基于-单片机原理步进电机正反转
基于stm32单片机的步进电机实验报告
基于stm32单片机的步进电机实验报告步进电机是一种将电脑控制信号转换为机械运动的设备,常用于打印机、数码相机和汽车电子等领域。
本实验使用STM32单片机控制步进电机,主要目的是通过编程实现步进电机的旋转控制。
首先,我们需要了解步进电机的基本原理。
步进电机是一种能够按照一定步长精确旋转的电机。
它由定子和转子两部分组成,通过改变定子和转子的电流,使转子按照一定的角度进行旋转。
在本实验中,我们选择了一种四相八拍步进电机。
该电机有四个相位,即A、B、C、D相。
每个相位都有两个状态:正常(HIGH)和反向(LOW)。
通过改变相位的状态,可以控制步进电机的旋转。
我们使用STM32单片机作为控制器,通过编程实现对步进电机的控制。
首先,我们需要配置STM32的GPIO口为输出模式。
然后,编写程序通过改变GPIO口的状态来控制步进电机的旋转。
具体来说,我们将A、B、C、D相分别连接到STM32的四个GPIO口,设置为输出模式。
然后,通过改变GPIO口输出的电平状态,可以控制相位的状态。
为了方便控制,我们可以定义一个数组,将表示不同状态的四个元素存储起来。
通过循环控制数组中的元素,可以实现步进电机的旋转。
在实验中,我们通过实时改变数组中元素的值,可以实现不同的旋转效果。
例如,我们可以将数组逐个循环左移或右移,实现步进电机的正转或反转。
在实验过程中,我们可以观察步进电机的旋转情况,并根据需要对程序进行修改和优化。
可以通过改变步进电机的旋转速度或步进角度,来实现更加精确的控制。
总结起来,通过本次实验,我们了解了步进电机的基本原理,并通过STM32单片机控制步进电机的旋转。
通过编写程序改变GPIO口的状态,我们可以实现步进电机的正转、反转和精确控制。
这对于理解和应用步进电机技术具有重要意义。
基于单片机的电动机正反转控制设计.doc
基于单片机的电动机正反转控制设计. .基于单片机的电动机正反转控制设计学生:xxx(指导教师:xxx)(xxxxxx电气信息工程学院)摘要:基于单片机的基本理论,本文设计了一种步进电机控制系统。
该系统通过软硬件的设计调试,实现步进电机能根据设定的参数进行开关加减速控制,使控制系统以最短的时间到达控制终点,而又不发生失步的现象;同时它能准确地控制步进电机的正反转,启动和停止。
硬件是以AT89C51单片机为核心的控制电路,主要包括:开关输入电路、液晶显示电路、步进电机的驱动电路等。
软件部分采用C语言编程,主要包括液晶显示程序、步进电机的正反转即快慢程序等。
通过仿真验证了本文设计系统的实用性能。
关键词:步进电机控制系统;调速;单片机The design of motor control system based on SCMStudent:Zhou Tianhang(Supervisor:Liu Yunxia)Electrical and Information Engineering Department of Huainan Normal UniversityAbstract: The basic theory based on SCM. this paper designs a kind of stepping motor control system. The systemgoes through the design of software and hardware. Realize the stepper motor can switch the acceleration and deceleration control according to the given parameters which makes the control system in the shortest time to finish and not out of step. At the same time, it can control the reversing the stepper motor accurately, start and stop. The hardware control circuit AT89C51 microcontroller as the core mainly. Include: switch input circuit, LCD displaying circuit, stepper motor drive circuit. The software is programmed by C language. Include: LCD display program and the stepper motor speed program .The practical performance of the design of the system is validated by simulation.Key words: Stepping motor control system; speed control; Single-xxx(指导教师:xxx)(xxxxxx电气信息工程学院)摘要:基于单片机的基本理论,本文设计了一种步进电机控制系统。
51单片机电机正反转控制程序
51单片机电机正反转控制程序以下是一个基于51单片机的电机正反转控制程序示例:#include <reg52.h>sbit motorPin1 = P0^0; // 电机接口1sbit motorPin2 = P0^1; // 电机接口2void delay(unsigned int delayTime) {unsigned int i, j;for(i=delayTime; i>0; i--)for(j=200; j>0; j--);}void motorClockwise() {motorPin1 = 1; // 电机接口1为高电平motorPin2 = 0; // 电机接口2为低电平delay(500); // 延时一段时间motorPin1 = 0; // 电机接口1为低电平motorPin2 = 0; // 电机接口2为低电平}void motorAnticlockwise() {motorPin1 = 0; // 电机接口1为低电平motorPin2 = 1; // 电机接口2为高电平delay(500); // 延时一段时间motorPin1 = 0; // 电机接口1为低电平motorPin2 = 0; // 电机接口2为低电平}void main() {while(1) {motorClockwise(); // 电机正转delay(1000); // 延时一段时间motorAnticlockwise(); // 电机反转delay(1000); // 延时一段时间}}以上代码中,我们通过定义两个sbit变量来表示电机接口1和接口2。
通过控制接口1和接口2的高低电平状态,可以控制电机的正反转。
在motorClockwise函数中,我们将接口1设置为高电平,接口2设置为低电平,电机开始正转;在motorAnticlockwise函数中,我们将接口1设置为低电平,接口2设置为高电平,电机开始反转。
基于单片机原理的步进电机的正反转程89397460
电机控制课程设计报告书题目基于单片机原理的步进电机的正反转目录目录 (1)摘要 (1)1.概述 (2)1.1课程设计的任务和要求 (2)1.2设计思路框架 (3)1.3设计方案的模块解释 (3)2.系统硬件设计 (3)2.1单片机最小系统原理介绍 (3)2.1.1 AT89C51的工作原理 (4)2.1.2复位电路的工作原理 (7)2.1.3晶振电路的工作原理 (8)2.2电机驱动电路原理介绍 (9)3.系统软件设计 (10)3.1系统流程图 (10)3.2系统程序分析 (11)4.调试过程与结果 (19)5.总结与体会 (20)6.参考资料 (21)7.附录 (22)摘要介绍了步进电机正反转控制原理及其接口驱动控制电路,编制了基于MCS-51单片机的步进电机正反转控制的子程序,并应用wave软件进行了仿真。
证明在并行口控制中,可以利用软件实现环行脉冲分配,实现程序较简单,同时还可以节省硬件投资。
结合单片机控制步进电动机的实际工作环境,从提高控制系统运行的可靠性角度,讨论了实际应用的软件抗干扰技术。
关键词单片机;步进电机;正反转控制1.概 述1.1课程设计的任务和要求电机控制课程设计是考察学生利用所学过的电机控制专业知识,进行综合的电机控制系统设计并最终完成实际系统连接,能够使学生对电气与自动化的专业知识进行综合应用,培养学生的创新能力和团队协作能力,提高学生的动手实践能力。
最终形成一篇符合规范的设计说明书,并参加综合实践答辩,为后期的毕业设计做好准备。
本次设计考核的能力主要有:专业知识应用能力,包括电路分析、电子技术、单片机、检测技术、电气控制、电机与拖动、微特电机及其驱动、计算机高级语言、计算机辅助设计、计算机办公软件等课程,还包括本专业的拓展性课程如变频器、组态技术、现场总线技术、伺服电机等课程。
项目设计与运作能力,团队协作能力,技术文档撰写能力,PPT 汇报与口头表达能力。
电气与自动化系统的设计与实际应用能力。
基于51单片机控制步进电机正反转
基于51单片机控制步进电机正反转此次采用uln2003模块来链接步进电机;## 步进电机工作原理步进电机是一种将电脉冲信号转换成相应角位移或线位移的电动机。
每输入一个脉冲信号,转子就转动一个角度或前进一步,其输出的角位移或线位移与输入的脉冲数成正比,转速与脉冲频率成正比。
步进电动机的结构形式和分类方法较多,一般按励磁方式分为磁阻式、永磁式和混磁式三种;按相数可分为单相、两相、三相和多相等形式。
因此我们可以控制单片机I/O口的电平来控制步进电机,此次设计中采用四相单拍工作方式,在这种工作方式下,A、B、C、D 三相轮流通电,电流切换三次,磁场旋转一周,转子向前转过一个齿距角。
因此这种通电方式叫做四相单四拍工作方式。
1.电机正转代码unsigned char code tableZ[8]={0x08,0x0c,0x04,0x06,0x02,0x03,0x01,0x09};2.电机反转代码unsigned char code tableF[8]={0x09,0x01,0x03,0x02,0x06,0x04,0x0c,0x08};代码如下#include <reg52.h>#define uint unsigned int #define uchar unsigned charunsigned char code tableZ[8]={0x08,0x0c,0x04,0x06,0x02,0x03,0x01,0x09};unsigned char code tableF[8]={0x09,0x01,0x03,0x02,0x06,0x04,0x0c,0x08};//²½½øµç»úzhengvoid delay(unsigned int t);sbit S3=P3^4; //反转sbit S4=P3^5; //反停sbit S5=P3^6; // 正停//正转写入数据void motor_z() { unsigned char i,j; for (i=0; i<8; i++) { if(S5==0){break;} for(j=0;j<8;j++){ P1 = tableZ[i]&0x1f; delay(50); } } }//反转写入数据void motor_f(){ unsigned char i,j; for (i=0; i<8; i++) { if(S4==0){break;} for(j=0;j<8;j++){ P1 = tableF[i]&0x1f;delay(50); } }}void delay(unsigned int t)//延时函数{ unsigned int k; while(t--) { for(k=0; k<60; k++) { } }}void main(){while(1){motor_z();if(S3 == 0){motor_f();}}}•1•2•3•4•5•6•7•8•9•10•11•12•13•14•15•16•17•18•19•20•21•22•23•24•25•26•27•29 •30 •31 •32 •33 •34 •35 •36 •37 •38 •39 •40 •41 •42 •43 •44 •45 •46 •47 •48 •49 •50 •51 •52 •53 •54 •55 •56 •1•3 •4 •5 •6 •7 •8 •9 •10 •11 •12 •13 •14 •15 •16 •17 •18 •19 •20 •21 •22 •23 •24 •25 •26 •27 •28 •29 •30 •31•33•34•35•36•37•38•39•40•41•42•43•44•45•46•47•48•49•50•51•52•53•54•55•56protel仿真图如下。
基于单片机AT89S52控制步进电机正反转讲述
目录第一章系统分析 (1)1.1 框图设计 ..............................................21.2 晶振电路 ..............................................2第二章硬件系统设计 (3)2.1 硬件连接图 .............................................32.2 按键功能 ........................................... - 2 -2.3 单片机AT89S52 ..................................... - 2 -2.4 驱动电路 ...............................................42.5 步进电机 (7)第三章软件系统设计 (9)3.1 软件流程图 .............................................93.2 激磁方式 ..............................................10附录 .........................................................12附件A 源程序 .......................................... (12)附件B 仿真结果 (15)参考文献 (17)致谢..........................................................18摘要能够实现步进电机控制的方式有多种,可以采用前期的模拟电路、数字电路或模拟与数字电路相结合的方式。
近年来随着科技的飞速发展,单片机的应用正在不断深入,同时带动传统控制检测日新月异更新。
本文介绍一种用AT89S52作为核心部件进行逻辑控制及信号产生的单片机技术和汇编语言编程设计的步进电机控制系统,步进电机背景与现状、硬件设计、软件设计及其仿真都做了详细的介绍,使我们不仅对步进电机的原理有了深入的了解,也对单片机的设计研发过程有了更加深刻的体会。
单片机控制步进电机正反转
void Motor()
{
unsigned char i;
for(i=0;i<8;i++)
{
GPIO_MOTOR = FFW[i];
Delay(Speed);//调节转速
}
}
当然,这种控制个人觉得是不太精确的,如果只是让一个轴转动180度,则用步进电机外接减速箱,然后接一轴,让电机转一圈,轴转10度或20度,则控制会更精准。
unsigned char code FFZ[8]={0xf9,0xf8,0xfc,0xf4,0xf6,0xf2,0xf3,0xf1}; //正转顺序
unsigned char Direction;
void Delay(unsigned int t);
void Motor();
void main()
Delay(10);
GPIO_MOTOR = FFZ[3];
Delay(10);
GPIO_MOTOR = FFZ[4];
Delay(10);
GPIO_MOTOR = FFZ[5];
Delay(10);
GPIO_MOTOR = FFZ[6];
Delay(15);
GPIO_MOTOR = FFZ[7];
{
unsigned char i;
while(1)
{
if(K1==0)//检测按键K1是否按下
{
Delay(10);//消除抖动
if(K1==0)
{
Direction=1;}while((i<200)&&(K1==0))//检测按键是否松开
毕业设计51单片机控制步进电机正反转的工作原理Protues仿真DXP[指南]
毕业设计51单片机控制步进电机正反转的工作原理Protues 仿真 DXP[指南]当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。
而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。
依次类推,A、B、C、D八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力ULN2003的驱动直接用单片机系统的5V电压,可能力矩不是很大,大家可自行加大驱动电压到12V。
1.步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。
在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。
这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。
使得在速度、位置等控制领域用步进电机来控制变的非常的简单。
虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。
它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。
因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。
目前,生产步进电机的厂家的确不少,但具有专业技术人员,能够自行开发,研制的厂家却非常少,大部分的厂家只一、二十人,连最基本的设备都没有。
仅仅处于一种盲目的仿制阶段。
这就给户在产品选型、使用中造成许多麻烦。
签于上述情况,我们决定以广泛的感应子式步进电机为例。
叙述其基本工作原理。
望能对广大用户在选型、使用、及整机改进时有所帮助。
二、感应子式步进电机工作原理(一)反应式步进电机原理由于反应式步进电机工作原理比较简单。
下面先叙述三相反应式步进电机原理。
1、结构: 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。
0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)下面是定转子的展开图:2、旋转: 如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。
《2024年基于单片机的步进电机控制系统研究》范文
《基于单片机的步进电机控制系统研究》篇一一、引言随着科技的发展,步进电机因其高精度、低噪音、易于控制等优点,在各个领域得到了广泛的应用。
然而,传统的步进电机控制方式存在控制精度低、响应速度慢等问题。
因此,基于单片机的步进电机控制系统应运而生,其具有体积小、控制精度高、响应速度快等优点。
本文旨在研究基于单片机的步进电机控制系统的设计原理、实现方法以及应用前景。
二、步进电机控制系统的基本原理步进电机是一种将电信号转换为机械运动的设备,其运动过程是通过一系列的步进动作实现的。
步进电机的控制原理主要是通过改变电机的电流和电压,使电机按照设定的方向和速度进行旋转。
三、基于单片机的步进电机控制系统设计基于单片机的步进电机控制系统主要由单片机、步进电机驱动器、步进电机等部分组成。
其中,单片机是控制系统的核心,负责接收上位机的指令,并输出相应的控制信号给步进电机驱动器。
步进电机驱动器则负责将单片机的控制信号转换为适合步进电机工作的电流和电压。
在硬件设计方面,我们选择了一款性能稳定、价格适中的单片机作为主控制器,同时设计了相应的电路和接口,以实现与上位机和步进电机驱动器的通信。
在软件设计方面,我们采用了模块化设计思想,将系统分为初始化模块、控制模块、通信模块等部分,以便于后续的维护和升级。
四、基于单片机的步进电机控制系统的实现在实现过程中,我们首先对单片机进行了初始化设置,包括时钟设置、I/O口配置等。
然后,通过编程实现了对步进电机的控制,包括步进电机的启动、停止、正反转以及速度调节等功能。
此外,我们还实现了与上位机的通信功能,以便于实现对步进电机的远程控制和监控。
五、实验结果与分析我们通过实验验证了基于单片机的步进电机控制系统的性能。
实验结果表明,该系统具有较高的控制精度和响应速度,能够实现对步进电机的精确控制。
同时,该系统还具有较好的稳定性和可靠性,能够在各种复杂环境下正常工作。
此外,我们还对系统的抗干扰能力进行了测试,结果表明该系统具有较强的抗干扰能力。
基于单片机的步进电机的控制器设计
基于单片机的步进电机的控制器设计在现代工业自动化和控制领域中,步进电机因其精确的定位和可控的旋转角度而得到了广泛的应用。
而设计一个高效、稳定且易于操作的基于单片机的步进电机控制器则成为了实现精确控制的关键。
一、步进电机的工作原理要设计步进电机的控制器,首先需要了解步进电机的工作原理。
步进电机是一种将电脉冲信号转换成角位移或线位移的开环控制电机。
它由定子和转子组成,定子上有若干个磁极,磁极上绕有绕组。
当给定子绕组依次通电时,产生的磁场会驱动转子按照一定的方向和步距角转动。
步距角是指每输入一个电脉冲信号,转子所转过的角度。
步距角的大小取决于电机的结构和控制方式。
常见的步距角有 18°、09°等。
通过控制输入电脉冲的频率和数量,可以精确地控制步进电机的转速和转角。
二、单片机的选择在设计控制器时,单片机的选择至关重要。
常见的单片机如 51 系列、STM32 系列等都可以用于控制步进电机。
51 系列单片机价格低廉,开发简单,但性能相对较低;STM32 系列单片机性能强大,资源丰富,但开发难度相对较大。
考虑到控制的精度和复杂程度,我们可以选择STM32 系列单片机。
例如,STM32F103 具有较高的处理速度和丰富的外设接口,能够满足步进电机控制器的需求。
三、控制器的硬件设计硬件设计主要包括单片机最小系统、驱动电路、电源电路等部分。
单片机最小系统是控制器的核心,包括单片机芯片、时钟电路、复位电路等。
STM32F103 的最小系统通常需要外部晶振提供时钟信号,以及合适的复位电路保证单片机的可靠启动。
驱动电路用于放大单片机输出的控制信号,以驱动步进电机工作。
常见的驱动芯片有 ULN2003、A4988 等。
以 A4988 为例,它可以接收来自单片机的脉冲和方向信号,并输出相应的电流来驱动步进电机。
电源电路则为整个系统提供稳定的电源。
通常需要将外部输入的电源进行降压、稳压处理,以满足单片机和驱动电路的工作电压要求。
基于单片机原理的步进电机的正反转程设计报告书
电机控制课程设计报告书题目基于单片机原理的步进电机的正反转目录目录 (1)摘要 (2)1.概述 (3)1.1课程设计的任务和要求 (3)1.2设计思路框架 (3)1.3设计方案的模块解释 (3)2.系统硬件设计 (5)2.1单片机最小系统原理介绍 (5)2.1.1 AT89C51的工作原理 (6)2.1.2复位电路的工作原理 (8)2.1.3晶振电路的工作原理 (9)2.2电机驱动电路原理介绍 (9)3.系统软件设计 (11)3.1系统流程图 (11)3.2系统程序分析 (11)4.调试过程与结果 (20)5.总结与体会 (21)6.参考资料 (21)7.附录 (23)摘要介绍了步进电机正反转控制原理及其接口驱动控制电路,编制了基于MCS-51单片机的步进电机正反转控制的子程序,并应用wave软件进行了仿真。
证明在并行口控制中,可以利用软件实现环行脉冲分配,实现程序较简单,同时还可以节省硬件投资。
结合单片机控制步进电动机的实际工作环境,从提高控制系统运行的可靠性角度,讨论了实际应用的软件抗干扰技术。
关键词单片机;步进电机;正反转控制1.概述1.1课程设计的任务和要求电机控制课程设计是考察学生利用所学过的电机控制专业知识,进行综合的电机控制系统设计并最终完成实际系统连接,能够使学生对电气与自动化的专业知识进行综合应用,培养学生的创新能力和团队协作能力,提高学生的动手实践能力。
最终形成一篇符合规范的设计说明书,并参加综合实践答辩,为后期的毕业设计做好准备。
本次设计考核的能力主要有:专业知识应用能力,包括电路分析、电子技术、单片机、检测技术、电气控制、电机与拖动、微特电机及其驱动、计算机高级语言、计算机辅助设计、计算机办公软件等课程,还包括本专业的拓展性课程如变频器、组态技术、现场总线技术、伺服电机等课程。
项目设计与运作能力,团队协作能力,技术文档撰写能力,PPT汇报与口头表达能力。
电气与自动化系统的设计与实际应用能力。
基于stm32单片机的步进电机实验报告
基于stm32单片机的步进电机实验报告基于STM32单片机的步进电机实验报告一、引言步进电机是一种特殊的电机,其转子能够以离散的步长进行旋转。
在许多自动化控制系统中,步进电机被广泛应用于精密定位、打印机、机床等领域。
本实验旨在利用STM32单片机控制步进电机的运转,实现准确的位置控制。
二、实验原理步进电机的运转原理是通过控制电流来驱动电机的转子旋转。
常见的步进电机有两相和四相两种,本实验使用的是四相步进电机。
步进电机的控制方式主要有两种:全步进和半步进。
1. 全步进控制方式全步进控制方式是通过依次给定步进电机的四个相位施加电压,使得电机转子以固定的步长旋转。
具体控制方式如下:- 给定一个相位的电流,使得该相位的线圈产生磁场,使得转子对齿极的磁场产生吸引力,使得转子顺时针或逆时针旋转一定的角度;- 施加下一个相位的电流,使得转子继续旋转一定的角度;- 通过依次改变相位的电流,控制转子的旋转方向和步长。
2. 半步进控制方式半步进控制方式是在全步进的基础上,通过改变相位的电流大小,使得转子旋转的步长变为全步进的一半。
具体控制方式如下:- 给定一个相位的电流,使得该相位的线圈产生磁场,使得转子对齿极的磁场产生吸引力,使得转子顺时针或逆时针旋转一定的角度;- 施加下一个相位的电流,使得转子继续旋转一定的角度,但步长变为全步进的一半;- 通过改变相位的电流大小,控制转子的旋转方向和步长。
三、实验器材与步骤1. 实验器材:- STM32单片机开发板- 步进电机- 驱动电路- 电源2. 实验步骤:(1) 将STM32单片机开发板和驱动电路连接起来,确保连接正确无误。
(2) 编写STM32单片机的控制程序,通过控制引脚输出高低电平,实现步进电机的控制。
(3) 将步进电机连接到驱动电路上。
(4) 将电源接入驱动电路,确保电源稳定。
(5) 运行STM32单片机的控制程序,观察步进电机的运转情况。
四、实验结果与分析经过实验,我们成功地利用STM32单片机控制步进电机的运转。
基于单片机的电动机正反转控制
成绩课程设计报告题目:基于单片机的电动机正反转控制设计学生姓名:学生学号:xxxxxxxxxxxx系别:电气信息工程学院专业:自动化届别:指导教师:xxx电气信息工程学院基于单片机的电动机正反转控制学生:xxx指导教师:xxx电气信息工程学院自动化系1 课程设计的任务与要求1.1 课程设计的任务利用AT89C51单片机设计并实现电动机正反转控制及其相关功能。
通过本次设计了解并掌握51系列的单片机的结构及其使用方法。
1.2 课程设计的要求该设计要求能够具有以下功能:(1)开启后器件没有任何反应。
(2)闭合正转开关按钮电动机开始正转。
(3)闭合反转开关按钮电动机开始反转。
(4)闭合停转开关按钮电动机停止转动。
1.3 课程设计的研究基础该设计包括硬件和软件设计两部分。
硬件部分包括:直流电动机,电磁继电器,7路反相器,6路反相器。
软件部分包括:基于51单片机的c语言程序。
设计中的相关研究部分介绍如下:(1)直流电动机部分:更改直流电动机的正负极就可以实现对直流电动机的正反转控制,更改可以使用继电器实现。
(2)电磁继电器部分:通过更改电磁继电器的正负极可以实现对电磁继电器中电磁的有无进行控制。
再间接通过电磁的有无控制继电器中开关的打开与闭合。
(3)7路反相器部分:通过反相器可以更改输入电平的高低与其高低值(即当输入为高电压输出为低电压并且低电压为接地电压,当输入为低电压是输出为高电压并且电压强度与接com端相同)。
其实质就是为了供给与继电器相适合的高低电压,所以如果没有该部分,则供给继电器的高低电压就有单片机提供,而单片机的输出高低电平为定值,因此需要此部分。
(4)6路反相器部分:该部分是为了结合7路反相器部分使用的,因为负负得正,正正得正。
2 电动机正反转系统方案制定2.1 方案提出方案一:使用开关直接控制电动机的正反转,此种设计非常简便易懂,便于修理与使用。
缺点:该方案直接控制易产生火花电弧,会危害操作者生命安全。
基于单片机的电动机正反转控制设计讲解
基于单片机的电动机正反转控制设计学生:xxx(指导教师:xxx)(xxxxxx电气信息工程学院)摘要:基于单片机的基本理论,本文设计了一种步进电机控制系统。
该系统通过软硬件的设计调试,实现步进电机能根据设定的参数进行开关加减速控制,使控制系统以最短的时间到达控制终点,而又不发生失步的现象;同时它能准确地控制步进电机的正反转,启动和停止。
硬件是以AT89C51单片机为核心的控制电路,主要包括:开关输入电路、液晶显示电路、步进电机的驱动电路等。
软件部分采用C语言编程,主要包括液晶显示程序、步进电机的正反转即快慢程序等。
通过仿真验证了本文设计系统的实用性能。
关键词:步进电机控制系统;调速;单片机The design of motor control system based on SCMStudent:Zhou Tianhang(Supervisor:Liu Yunxia)Electrical and Information Engineering Department of Huainan Normal University Abstract:The basic theory based on SCM. this paper designs a kind of stepping motor control system. The system goes through the design of software and hardware.Realize the stepper motor can switch the acceleration and deceleration controlaccording to the given parameters which makes the control system in the shortesttime to finish and not out of step. At the same time, it can control the reversing thestepper motor accurately, start and stop. The hardware control circuit AT89C51microcontroller as the core mainly. Include: switch input circuit, LCD displayingcircuit, stepper motor drive circuit. The software is programmed by C language.Include: LCD display program and the stepper motor speed program .The practicalperformance of the design of the system is validated by simulation.Key words: Stepping motor control system; speed control; Single-chip Computer1 绪论1.1 设计研究的目的和意义由于步进电机不需要位置传感器或速度传感器就可以实现定位,即使在开环状态下它的控制效果也是令人非常满意的,这有利于装置或设备的小型化和低成本,因此步进电机在计算机外围设备、数控机床和自动化生产线等领域中都得到了广泛的应用。
基于ULN2003 控制步进电机正反转
基于ULN2003 控制步进电机正反转第24组电子设计报告组员:郝冠 111308309郭剑楠 111308308李爽 111308317一、功能说明本设计是基于STC89C52单片机和ULN2003 芯片能控制步进电机正反转的设计。
程序由我们自己完成的。
是由按键引发外部中断来控制步进电机输入信号端先后顺序,从而改变正反转。
功能通过按键输入外部中断信号,改变步进电机步进方向。
还可改进地方:用数码管显示当前步进电机旋转速度,再用按键来控制步进电机旋转速度。
二、原理图(1)52芯片引脚图(2)ULN2003芯片原理图三、程序源代码//本程序内容:使用外部中断控制步进电机的正传和反转// //注意外部中断必须用P3^2//#include<reg52.h>#define uint unsigned int#define uchar unsigned charuchar flag;sbit k1=P3^2;//步进电机数据口取名sbit A1=P3^4;sbit B1=P3^5;sbit C1=P3^6;sbit D1=P3^7;//步进电机1四相八拍所用数据#define POWER_A1 {A1=1;B1=0;C1=0;D1=0;}//A相通电,其他相断电#define POWER_B1 {A1=0;B1=1;C1=0;D1=0;}//B相通电,其他相断电#define POWER_C1 {A1=0;B1=0;C1=1;D1=0;}//C相通电,其他相断电#define POWER_D1 {A1=0;B1=0;C1=0;D1=1;}//D相通电,其他相断电#define POWER_AB1 {A1=1;B1=1;C1=0;D1=0;}//AB相通电,其他相断电#define POWER_BC1 {A1=0;B1=1;C1=1;D1=0;}//BC相通电,其他相断电#define POWER_CD1 {A1=0;B1=0;C1=1;D1=1;}//CD相通电,其他相断电#define POWER_DA1 {A1=1;B1=0;C1=0;D1=1;}//DA相通电,其他相断电#define POWER_OFF {A1=0;B1=0;C1=0;D1=0;}//全部断电void delay_ms(unsigned char t){uchar x,y;for(x=t;x>0;x--){for(y=114;y>0;y--) ;}}uchar speed; //定义速度全局变量,也是时间延迟变量uint i; //旋转一周时间,512一周void main(){EA=1; //全局中断开EX0=1; //外部中断0开IT0=1; //1表示边沿触发i=512;speed=6;POWER_OFFwhile(1){while(i--){if(flag==0){POWER_A1delay_ms(speed);POWER_AB1delay_ms(speed);POWER_B1delay_ms(speed);POWER_BC1delay_ms(speed);POWER_C1delay_ms(speed);POWER_CD1delay_ms(speed);POWER_D1delay_ms(speed);POWER_DA1delay_ms(speed);}else{POWER_DA1delay_ms(speed);POWER_D1delay_ms(speed);POWER_CD1delay_ms(speed);POWER_C1delay_ms(speed);POWER_BC1delay_ms(speed);POWER_B1delay_ms(speed);POWER_AB1delay_ms(speed);POWER_A1delay_ms(speed);}}}}void ex0(void) interrupt 0{if(k1==0){delay_ms(10);if(k1==0){flag=~flag;}}}四、设计总结本次设计完全是我们自己写的程序,有很多没有考虑到的地方,需要我们今后更加努力,改进程序,使功能更齐全,操作更简单。
毕业设计51单片机控制步进电机正反转的工作原理Protues仿真DXP
当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。
而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。
依次类推,A、B、C、D八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力ULN2003的驱动直接用单片机系统的5V电压,可能力矩不是很大,大家可自行加大驱动电压到12V。
1.步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。
在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。
这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。
使得在速度、位置等控制领域用步进电机来控制变的非常的简单。
虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。
它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。
因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。
目前,生产步进电机的厂家的确不少,但具有专业技术人员,能够自行开发,研制的厂家却非常少,大部分的厂家只一、二十人,连最基本的设备都没有。
仅仅处于一种盲目的仿制阶段。
这就给户在产品选型、使用中造成许多麻烦。
签于上述情况,我们决定以广泛的感应子式步进电机为例。
叙述其基本工作原理。
望能对广大用户在选型、使用、及整机改进时有所帮助。
二、感应子式步进电机工作原理(一)反应式步进电机原理由于反应式步进电机工作原理比较简单。
下面先叙述三相反应式步进电机原理。
单片机控制步进电机的正反转
单片机控制步进电机的正反转单片机控制步进电机的正反转最近好长一段时间没有来51hei单片机网了,接近考试的日子越来越近,开始把时间转到考试的准备上了,这两天回过头来想想,应该有快半个月对单片机的学习没有什么进展了,不过我一直坚信,单片机学习的路上,只要你肯坚持,只要你肯吃苦、肯付出,再难的关也不是问题,当然,最近也深深地体会到,学习单片机如果有一个好的老师作为指导,那学起来就不用那么费劲了,不过也没有关系,很多东西,条件不好的时候,就需要自己去改变,去想想其它的法子。
这两天开始研究单片机与步进电机的控制问题,感觉真的很好玩,步进电机在工业的很多地方都有很大的应用,比如流水线的运转,智能小车,系统定位都有很大的用处。
也是一个核心的技术。
步进电机的控制主要是由单片机IO口高低电平的控制以及输出脉冲来控制其转速,达到了一种数模转换的效果。
让单片机以并行二进制数转换成并行脉冲序列,并实现方向控制。
只要是脉冲在步进电机允许的范围之内,每个脉冲将使步进电机转动一个固定的步距角度,根据步距角的大小及实际走的步数,只要知道初始位置,便可以根据计算知道其最终位置了。
步进电机转动时的驱动的电流比较大,所以在使用单片机控制的时候,要在中间加一个放大电路,或者加上一些常用的放大电流的芯片,比如人们很经常用的一个芯片ULM2003.只有这样才能够使步进电机转动,不然会因为电流太小而实现不了效果。
下面把实际效果拿出来分享下:程序如下:#include <reg52.h>#define uchar unsigned char#define uint unsigned intuchar num[]={0x01,0x02,0x04,0x08};void delay(uint z){uint a;for(a=0;a<z;a++);}void main(){uchar i;uint j;for(j=0;j<2045;j++){{ P1=num[i];delay(1200);i++;if(i==4)i=0; }}while(1);}其中,z控制转速,j控制转的圈数,由计算和调试得出当j=2045时,步进电机走的圈数为1圈,这样,我们要步进电机走多少圈时,可以在里面嵌套一个程序,达到我们要电机转多少圈的目的。
基于单片机原理的步进电机的正反转程设计报告
基于单片机原理的步进电机的正反转程设计报告步进电机是一种电动机,能够精确地控制旋转角度和位置,广泛应用于工业和自动化控制系统中。
本篇报告将介绍基于单片机原理的步进电机的正反转程设计。
步进电机是一种特殊的电动机,每次输入一个脉冲信号,电机就会转动一个固定的角度,称为步距角。
步进电机的控制原理是通过改变相序对电机进行控制,根据不同的相序,电机可以实现正转或反转。
步进电机的正反转程设计涉及到两个方面,一是电机的控制电路,二是单片机的编程控制。
首先,电机的控制电路是步进电机正反转程设计的关键。
常见的控制电路有两种:全桥驱动电路和双H桥驱动电路。
全桥驱动电路由四个开关管组成,通过对不同开关管的开关控制,可以激活不同的相序,实现电机的正反转。
双H桥驱动电路由两个H桥组成,通过对H桥的开关控制,可以激活不同的相序,实现电机的正反转。
根据实际需求和控制方式选择适合的电机控制电路。
其次,单片机的编程控制是步进电机正反转程设计的关键。
单片机可以通过输出脉冲信号控制电机的正反转和转动速度。
编程时需要设置好脉冲信号的频率和方向,可以通过调节脉冲信号的频率来控制电机的转动速度,通过改变脉冲信号的方向来控制电机的正反转。
在步进电机的正反转程设计中,还可以考虑加入其他功能,如限位检测、位置控制等。
限位检测可以通过加入限位开关来实现,当电机转动到限位位置时,限位开关会触发信号,单片机可以根据信号做出相应的处理。
位置控制可以通过加入编码器等位置传感器来实现,单片机可以根据传感器反馈的信号准确控制电机的位置。
最后,步进电机的正反转程设计需要进行实际的调试和测试。
在实际调试和测试中,需要根据预设的参数和要求,进行电机的正反转程测试和性能评估。
根据实际测试结果,可以对设计进行优化和改进,以达到更好的性能和可靠性。
总之,基于单片机原理的步进电机的正反转程设计是一个复杂而关键的任务,需要综合考虑电机控制电路和单片机编程控制两个方面。
在设计过程中,需要理解步进电机的工作原理和控制原理,结合实际需求和要求进行设计和调试,最终实现电机的可靠正反转程控制。
基于单片机ATS控制步进电机正反转
基于单片机A T S控制步进电机正反转The latest revision on November 22, 2020目录步进电机 (7)附件A 源程序 .......................................... (12)附件B 仿真结果 (15)致谢 (18)摘要能够实现步进电机控制的方式有多种,可以采用前期的模拟电路、数字电路或模拟与数字电路相结合的方式。
近年来随着科技的飞速发展,单片机的应用正在不断深入,同时带动传统控制检测日新月异更新。
本文介绍一种用AT89S52作为核心部件进行逻辑控制及信号产生的单片机技术和汇编语言编程设计的步进电机控制系统,步进电机背景与现状、硬件设计、软件设计及其仿真都做了详细的介绍,使我们不仅对步进电机的原理有了深入的了解,也对单片机的设计研发过程有了更加深刻的体会。
本控制系统采用单片机控制,通过人为按动开关实现步进电机的开关,复位。
该系统还增加了步进电机的加速及减速功能。
具有灵活方便、适用范围广的特点,基本能够满足实践需求。
关键词: AT89S52 步进电机 ULN2003第一章系统分析框图设计根据系统要求画出基于AT89S52单片机的控制步进电机的控制框图如图2-1所示。
图2-1基于AT89C52单片机的控制步进电机的控制框图系统主要包括单片机、复位电路、晶振电路、按键电路、步进电机及驱动电路几部分。
晶振电路AT89C52单片机有一个用于构成内部振荡器的反相放大器,XTAL1 和XTAL2 分别是放大器的输入、输出端。
石英晶体和陶瓷谐振器都可以用来一起构成自激振荡器。
晶振模块自带振荡器、提供低阻方波输出,并且能够在一定条件下保证运行。
最常用的两种类型是晶振模块和集成RC振荡器(硅振荡器)。
晶振模块提供与分立晶振相同的精度。
硅振荡器的精度要比分立RC振荡器高,多数情况下能够提供与陶瓷谐振槽路相当的精度。
图2-2为晶振电路。
图2-2 晶振电路第二章系统设计硬件连接图根据图2-1,可以设计出单片机控制步进电机的硬件电路图,如图3-1所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成绩电机控制课程设计报告书题目基于单片机原理的步进电机的正反转院部名称龙蟠学院专业电气工程及其自动化班级M12电气工程及其自动化组长姓名黄霈霈同组学生侯婧芸学号1221109009设计地点工科楼C103设计学时1周指导教师周洪金陵科技学院教务处制目录目录1摘要21.概述31.1课程设计的任务和要求31.2设计思路框架31.3设计方案的模块解释42.系统硬件设计62.1单片机最小系统原理介绍62.1.1 AT89C51的工作原理72.1.2复位电路的工作原理92.1.3晶振电路的工作原理102.2电机驱动电路原理介绍103.系统软件设计123.1系统流程图123.2系统程序分析124.调试过程与结果215.总结与体会226.参考资料227.附录24摘要介绍了步进电机正反转控制原理及其接口驱动控制电路,编制了基于MCS-51单片机的步进电机正反转控制的子程序,并应用wave软件进行了仿真。
证明在并行口控制中,可以利用软件实现环行脉冲分配,实现程序较简单,同时还可以节省硬件投资。
结合单片机控制步进电动机的实际工作环境,从提高控制系统运行的可靠性角度,讨论了实际应用的软件抗干扰技术。
关键词单片机;步进电机;正反转控制1.概述1.1课程设计的任务和要求电机控制课程设计是考察学生利用所学过的电机控制专业知识,进行综合的电机控制系统设计并最终完成实际系统连接,能够使学生对电气与自动化的专业知识进行综合应用,培养学生的创新能力和团队协作能力,提高学生的动手实践能力。
最终形成一篇符合规的设计说明书,并参加综合实践答辩,为后期的毕业设计做好准备。
本次设计考核的能力主要有:专业知识应用能力,包括电路分析、电子技术、单片机、检测技术、电气控制、电机与拖动、微特电机及其驱动、计算机高级语言、计算机辅助设计、计算机办公软件等课程,还包括本专业的拓展性课程如变频器、组态技术、现场总线技术、伺服电机等课程。
项目设计与运作能力,团队协作能力,技术文档撰写能力,PPT汇报与口头表达能力。
电气与自动化系统的设计与实际应用能力。
要求完成的工作量包括:制作实际成品,并现场演示效果。
学生结合课题进行PPT演讲与答辩。
学生上交课题要求的各类设计技术文档。
1.2设计思路框架1.3设计方案的模块解释本系统主要由电源模块、控制模块、电机驱动模块、按键中断模块等四个模块组成。
电源模块的功能是将交流220V电源经过整流转化为直流+5V电源,以供给控制、显示、驱动等模块供电。
控制模块是系统的主导作用,即51单片机的最小系统,用来发送信号以控制电机及显示。
电机驱动模块使用的是ULN2003芯片。
ULN2003的每一对达林顿都串联一个2.7K的基极电阻,在5V的直流工作电压下它能与TTL和CMOS电路直接相连,可以直接处理原先需要标准逻辑缓冲器来处理的数据。
按键模块则分为启动按键和中断按键,启动按键使用的是单片机普通的I/O 口。
用来控制系统启动。
中断按键则是使用的外部中断口(P3.2,P3.3)。
在系统运行时则可以随时控制电机的加减速。
2.系统硬件设计2.1单片机最小系统原理介绍该电路工作原理:本项目中选用了最基础的C51单片机做为其控制核心,单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的单片机可以工作的系统,本设计采用AT89C51单片机,最小系统一般应该包括:单片机、晶振电路、复位电路、电源电路。
单片机最小系统复位电路的极性电容C3的大小直接影响单片机的复位时间,一般采用10~30uF,51单片机最小系统容值越大需要的复位时间越短。
51单片机最小系统晶振X1也可以采用6MHz或者12MHz,在正常工作的情况下可以采用更高频率的晶振,51单片机最小系统晶振的振荡频率直接影响单片机的处理速度,频率越大处理速度越快。
单片机最小系统起振电容C2、C3一般采用15~33pF,并且电容离晶振越近越好。
P0口为开漏输出,作为输出口时需加上拉电阻RP1,阻值一般为10k。
设置为定时器模式时,加1计数器是对部机器周期计数(1个机器周期等于12个振荡周期,即计数频率为晶振频率的1/12)。
计数值N乘以机器周期Tcy就是定时时间t.设置为计数器模式时,外部事件计数脉冲由T0或T1引脚输入到计数器。
在每个机器周期的S5P2期间采样T0、T1引脚电平。
当某周期采样到一高电平输入,而下一周期又采样到一低电平时,则计数器加1,更新的计数值在下一个机器周期的S3P1期间装入计数器。
由于检测一个从1到0的下降沿需要2个机器周期,因此要求被采样的电平至少要维持一个机器周期。
当晶振频率为12MHz时,最高计数频率不超过1/2MHz,即计数脉冲的周期要大于2ms。
图2-1最小系统电路图2.1.1 AT89C51的工作原理AT89C51是一个低电压,高性能CMOS8位单片机带有4K字节的可反复擦写的程序存储器(PENROM)。
和128字节的存取数据存储器(RAM),这种器件采用ATMEL公司的高密度、不容易丢失存储技术生产,并且能够与MCS-51系列的单片机兼容。
片含有8位中央处理器和闪烁存储单元,有较强的功能的AT89C51单片机能够被应用到控制领域中。
本设计采用AT89C51,它提供以下的功能标准:4K字节闪烁存储器,128字节随机存取数据存储器,32个I/O口,2个16位定时/计数器,1个5向量两级中断结构,1个串行通信口,片震荡器和时钟电路。
另外,AT89C51还可以进行0HZ的静态逻辑操作,并支持两种软件的节电模式。
闲散方式停止中央处理器的工作,能够允许随机存取数据存储器、定时/计数器、串行通信口及中断系统继续工作。
掉电方式保存随机存取数据存储器中的容,但震荡器停止工作并禁止其它所有部件的工作直到下一个复位。
VCC:电源电压GND:地P0口:P0口是一组8位漏极开路双向I/O口,即地址/数据总线复用口。
作为输出口时,每一个管脚都能够驱动8个TTL电路。
当“1”被写入P0口时,每个管脚都能够作为高阻抗输入端。
P0口还能够在访问外部数据存储器或程序存储器时,转换地址和数据总线复用,并在这时激活部的上拉电阻。
P0口在闪烁编程时,P0口接收指令,在程序校验时,输出指令,需要接电阻。
P1口:P1口一个带部上拉电阻的8位双向I/O口,P1的输出缓冲级可驱动4个TTL电路。
对端口写“1”,通过部的电阻把端口拉到高电平,此时可作为输入口。
因为部有电阻,某个引脚被外部信号拉低时输出一个电流。
闪烁编程时和程序校验时,P1口接收低8位地址。
P2口:P2口是一个部带有上拉电阻的8位双向I/O口,P2的输出缓冲级可驱动4个TTL电路。
对端口写“1”,通过部的电阻把端口拉到高电平,此时,可作为输入口。
因为部有电阻,某个引脚被外部信号拉低时会输出一个电流。
在访问外部程序存储器或16位地址的外部数据存储器时,P2口送出高8位地址数据。
在访问8位地址的外部数据存储器时,P2口线上的容在整个运行期间不变。
闪烁编程或校验时,P2口接收高位地址和其它控制信号。
P3口:P3口是一组带有部电阻的8位双向I/O口,P3口输出缓冲故可驱动4个TTL电路。
对P3口写如“1”时,它们被部电阻拉到高电平并可作为输入端时,被外部拉低的P3口将用电阻输出电流。
P3口除了作为一般的I/O口外,更重要的用途是它的第二功能,如下表2-1所示:表2-1P3口还接收一些用于闪烁存储器编程和程序校验的控制信号。
RST:复位输入。
当震荡器工作时,RET引脚出现两个机器周期以上的高电平将使单片机复位。
ALE/ :当访问外部程序存储器或数据存储器时,ALE输出脉冲用于锁存地址的低8位字节。
即使不访问外部存储器,ALE以时钟震荡频率的1/16输出固定的正脉冲信号,因此它可对输出时钟或用于定时目的。
要注意的是:每当访问外部数据存储器时将跳过一个ALE脉冲时,闪烁存储器编程时,这个引脚还用于输入编程脉冲。
如果必要,可对特殊寄存器区中的8EH单元的D0位置禁止ALE操作。
这个位置后只有一条MOVX和MOVC指令ALE才会被应用。
此外,这个引脚会微弱拉高,单片机执行外部程序时,应设置ALE无效。
PSEN:程序储存允许输出是外部程序存储器的读选通信号,当AT89C51由外部程序存储器读取指令时,每个机器周期两次PSEN 有效,即输出两个脉冲。
在此期间,当访问外部数据存储器时,这两次有效的PSEN 信号不出现。
EA/VPP:外部访问允许。
欲使中央处理器仅访问外部程序存储器,EA端必须保持低电平。
需要注意的是:如果加密位LBI被编程,复位时部会锁存EA端状态。
如EA端为高电平,CPU则执行部程序存储器中的指令。
闪烁存储器编程时,该引脚加上+12V的编程允许电压VPP,当然这必须是该器件是使用12V编程电压VPP。
XTAL1:片振荡器反相放大器和时钟发生线路的输入端。
使用片振荡器时,连接外部石英晶体和微调电容。
XTAL2:片振荡器反相放大器的输出端。
当使用片振荡器时,外接石英晶体和微调电容。
2-2 AT89C51引脚2.1.2复位电路的工作原理单片机在启动运行时需要复位,使CPU以及其他功能部件处于一个确定的初始状态,并从这个状态开始工作,另外,在单片机工作过程中,如果出现死机时,也必须对单片机进行复位,使其重新开始工作。
电路中C1(电解电容)、R2组成复位电路,它的作用是将单片机部特殊功能寄存器和端口寄存器恢复到初始状态,从部FLASH存储器的初始状态开始执行。
如图所示,当要对晶片重置时,只要按此开关就能完成LED和开关的重置。
复位是单片机的初始化操作,其主要功能是把PC初始化为0000H,使单片机从0000H单元开始执行程序。
单片机的RST管脚为主机提供了一个外部复位信号输入口。
复位信号是高电平有效,高电平有效的持续时间为2个机器周期以上。
单片机的复位方式可由手动复位方式完成。
RST引脚是复位信号输入端,复位信号为高电平有效,其有效时间应持续24个振荡周期以上才能完成复位操作,若使用6MHz晶振,则需持续4μS以上才能完成复位操作。
在通电瞬间,由于RC的充电过程,在RST端出现一定宽度的正脉冲,只要该正脉冲保持10ms以上,就能使单片机自动复位。
CPU在第二个机器周期执行部复位操作,以后每个机器周期重复一次,直至RST端电平变低。
在单片机复位期间,AlE和信号都不产生。
复位操作将对部分专用寄存器产生影响。
上电瞬间由于电容C上无储能,其端电压近似为零,RST获得高电平,随着电容器C的充电,RST引脚上的高电平将逐渐下降,当RST引脚上的电压小于某一数值后,单片机就脱离复位状态,进入正常工作模式。
只要高电平能保持复位所需要的时间(约两个机器周期),单片机就能实现复位。
图2-3复位电路2.1.3晶振电路的工作原理晶振分为有源晶振和无源晶振两种,其作用是在电路产生震荡电流,发出时钟信号。