):190~250
A+C (75%~90%片状石墨,10%~25%过冷石
墨,长度60~250μm,含量2%~4%)
珠光体>98%细片状,二元磷共晶<1%
球墨铸铁的金相组织(体积分数)(%)
牌号 QT400-15
第三章球墨铸铁
• (5)磷共晶 • 磷共晶在球墨铸铁中的危害远比灰铸铁中大,它使铸铁的
硬度提高,而塑性和韧性大幅度降低。因此在球墨铸铁中 应降低磷共晶体的数量。GB9441-88中将磷共晶体的数 量分为五级,检验时可与标准图册对照评定。 • (6)渗碳体 • 渗碳体在球墨铸铁中常呈针状、条状或以莱氏体存在,易 使球墨铸铁变脆,因此生产中应尽量避免其出现。
• 1950年,我国王遵明教授在东北应用球铁获得成功, 到1951年就将球墨铸铁应用到了生产上。
• 在一些主要工业国家,其产量超过了具有百年历史的 铸钢和可锻铸铁,成了仅次于普通灰铸铁的铸造工程 材料。球墨铸铁可用来制造各种受力复杂,强度、韧 性、耐磨性等要求较高的零件,如曲轴、铸管、齿轮、 机床等。据资料介绍,每年这种材料在工程上的应用 以15%的速度递增。
• 图中所示,球状G最好,对基体的割离轻微,故QT的 性能最好。GB9441-88QT金相检验标准中按G的形态 是球化等级分为六级,作为QT分级的依据,见表3-1 和图3-2所示。
第三章球墨铸铁
第三章球墨铸铁
• (2)G的大小 球状G的大小,在金相显微组织放大 100倍后,用测微目镜直接测量。GB9441-88QT金相 检验标准G大小分为六级、见表3-2所示。也可对照标 准图册进行评定。
强度最高、其次是B上、S体、P体、F体。 • QT静载荷性能的一其个突出的特点是屈服点。σ0.2高,超
过正火45钢,比强度σ0.2/σb也高于钢(据测 试:QTσ0.2/σb=0.7—0.8,钢的 σ0.2/σb= 0.3-0.57)。QT可 以代替钢制造静态承力大、材料强度要求较高的件。 • QT硬度比同基体的钢和灰铸铁要高,所以耐磨性能好。 球墨铸铁的弹性模量在159000~172000MPa,而且随球 化率的降低而降低。
qt450-10材料金相组织标准
qt450-10材料金相组织标准
QT450-10是一种高强度铸铁材料,其金相组织主要由石墨、铁素体、珠光体和球墨组成。
以下是QT450-10材料的金相组织标准:
1. 石墨:石墨应为片状或团絮状,石墨片尺寸应符合GB/T 9441-1988《钢铁石墨
显微组织分类》中的规定。
2. 铁素体:铁素体基体应为均匀分布,铁素体晶粒尺寸不应大于5级(按照
GB/T 1499.1-2017《钢筋铁素体晶粒度测定方法》测定)。
3. 珠光体:珠光体球化等级应达到2级以上(按照GB/T 9441-1988《钢铁石墨显
微组织分类》中的规定)。
4. 球墨:球墨铸铁中的球墨应均匀分布,球墨直径不应小于6.5mm,球墨数量不应少
于6个/mm²(按照GB/T 1348-2009《球墨铸铁件》中的规定)。
5. 磷共晶:磷共晶应尽量减少,其面积分数不应大于2%(按照GB/T 1348-2009《球墨铸铁件》中的规定)。
6. 夹杂物:铸铁中的夹杂物应符合GB/T 1499.2-2017《钢筋夹杂物含量测定方法》中的规定。
需要注意的是,金相组织标准可能会因生产工艺、应用领域等因素而有所不同,具体的金相组织标准应参照相关合同、技术协议或客户要求。
球墨铸铁的牌号
130~180
铁素体
QT500-7A
>30~60 >60~200
450~420
300~290
7~5
170~240
铁素体+珠光体
QT600-3A
>30~60 >60~200
600 5~50
360 3~40
3~1
180~270
珠光体+铁素体
QT700-2A
>30~60 >60~200
700~650
牌号
参考壁厚
e/mm
最小抗拉强度
σb/MPa
最小屈服强度
σ0.2/MPa
最小伸长率
δ (%)
硬度
HBS
QT700-2A
30<e≤60
700
400
2
220~320
60<e≤200
650
380
1
220~320
Q600-3TA
30<e≤60
600
360
2
180~270
60<e≤200
550
340
1
180~270
不宜含V、Ti、Cu、W、Mo、Cr等
0.03~0.06
0.02~0.04
退火
3.5~4.0 宜≤3.9
2.0~2.7
≤0..06
0.02~0.04
低温工作铸件
3.4~3.6
1.4~2.0
<0.3 宜≤0.2
≤0.04宜<0.03
≤0.01
Ni<1.0
0.04~0.06
0.3~0.5
≤0.07
≤0.02
0.5~1.0
0~0.2
热处理
球墨铸铁组织成分及其牌号
球墨铸铁组织成分及其牌号发布时间:10-12-29 来源:点击量:3312 字段选择:大中小球墨铸铁(球墨铸铁分析仪)是指铁液经球化处理后,使石墨大部分或全部呈球状形态的铸铁。
与灰铸铁比较,球墨铸铁的力学性能有显著提高。
因为塔德石墨呈球状,对基体的切割作用最小,可有效地利用基体强度的70%~80%(灰铸铁一般只能利用基体强度的30%。
)。
球磨铸铁还可以通过合金化合热处理,进一步提高强韧性、耐磨性、耐热性和耐蚀性等各项性能。
球墨铸铁自1947年问世以来,就获得铸造工作者的青睐,很快得投入了工业性生产。
而且,各个时期否有代表性的产品或技术。
20世纪50年代的代表产品是发动机的球墨铸铁曲轴,20世纪60年代是球墨铸铁铸管和铸态球墨铸铁,20世纪70年代是奥氏体-贝氏体球墨铸铁,2 0世纪80年代以来是厚大断面球墨铸铁和薄小断面(轻量化、近终型)球墨铸铁。
如今,球墨铸铁已在汽车、铸管、机床、矿山和核工业等领域获得广泛的应用。
据统计,2000年世界的球墨铸铁产量已超过1500万t。
球墨铸铁组织成分及其牌号是按力学性能指标划分的,国际GB/T1348——1 988《球墨铸铁件》中单铸试块球墨铸铁牌号,见表单铸试块的球墨铸铁牌号(球墨铸铁金相组织分析仪)球墨铸铁中常见的石墨形态有球状、团状、开花、蠕虫、枝晶等几类。
其中,最具代表性的形态是球状。
在光学显微镜下观察球状石墨,低倍时外形近似圆形;高倍时,为多边形,呈辐射状,结构清晰。
经深腐蚀的试样在SEM中观察,球墨表面不光滑,起伏不平,形成一个个泡状物。
经热氧腐蚀或离子轰击后的试样在SEM中观察,球墨呈年轮状纹理。
且被辐射状条纹划分为多个扇形区域;经应力腐蚀(即向试样加载应力)后观察,呈现年轮状撕裂和辐射状开裂。
球磨是垂直(0001)面向各个方向成长的,从而形成很多个从核心向外辐射的角锥体(二维为扇形区域),(0001)面即成年轮状排列。
在SEM中看到的年轮状及辐射状条纹(或裂纹),就是球墨晶体学特征的反映。
球墨铸铁中所含的化学成分及其含量对性能的影响
球墨铸铁中所含的化学成分及其含量对性能的影响————————————————————————————————作者:————————————————————————————————日期:球墨铸铁简介:球墨铸铁是通过球化和孕育处理得到球状石墨,有效地提高了铸铁的机械性能,特别是提高了塑性和韧性,从而得到比碳钢还高的强度。
球墨铸铁是20世纪五十年代发展起来的一种高强度铸铁材料,其综合性能接近于钢,正是基于其优异的性能,已成功地用于铸造一些受力复杂,强度、韧性、耐磨性要求较高的零件。
球墨铸铁已迅速发展为仅次于灰铸铁的、应用十分广泛的铸铁材料。
所谓“以铁代钢”,主要指球墨铸铁。
析出的石墨呈球形的铸铁。
球状石墨对金属基体的割裂作用比片状石墨小,使铸铁的强度达到基体组织强度的70~90%,抗拉强度可达120kgf/mm2,并且具有良好的韧性。
球墨铸铁除铁外的化学成分通常为:含碳量 3.6~3.8%,含硅量2.0~3.0%,含锰、磷、硫总量不超过1.5%和适量的稀土、镁等球化剂。
制造步骤:(一)严格要求化学成分,对原铁液要求的碳硅含量比灰铸铁高,降低球墨铸铁中锰,磷,硫的含量(二)铁液出炉温度比灰铸铁更高,以补偿球化,孕育处理时铁液温度的损失(三)进行球化处理,即往铁液中添加球化剂(四)加入孕育剂进行孕育处理(五)球墨铸铁流动性较差,收缩较大,因此需要较高的浇注温度及较大的浇注系统尺寸,合理应用冒口,冷铁,采用顺序凝固原则(六)进行热处理ﻬ球墨铸铁中所含的化学成分及其含量对性能的影响球墨铸铁化学成分主要包括碳、硅、锰、硫、磷五种元素。
对于一些对组织及性能有特殊要求的铸件,还包括少量的合金元素。
为保证石墨球化,球墨铸铁中还须含有微量的残留球化元素。
以下就球墨铸铁中所含的化学成分及其含量对性能的影响做详细的阐述:1、碳的作用和影响:碳是球墨铸铁的基本元素,碳高有助于石墨化。
由于石墨呈球状后石墨对机械性能的影响已减小到最低程度,球墨铸铁的含碳量一般较高,在3.5~3.9%之间,碳当量在4.1~4.7%之间。
球铁牌号
铸铁牌号的表示方法:(根据GB5612-85)各种铸铁代号,由表示该铸铁特征的汉语拼音字母的第一个大写正体字母组成。
当两种铸铁名称的代号字母相同时,可在该大写正体字母后加小写正体字母来区别。
同一名称铸铁,需要细分时,取其细分特点的汉语拼音第一个大写正体字母,排列在后面。
铸铁名称,代号及牌号表示方法铸铁名称...............代号牌号..................表示方法实例灰铸铁....................HT.........................HT100蠕墨铸铁..................RuT........................RuT400球墨铸铁..................QT.........................QT400-17黑心可锻铸铁..............KHT........................KHT300-06白心可锻铸铁..............KBT........................KBT350-04珠光体可锻铸铁............KZT........................KZT450-06耐磨铸铁..................MT.........................MT Cu1PTi-150抗磨白口铸铁..............KmBT.......................KmBTMn5Mo2Cu抗磨球墨铸铁..............KmQT.......................KmQTMn6冷硬铸铁..................LT.........................LTCrMoR耐蚀铸铁..................ST.........................STSi15R耐蚀球墨铸铁..............SQT........................SQTAl15Si5耐热铸铁..................RT.........................RTCr2耐热球墨铸铁..............RQT........................RQTA16奥氏体铸铁................AT.........................----...牌号中代号后面的一组数字,表示抗拉强度值;有两组数字时,第一组表示抗拉强度值,第二组表示延伸率值。
QT500-7球墨铸铁
QT500-7球墨铸铁
材料名称:球墨铸铁
牌号:QT500-7
标准:GB 1348-2009
●特性及适用范围:
为铁素体型球墨铸铁,强度与韧性中等,被切削性尚好。
低温时,韧性向脆性转变,但低温冲击值较高,且有一定抗温度急变性和耐蚀性。
用途广泛,用于内燃机的机油泵齿轮,汽轮机中温气缸隔板,水轮机的阀门体,铁路机车车辆轴瓦,机器座架传动轴等。
●化学成份:
碳 C :3.55~3.85
硅 Si:2.34~2.86
锰 Mn:<0.6
硫 S :<0.025
磷 P :<0.08
镁Mg:0.02~0.04
稀土含量RE:0.03~0.05
●力学性能:
抗拉强度σb (MPa):≥500
条件屈服强度σ0.2 (MPa):≥320
伸长率δ (%):≥7
硬度:170~230HB
●热处理规范及金相组织:
热处理规范:(由供方定,以下为某试样的热处理规范,供参考)920℃,退火
金相组织:铁素体+珠光体。
球墨铸铁中所含的化学成分及其含量对性能的影响
球墨铸铁简介:球墨铸铁是通过球化和孕育处理得到球状石墨,有效地提高了铸铁的机械性能,特别是提高了塑性和韧性,从而得到比碳钢还高的强度。
球墨铸铁是20世纪五十年代发展起来的一种高强度铸铁材料,其综合性能接近于钢,正是基于其优异的性能,已成功地用于铸造一些受力复杂,强度、韧性、耐磨性要求较高的零件。
球墨铸铁已迅速发展为仅次于灰铸铁的、应用十分广泛的铸铁材料。
所谓“以铁代钢”,主要指球墨铸铁。
析出的石墨呈球形的铸铁。
球状石墨对金属基体的割裂作用比片状石墨小,使铸铁的强度达到基体组织强度的70~90%,抗拉强度可达120kgf/mm2,并且具有良好的韧性。
球墨铸铁除铁外的化学成分通常为:含碳量 3.6~3.8%,含硅量2.0~3.0%,含锰、磷、硫总量不超过1.5%和适量的稀土、镁等球化剂。
制造步骤:(一)严格要求化学成分,对原铁液要求的碳硅含量比灰铸铁高,降低球墨铸铁中锰,磷,硫的含量(二)铁液出炉温度比灰铸铁更高,以补偿球化,孕育处理时铁液温度的损失(三)进行球化处理,即往铁液中添加球化剂(四)加入孕育剂进行孕育处理(五)球墨铸铁流动性较差,收缩较大,因此需要较高的浇注温度及较大的浇注系统尺寸,合理应用冒口,冷铁,采用顺序凝固原则(六)进行热处理球墨铸铁中所含的化学成分及其含量对性能的影响球墨铸铁化学成分主要包括碳、硅、锰、硫、磷五种元素。
对于一些对组织及性能有特殊要求的铸件,还包括少量的合金元素。
为保证石墨球化,球墨铸铁中还须含有微量的残留球化元素。
以下就球墨铸铁中所含的化学成分及其含量对性能的影响做详细的阐述:1、碳的作用和影响:碳是球墨铸铁的基本元素,碳高有助于石墨化。
由于石墨呈球状后石墨对机械性能的影响已减小到最低程度,球墨铸铁的含碳量一般较高,在3.5~3.9%之间,碳当量在4.1~4.7%之间。
铸件壁薄、球化元素残留量大或孕育不充分时取上限;反之,取下限。
将碳当量选择在共晶点附近不仅可以改善铁液的流动性,对于球墨铸铁而言,碳当量的提高还会由于提高了铸铁凝固时的石墨化膨胀提高铁液的自补缩能力。
球墨铸铁国家标准(摘要)
球墨铸铁件(摘要) GB 1348-88创建时间:2008-08-02球墨铸铁件(摘要)GB1348-881、引言(略)2、牌号球铁的牌号应符合GB5612—85<铸铁牌号表示方法>的规定,并分为单铸和附铸试块两类。
a.单铸试块的机械性能分为八个牌号,见表1和表2的规定。
b.附铸试块的机械性能分为五个牌号,见表3和表4的规定。
表1单铸试块的机械性能表2单铸试块V 型缺口试样的冲击值注:字母“L”表示该牌号在低温时的冲击值。
表3附铸试块的机械性能表3附铸试块的机械性能注:牌号后面的字母A系表示该牌号在附铸试块上测定的机械性能,以区别表1的单铸试块测定的性能。
表4附铸试块V型缺口试样的冲击值3技术要求3.1生产方法、化学成分和热处理生产方法、化学成分和热处理工艺,可由供方自行决定。
但必须保证协议书、技术条件上所规定的球铁牌号或达到本标准规定的机械性能指标。
对于化学成分,热处理方法有特殊要求的球铁件由供需双方商定。
3.2机械性能3.2.1球铁件的机械性能以抗拉强度和延伸率两个指标作为验收依据。
3.2.2冲击试验只适用于表2和表4所规定的牌号,并且仅在需方要求做冲击试验时,冲击值才作为验收依据。
3.2.3对屈服强度、硬度有要求时,经供需双方商定,可作为验收依据。
3.2.4如果以硬度作为验收指标时,按附录A的规定进行。
3.2.5如果是在铸件本体上取样时,取样部位及要达到的性能指标,由供需双方规定。
3.3金相组织如果需方要求进行金相组织检验时,可按GB9441—88《球墨铸铁金相检验》的规定进行,球化级别_般不得低于4级,其检验次数和取样位置由供需双方商定。
球化级别和基体组织,可用无损检测方法进行检验,如有争议时,应用金相检验法裁决。
3.4球铁件的几何形状及其尺寸公差3.4.1球铁件的几何形状及其尺寸应符合球铁件图样的规定。
3.4.2球铁件的尺寸公差应按GB 6414 - 86<铸件尺寸公差>的规定执行。
球墨铸铁力学性能与化学成分(精)
一、球墨铸铁力学性能:
中国球墨铸铁牌号与力学性能[GB/T 1348--1988]
牌号 抗拉强度 σb≥/MPa 屈服强度 σ0.2≥/Mpa 伸长率 δ5≥(%) 硬度 HBS
基体组织 (体积分数) 贝氏体或回火马氏体(下贝氏体或回火马氏体、回火托氏体) 珠光体 珠光体 珠光体 珠光体 +铁素体 珠光体 +铁素体 铁素体 铁素体 铁素体 (珠光体或回火索氏体) (珠光体或回火索氏体) (珠光体或回火索氏体) (P:80%-30%) (F:80%-50%) (≥80%铁素体) (100%铁素体) (100%铁素体)
Cu 0.5-0.7 0.82 0.40-0.80 0.50-0.75
Mo 0.15-0.25 0.39 0QT700-2 QT700-2 QT600-3 QT500-7 QT450-10 QT400-15 QT400-18
900 800 700 700 600 500 450 400 400
600 480 420 420 370 320 310 250 250
2 2 2 2 3 7 10 15 18
280-360 245-335 225-305 225-305 190-270 170-230 160-210 130-180 130-180
二、球墨铸铁化学成分:
球墨铸铁的化学成分(供参考) 化 学 成 分(质 量 分 数 %) Si Mn P S Mg RE ≤0.50 ≤0.08 ≤0.025 2.7-3.0 0.03-0.05 0.025-0.045 ≤0.50 ≤0.07 ≤0.03 2.5 0.5-0.8 ≤0.08 ≤0.02 2.3-2.6 0.035-0.065 0.035-0.065 0.5-0.7 ≤0.08 ≤0.025 2.0-2.4 0.035-0.05 0.025-0.045 ≤0.60 ≤0.08 ≤0.025 2.5-2.9 0.03-0.05 0.03-0.05 ≤0.50 ≤0.07 ≤0.03 2.2-2.8 0.03-0.06 0.02-0.04 ≤0.50 ≤0.07 ≤0.02 2.5-2.9 0.04-0.06 0.03-0.05 ≤0.50 ≤0.08 ≤0.025 2.2-2.8 0.04-0.06 0.03-0.05
铸铁金相组织分析
球墨铸铁金相组织球墨铸铁金相组织球墨铸铁牌号球墨铸铁是指铁液经球化处置后,使石墨大部或全体呈球状形态的铸铁。
与灰铸铁比拟,球墨铸铁的力学性能有明显提高。
由于它的石石墨呈球状,对基体的切割作用最小,可有效地应用基体强度的70%~80%(灰铸铁-般只能应用基体强度的30%)。
球墨铸铁还可以通过合金化和热处理,进一步提高强韧性、耐磨性、耐热性和耐蚀性等各项性能。
球墨铸铁自1947年问世以来,就获得铸造工作者的青睐,很快地投入了产业性生产。
而且,各个时代都有代表性的产品或技巧。
20世纪50年代的代表产品是动员机的球墨铸铁曲轴,20世纪60年代是球墨铸铁铸管和铸态球墨铸铁,20世纪70年代是奥氏体-贝氏体球墨铸铁,20世纪80年代以来是厚大断面球墨铸铁和薄小断面(轻量化、近终型)球墨铸铁。
如今,球墨铸铁已在汽车、铸管、机床、矿山和核产业等范畴获得普遍的利用。
据统计,2000年世界的球墨铸铁产量已超过1500万吨o球墨铸铁的牌号是按力学性能指标划分的,国标GB/T 1348-1988《球墨铸铁件》中单铸试块球墨铸铁牌号,见表1。
表1 单铸试块球墨铸铁牌号牌号抗拉强度Rm(MPa)断后伸长率A(%)布氏硬度HBW重要金相组织QT400-1840018130~180铁素体QT400-15 40015130~180铁素体QT450-10 45010160~210铁素体QT500-7 5007170~230铁素体+珠光体QT600-3 6003190~270珠光体+铁素体QT700-27002225~305珠光体QT800-28002245~335珠光体或回火组织QT900-29002280~360贝氏体或回火组织球墨铸铁中常见的石墨形态有球状、团状、开花、蠕虫、枝晶等几类。
其中,最具代表性的形态是球状。
在光学显微镜下察看球状石墨,低倍时,外形近似圆形;高倍时,为多边形,呈辐射状,构造清楚。
经深腐化的试样在SEM中视察,球墨表面不光滑,起伏不平,形成一个个泡状物。
qt500-7球墨铸铁金相标准
QT500-7球墨铸铁的金相标准包括以下方面:
1. 基体组织:QT500-7球墨铸铁的基体组织为铁素体加珠光体混合基体,其中珠光体含量在30%~50%之间,渗碳体和磷共晶的含量总和不超过5%。
2. 石墨形态:QT500-7球墨铸铁中的石墨应为球状或团状,分布应均匀,不应有粗大石墨。
3. 碳化物:QT500-7球墨铸铁中应含有一定量的碳化物,这些碳化物应为均匀分布的颗粒,不应有粗大的碳化物。
4. 磷共晶:QT500-7球墨铸铁中不应有磷共晶或其含量应控制在一定范围内。
5. 金属夹杂物:QT500-7球墨铸铁中不应有金属夹杂物或其含量应控制在一定范围内。
6. 晶粒度:QT500-7球墨铸铁的晶粒度应控制在一定范围内,以保证材料的力学性能。
这些标准是针对QT500-7球墨铸铁的金相进行评估的参考依据,通过对金相的观察和分析,可以了解材料的成分、组织和性能特点,从而为产品的设计和制造提供指导。
球铁的金相组织
球墨铸铁的生产过程包含以下几个环节:熔炼合格的铁液,球化处理,孕育处理,炉前检查,浇注铸件,清理及热处理,铸件质量检查。在上述各个环节中,熔炼优质铁液和进行有效的球化—孕育处理是生产的关键。
1. 化学成分的选定
选择适当化学成分是保证铸铁获得良好的组织状态和高性能的基本条件,化学成分的选择既要有利于石墨的球化和获得满意的基体,以期获得所要求的性能,又要使铸铁有较好的铸造性能。
生产铸态珠光体球铁要遵循以下原则:
严格控制炉料(生铁与废钢),避免含有强烈形成碳化物元素如Cr、V、Mo、Te等,含锰量取下限,以防止铸态下形成游离渗碳体。适量孕育,一方面防止形成碳化物,另一方面还要防止因强化孕育导致出现大量的铁素体。根据铸件壁厚的性能要求,添加稳定珠光体,但又不形成碳化物的元素如Cu、Ni、Sn等,其中,添加铜的效果显著,成本较低(与添加镍相比),而且也无副作用(与添加锡相比)。在生产高强度珠光体球墨铸铁(抗拉强度要求超过700MPa)时,应采用纯净炉料、严格控制形成碳化物元素、干扰元素以及P、S等有害杂质元素的含量,必要时,还应添加适量的铜和钼。
1.4.3 铁素体-珠光体球墨铸铁
生产牌号QT500-7这种铁素体和珠光体混合基体的球铁时,可参考铁素体、珠光体球铁生产所必须遵循的原则。采用热处理生产铁素体-珠光体球铁时,参考生产退火铁素体球铁 所要求的化学成分,此时,可不必添加铜,只是在石墨化退火第二阶段,缩短保温时间,令其中的部分珠光体转变成铁素体,其余部分则保留下 来,组成混合基体。视所要求的铁素体与珠光体的相对含量,决定缩短 第二阶段的保温时间,要求的铁素体越多,则要缩短的保温时间就越短。采用铸态生产铁素体-珠光体球铁时,参考生产铸态铁素体球铁要遵循的原则。在此基础上,通过控制添加铜的数量,以获得铁素体与珠光体的混合基体,随加铜量的增多,珠光体量增加。
球铁的基体
球墨铸铁、铸铁、铸钢的区别?与铸铁相比,球墨铸铁在强度方面具有绝对的优势。
球墨铸铁的抗拉强度是60k,而铸铁的抗拉强度只有31k。
球墨铸铁的屈服强度是40k,而铸铁并没有显示出屈服强度,并且最终出现断裂。
球墨铸铁的强度-成本比远远优于铸铁。
球墨铸铁的强度和铸钢的强度是可比的。
球墨铸铁具有更高的屈服强度,其屈服强度最低为40k,而铸钢的屈服强度只有36k。
在大部分市政应用领域,如:水、盐水、蒸汽等,球墨铸铁的耐腐蚀性和抗氧化性都超过铸钢。
由于球墨铸铁的球状石墨微观结构,在减弱振动能力方面,球墨铸铁优于铸钢,因此更加有利于降低应力。
选择球墨铸铁的一个重要的原因在于球墨铸铁比铸钢成本低。
球墨铸铁的低成本使得这种材料更加受欢迎,铸造效率更高,也较少了球墨铸铁的机加工成本。
作为钢的替代品,1949年人类开发了球墨铸铁。
铸钢含碳量少于0.3%,而铸铁和球墨铸铁含炭量量则至少为3%。
铸钢中的低含碳量使得作为游离石墨存在的碳不会形成结构薄片。
铸铁内的碳天然形式是游离石墨薄片形式。
在球墨铸铁内,这种石墨薄片通过特殊的处理方法变化成微小的球体。
这种改进后的球体使得使得球墨铸铁比铸铁和钢相比具有更加优异的物理性能。
正是这种碳的球状微观结构,使得球墨铸铁具有更加良好的展延性和抗冲击性,而铸铁内部的薄片形式导致铸铁没有展延性。
通过铁素体基体可获得最佳的展延性。
因此,球墨铸铁的压力负载部件都经过铁素体化退火周期的工艺处理后,球墨铸铁内部的球状结构也能够消除铸铁内部的薄片石墨容易产生的裂缝现象。
在球墨铸铁的微观照片中,可以看见裂缝游行到石墨球后终止。
在球墨铸铁行业内,这些石墨球称为“裂缝终结者”,因为它们具有阻止断裂的能力。
球墨铸铁的基体组织球墨铸铁的基体组织有:1.珠光体基体:铸态或正火获得;2.铁素体基体:退火获得、提高硅含量、缓慢冷却。
3.混合基体球墨铸铁的机械性能主要取决于基体相的微结构和分布,而铸态球铁的微结构特征主要受化学成分和凝固时冷却速度的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
球墨铸铁(铸铁分析仪与灰铸铁比较,球墨铸铁的力学性能有显著提高。因为塔德石墨呈球状,对基体的切割作用最小,可有效地利用基体强度的70%~80%(灰铸铁一般只能利用基体强度的30%。)。球磨铸铁还可以通过合金化合热处理,进一步提高强韧性、耐磨性、耐热性和耐蚀性等各项性能。球墨铸铁自1947年问世以来,就获得铸造工作者的青睐,很快得投入了工业性生产。而且,各个时期否有代表性的产品或技术。20世纪50年代的代表产品是发动机的球墨铸铁曲轴,20世纪60年代是球墨铸铁铸管和铸态球墨铸铁,20世纪70年代是奥氏体-贝氏体球墨铸铁,20世纪80年代以来是厚大断面球墨铸铁和薄小断面(轻量化、近终型)球墨铸铁。如今,球墨铸铁已在汽车、铸管、机床、矿山和核工业等领域获得广泛的应用。)
球墨铸铁一般为过共晶成分,因此球状石墨的长大,应包括两个阶段;①先共晶结晶阶段,球墨核心形成后,在铁液及贫碳富铁的奥氏体晕圈中长大。②共晶结晶阶段,球墨周围形成奥氏体外壳外,即球墨-奥氏体共晶团。此时,球墨是在奥氏体壳包围下长大的。虽然球墨在共晶阶段的长大速度比在碳液阶段迟缓,但球墨的大部分是在共晶阶段长大的。球墨铸铁的共晶团逼灰铸铁的共晶团细小,其数量约为灰铸铁的50~200倍。还应说明,球墨铸铁的共晶结晶一种变
铁素体
QT450-10
450Βιβλιοθήκη 10160~120铁素体
QT500-7
500
7
170~230
铁素体+珠光体
QT600-3
600
3
190~270
铁素体+珠光体
QT700-2
700
2
225~305
珠光体
QT800-2
800
2
245~335
珠光体或回火组织
QT900-2
900
2
280~360
贝氏体或回火组织
(球墨铸铁金相组织分析仪)球墨铸铁中常见的石墨形态有球状、团状、开花、蠕虫、枝晶等几类。其中,最具代表性的形态是球状。在光学显微镜下观察球状石墨,低倍时外形近似圆形;高倍时,为多边形,呈辐射状,结构清晰。经深腐蚀的试样在SEM中观察,球墨表面不光滑,起伏不平,形成一个个泡状物。经热氧腐蚀或离子轰击后的试样在SEM中观察,球墨呈年轮状纹理。且被辐射状条纹划分为多个扇形区域;经应力腐蚀(即向试样加载应力)后观察,呈现年轮状撕裂和辐射状开裂。球磨是垂直(0001)面向各个方向成长的,从而形成很多个从核心向外辐射的角锥体(二维为扇形区域),(0001)面即成年轮状排列。在SEM中看到的年轮状及辐射状条纹(或裂纹),就是球墨晶体学特征的反映。
球墨铸铁组织成分及其牌号是按力学性能指标划分的,国际GB/T1348——1988《球墨铸铁件》中单铸试块球墨铸铁牌号,见表
单铸试块的球墨铸铁牌号
牌号
抗拉强度Rm/(N/mm2)
伸长率A(%)
布氏硬度HBW
主要金相组织
QT400-18
400
18
130~180
铁素体
QT400-15
400
15
130~180