北师大版九年级数学上册_第五章_投影与视图_单元检测试卷【有答案】
2022学年北师大版九年级数学上册第五章《投影与视图》单元试题附答案解析
2022学年九年级数学上册第五章《投影与视图》单元试题(满分:120分)一、单选题1.一个画家有14个边长为1米的正方体,他在地面上把它们摆成如图所示的形式,然后他把露出的表面都涂上颜色,那么被涂上颜色的总面积为()平方米.A.19B.21C.33D.362.晚上,人在马路上走过一盏路灯的过程中,其影子长度的变化情况是()A.先变短后变长B.先变长后变短C.逐渐变短D.逐渐变长3.如图是一根电线杆在一天中不同时刻的影长图,试按其 天中发生的先后顺序排列,正确的是()A.①①①①B.①①①①C.①①①①D.①①①①4.三根等高的木杆竖直立在平地上,其俯视图如图所示,在某一时刻三根木杆在太阳光下的影子合理的是()A.B.C.D.5.下列各种现象属于中心投影的是()A.晚上人走在路灯下的影子B.中午用来乘凉的树影C.上午人走在路上的影子D.阳光下旗杆的影子6.几个大小相同,且棱长为1的小正方体所搭成几何体的俯视图如图所示,图中小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图的面积为()A.3B.4C.6D.97.在同一时刻,将两根长度不等的竹竿置于阳光之下,但它们的影长相等,那么这两根竹竿的相对位置是()A.两根竹竿都垂直于地面B.以两根竹竿平行斜插在地上C.两根竹竿不平行D.无法确定8.下列立体图形中,主视图是圆的是()A.B.C.D.9.图1、图2均是正方体,图3是由一些大小相同的正方体搭成的几何体从正面看和左面看得到的形状图,小敏同学经过研究得到如下结论:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中①ABC=45°;(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b=19其中正确结论的个数有()A.1个B.2个C.3个D.4个10.如图所示是两根标杆在地面上的影子,根据这些投影,在灯光下形成的影子是()A.①和①B.①和①C.①和①D.①和①11.如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A.B.C.D.12.如图,是一个正六棱柱的主视图和左视图,则图中x的值为()A.2B.3CD二、填空题13.如图是一个球吊在空中,当发光的手电筒由远及近时,落在竖直墙面上的球的影子会_____________.(填“逐渐变大”“逐渐变小”)14.如图,小明在A时测得旗杆的影长是2米,B时测得旗杆的影长是8米,两次的日照光线恰好互相垂直,则旗杆的高度是______米.15.如图,是由几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是______________.16.一个几何体的三视图如图所示,则该几何体的表面积为____________.17.在同车道行驶的机动车,后车应当与前车保持一定的安全距离.如图,在一个路口,一辆长为10m 的大巴车遇红灯后停在距交通信号灯20m 处,小林驾驶一辆小轿车,距大车尾xm ,若大巴车车顶高于小林的水平视线0.8m ,红灯下沿高于小林的水平视线3.2m ,若小林能看到整个红灯,则x 的最小值为_____.18.如图,在A 时测得一棵大树的影长为4米,B 时又测得该树的影长为6米,若两次日照的光线互相垂直,则树的高度是______.19.如图是由一些棱长为1的小立方块所搭几何体的三种视图.若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个长方体,至少还需要______个小立方块.20.一块直角三角形板ABC ,90ACB ∠=︒,12cm BC =,8cm AC ,测得BC 边的中心投影11B C 长为24cm ,则11A B 长为__cm .三、解答题21.(1)如图1,若将一个小立方块①移走,则变化后的几何体与变化前的几何体从______看到的形状图没有发生改变;(填“正面”、“上面”或“左面”)(2)如图2,请画出由6个小立方块搭成的几何体从上面看到的形状图;(3)一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图3所示,小正方形中的数字表示该位置上的小立方块的个数,请画出从左面看到的形状图.22.一个几何体的三种视图如图所示.(1)这个几何体的名称是__________.(2)求这个几何体的体积.(结果保留 )23.如图,九(1)班的小明与小艳两位同学去操场测量旗杆DE的高度,已知直立在地面上的竿AB的长为3m.某一时刻,测得竹竿AB在阳光下的投影BC的长为2m.(1)请你在图中画出此时旗杆DE在阳光下的投影;(2)在测量竹竿AB的影长时,同时测得旗杆DE在阳光下的影长为6m,请你计算旗杆DE的高度.24.如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在太阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,计算DE的长25.如图,身高为1.6m的小王晚上沿箭头的方向散步至一路灯下,她想通过自己的影子来估计路灯的高度,具体做法如下:先从路灯底部向东走20步到M处,发现自己影子端点恰好在点P处,继续沿刚才自己的影子走5步到P处,此时影子的端点在Q处.(1)找出路灯的位置;(2)估计路灯的高度,并求影长PQ.26.如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F 处,中午太阳光恰好能从窗户的最低点D 射进房间的地板E 处,小明测得窗子距地面的高度OD =1m ,窗高CD =1.5m ,并测得OE =1m ,OF =5m ,求围墙AB 的高度.27.小明在晚上由路灯A 走向路灯B ,当他走到P 处时,发现身后影子顶部正好触到路灯A 底部,当他向前再步行12m 到达Q 时,发现他的影子的顶点正好接触到路灯B 的底部.已知小明的身高是1.6m ,两个路灯的高度都是9.6m ,且m AP BQ x ==.(1)求:两个路灯之间的距离;(2)小明在两个路灯之间行走时,在两个路灯下的影长之和是否为定值?如果是定值,直接写出此定值,如果不是定值,求说明理由。
北师大版九年级数学上_第五章_投影与视图_单元评估检测试题(有答案)
北师大版九年级数学上 第五章 投影与视图 单元评估检测试题考试总分: 120 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 ) 1.正午时分,水平放置的正方形在地面上的投影是( ) A.正方形 B.长方形 C.平行四边形 D.菱形2.围成圆形的栏杆的影子都在圈外,则影子是在下列哪种光照射下形成的( ) A.太阳光 B.圈里的路灯的灯光 C.手电筒发出的灯光 D.台灯的灯光3.如图是由八个小正方形搭成的几何体的俯视图,小正方形中的数字表示该位置上的小正方体的个数,则这个几何体的左视图是( )A.B.C.D.4.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方那些高一些的建筑物好像“沉”到了位于它们前面那些矮一些的建筑物后面去了,这是因为( ) A.汽车开的很快 B.盲区减小 C.盲区增大 D.无法确定5.如图,在下面的立方体中,它的主视图是( )A.B.C.D.6.右图所示的正三棱柱的主视图的是( )A.B.C.D.7.下列图形的左视图与其它明显不同的是( ) A.B.C.D.8. 如图,左边的图形是右边物体的( )A.左视图B.右视图C.主视图D.什么也不是9.如图是一个由 个相同正方体组合而成的几何体,它的主视图为( )A.B.C.D.10.如图是某几何体从三个不同方向看得到的平面图形,则这个几何体是( )A.长方体B.圆锥C.圆柱D.球二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分 )11.如图,一几何体的三视图如下,那么这个几何体是________.12.画几何体的三种视图时.要注意主视图、俯视图________相等且对正:主视图、左视图________相等且平齐;俯视图、左视图________相等且对应.13.如图,山顶一铁塔 在阳光下的投影 的长为 米,此时太阳与地面的夹角 ,则铁塔 的高为________.14.一个几何体是由若干个相同的正方体组成的,其从正面看和从左面看看到的形状如图所示,则这个几何体最多可由________个这样的正方体组成,最少可由________个这样的正方体组成.15.三棱柱和四棱柱的三种视图中都会有的图形是________.16.当太阳斜照或直照时,一个放在水平地面上的长方形状的箱子在地面上留下的影子是________.17.如图,小明站在距离灯杆的点处.若小明的身高,灯杆,则在灯的照射下,小明的影长________.18.若一个所有棱长相等的三棱柱,它的主视图和俯视图分别是正方形和正三角形,则左视图是________.19.如果一个几何体的三视图之一是三角形,这个几何体可能是________(写出一个即可).20.如图,大楼(可以看作不透明的长方体)的四周都是空旷的水平地面.地面上有甲、乙两人,他们现在分别位于点和点处,、均在的中垂线上,且、到大楼的距离分别为米和米,又已知长米,长米,由于大楼遮挡着,所以乙不能看到甲.若乙沿着大楼的外面地带行走,直到看到甲(甲保持不动),则他行走的最短距离长为________米.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.请你画出如图几何体的三视图.22.张师傅根据某几何体零件,按的比例画出准确的三视图(都是长方形)如图,已知,,.说出这个几何体的名称;求这个几何体的表面积;求这个几何体的体积.23.一个几何体由大小相同的小立方体搭成,从上面看到的几何体的形状如图所示.小正方形中的数字表示该位置的小立方块的个数.请你画出从正面和从左面看到的这个几何体的形状图.24.由若干个小立方体所组成的一个几何体,其俯视图如图所示.其中的数字表示在该位置上的小立方体的个数.请画出这个几何体从正面看和从左面看的图形.25.如图为住宅区内的两幢楼,它们的高,两楼间的距离,现需了解甲楼对乙楼采光的影响情况.当太阳光与水平线的夹角为时,求甲楼的影子在乙楼上有多高?26.如图,两棵大树、,它们根部的距离,小强沿着正对这两棵树的方向前进.如果小强的眼睛与地面的距离为,小强在处时测得的仰角为,当小强前进达到处时,视线恰好经过两棵树的顶端和,此时仰角为.求大树的高度;求大树的高度.(参考数据:,,;,,)答案1.A2.B3.D4.C5.C6.B7.C8.B9.A10.C11.三棱柱12.长高宽13.14.15.矩形16.矩形,五边形或六边形17.18.正方形19.圆锥体20.21.解:如图所示:22.解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为长方形可得这个几何体是长方体;由图可知,长方体的长为,宽为,高为,则这个长方体的表面积;这个几何体的体积.23.解:如图所示:.24.解:如图所示:25.甲楼的影子在乙楼上的高度约为.26.大树的高度为米.在中,米,米,答:大树的高度为米.。
北师大版九年级数学上册 _第五章 投影与视图_期末复习单元测试卷(有答案)
北师大版九年级数学上册_第五章投影与视图_期末复习单元测试卷一、单选题(共10题;共30分)1.两个不同长度的物体在同一时刻同一地点的太阳光下得到的投影是()A. 相等B. 长的较长C. 短的较长D. 不能确定2.如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是()A. B. C. D.3.如图,所示的几何体的主视图是()A. B. C. D.4.如图所示,该几何体的左视图是()A. B. C. D.5.正方形在太阳光的投影下得到的几何图形一定是()A. 正方形B. 平行四边形或线段C. 矩形D. 菱形6.下面几何体的俯视图是()A. B. C. D.7.如图,甲、乙两图是分别由五个棱长为“1”的立方块组成的两个几何体,它们的三视图中完全一致的是()A. 主视图B. 左视图C. 俯视图D. 三视图都一致8.如图,水杯的杯口与投影面平行,投射线的方向如箭头所示,它的正投影是( )A. B. C. D.9.如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S1,S2,S3,则S1,S2,S3的大小关系是( )A. S1>S2>S3B. S3>S2>S1C. S2>S3>S1D. S1>S3>S210.如图所示的几何体的主视图是()A. B. C. D.二、填空题(共8题;共27分)11.物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是________现象.12.一个长方形的正投影的形状、大小与原长方形完全一样,则这个长方形________投影面;一个长方形的正投影的形状、大小都发生了变化,则这个长方形________投影面.13.下图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形可能是________。(把下图中正确的立体图形的序号都填在横线上)。14.如图是王芳同学某一天观察到的一棵树在不同时刻的影子,请你把它们按时间先后顺序进行排列是________ .15.某数学课外活动小组想利用树影测量树高,他们在同一时刻测得一身高为1.5 m的同学的影长为1.35 m,由于大树靠近一幢建筑物,因此树影的一部分落在建筑物上,如图所示,他们测得地面部分的影长为3.6 m,建筑物上的影长为1.8 m,则树的高度为________.16.如图,是由小立方块搭成几何体的俯视图,上面的数字表示该位置小立方块的个数,画出主视图: ________,左视图: ________17.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=1.5m,CD=4.5m,点P到CD的距离为2.7m,则AB与CD间的距离是________ m.18.如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方形的个数,请你画出它的主视图和左视图.三、解答题(共9题;共63分)19.如图是由6个正方体组成的几何体,请分别画出从正面、左面、上面看到的这个几何体的形状图。
(常考题)北师大版初中数学九年级数学上册第五单元《投影与视图》检测卷(含答案解析)(5)
一、选择题1.如图所示,是由8个完全相同的小正方体搭成的几何体.若小正方体的棱长为1,则该几何体的表面积是()A.16 B.30 C.32 D.342.将一个圆柱和一个正三棱柱如图放置,则所构成的几何体的主视图是()A.B.C.D.3.由5个相同的小正方体组成的几何体如图所示,该几何体的主视图是()A.B.C.D.4.将如图的R t ABC绕直角边旋转一周,所得几何体的正投影是()A.直角三角形B.等腰三角形C.等边三角形D.圆5.用大小和形状完全相同的小正方体木块搭成一个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为( )A .13个B .16个C .19个D .22个 6.在皮影戏的表演中,要使银幕上的投影放大,下列做法中正确的是( )A .把投影灯向银幕的相反方向移动B .把剪影向投影灯方向移动C .把剪影向银幕方向移动D .把银幕向投影灯方向移动7.如图,长方体的底面是长为4cm 、宽为2cm 的长方形,如果从左面看这个长方体时看到的图形面积为6cm 2,则这个长方体的体积等于( )A .36cmB .38cmC .312cmD .324cm 8.如图是某兴趣社制作的模型,则它的俯视图是( )A .B .C .D . 9.矩形木框在阳光照射下,在地面上的影子不可能是( )A .B .C .D .10.如图,是由一些棱长为1cm 的小正方体构成的立体图形的三种视图,那么这个立体图形的表面积是( )A .122cmB .142cmC .162cmD .182cm 11.如图是一个由多个相同的小正方体堆成的几何体从上面看得到的平面图形,小正方形中的数字表示在该位置的小正方体的个数,那么从正面看该几何体得到的平面图形是()A.B.C.D.12.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不相同的几何体是()A.①②B.②③C.②④D.③④二、填空题13.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算该几何体的底面周长为______cm.14.下面四幅图是两个物体不同时刻在太阳光下的影子,按照时间的先后顺序是_____.15.一块直角三角形板ABC,∠ACB=90°,BC=12cm,AC=8cm,测得BC边的中心投影B1C1长为24cm,则A1B1长为_____cm.16.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多是________.17.甲、乙两盏路灯底部间的距离是30米,一天晚上,当小华走到距路灯乙底部5米处时,发现自己的身影顶部正好接触路灯乙的底部.已知小华的身高为1.5米,那么路灯甲的高为_____米.18.如图是某几何体的三视图及相关数据,则该几何体的侧面积是_____.19.根据几何体的主视图和俯视图,搭成该几何体的小正方体最多___________个.20.如果圆柱的侧面展开图是相邻两边长分别为6,12的长方形,那么这个圆柱的体积等于_______(π取3)三、解答题21.如图是一个正三棱柱及俯视图:(1)请分别画出它的主视图、左视图;(2)若4AC =,6AA '=,则左视图的面积为_____________.【答案】(1)见解析;(2)123【分析】(1)观察图形,根据主视图和左视图的定义即可画出图形,注意看不见的线用虚线; (2)过点B 作BD ⊥AC 于点D ,左视图的面积等于BD 乘棱柱的高,利用勾股定理求得BD 即可.【详解】(1)作图如下:(2)如图,∵是正三棱柱,∴△ABC 为等边三角形,AB =AC =4,过点B 作BD ⊥AC 于点D ,∵4AC =,∴2AD =,4AB AC ==, ∴2223BD AB AD -=,则左视图的面积为236123=【点睛】本题考查简单的几何体的三视图,三视图的面积的计算,本题是一个易错题,易错点在将侧视图的宽看成底边的边长.22.如图所示的几何体,请在下列方框内画出它的从三个方向所看到的图.【答案】见解析.【分析】根据三视图的画法,分别画出从正面、左面、上面看到的图形即可.【详解】如图所示:【点睛】本题主要考查了三视图的画法,注意三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.23.如图,AB和DE是直立在地面上的两根立柱.AB=6m,某时刻AB在阳光下的投影为BC.(1)请在图中画出此时DE在阳光下的投影;(2)如果测得BC=4m,DE在阳光下的投影长为6m,请计算DE的长.【答案】(1)答案见解析;(2)9m.【分析】(1)直接利用平行投影的性质得出答案;(2)利用同一时刻实际物体的影子与物体的高度比值相同进而得出答案.【详解】(1)如图所示,DE在阳光下的投影为EF;(2)∵AB∥DE,AC∥DF,∴△ABC∽△DEF,∴AB BCDE EF=,即646 DE=,∴DE=9.答:DE的长为9m.【点睛】此题主要考查了应用设计与作图,正确掌握平行投影的性质是解题关键.24.如图,若干个完全相同的小正方体堆成一个几何体.(1)请在右图方格中画出该几何体的左视图和俯视图.(2)用小立方体搭一个几何体,使得它的左视图和俯视图与你在方格中所画的一致,则这样的几何体最少要______个小立方块,最多要______个小立方块.(3)若小正方体的棱长为2cm,请求出图1中几何体的表面积.【答案】(1)画图见解析;(2)9;14;(3)2144cm【分析】(1)根据左视图和俯视图的定义解答即可;(2)由俯视图易得最底层有6个小正方体,第二层最少有2个小正方体,第三层最少有1个小正方体,进而可得最少个数;由俯视图易得最底层有6个小正方体,第二层最多有5个小正方体,第三层最多有3个小正方体,从而可得最多个数;(3)先求出看到的正方形的个数,所得的和再乘以一个正方形的面积即可.【详解】解:(1)如图所示:(2)由俯视图易得最底层有6个小正方体,第二层最少有2个小正方体,第三层最少有1个小正方体,所以最少有6219++=个小正方体;由俯视图易得最底层有6个小正方体,第二层最多有5个小正方体,第三层最多有3个小正方体,所以最多有65314++=个小正方体.故答案为:9,14;(3)这个几何体的表面积为:()226262622144cm ⨯+⨯+⨯⨯=. 【点睛】本题考查了几何体的三视图和表面积的计算,属于常考题型,正确理解题意、明确求解的方法是解题的关键.25.如图是某几何体的三种形状图.(1)说出这个几何体的名称;(2)若从正面看到的形状图的长为15cm ,宽为4cm ;从左面看到的形状图的宽为3cm ,从上面看到的形状图的最长边长为5cm ,求这个几何体的所有棱长的和为多少?它的侧面积为多少?它的体积为多少?【答案】(1)直三棱柱;(2)所有棱长的和69cm ,侧面积180cm 2,体积90cm 3【分析】(1)只有棱柱的主视图和左视图才能出现长方形,根据俯视图是三角形,可得到此几何体为三棱柱;(2)这个几何体的所有棱长的和为2个3cm 、2个4cm 、2个5cm ,3个15cm 的和;三个长为15cm ,宽分别为3cm 、4cm 、5cm 的长方形的面积即是几何体的侧面积;先求出俯视图的面积,再乘高15cm ,即为体积.【详解】解:(1)直三棱柱;(2)这个几何体所有棱长的和:153345269cm ⨯+++⨯=.它的侧面积:(3+4+5)15⨯=180cm 2; 它的体积:12×3×4×15=90cm 3 故这个几何体的所有棱长的和为69cm ,它的侧面积为180cm 2,它的体积为90cm 3.【点睛】此题考查从三视图判断几何体,掌握棱柱的侧面都是长方形,上下底面是几边形就是几棱柱是解决问题的关键.26.由8个边长为1的相同小立方块搭成的几何体如图所示:(1)请画出它的三视图;(2)请计算它的表面积.【答案】(1)三视图见解析;(2)36【分析】(1)画出从正面、左面和上面看到的图形即可;(2)查出从前后,上下,左右可以看到的面,进行计算即可求解.【详解】解:(1)如图所示:;(2)从正面和后面看各有6个面,从上面和下面看各有6个面,从左面和右面看各有6个面,所以表面积为:()666236++⨯=.【点睛】本题考查三视图与求几何体的表面积,画出三视图是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】首先要数清这个组合体的表面是由几个正方形组成的,再乘以1个正方形的面积即可得到表面积.【详解】+6×2+2)×21=34解:这个组合几何体的表面积为:(5×2+52故选:D.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.2.A解析:A【分析】根据主视图是从物体正面看所得到的图形即可解答.【详解】解:根据主视图的概念可知,主视图是从前向后观察物体所得到的图形,上半部分是一个长方形且中间有一条竖实线,下半部分是一个长方形.∴从物体的正面看得到的视图是选项A.故选:A.【点睛】本题考查了简单几何体的主视图,注意主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形.3.D解析:D【分析】找到从几何体的正面看所得到的图形即可.【详解】解:主视图有3列,每列小正方形数目分别为2,1,1,故选:D.【点睛】此题主要考查了简单几何体的三视图,主视图是从物体的正面看得到的视图.4.B解析:B【分析】首先得到旋转后得到的几何体,找到从正面看所得到的图形即可.【详解】解:Rt△ABC绕直角边AC旋转一周,所得几何体是圆锥,而圆锥的正投影(主视图)是等腰三角形,故选:B.【点睛】本题考查了平行投影,解题的关键是掌握正投影的概念.5.A解析:A【分析】由几何体的正视图和俯视图,我们可以判断出这个几何体由一些相同的小正方体构成,其中根据俯视图我们可以判断该几何体共有7摞小正方体组成,然后根据主视图推算每摞小正方体的最少个数,即可得到答案.【详解】根据俯视图我们可以判断该几何体共有7摞小正方体组成,根据正视图,可得:左边2摞,最高层数为3,故小正方体最少有3+1=4个,中间2摞,最高层数为2,故小正方体最少有2+1=3个,右边3摞,最高层数为4,故小正方体最少有4+1+1=6个,故小正方体最少有13个.故选A.【点睛】本题主要考查几何体的三视图,掌握三视图的定义,是解题的关键.6.B解析:B【分析】根据中心投影的特点可知:在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长,据此分析判断即可.【详解】解:根据中心投影的特点可知,如图,当投影灯接近银幕时,投影会越来越大;相反当投影灯远离银幕时,投影会越来越小,故A错误;当剪影越接近银幕时,投影会越来越小;相反当剪影远离银幕时,投影会越来越大,故B 正确,C错误;当银幕接近投影灯时,投影会越来越小;当银幕远离投影灯时,投影会越来越大,故D错误.故选:B.【点睛】此题主要考查了中心投影的特点,熟练掌握中心投影的原理和特点是解题的关键.7.D解析:D【解析】【分析】根据长方体的体积公式可得.【详解】根据题意,得:6×4=24(cm3),因此,长方体的体积是24cm3.故选:D.【点睛】此题主要考查了简单几何体的三视图,关键是掌握长方体的体积公式.8.B解析:B【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.故选B.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.9.C解析:C【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【详解】解:矩形木框在地面上形成的投影应是平行四边形或一条线段,即相对的边平行或重合,故C不可能,即不会是梯形.故选:C.【点睛】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,平行物体的影子仍旧平行或重合.10.B解析:B【分析】利用三视图的观察角度不同得出行数与列数,结合主视图以及表面积的求解方法即可求得答案.【详解】由视图可得第一层有2个小正方体,第二层有1个小正方体,一共有3个,表面积为:2×(2+2+3)=14cm2,故选B.【点睛】本题考查了由三视图判断几何体,利用三视图得出几何体的形状是解题关键.11.C解析:C【解析】【分析】找到从正面看所得到的图形即可.【详解】解:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右的列数分别是1,2,2.故选:C.【点睛】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力.12.B解析:B【解析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,分别得到每个几何体的三视图,进而得到答案:正方体主视图、左视图、俯视图都是正方形;圆柱主视图和左视图是长方形,俯视图是圆;圆锥主视图和左视图是三角形、俯视图是带圆心的圆;球主视图、左视图、俯视图都是圆.∴三视图有两个相同,而另一个不相同的几何体是圆柱和圆锥.故选B.二、填空题13.4πcm【分析】根据主视图是等腰三角形利用等腰三角形的性质勾股定理求得底边的长这就是圆锥底面圆的直径计算周长即可【详解】如图根据主视图的意义得三角形是等腰三角形∴三角形ABC是直角三角形BC==2∴解析:4πcm.【分析】根据主视图是等腰三角形,利用等腰三角形的性质,勾股定理求得底边的长,这就是圆锥底面圆的直径,计算周长即可.【详解】如图,根据主视图的意义,得三角形是等腰三角形,∴三角形ABC 是直角三角形, BC=()2222642AB AC -=-=2,∴底面圆的周长为:2πr=4πcm .故答案为:4πcm .【点睛】本题考查了几何体的三视图,熟练掌握圆锥的三视图及其各视图的意义是解题的关键. 14.C→D→A→B 【解析】【分析】不同时刻物体在太阳光下的影子的大小方向改变的规律:就北半球而言从早晨到傍晚物体的影子的指向是:西-西北-北-东北-东影长由长变短再变长【详解】解:根据平行投影的特点和规解析:C →D →A →B【解析】【分析】不同时刻物体在太阳光下的影子的大小、方向改变的规律:就北半球而言,从早晨到傍晚物体的影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.【详解】解:根据平行投影的特点和规律可知,C ,D 是上午,A ,B 是下午,根据影子的长度可知先后为C→D→A→B .故答案为:C→D→A→B .【点睛】本题考查平行投影的特点和规律:在不同时刻,物体在太阳光下的影子的大小在变,方向也在改变.注意图上方向与实际方向的联系15.8【分析】由题意易得△ABC ∽△A1B1C1根据相似比求A1B1即可【详解】∵∠ACB=90°BC=12cmAC=8cm ∴AB=4cm ∵△A1B1C1是△ABC 的中心投影∴△ABC ∽△A1B1C1∴解析:13【分析】由题意易得△ABC ∽△A 1B 1C 1,根据相似比求A 1B 1即可.【详解】∵∠ACB=90°,BC=12cm ,AC=8cm ,∴13,∵△A 1B 1C 1是△ABC 的中心投影,∴△ABC ∽△A 1B 1C 1,∴A1B1:AB=B1C1:BC=2:1,即A1B1=813cm.故答案为813【点睛】本题综合考查了中心投影的特点和规律以及相似三角形性质的运用.解题的关键是利用中心投影的特点可知在这两组三角形相似,利用其相似比作为相等关系求出所需要的线段.16.5【解析】【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由主视图可得第二层立方体的可能的个数相加即可【详解】结合主视图和俯视图可知左边上层最多有2个左边下层最多有2个右边只有一层且只有解析:5【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【详解】结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故答案为:5.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.17.9【解析】如图设路灯甲的高为米由题意和图可得:解得∴路灯甲的高为9米解析:9【解析】如图,设路灯甲的高为x米,由题意和图可得:1.5530x=,解得9x=,∴路灯甲的高为9米.18.15π【解析】试题分析:由三视图可知这个几何体是母线长为5高为4的圆锥∴a=2=6∴底面半径为3∴侧面积为:π×5×3=15π考点:1三视图;2圆锥的侧面积解析:15π.【解析】试题分析:由三视图可知这个几何体是母线长为5,高为4的圆锥,∴a=2=6,∴底面半径为3,∴侧面积为:π×5×3=15π.考点:1.三视图;2.圆锥的侧面积.19.7【分析】根据几何体的三视图可进行求解【详解】解:根据题意得:则搭成该几何体的小正方体最多是1+1+1+2+2=7(个)故答案为7【点睛】本题主要考查几何体的三视图熟练掌握几何体的三视图是解题的关键解析:7【分析】根据几何体的三视图可进行求解.【详解】解:根据题意得:则搭成该几何体的小正方体最多是1+1+1+2+2=7(个).故答案为7.【点睛】本题主要考查几何体的三视图,熟练掌握几何体的三视图是解题的关键.20.36或72【分析】分两种情况:①底面周长为6高为12;②底面周长为12高为6;先根据底面周长得到底面半径再根据圆柱的体积公式计算即可求解【详解】①底面周长为6高为12则体积为:×()2×12=36;解析:36或72【分析】分两种情况:①底面周长为6,高为12;②底面周长为12,高为6;先根据底面周长得到底面半径,再根据圆柱的体积公式计算即可求解.【详解】①底面周长为6,高为12,则体积为:π×(62π)2×12=36;②底面周长为12,高为6,则体积为:π×(122π)2×6=72.综上所述,这个圆柱的体积可以是36或72.故答案为:36或72.【点睛】本题考查了展开图折叠成几何体,本题关键是熟练掌握圆柱的体积公式,注意分类思想的运用.三、解答题21.无22.无23.无24.无25.无26.无。
九年级数学上册第五章《投影与视图》测试卷-北师大版(含答案)
九年级数学上册第五章《投影与视图》测试卷-北师大版(含答案)(满分120 分)一、选择题(每题3分,共30 分)1. 如图放置的圆柱体的左视图为()2.小明从路灯底部走开时,他的影子()A.逐渐变长B. 逐渐变短C.不变D.无法确定3.下面所给几何体的俯视图是()4.小红拿着一块正方形纸板站在阳光下,则正方形纸板的影子不可能是()A.正方形B. 平行四边形C. 圆形D.线段5.如图所示的物体由两个紧靠在一起的圆柱体组成,它的主视图是()6.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的大小的变化情况是()A. 越来越小B. 越来越大C. 大小不变D.不能确定7.下列投影一定不会改变△ABC 的形状和大小的是()A.中心投影B.平行投影C.当△ABC 平行于投影面时的正投影D.当△ABC 平行于投影面时的平行投影8.如图是一个几何体的三视图,则该几何体的展开图可以是()9.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()10.如图是某工件的三视图,则此工件的体积为()A.144π c m3B. 12π c m3C. 36π c m3D.24π c m3二、填空题(每题4 分,共28分)11.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是____________.12.小军晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说:"广场上的大灯泡一定位于两人__________________________.13.如图,三角尺与其在灯光照射下的投影组成位似图形,它们的相似比为2 :5,且三角尺的一边长为8 c m,则这条边在投影中的对应边长为____________________.14. 太阳光线形成的投影称为____________________像手电筒、路灯、台灯的光线形成的投影称为_______________________.15.长方体的主视图、俯视图如图所示,则其左视图面积为____________________.16.一个几何体的三视图如图所示,其中主视图、左视图都是腰长为4,底边为2的等腰三角形,则这个几何体的体积为_________________.17.如图,在A 时测得旗杆CD的影长DE是4 m,B时测得的影长DF是8 m,两次的日照光线恰好垂直,则旗杆的高度为______________.三、解答题(一)(每题 6 分,共18 分)18. 画出如图所示几何体的三视图.19.如图,水平放置长方体底面是长为4和宽为2的矩形,它的主视图的面积为12.(1)求长方体的体积;(2)画出长方体的左视图.(用1c m代表1个单位长度)20.如图,小明利用所学的数学知识测量旗杆AB 的高度.(1)请你根据小明在阳光下的投影,画出旗杆AB 在阳光下的投影;(2)已知小明的身高为1.6 m,在同一时刻测得小明和旗杆AB 的投影长分别为0.8 m和6 m,求旗杆AB 的高.四、解答题(二)(每题8分,共24 分)21.一个几何体的三视图如图所示,(1)这个几何体名称是___________;(2)求该几何体的全面积.22.小明把镜子放在离树(AB)8 米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,CD=1.6 米,请你计算树(AB)的高度.23.如图所示为一几何体的三视图.(1)写出这个几何体的名称;(2)若三视图中的长方形的长为10 c m,正三角形的边长为4 c m,求这个几何体的侧面积.五、解答题(三)(每题10 分,共20 分)24. 5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是________(立方单位),表面积是______________(平方单位);(2)画出该几何体的主视图和左视图.25.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图;(2)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.参考答案一、1.A 2.A 3.B 4.C 5.A 6.A 7.C 8.A 9.C 10.B 二、11.3 12.之间 13.20c m 14.平行投影 中心投影 15. 3 16.15317.42m 三、18.解:三视图如下图所示:19.解:(1 )12 x 2 =2420.解:(1)如图所示:(2)如图,∵ DE 、AB 都垂直于地面,且光线DF //AC , ∴∠DEF=∠ABC , ∠DFE=∠ACB , ∴ Rt △DEF~Rt △ABC=,=1.60.86DE EF AB BC AB 即 ∴AB=12(m )答:旗杆AB 的高为12 m .四、21.解:(1)圆柱 (2)S 底圆=π·12=π S 侧=2π· 1·3=6π ∴S 全=2π+6π=8π(c m 2)22.解:由题意得∠B=∠D =90° 又由光的反射原理可知∠AEB =∠CED ∴△ABE~△CDE)81.6=2.41,(6=3A B AB B E AB CD DE 即∴米23.解:(1)三棱柱(2)侧面积为:3 x 4 x 10= 120(c m 2) 五、24.解:(1)5 22(2)如图所示:25.解:(1)这个几何体的主视图和左视图如图所示:(2)要使表面积最大,则需满足两正方体重合的最少,此时俯视图为:。
第5章 投影与视图 北师大版数学九年级上册单元闯关双测卷(测基础)及答案
第五章 投影与视图(测基础)——2023-2024学年北师大版数学九年级上册单元闯关双测卷【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.下列光线所形成的投影是平行投影的是( )A.太阳光线B.台灯的光线C.手电筒的光线D.路灯的光线2.如图所示的几何体的主视图是( )A. B. C. D.3.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是( )A.B.C. D.4.榫卯是我国古代建筑、家具的一种结构方式,它通过两个构件上凹凸部位相结合来将不同构件组合在一起,如图是其中一种榫,其主视图是( )A. B. C. D.5.把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是( )A. B. C. D.6.在我国古代建筑中经常使用榫卯构件,如图是某种榫卯构件的示意图,其中,卯的俯视图是( )A. B.C. D.7.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1 m的竹竿的影长是0.8 m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上,她先测得留在墙壁上的影高为1.2 m,又测得落在地面的影长为2.6m,请你帮她算一下,树高是( )A.3.25 mB.4.25 mC.4.45 mD.4.75 m8.如图所示的几何体,它的左视图是( )A. B. C. D.9.图所示的是测量旗杆的高度的方法,已知AB是标杆,线段BC表示AB在太阳光下的影子,DE为旗杆,线段BD表示DE在太阳光下的影子,下列选项叙述错误的是( )A.太阳光线是平行光线B.C.只需量出AB和BD的长,就可以计算出旗杆的高D.量出AB、BC、DB的长,可以计算出旗杆的高.10.甲、乙、丙、丁四人分别面对面坐在一个四边形桌子旁边,桌上一张纸上写着数字“9”,甲说他看到的是“6”,乙说他看到的是“”,丙说他看到的是“”,丁说他看到的是“9”,则下列说法正确的是( )A.甲在丁的对面,乙在甲的左边,丙在丁的右边B.丙在乙的对面,丙的左边是甲,右边是乙C.甲在乙的对面,甲的右边是丙,左边是丁D.甲在丁的对面,乙在甲的右边,丙在丁的右边二、填空题(每小题4分,共20分)11.图所示的几何体中,主视图的轮廓是三角形的是_____________.12.古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长3米,它的影长FD是6米,同一时刻测得OA 是286米,则金字塔的高度OB是_______米.13.如图,小明在A时测得某树的影长为8m,B时又测得该树的影长为2m,若两次日照的光线互相垂直,则树的高度为____________.14.如图,一块直角三角尺,,测得边的中心投影的长为24 cm,则的长为___________cm.15.如图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则搭成的几何体小立方体的个数最大是________.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)在指定的位置画出如图所示物体的三视图.17.(8分)如图,AB和DE是直立在地面上的两根立柱,某一时刻AB在阳光下的投影.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.18.(10分)如图①,一个工件是由大长方体上面中间部位挖去一个小长方体后形成的,主视图是凹字形的轴对称图形.(1)请在图②中合适的位置补画该工件的俯视图;(2)若该工件表面需涂油漆,根据图中尺寸(单位:cm),计算需涂油漆的面积. 19.(10分)小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图所示,此时测得地面上的影长为8米,坡面上的影长为4米已知斜坡的坡角为30°,同一时刻,一根长为1米,垂直于地面放置的标杆在地面上的影长为2米,请计算出树的高度.20.(12分)由几个相同的棱长为1的小正方体搭成的几何体的俯视图如图(1)所示,格中的数字表示该位置的小正方体的个数.(1)请在图(2)中分别画出这个几何体的主视图和左视图;(2)根据三视图,求这个组合几何体的表面积.(包括底面积)(3)若用上述小正方体搭成的几何体的俯视图不变,各位置的小正方体个数可以改变(总数目不变),要使搭成的组合几何体的表面积最大(包括底面积),应该怎么搭,请仿照图(1),将数字填写在图(3)的正方形中.21.(12分)学习投影后,小红、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为1.6 m的小红()的影子的长是3,而小颖()刚好在路灯灯泡的正下方H点,并测得.(1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G;(2)求路灯灯泡的垂直高度;(3)如果小红沿线段向小颖()走去,当小红走到中点处时,求其影子的长;当小红继续走剩下路程的到处时,求其影子的长;当小红继续走剩下路程的到处,…,按此规律继续走下去,当小红走剩下路程的到处时,其影子的长为__________m(直接用n的代数式表示).答案以及解析1.答案:A解析:四个选项中只有太阳光可认为是平行光线;故太阳光线下形成的投影是平行投影.故选A.2.答案:B解析:从正面看,是一个矩形,矩形的中间有一条纵向的实线.故选B.3.答案:D解析:A.影子的方向不相同,故本选项错误;B.影子的方向不相同,故本选项错误;C.相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误;D.影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;故选D.4.答案:B解析:该几何体的主视图是:故选:B.5.答案:A解析:光线由上向下照射此正六棱柱时的正投影是从上向下看该几何体得到的平面图形,应为.6.答案:C解析:卯的俯视图是,故选C.7.答案:C解析:如图,设是在地面上的影子,树高为,∵一根长为1 m的竹竿的影长是0.8 m,,,即.∴树在地面上的实际影长是0.96+2.6=3.56(m).根据竹竿的高与其影子的比值和树高与其影子的比值相同,得,解得.∴树高是4.45 m.8.答案:C解析:该几何体的左视图如选项C所示,故选C.9.答案:C解析:由太阳光线是平行光线,可得,又,,,,即已知AB、BC、DB的长,可以计算出旗杆的高,故A,B,D中叙述正确,不符合题意;C中,只量出AB和BD的长,不知道BC的长,不能求出旗杆的高,故C中叙述错误,符合题意.故选C.10.答案:D解析:由题意可得,甲说他看到的是“6,丁说他看到的是“9”,说明两人坐对面,乙和丙坐对面,又乙说他看到的是“”,乙在甲右边,则丙在丁右边.故选D.11.答案:②③解析:①的主视图的轮廓是矩形;②的主视图的轮廓是三角形,③的主视图的轮廓是等腰三角形,故答案是②③.12.答案:143解析:据相同时刻的物高与影长成比例,设金字塔的高度BO为x米,则可列比例为,解得:,经检验,是原方程的解,.故答案为:143.13.答案:解析:根据题意,作,树高为CD,且,,,,,即,解得.故答案为: 4 .14.答案:解析:,.,,.15.答案:7解析:由俯视图易得最底层有4个立方体,由左视图易得第二层最多有3个立方体和最少有1个立方体,那么小立方体的个数可能是5个或6个或7个.故答案为:7.16.答案:解析:该物体的三视图如图所示17.解析:(1)连接AC,过点D作,交直线BC于点F,线段EF即为DE的投影.(2),.,.,(m).18.答案:(1)俯视图如图所示.(2).答:需涂油漆的面积为.19.答案:如图,延长AC交直线BD于点F,过点C作于点E.在中,米,,则米,所以米.根据同一时刻物高与影长对应成比例,得,则米,所以米.又,所以米,所以树的高度为米.20.答案:(1)这个几何体的主视图和左视图如图所示:(2)由俯视图知,上表面共有3个小正方形,下表面共有3个小正方形;由左视图知,左表面共有4个小正方形,右表面共有4个小正方形;由主视图知,前表面共有5个小正方形,后表面共有5个小正方形.每个小正方形的面积为1,故这个组合几何体的表面积为.(3)(答案不唯一)要使表面积最大,则需满足两个小正方体重合的面最少,此时俯视图如下:21.解析:(1)如图所示.(2),.,.(3)同(2)得,.设长为,则,解得,即.同理,,解得.,解得.。
北师大版九年级数学上册第五章投影与视图单元练习卷含答案
三.解答题(共 5 小题) 19.根据如图所给出的几何体从三个方向看得到的形状图,试确定几何体中小正方体的数
目的范围.
【解答】解:根据题意,构成几何体所需正方体最多情况如图(
1)所示,构成几何体所
需正方体最少情况如图( 2)所示:
所以最多需要 11 个,最少需要 9 个小正方体. 20.如图,是某几何体从三个方向分别看到的图形.
22.如图是由 5 个边长为 1 的正方体叠放而成的一个几何体,请画出这个几何体的三视 图.(用铅笔描黑)
23.某校墙边有甲、乙两根木杆,已知乙木杆的高度为
1.5 m.
( 1)某一时刻甲木杆在阳光下的影子如图所示,画出此时乙木杆的影子
DF.
( 2)△ ABC∽△ DEF,如果测得甲、乙木杆的影子长分别为 1.6 m和 1m,那么甲木杆的高
D.以上都可能
二.填空题(共 11 小题)
8.如图,一长方体木板上有两个洞,一个是正方形形状的,一个是圆形形状的,对于以下
4 种几何体,你觉得哪一种作为塞子既可以堵住圆形空洞又可以堵住方形空洞?
(填序号).
9.水平放置的长方体的底面是长和宽分别是
4 和 6 的长方形, 它的左视图的面积是 12,则
这个长方体的体积等于
.
10.如图是由 6 个棱长均为 1 的正方体组成的几何体,它的左视图的面积为
.
11 .如图的几何体由若干个棱长为
积
.
1 的正方体堆放而成,则这个几何体的俯视图面
12.如图是由若干个棱长为
的是
cm2 .
1cm 的小正方体堆砌而成的几何体,那么其三视图中面积最小
13.观察下面的几何体,从上面看到的是
(常考题)北师大版初中数学九年级数学上册第五单元《投影与视图》测试卷(有答案解析)
一、选择题1.如图所示的立体图形,其俯视图正确的是()A.B.C.D.2.一个几何体是由一些大小相同的小正方体摆成其主视图和左视图如图所示则组成这个几-=()何体的小正方体最少有a个,最多有b个,b aA.3 B.4 C.5 D.63.用小立方块搭成的几何体从正面和上面看的视图如图,这个几何体中小立方块的个数不可以是()A.11 B.10 C.9 D.84.观察如图所示的几何体,从左面看到的图形是()A.B.C.D.5.如图是由四个相同的小正方体组成的立体图形,它的主视图为().A.B.C.D.6.如图,是由一些相同的小正方形围成的立方体图形的三视图,则构成这种几何体的小正方形的个数是()A.4 B.6 C.9 D.127.如图,一个几何体由5个大小相同的正方体搭成,则这个立体图形从左面观察得到的平面图形是()A.B.C.D.8.如图所示,该立体图形的俯视图是()A.B.C.D.9.矩形木框在阳光照射下,在地面上的影子不可能是()A.B.C.D.10.若几何体的三视图如图所示,则该几何体是()A.长方体B.圆柱C.圆锥D.三棱柱11.图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A.B.C.D.12.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A 处径直走到B处,她在灯光照射下的影长l与行走的路程s之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.二、填空题13.一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为__________.14.如图,一个 5 ⨯ 5 ⨯ 5 的正方体,先在它的前后方向正中央开凿一个“十字形”的孔(打通),再在它的上下方向正中央也开凿一个“十字形”的孔(打通),最后在它的左右方向正中央开凿一个“十字形”的孔(打通),这样得到一个被凿空了的几何体,则凿掉部分的体积为_____.15.如图是两棵小树在同一时刻的影子,那么图①是________投影,图②是________投影.16.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为___________.17.小刚身高1.72m,他站立在阳光下的影子长为0.86m,紧接着他把手臂竖直举起,影子长为1.15m,那么小刚举起的手臂超出头顶是_________m.18.某长方体从左面看和从上面看得到的图形如图所示,则此长方体的表面积为________.19.将一个矩形纸片(厚度不计)置于太阳光下,改变纸片的摆放位置和方向,则其留在地面上的影子的形状可能是____.(只需写一个条件)20.一个几何体,从不同方向看到的图形如图所示.拼成这个几何体的小正方体的个数为______.三、解答题21.画出该几何体的主视图、左视图、俯视图.【答案】见解析【分析】观察图形可知,从正面看到的图形是3列,分别有1,1,2个正方形;从左面看到的图形是2列,分别有2,1个正方形;从上面看到的图形是2行,分别有3,2个正方形;据此即可画图.【详解】解:如图所示:.【点睛】此题考查了从不同方向观察物体和几何体和画简单图形的三视图的方法,是基础题型.22.“如图是由10个同样大小的小正方体搭成的几何体,(1)请分别画出它的主视图和左视图.(2)如果在这个几何体的表面喷上黄色的漆(底面不涂色),有_________个小正方体只有两面黄色,有_________个小正方体只有三面黄色,(3)在俯视图和左视图不变的情况下,你认为最多还可以添加_________个小正方体.【答案】(1)见解析;(2)2,3;(3)4【分析】(1)主视图从左至右每列个数分别为3、1、2,左视图左至右每列个数分别为3、2、1.(2)注意题干中的底面不涂色,涂2面的在第一层后面最左面的2个,涂3面的在中间层的后面的左面和第一层的最中间以及第一层的最后最右面,一共3个.(3)要使俯视图和左视图不变,可以在第二列,第二层和第三层的3个空缺处添加,第三层第三列的最上面也可添加.【详解】(1)(2)设由下到上分别是第一层到第三层,由左到右分别是第一列到第三列,有前到后分别是第一行到第三行.有2个面是黄色的应为第一层第一列第三行和第一层第二列第三行的2个小正方体.有3个面是黄色的应为第二层第一列第三行、第一层第二列第二行和第一层第三列第三行的3个小正方体.故答案为2,3.(3)要使俯视图和左视图不变,可添加至第二层第二列第二行、第二层第二列第三行、第三层第二列第三行、第三层第三列第三行.所以可添加4个小正方体.故答案为4.【点睛】本题主要考查作三视图.利用空间想象能力,并把几何体按空间排序来解决问题.23.如图是由5个棱长为1的小正方体组成的简单几何体,作出三视图.【答案】见解析【分析】从正面看得到从左往右3列正方形的个数依次为1,2,1;从左面看得到从左往右2列正方形的个数依次为2,1;从上面看得到从左往右3列正方形的个数依次为1,2,1,由此画出图形即可.【详解】【点睛】本题考查几何体的三视图画法,仔细观察三视图的特点是解题的关键.24.如图,三棱柱的上下底面均为周长为12cm 的等边三角形,现要从中截取一个上下底面均为等边三角形且底面周长为3cm 的小三棱柱.(1)请写出截面的形状______;(2)若小三棱柱的高为6cm ,则截去小三棱柱后,剩下的几何体的棱长总和是多少?【答案】(1)长方形;(2)46【分析】(1)依据大正三棱柱的底面周长为10,截取一个底面周长为3的小正三棱柱,即可得到截面的形状;(2)依据△ADE 是周长为3的等边三角形,△ABC 是周长为10的等边三角形,即可得到四边形DECB 的周长,再计算棱长总和.【详解】解:(1)由题意可知,截面是长方形,故填:长方形;(2)1cm DE =,3cm BD CE ==,4cm BC =()1334246222446+++⨯+⨯=+=(cm ).【点睛】本题主要考查了截一个几何体,截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形.25.在阳光下,小玲同学测得一根长为1米的垂直地面的竹竿的影长为0.6米,同时小强同学测量树的高度时,发现树的影子有一部分0.2米落在教学楼的第一级台阶上,落在地面上的影长为4.42米,每级台阶高为0.3米.小玲说:“要是没有台阶遮挡的话,树的影子长度应该是4.62米”;小强说:“要是没有台阶遮挡的话,树的影子长度肯定比4.62米要长”.(1)你认为小玲和小强的说法对吗?(2)请根据小玲和小强的测量数据计算树的高度;(3)要是没有台阶遮挡的话,树的影子长度是多少?【答案】(1)小玲的说法不对,小强的说法对;(2)树的高度为8米;(3)树的影子长度是4.8米.【分析】(1)根据题意可得小玲的说法不对,小强的说法对;(2)根据题意可得DEEH=10.6,DE=0.3,EH=0.18,进而可求大树的影长AF,所以可求大树的高度;(3)结合(2)即可得树的影长.【详解】(1)小玲的说法不对,小强的说法对,理由如下(2)可得;(2)根据题意画出图形,如图所示,根据平行投影可知:DEEH=10.6,DE=0.3,∴EH=0.3×0.6=0.18,∵四边形DGFH是平行四边形,∴FH=DG=0.2,∵AE=4.42,∴AF=AE+EH+FH=4.42+0.18+0.2=4.8,∵ABAF =10.6,∴AB=4.80.6=8(米).答:树的高度为8米.(3)由(2)可知:AF =4.8(米),答:树的影子长度是4.8米.【点睛】考查了相似三角形的应用、平行投影,解题关键是掌握并运用平行投影.26.如图,正方形硬纸板的边长为a ,其4个角上剪去的小正方形的边长为b (b <2a ),这样可制作一个无盖的长方体纸盒.(1)这个纸盒的容积为 ;(2)画出这个长方体纸盒的三视图.(在图上用含a 、b 的式子标明视图的长和宽)【答案】(1)b(a ﹣2b)2;(2)详见解析【分析】(1)根据图形,得出底面边长、高,从而得出长方体纸盒体积;(2)脑海中构建立体图形,绘制三视图.【详解】解:(1)由题意知纸盒的底面边长为a ﹣2b 、高为b ,则这个纸盒的容积为b(a ﹣2b)2,故答案为:b(a ﹣2b)2.(2)如图所示:【点睛】本题考查立体图形的三视图,解题关键是在脑海中构建出立体图形的样子.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据从上边看得到的图形是俯视图,可得答案【详解】解:从上边看是两个正方形,对应顶点间有线段的图形,看得见的棱都是实线;如图所示:故选:C.【点睛】本题考查了立体图形的三视图,从上边看得到的图形是俯视图,注意看得见的棱用实线,看不见的棱用虚线.2.C解析:C【分析】由主视图、俯视图可知,俯视图最多可能为2×3的长方形,再在俯视图上各个位置,摆放小立方体,即可得到a和b的值.【详解】由主视图、左视图可知,俯视图最多可能为2×3的长方形,在相应位置摆放小立方体,直至最少,如图所示:a ,∴5在相应位置摆放小立方体,直至最多,如图所示:b=,∴10b a-=-=.∴1055故选:C.【点睛】本题考查了简单几何体的三视图的意义和画法,主视图反映的是几何体长与高的关系、左视图反映宽与高的关系,画三视图时还要注意“长对正、宽相等、高平齐”.3.A解析:A【分析】首先从正视图易得这个几何体共有3层,由俯视图可得第一层正方体的个数;然后再根据主视图可得第二层和第三层最少或最多的正方体的个数,相加即可.【详解】从正面看这个几何体共有3层,由俯视图可得第一层正方体的个数是6个;由主视图可得第二层最多有正方体2个,最少有1个,第三层最多的正方体的个数是2个,最少有1个,∴这个几何体中小立方块的个数最多有:6+2+2=10个,最少有:6+1+1=8个,故选:A.【点睛】本题主要考查的是三视图判断几何体,熟练掌握几何体的三视图画法是解题的关键.4.C解析:C【分析】从左面只看到两列,左边一列3个正方形、右边一列1个正方形,据此解答即可.【详解】解:观察几何体,从左面看到的图形是故选:C.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.A解析:A【分析】根据几何体的三视图解答即可.【详解】根据立体图形得到:主视图为:,左视图为:,俯视图为:,故答案为:A.【点睛】此题考查小正方体组成的几何体的三视图,解题的关键是掌握三视图的视图角度及三视图的画法.6.D解析:D【分析】根据三视图,得出立体图形,从而得出小正方形的个数.【详解】根据三视图,可得立体图形如下,我们用俯视图添加数字的形式表示,数字表示该图形俯视图下有几个小正方形则共有:1+1+1+2+2+2+1+1+1=12故选:D【点睛】本题考查三视图,解题关键是在脑海中构建出立体图形,建议可以如本题,通过在俯视图上标数字的形式表示立体图形帮助分析.7.B解析:B【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【详解】从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形.故选:B.【点睛】本题考查了三视图的知识,左视图是从物体的左侧面看得到的视图.8.C解析:C【分析】根据俯视图是从物体的上面看得到的视图进行解答即可.【详解】从上面看是一个正方形,正方形的左下角是一个小正方形,故C正确;故选:C【点睛】考核知识点:三视图.理解视图的定义是关键.9.C解析:C【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【详解】解:矩形木框在地面上形成的投影应是平行四边形或一条线段,即相对的边平行或重合,故C不可能,即不会是梯形.故选:C.【点睛】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,平行物体的影子仍旧平行或重合.10.D解析:D【解析】【分析】根据两个视图是长方形得出该几何体是柱体,再根据俯视图是三角形,得出几何体是三棱柱.【详解】主视图和左视图是长方形,几何体是柱体,俯视图的大致轮廓是三角形,∴该几何体是三棱柱;所以D选项是正确的.【点睛】此题考查由三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.11.C解析:C【解析】【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【详解】A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正方形的个数均依次为1,1,不符合所给图形;D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选C.【点睛】考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形.12.C解析:C【解析】试题分析:∵小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系应为:当小红走到灯下以前:l随S的增大而减小;当小红走到灯下以后再往前走时:l随S的增大而增大,∴用图象刻画出来应为C.故选C.考点:1.函数的图象;2.中心投影;3.数形结合.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.【分析】由已知三视图为圆柱首先得到圆柱底面半径从而根据圆柱体积=底面积乘高求出它的体积【详解】解:由三视图可知圆柱的底面直径为4高为6∴底面半径为2∴V=πr2h=22×6•π=24π故答案是:24解析:24π【分析】由已知三视图为圆柱,首先得到圆柱底面半径,从而根据圆柱体积=底面积乘高求出它的体积.【详解】解:由三视图可知圆柱的底面直径为4,高为6,∴底面半径为2,∴V=πr2h=22×6•π=24π,故答案是:24π.【点睛】此题考查的是圆柱的体积及由三视图判断几何体,关键是先判断圆柱的底面半径和高,然后求其体积.14.49【分析】分别计算前后上下左右方向凿掉的体积然后求和即可【详解】前后方向凿掉部分的体积为5525上下方向又凿掉了522214左右方向又凿掉了5210凿掉部分的总体积为2514解析:49【分析】分别计算前后、上下、左右方向凿掉的体积,然后求和即可.【详解】前后方向凿掉部分的体积为 5 ⨯ 5 = 25 ,上下方向又凿掉了 5 ⨯ 2 + 2 ⨯ 2 = 14 ,左右方向又凿掉了5 ⨯ 2 = 10 ,∴凿掉部分的总体积为 25 + 14 + 10 = 49【点睛】本题考查不规则图形的几何体的体积,关键是找到凿掉小正方形的个数.15.平行中心【解析】【分析】两物体若是平行投影则等比例放大或缩小中心投影则不同【详解】图①是平行投影图②是中心投影故答案为:平行中心【点睛】本题考查了平行投影和中心投影的知识关键是掌握平行投影和中心投影解析:平行中心【解析】【分析】两物体若是平行投影,则等比例放大或缩小,中心投影则不同.【详解】图①是平行投影,图②是中心投影.故答案为:平行、中心.【点睛】本题考查了平行投影和中心投影的知识,关键是掌握平行投影和中心投影的特点与不同.16.cm2【解析】根据三视图得到圆锥的底面圆的直径为6cm即底面圆的半径为3cm圆锥的高为4cm所以圆锥的母线长==5所以这个圆锥的侧面积=π×3×5=15π(cm2)故答案为15πcm2解析:15πcm2【解析】根据三视图得到圆锥的底面圆的直径为6cm,即底面圆的半径为3cm,圆锥的高为4cm,所以圆锥的母线长,所以这个圆锥的侧面积=π×3×5=15π(cm2).故答案为15πcm2.17.58【解析】设小刚举起的手臂超出头顶xm因为阳光下的身高与影子的长是成比例的所以172:086=(172+x):115解得x=058故答案为058解析:58【解析】设小刚举起的手臂超出头顶xm,因为阳光下的身高与影子的长是成比例的,所以1.72:0.86=(1.72+x):1.15,解得x=0.58,故答案为0.58.18.38【解析】解:由图知:长方体的长为4宽为3高为1故长方体的表面积=2×4×3+2×3×1+2×4×1=38故答案为38解析:38【解析】解:由图知:长方体的长为4,宽为3,高为1.故长方体的表面积=2×4×3+2×3×1+2×4×1=38.故答案为38.19.平行四边形(答案不唯一)【分析】根据平行投影下平行投影的特点:在同一时刻平行物体的投影仍旧平行即可得到正确的答案【详解】矩形在阳光下的投影对边应该是相等的影子的形状可能是矩形正方形平行四边形;故答案解析:平行四边形(答案不唯一)【分析】根据平行投影下平行投影的特点:在同一时刻,平行物体的投影仍旧平行,即可得到正确的答案.【详解】矩形在阳光下的投影对边应该是相等的,影子的形状可能是矩形、正方形、平行四边形;故答案为:平行四边形.【点睛】本题综合考查了平行投影的特点和规律.平行投影的特点是:在同一时刻,不同物体的物高和影长成比例.20.6【分析】根据从不同方位看到的图形的形状可知该几何体有2列2行底面有4个小正方体摆成大正方体上面至少2个小正方体放在靠前面的2个小正方体上面由此解答【详解】由题图可知该几何体第一层有4个小正方体第二解析:6【分析】根据从不同方位看到的图形的形状可知,该几何体有2列2行,底面有4个小正方体摆成大正方体,上面至少2个小正方体,放在靠前面的2个小正方体上面.由此解答.【详解】由题图可知,该几何体第一层有4个小正方体,第二层有2个小正方体,所以拼成这个几何体的小正方体的个数为6.故答案为:6.【点睛】本题主要考查从不同方向观察物体和几何体,关键注重培养学生的空间想象能力.三、解答题21.无22.无23.无24.无25.无26.无。
2020年北师大版九年级数学上册第5章《投影与视图》单元同步试卷 (含答案)
九年级上学期第5章《投影与视图》单元测试卷时间90分钟,满分120分姓名:__________ 班级:__________考号:__________成绩:__________一、单选题(共10题;共30分)1.如图几何体的主视图是()A.B.C.D.2.如图所示的几何体是由若干个完全相同的小正方体组成,从左面看这个几何体得到的平面图形是( )A.B.C.D.3.学校超市的货架上摆放着某品牌方便面,从三个不同的方向看可以看到下图所示的形状图,则货架上的方便面至多有()A.7盒B.8盒C.9盒D.10盒4.如图是一根空心方管,它的俯视图是()A.B.C.D.5.一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.6πB.4πC.8πD.46.如图,正三棱柱的主视图为()A.B.C.D.7.用小正方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体最少需要正方体个数为( )A.5B.6C.7D.88.圆形的纸片在平行投影下的正投影是()A.圆形B.椭圆形C.线段D.以上都可能9.已知一个几何体如图所示,则该几何体的左视图是()A.B.C.D.10.如图,白炽灯下有一个乒乓球,当乒乓球越接近灯泡时,它在地面上的影子()A.越大B.越小C.不变D.无法确定二、填空题(共6题;共24分)11.如图,一长方体木板上有两个洞,一个是正方形形状的,一个是圆形形状的,对于以下4种几何体,你觉得哪一种作为塞子既可以堵住圆形空洞又可以堵住方形空洞?(填序号).12.水平放置的长方体的底面是长和宽分别是4和6的长方形,它的左视图的面积是12,则这个长方体的体积等于.13.如图是由6个棱长均为1的正方体组成的几何体,它的左视图的面积为.14.某个立体图形的三视图的形状都相同,请你写出一种这样的几何体.15.一个几何体由几个大小相同的小立方块搭成,从上面和从左面看到的这个几何体的形状如图所示,则这个几何体中小正方体的个数最少是个.16.如图:在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则要摆出这样的图形至少需要块正方体木块,至多需要块正方体木块.三、解答题(共6题;共66分)17.如图是一个由一些相同的小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.(1)请你画出它的主视图与左视图.(2)若每个小正方体的边长都为1,求这个几何体的表面积.18.根据如图所给出的几何体从三个方向看得到的形状图,试确定几何体中小正方体的数目的范围.19.已知下图为一几何体的三视图(1)写出这个几何体的名称;(2)任意画出它的一种表面展开图;(3)若主视图的长为10cm,俯视图中三角形的边长为4cm,求这个几何体的侧面积.20.如图1,是由一些棱长为单位1的相同的小正方体组合成的简单几何体.(1)图中有个小正方体;(2)请在图1右侧方格中分别画出几何体的主视图、左视图;(3)不改变(2)中所画的主视图和左视图,最多还能在图1中添加个小正方体.21.如图是由5个边长为1的正方体叠放而成的一个几何体,请画出这个几何体的三视图.(用铅笔描黑)22.根据要求完成下列题目:(1)图中有块小正方体;(2)请在下面方格纸中分别画出它的主视图,左视图和俯视图.(3)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要个小立方块,最多要个小立方块.试题答案及解析部分一、填空题1.如图几何体的主视图是()A.B.C.D.【解答】解:由图可得,几何体的主视图是:故选:A.2.如图所示的几何体是由若干个完全相同的小正方体组成,从左面看这个几何体得到的平面图形是( )A.B.C.D.【解答】解:从左面看这个几何体得到的平面图形是:故选:B.3.学校超市的货架上摆放着某品牌方便面,从三个不同的方向看可以看到下图所示的形状图,则货架上的方便面至多有()A.7盒B.8盒C.9盒D.10盒【解答】解:由从三个不同的方向看到的形状,可以在俯视图上,标出相应的摆放的最多数量,求出至多有9盒,故选:C.4.如图是一根空心方管,它的俯视图是()A .B .C .D . 【解答】解:如图所示:俯视图应该是.故选:B . 5.一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是( )A .6πB .4πC .8πD .4【解答】解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2, 那么它的表面积221126πππ=⨯+⨯⨯⨯=,故选:A .6.如图,正三棱柱的主视图为( )A .B .C .D .【解答】解:正三棱柱的主视图是矩形,主视图中间有竖着的实线.故选:B .7.用小正方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体最少需要正方体个数为( )A.5B.6C.7D.8【解答】解:由俯视图可得最底层有5个小正方体,由主视图可得第一列和第三列都有2个正方体,那么最少需要527+=个正方体.故选:C.8.圆形的纸片在平行投影下的正投影是()A.圆形B.椭圆形C.线段D.以上都可能【解答】解:圆形的纸片在平行投影下的正投影可能是圆形、椭圆形、线段,故选:D.9.已知一个几何体如图所示,则该几何体的左视图是()A.B.C.D.【解答】解:观察图形可知,该几何体的左视图是.故选:D.10.如图,白炽灯下有一个乒乓球,当乒乓球越接近灯泡时,它在地面上的影子()A.越大B.越小C.不变D.无法确定【解答】解:白炽灯向上移时,阴影会逐渐变小;相反当乒乓球越接近灯泡时,它在地面上的影子变大.故选:A.二、解答题11.如图,一长方体木板上有两个洞,一个是正方形形状的,一个是圆形形状的,对于以下4种几何体,你觉得哪一种作为塞子既可以堵住圆形空洞又可以堵住方形空洞?②(填序号).【解答】解:圆柱的俯视图是圆,可以堵住圆形空洞,它的正视图和左视图是长方形,可以堵住方形空洞,故圆柱是最佳选项,故答案为②.12.水平放置的长方体的底面是长和宽分别是4和6的长方形,它的左视图的面积是12,则这个长方体的体积等于48.【解答】解:它的左视图的面积为12,长为6,因此宽为2,即长方体的高为2,因此体积为:46248⨯⨯=.故答案为:48.13.如图是由6个棱长均为1的正方体组成的几何体,它的左视图的面积为4.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故答案为:4.14.某个立体图形的三视图的形状都相同,请你写出一种这样的几何体球(答案不唯一)..【解答】解:球的3 个视图都为圆;正方体的 3 个视图都为正方形;所以主视图、左视图和俯视图都一样的几何体为球、正方体等.故答案为:球(答案不唯一).15.一个几何体由几个大小相同的小立方块搭成,从上面和从左面看到的这个几何体的形状如图所示,则这个几何体中小正方体的个数最少是5个.【解答】解:搭这样的几何体最少需要415+=个小正方体,最多需要426+=个小正方体,故答案为:516.如图:在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则要摆出这样的图形至少需要6块正方体木块,至多需要块正方体木块.【解答】解:易得第一层最少有4个正方体,最多有12个正方体;第二层最少有2个正方体,最多有4个,故最少有6个小正方形,至多要16块小正方体.故答案为:6,16.三、解答题17.如图是一个由一些相同的小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.(1)请你画出它的主视图与左视图.(2)若每个小正方体的边长都为1,求这个几何体的表面积.【解答】解:(1)如图所示:(2)(929252)(11)⨯+⨯+⨯⨯⨯=⨯461=.46答:这个几何体的表面积为46.18.根据如图所给出的几何体从三个方向看得到的形状图,试确定几何体中小正方体的数目的范围.【解答】解:根据题意,构成几何体所需正方体最多情况如图(1)所示,构成几何体所需正方体最少情况如图(2)所示:所以最多需要11个,最少需要9个小正方体.19.已知下图为一几何体的三视图(1)写出这个几何体的名称;(2)任意画出它的一种表面展开图;(3)若主视图的长为10cm ,俯视图中三角形的边长为4cm ,求这个几何体的侧面积.【解答】解:(1)由三视图知该几何体是:三棱柱;(2)其展开图如下:(3)()234103120S S cm =⨯=⨯⨯=侧长.20.如图1,是由一些棱长为单位1的相同的小正方体组合成的简单几何体.(1)图中有 10 个小正方体;(2)请在图1右侧方格中分别画出几何体的主视图、左视图;(3)不改变(2)中所画的主视图和左视图,最多还能在图1中添加个小正方体.【解答】解:(1)正方体的个数:13610++=,(2)如图所示:;(3)不改变(2)中所画的主视图和左视图,最多还能在图1中添加第一排的右边2列的2个,第2排的右边第3列的2个,+=.224答:最多还能在图1中添加4个小正方体.故答案为:10;4.21.如图是由5个边长为1的正方体叠放而成的一个几何体,请画出这个几何体的三视图.(用铅笔描黑)【解答】解:如图所示:24.根据要求完成下列题目:(1)图中有6块小正方体;(2)请在下面方格纸中分别画出它的主视图,左视图和俯视图.(3)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要 个小立方块,最多要 个小立方块.【解答】解:(1)图中有6块小正方体;故答案为:6;(2)如图所示:;(3)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要5个小立方块,最多要7个小立方块.故答案为:5,7.1、三人行,必有我师。
新北师大版九年级数学上册单元测试卷附答案第五章投影与视图
第五章投影与视图一、选择题(共15小题;共45分)1. 下面四幅图是在同一天同一地点不同时刻太阳照射同一根旗杆的影像图,其中表示太阳刚升起时的影像图是A. B.C. D.2. 在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是A. B.C. D.3. 把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是A. B.C. D.4. 由个相同的小立方体搭成的几何体如图所示,则它的主视图是A. B.C. D.5. 如图是一个几何体的俯视图,则该几何体可能是A. B.C. D.6. 如图所示的几何体的俯视图是A. B.C. D.7. 如图,放置的一个机器零件(图),若从正面看到的图形如(图)所示,则从上面看到的图形是A. B.C. D.8. 如图是由一些相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数为A. 个B. 个C. 个D. 个9. 如图所示的几何体的左视图为A. B.C. D.10. 如图是从三个方向看某个几何体得出的平面图形,该几何体是A. 棱柱B. 圆柱C. 圆锥D. 球11. 如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是A. B.C. D.12. 下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是A. B.C. D.13. 如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为,且三角板的一边长为.则投影三角板的对应边长为A. B.14. 在一张桌子上摆放着一些碟子,从个方向看到的种视图如图所示,则这个桌子上的碟子共有A. 个B. 个C. 个D. 个15. 某几何体的三视图如图所示,则此几何体是A. 圆锥B. 圆柱C. 长方体D. 四棱柱二、填空题(共8小题;共40分)16. 一个几何体的主视图,左视图,俯视图都是同一个图形,那么这个几何体形状可能是(填写一个即可).17. 如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是.18. 如图是一幢建筑物和一根旗杆在一天中四个不同时刻的影子.将四幅图按先后顺序排列应为.19. 观察下面的几何体,从上面看到的是,从左面看到的是,从正面看到的是.20. 在某一时刻,测得身高为的小明的影长为,同时测得一建筑物的影长为,那么这个建筑物的高度为.21. 如图所示,摄像机①,②,③,④在不同位置拍摄了四幅画面,则图象是号摄像机所拍,图象是号摄像机所拍,图象是号摄像机所拍,图象是号摄像机所拍.22. 如图四幅图是某校园内一棵小树不同时刻在太阳光下的影子,按照时间的先后顺序排列,是.23. 由一些大小相同的小正方体搭成的几何体的从正面看和从上面看,如图所示,则搭成该几何体的小正方体最多是个.三、解答题(共5小题;共65分)24. 图中是由几个小立方块搭成的几何体的从上面看的形状图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的从正面看和从左面看的形状图.25. 如图,,是直立在地面上的两根立柱,某一时刻立柱在阳光下的投影为,请你在图中画出此时立柱在阳光下的投影.26. 用小立方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体只有一种吗?它最多需要多少个小立方体?它最少需要多少个小立方体?请你画出这两种情况下的左视图.27. 由一些大小相同的小正方体搭成的几何体的俯视图,如图所示,其中正方形中的数字表示该位置上的小正方体的个数,请画出该几何体的主视图和左视图.28. 分别根据下列条件(如图,虚线表示投射线),画出矩形在投影面上的平行投影.(1)矩形所在平面与投影面平行,点的投影为点,点的投影为点.(2)矩形所在平面与投射线平行,点的投影为点.答案第一部分1. C 【解析】太阳东升西落,在不同的时刻,同一物体的影子的方向和大小不同,太阳从东方刚升起时,影子应在西方.2. D3. A4. A 【解析】几何体的主视图有列,每列小正方形数目分别为,.5. B6. D7. D8. B9. D10. B11. B 【解析】从正面看下边是一个较大的矩形,上边是一个较小的矩形.12. C13. A 【解析】设投影三角尺的对应边长为,三角尺与投影三角尺相似,,解得.14. C 【解析】易得三摞碟子数从左往右分别为,,,则这个桌子上共有个碟子.15. B【解析】圆柱体的主视图、左视图、右视图,都是长方形(或正方形),俯视图是圆,故选:B.第二部分16. 正方体或球体17.18. ④①③②19. ③,②,①20.21. ②,③,④,①22. CDAB23.第三部分24. 如图所示:25. 如图所示:即为所求.26. 由主视图可知,它自左而右共有列,第一列个,第二列个,第三列个.由俯视图可知,它自左而右共有列,第一列个,第二列个,第三列个,从空中俯视的个数只要最底层有一个即可.因此,综合两图可知:这个几何体的形状不能确定;并且最多时为第一列有三个二层,第二列有一个二层,第三列有两个三层,共个,其左视图如图1;最少时为第一列与第二列各有一个二层,第三列有一个三层,共个,其左视图不唯一,共有八种情况,如图2.27.28. (1)如图.(2)如图.第11页(共11页)。
(常考题)北师大版初中数学九年级数学上册第五单元《投影与视图》测试题(包含答案解析)
一、选择题1.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,他发现这四个时刻向日葵影子的长度各不相同,那么影子最短的时刻为()A.上午12时B.上午10时C.上午9时30分D.上午8时2.如图所示的立体图形,其俯视图正确的是()A.B.C.D.3.如图所示几何体的俯视图是()A.B.C.D.4.由5个相同的小正方体组成的几何体如图所示,该几何体的主视图是()A.B.C.D.5.如图所示的几何体是由5个相同的小正方体组成的,下列有关三视图面积的说法中正确的是()A.左视图面积最大B.俯视图面积最小C.左视图与主视图面积相等D.俯视图与主视图面积相等6.下面是由几个小正方体搭成的几何体,则这个几何体的左视图为()A.B.C.D.7.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.8.如图是某兴趣社制作的模型,则它的俯视图是()A.B.C.D.9.物体的形状如图所示,则从上面看此物体得到的平面图形是()A.B.C.D.10.矩形木框在阳光照射下,在地面上的影子不可能是()A.B.C.D.11.如右图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位览的小立方体的个数,则从左面乔这个几何体所得到的图形是()A.B.C.D.12.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A 处径直走到B处,她在灯光照射下的影长l与行走的路程s之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.二、填空题13.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算该几何体的底面周长为______cm.14.一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为__________.15.一个几何体是由一些完全相同的小立方块搭成的,从三个不同的方向看到的情形如图所示,则搭成这个几何体共需这样的小方块______个.16.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_______.17.如果一个几何体从某个方向看到的平面图形是圆,则该几何体可能是________ (至少填两种几何体)18.在一盏路灯旁的地面上竖直立着两根木杆,两根木杆在这盏路灯下形成各自的影子,则将它们各自的顶端与自己的影子的顶端连线所形成的两个三角形_____相似.(填“可能”或“不可能”).19.一个几何体的三视图如图所示,则该几何体的体积为________.20.将一个矩形纸片(厚度不计)置于太阳光下,改变纸片的摆放位置和方向,则其留在地面上的影子的形状可能是____.(只需写一个条件)三、解答题21.画出下面立体图形的三视图.【答案】详见解析【分析】根据几何体的三视图,是分别从几何体的正面、左面和上面看物体而得到的图形,分别画出即可.【详解】解:如图所示:【点睛】本题考查了简单组合体的三视图,几何体的主视图、左视图和俯视图,是分别从几何体的正面、左面和上面看物体而得到的图形,考查了学生的空间想象能力.22.如图是由若干个大小相同的小正方体搭成的几何体,请画出从正面、左面、上面看到的这个几何体的形状图.【答案】见解析【分析】根据几何体的三视图(主视图、左视图、俯视图)的定义即可得.【详解】画图如下:【点睛】本题考查了三视图,熟练掌握三视图的画法是解题的关键.23.从正面、左面、上面三个方向看该立体图形,请在下面网格中分别画出看到的平面图形.【答案】见解析【分析】从正面看:共有4列,从左往右分别有1,3,1,1个小正方形;从左面看:共有3列,从左往右分别有3,1,1个小正方形;从上面看:共分4列,从左往右分别有1,3,1,1个小正方形.据此可画出图形.【详解】解:如图所示:【点睛】考查了作图-三视图,用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.24.画出下列几何体的三视图【答案】见解析【分析】根据主视图是从正面看所得到的图形,俯视图是从上面看所得到的图形,左视图时从左边看所得到的图形画出图形即可.【详解】如图所示:【点睛】本题主要考查了几何体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.25.一个几何体由若干大小相同的小立方块搭成,如图分别是从它的正面、上面看到的形状图,请回答以下问题:(1)该几何体至少是用________个小立方块搭成的,最多是用________个小立方块搭成的;(2)请你画出使用小立方块最少时从左面看到的该几何体的形状图,要求画出所有符合要求的形状图.【答案】(1)6,8;(2)见解析【分析】(1)根据主视图可得,俯视图中第一列中至少一处有2层,俯视图中第一列中最多3处有2层,由此即可判断.(2)根据形状图的定义分三种情形画出图形即可.【详解】解:(1)根据主视图可得,俯视图中第一列中至少一处有2层;所以该几何体至少是用6个小立方块搭成的,根据主视图可得,俯视图中第一列中最多3处有2层;所以该几何体最多是用8个小立方块搭成的,故答案为6,8.(2)所有符合要求的形状图如图所示:【点睛】本题考查了由三视图判断几何体,由三视图想象几何体的形状,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.26.如图,正方形硬纸板的边长为a ,其4个角上剪去的小正方形的边长为b (b <2a ),这样可制作一个无盖的长方体纸盒.(1)这个纸盒的容积为 ;(2)画出这个长方体纸盒的三视图.(在图上用含a 、b 的式子标明视图的长和宽)【答案】(1)b(a ﹣2b)2;(2)详见解析【分析】(1)根据图形,得出底面边长、高,从而得出长方体纸盒体积;(2)脑海中构建立体图形,绘制三视图.【详解】解:(1)由题意知纸盒的底面边长为a﹣2b、高为b,则这个纸盒的容积为b(a﹣2b)2,故答案为:b(a﹣2b)2.(2)如图所示:【点睛】本题考查立体图形的三视图,解题关键是在脑海中构建出立体图形的样子.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】利用光线与地面的夹角的变换进行判断.【详解】解:上午8时、9时30分、10时、12时,太阳光线与地面的夹角不同,其中12时太阳光线与地面的夹角最大,所以此时向日葵的影子最短.故选:A.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长,中午最短.2.C解析:C【分析】根据从上边看得到的图形是俯视图,可得答案【详解】解:从上边看是两个正方形,对应顶点间有线段的图形,看得见的棱都是实线;如图所示:故选:C.【点睛】本题考查了立体图形的三视图,从上边看得到的图形是俯视图,注意看得见的棱用实线,看不见的棱用虚线.3.D解析:D【分析】直接找出从上面看到的图形即可.【详解】解:该几何体的俯视图为,故选:D.【点睛】本题考查几何体的三视图,注意看不到的边要用虚线表示出来.4.D解析:D【分析】找到从几何体的正面看所得到的图形即可.【详解】解:主视图有3列,每列小正方形数目分别为2,1,1,故选:D.【点睛】此题主要考查了简单几何体的三视图,主视图是从物体的正面看得到的视图.5.D解析:D【分析】利用视图的定义分别得出三视图进而求出其面积即可.【详解】解:如图所示:则俯视图与主视图面积相等.故选:D.【点睛】此题主要考查了简单组合体的三视图,正确把握三视图的定义是解题关键.6.D解析:D【分析】根据几何体的三视图的定义以及性质进行判断即可.【详解】根据几何体的左视图的定义以及性质得,这个几何体的左视图为故答案为:D.【点睛】本题考查了几何体的三视图,掌握几何体三视图的性质是解题的关键.7.C解析:C【分析】根据从上面看这个物体的方法,确定各排的数量可得答案.【详解】从上面看这个物体,可得后排三个,前排一个在左边,故选:C.【点睛】本题考查了三视图,注意俯视图后排画在上边,前排画在下边.8.B解析:B【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.故选B.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.9.C解析:C【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:从上面看易得第一层有3个正方形,第二层最左边有一个正方形.故选:C.【点睛】本题考查了三视图的知识,理解俯视图是从物体的上面看得到的视图是关键.10.C解析:C【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【详解】解:矩形木框在地面上形成的投影应是平行四边形或一条线段,即相对的边平行或重合,故C不可能,即不会是梯形.故选:C.【点睛】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,平行物体的影子仍旧平行或重合.11.D解析:D【分析】从正面看,得到从左往右2列正方形的个数依次为3, 3;从左面看得到从左往右2列正方形的个数依次为5,1,依此画出图形即可.【详解】解:由题意知:该几何体为:故从左面看为:故选D.【点睛】本题考查三视图,解题关键是得到每列正方形的具体的数目为这列正方体的最多数目.12.C解析:C【解析】试题分析:∵小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系应为:当小红走到灯下以前:l随S的增大而减小;当小红走到灯下以后再往前走时:l随S的增大而增大,∴用图象刻画出来应为C.故选C.考点:1.函数的图象;2.中心投影;3.数形结合.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.4πcm【分析】根据主视图是等腰三角形利用等腰三角形的性质勾股定理求得底边的长这就是圆锥底面圆的直径计算周长即可【详解】如图根据主视图的意义得三角形是等腰三角形∴三角形ABC是直角三角形BC==2∴解析:4πcm.【分析】根据主视图是等腰三角形,利用等腰三角形的性质,勾股定理求得底边的长,这就是圆锥底面圆的直径,计算周长即可.【详解】如图,根据主视图的意义,得三角形是等腰三角形,∴三角形ABC是直角三角形,BC=()2222642AB AC -=-=2,∴底面圆的周长为:2πr=4πcm .故答案为:4πcm .【点睛】本题考查了几何体的三视图,熟练掌握圆锥的三视图及其各视图的意义是解题的关键. 14.【分析】由已知三视图为圆柱首先得到圆柱底面半径从而根据圆柱体积=底面积乘高求出它的体积【详解】解:由三视图可知圆柱的底面直径为4高为6∴底面半径为2∴V=πr2h=22×6•π=24π故答案是:24解析:24π【分析】由已知三视图为圆柱,首先得到圆柱底面半径,从而根据圆柱体积=底面积乘高求出它的体积.【详解】解:由三视图可知圆柱的底面直径为4,高为6,∴底面半径为2,∴V=πr 2h=22×6•π=24π,故答案是:24π.【点睛】此题考查的是圆柱的体积及由三视图判断几何体,关键是先判断圆柱的底面半径和高,然后求其体积.15.5【分析】从俯视图中可以看出最底层小正方体的个数及形状从主视图和左视图可以看出每一层小正方体的层数和个数从而算出总的个数【详解】解:综合主视图俯视图左视图底层有4个正方体第二层有1个正方体所以搭成这 解析:5【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】解:综合主视图,俯视图,左视图,底层有4个正方体,第二层有1个正方体,所以搭成这个几何体所用的小立方块的个数是5,故答案为:5.【点睛】此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.16.72【解析】分析:∵由主视图得出长方体的长是6宽是2这个几何体的体积是36∴设高为h则6×2×h=36解得:h=3∴它的表面积是:2×3×2+2×6×2+3×6×2=72解析:72【解析】分析:∵由主视图得出长方体的长是6,宽是2,这个几何体的体积是36,∴设高为h,则6×2×h=36,解得:h=3.∴它的表面积是:2×3×2+2×6×2+3×6×2=72.17.圆锥圆柱球【解析】只要几何体的三视图中得一个视图是圆即可找到视图中有圆的几何体即可解:视图中有圆的几何体有圆锥圆柱球等故答案为圆锥圆柱球解析:圆锥、圆柱、球【解析】只要几何体的三视图中得一个视图是圆即可找到视图中有圆的几何体即可解:视图中有圆的几何体有圆锥,圆柱,球等.故答案为圆锥、圆柱、球.18.可能【分析】根据中心投影是由点光源发出的光线形成的投影可以得到三角形是否相似【详解】解:∵中心投影是由点光源发出的光线形成的投影∴当两根木杆距离点灯距离相等时它们各自的顶端与自己的影子的顶端连线所形解析:可能【分析】根据中心投影是由点光源发出的光线形成的投影可以得到三角形是否相似.【详解】解:∵中心投影是由点光源发出的光线形成的投影,∴当两根木杆距离点灯距离相等时它们各自的顶端与自己的影子的顶端连线所形成的两个三角形相似,否则不相似,故答案为:可能.【点睛】本题考查了相似三角形的应用及中心投影的知识,解题的关键是了解中心投影是由点光源发出的光线形成的投影.19.【分析】观察三视图可知这个立体图形是底面为半圆的半个圆柱(如图所示)根据体积等于底面积高计算即可【详解】解:观察三视图可知这个立体图形是底面为半圆的半个圆柱(如图所示)故答案为:【点睛】本题考查三视解析:【分析】观察三视图可知,这个立体图形是底面为半圆的半个圆柱(如图所示),根据体积等于底面积⨯高计算即可.【详解】解:观察三视图可知,这个立体图形是底面为半圆的半个圆柱(如图所示).21122V ππ=⨯=, 故答案为:π.【点睛】本题考查三视图,圆柱的体积公式等知识,解题的关键是理解题意,熟练掌握基本知识,属于中考常考题型.20.平行四边形(答案不唯一)【分析】根据平行投影下平行投影的特点:在同一时刻平行物体的投影仍旧平行即可得到正确的答案【详解】矩形在阳光下的投影对边应该是相等的影子的形状可能是矩形正方形平行四边形;故答案 解析:平行四边形(答案不唯一)【分析】根据平行投影下平行投影的特点:在同一时刻,平行物体的投影仍旧平行,即可得到正确的答案.【详解】矩形在阳光下的投影对边应该是相等的,影子的形状可能是矩形、正方形、平行四边形; 故答案为:平行四边形.【点睛】本题综合考查了平行投影的特点和规律.平行投影的特点是:在同一时刻,不同物体的物高和影长成比例.三、解答题21.无22.无23.无24.无25.无26.无。
第5章 投影与视图 九年级上册数学北师大版单元质检卷(B卷 含解析)
第五章投影与视图单元质检卷(B卷)【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.一个矩形木框在太阳光的照射下,在地面上的投影不可能是( )A. B.C. D.2.下列常见的几何体中,主视图和左视图不同的是( )A. B.C. D.3.如图所示的几何体为圆台,其主视图正确的是( )A. B. C. D.4.如图的立体图形由相同大小的正方体积木堆叠而成.判断拿走图中的哪一个积木后,此图形主视图的形状会改变( )A.甲B.乙C.丙D.丁5.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长,窗户下檐到地面的距离,,那么窗户的高AB为( )A. B. C. D.6.如图是由七个相同的小正方体拼成的立体图形,下面有关它的三视图的结论中,正确的是( )A.左视图是轴对称图形B.主视图是中心对称图形C.俯视图是中心对称图形但不是轴对称图形D.俯视图既是中心对称图形又是轴对称图形7.如图是嘉淇在室外用手机拍下大树的影子随太阳转动情况的照片(上午8时至下午5时之间),这五张照片拍摄的时间先后顺序是( )A. B. C. D.8.榫卯是我国古代建筑、家具的一种结构方式,它通过两个构件上凹凸部位相结合来将不同构件组合在一起,如图是其中一种榫,其主视图是( )A. B. C. D.9.甲、乙、丙、丁四人分别面对面坐在一个四边形桌子旁边,桌上一张纸上写着数字“9”,甲说他看到的是“6”,乙说他看到的是“”,丙说他看到的是“”,丁说他看到的是“9”,则下列说法正确的是( )A.甲在丁的对面,乙在甲的左边,丙在丁的右边B.丙在乙的对面,丙的左边是甲,右边是乙C.甲在乙的对面,甲的右边是丙,左边是丁D.甲在丁的对面,乙在甲的右边,丙在丁的右边10.手影游戏利用的物理原理是:光是沿直线传播的.图中小狗手影就是我们小时候常玩的游戏.在一次游戏中,小明距离墙壁1米,爸爸拿着的光与小明的距离为2米.在小明不动的情况下,要使小狗手影的高度增加一倍,则光与小明的距离应( )A.减少米B.增加米C.减少米D.增加米二、填空题(每小题4分,共20分)11.一个人在灯光下向远离光的方向行走的过程中人的影长越来越____________(填“长”或“短”).12.古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻,测得OA是268米,则金字塔的高度BO是__________米.13.由大小相同的小正方体搭成一个几何体,若搭成的几何体的左视图和俯视图如图所示,则所需小正方体的最少个数为___________.14.一个几何体由若干个大小相同的小立方块搭成,如图分别是它的主视图和俯视图.若该几何体用小立方块的个数为n,则n的最大值和最小值之和为_________.15.在“测量物体的高度”活动中,小丽在同一时刻阳光下,测得一根长为1米的竹竿的影长为0.8米:测量树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图),落在地面上的影长为4.8米,一级台阶高为0.25米,落在第一级台阶上的影子长为0.2米,则树高度为____________米.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)在一直线上有几根竹竿.它们在同一灯光下的影子如图所示(图中的粗线段).(1)根据灯光下的影子确定光的位置;(2)画出竹竿AB的影子(用线段表示);(3)画出影子为CD的竹竿(用线段表示).17.(8分)把边长为1厘米的10个相同正方体如图摆放.(1)画出该几何体的主视图、左视图、俯视图;(2)该几何体的表面积为_____;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加个小正方体.18.(10分)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直.为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF 的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米.依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是_________投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.19.(10分)用小立方块搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形中的字母表示在该位置小立方块的个数.试回答下列问题:(1)a,b,c各表示几?(2)这个几何体最少由几个小立方块搭成?最多呢?(3)当,时,画出这个几何体的左视图.20.(12分)每当优美的“东方红”乐曲从北京站的钟楼响起时,会唤起很多人的回忆,也引起了同学们的关注.某数学兴趣小组测量北京站钟楼的高度,同学们发现在钟楼下方有建筑物遮挡,不能直接到达钟楼底部点B的位置,被遮挡部分的水平距离为的长度.通过对示意图的分析讨论,制定了多种测量方案,其中一种方案的测量工具是皮尺和一根直杆.同学们在某两天的正午时刻测量了钟楼顶端A的影子D到点C的距离,以及同一时刻直杆的高度与影长.设的长为x米,的长为y米.测量数据(精确到0.1米)如表所示:的长(1)由第一次测量数据列出关于x,y的方程是______,由第二次测量数据列出关于x,y的方程是______;(2)该小组通过解上述方程组成的方程组,已经求得,则钟楼的高度约为______米. 21.(12分)在一节数学课上,小红画出了某四棱柱的三视图如图所示,其中主视图和左视图为矩形,俯视图为等腰梯形,已知该四棱柱的侧面积为.(1)三视图中,有一图未画完,请在图中补全;(2)根据图中给出的数据,俯视图中的长度为________;(3)左视图中矩形的面积为________;(4)这个四棱柱的体积为________.答案以及解析1.答案:B解析:一张矩形纸片在太阳光线的照射下,形成影子不可能是等边三角形,故选:B.2.答案:B解析:A、圆台的主视图和左视图都是梯形,本选项不符合题意;B、圆柱的主视图是长方形,左视图是圆,本选项符合题意;C、圆锥的主视图与左视图相同,都是等腰三角形,本选项不符合题意;D、球的主视图和左视图相同,都是圆,本选项不符合题意.故选:B.3.答案:C解析:根据题意得:其主视图正确的是故选:C.4.答案:B解析:拿走图中的“乙”一个积木后,此图形主视图的形状会改变,第二列小正方形的个数由原来的两个变成一个.故选:B.5.答案:A解析:,,,即.又,,,,.故选A.6.答案:A解析:画出三视图后,发现左视图是轴对称图形,主视图不是中心对称图形,俯视图是轴对称图形但不是中心对称图形.故选A.7.答案:B解析:一天中太阳位置的变化规律是:从东到西.太阳的高度变化规律是:低高低.影子位置的变化规律是:从西到东,影子的长短变化规律是:长短长.根据影子变化的特点,按时间顺序给这五张照片排序是.故选:B.8.答案:B解析:该几何体的主视图是:故选:B.9.答案:D解析:由题意可得,甲说他看到的是“6,丁说他看到的是“9”,说明两人坐对面,乙和丙坐对面,又乙说他看到的是“”,乙在甲右边,则丙在丁右边.故选D.10.答案:A解析:如图,点O为光,表示小明的手,表示小狗手影,则,过点O作,延长交于F,则,,,则,米,米,则米,,设,,在小明不动的情况下,要使小狗手影的高度增加一倍,如图,即,,米,,,则,米,光与小明的距离变化为:米,故选:A.11.答案:长解析:一个人在灯光下离开的过程中人的影长越来越长.故答案为:长.12.答案:134解析:设金字塔的高度BO为x米,则,解得,米.13.答案:9解析:由左视图和俯视图可知,小正方体的最少个数为(个),故答案为:9.14.答案:22解析:根据主视图、俯视图,可以得出小立方块最少时(图中只画了其中一种情况)、最多时,在俯视图的相应位置上所摆放的个数如下:所以最少需要小立方块9个,最多需要13个,因此.故答案为22.15.答案:解析:根据同一时刻物高与影长成正比例,如图所示:则其中为树高,为树影在第一级台阶上的影长,为树影在地上部分的长,的长为台阶高,并且由光沿直线传播的性质可知即为树影在地上的全长,延长交于G,则,,,又,,,,,即树高为米,故答案为:.16.答案:(1)见解析(2)见解析(3)见解析解析:(1)如图,点P即为光所在的位置.(2)BE即为竹竿AB的影子.(3)CF是影子为CD的竹竿.17.答案:(1)见解析(2)38(3)3解析:(1)如图:(2)该几何体的表面积,故答案为:38;(3)再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,可使第一列的高度均为3,故可添加3个小正方体,故答案为:3.18.答案:(1)平行(2)7米解析:(1)平行(2)如图,过点E作于点M,过点G作于点N.则米,米,米,米,(米).由平行投影的性质可知,即,米,即电线杆的高度为7米.19.答案:(1)3,1,1(2)9,11(3)见解析解析:(1),,.(2)这个几何体最少由(个)小立方块搭成,最多由(个)小立方块搭成.(3)左视图如图所示.20.答案:(1);(2)43解析:(1)由同一时刻测量,可得,第一次测量:,化简得,,第二次测量:,化简得,,故答案为:;;(2)对于,代入,得,,解得:,钟楼米,故答案为:43.21.答案:(1)见解析(2)(3)8(4)解析:(1)所在的面在前,所在的面在后,主视图中应补充两条虚线,补充完整如图所示:(2)俯视图为等腰梯形,,该四棱柱的侧面积为,,,故答案为:;(3)如图,作于E,于F,,俯视图为等腰梯形,,,,,,,,四边形是矩形,,,,,,,,左视图中矩形的面积为:,故答案为:8;(4)由题意得:这个四棱柱的体积为,故答案为:32.。
北师大九年级上册数学《第五章投影与视图》检测卷含答案
第五章检测卷时间:120分钟满分:150分班级:__________姓名:__________得分:__________一、选择题(每小题3分,共45分)1.如图是一个圆柱体,则它的主视图是()2.如果在同一时刻的阳光下,小莉的影子比小玉的影子长,那么在同一路灯下()A.小莉的影子比小玉的影子长B.小莉的影子比小玉的影子短C.小莉的影子与小玉的影子一样长D.无法判断谁的影子长3.如图所示的几何体的左视图是()4.下列水平放置的几何体中,主视图是三角形的是()5.如图是由六个棱长为1的正方体组成的几何体,其俯视图的面积是()A.3B.4C.5D.66.在一个晴朗的上午,乐乐拿着一块长方形木板在地面上形成的投影中不可能是()7.如图是胡老师画的一幅写生画,四位同学对这幅画的作画时间作了猜测.根据胡老师给出的方向坐标,猜测比较合理的是()A.小明:“早上8点”B.小亮:“中午12点”C.小刚:“下午5点”D.小红:“什么时间都行”第7题图第8题图第9题图8.由五个同样大小的立方体组成如图所示的几何体,则关于此几何体三种视图叙述正确的是()A.左视图与俯视图相同B.左视图与主视图相同C.主视图与俯视图相同D.三种视图都相同9.如图是一个几何体的三视图,则这个几何体是()A.正方体B.长方体C.三棱柱D.三棱锥10.某时刻在同一灯光下,两根木棒在同一平面内的影子如图所示,此时,第三根木棒的影子表示正确的是()11.下列几何体中,主视图不是中心对称图形的是()12.如图是由几个小方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,这个几何体的主视图是()13.下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个14.如图所示的三视图所对应的几何体是()15.如图,某剧院舞台上的照明灯P射出的光线成“锥体”,其“锥体”面图的“锥角”是60°.已知舞台ABCD是边长为6m的正方形.要使灯光能照射到整个舞台,则灯P的悬挂高度是()A.36m B.33m C.43m D.6m第15题图第16题图二、填空题(每小题5分,共25分)16.如图是两棵小树在同一时刻的影子,那么图①是投影,图②是投影.17.在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是(填上序号即可).18.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图和左视图的面积之和是.第18题图第19题图第20题图19.如图,AB和DE是直立在地面上的两根立柱,AB=7米,某一时刻AB在阳光下的投影BC=4米,在测量AB的投影时,同时测量出DE在阳光下的投影长为8米,则DE的长为米.20.如图,为由一些大小相同的小正方体搭成的几何体的主视图和俯视图,则搭成该几何体的小正方体最多是个.三、解答题(共80分)21.(8分)画出以下两个几何体的三视图.(1)(2)22.(8分)(1)一木杆按如图①所示的方式直立在地面上,请在图中画出它在阳光下的影子(用线段CD表示);(2)图②是两根木杆及它们在灯光下的影子.请在图中画出光源的位置(用点P表示),并在图中画出人在此光源下的影子(用线段EF表示).23.(10分)如图,在房子外的屋檐E处装有一台监视器,房子前面有一面落地的广告牌.(1)监视器的盲区在哪一部分?(2)已知房子上的监视器离地面高12m,广告牌高6m,广告牌距离房子5m,求盲区在地面上的长度.24.(12分)试根据图中的三种视图画出相应的几何体.25.(12分)根据要求完成下列题目:(1)图中有块小立方体;(2)请在下面方格纸中分别画出它的主视图,左视图和俯视图;(3)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要个小立方体,最多要个小立方体.26.(14分)一个几何体的三视图如图所示(单位:mm),你能画出这个几何体的图形吗?并求出其表面积和体积.27.(16分)如图①,王华同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行12m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD 的底部.已知王华同学的身高是1.6m,两个路灯的高度都是9.6m.(1)求两个路灯之间的距离;(2)如图②,当王华同学走到路灯BD处时,他在路灯AC下的影子长是多少?上册第五章检测卷1.A 2.D 3.D 4.B 5.C 6.C7.C8.B9.B10.D11.B12.B13.D14.B15.A解析:连接AC,∵∠APC=60°,P A=PC,∴∠P AC=∠PCA=60°.∵四边形ABCD是边长为6m 的正方形,∴AC=62m,OC=32m,∴PC=62m,∴PO=36m,故选A.16.平行中心17.②18.519.1420.7解析:根据题意得,搭成该几何体的小正方体最多是1+1+1+2+2=7(个).21.解:图略.(每小题4分)22.解:(1)如图①,CD是木杆在阳光下的影子;(3分)(2)如图②,点P是光源的位置,(6分)EF就是人在光源P下的影子.(8分)23.解:(1)把墙看作如图的线段,则图中ABC所围成的部分就是监控不到的区域;(4分)(2)由题意结合图形可得BC 为盲区,(6分)设BC =x ,则CD =x +5,∴x x +5=612,解得x =5.(9分)答:盲区在地面上的长度是5m.(10分) 24.解:略.(每个几何体4分) 25.解:(1)6(2分) (2)如图所示(8分)(3)5 7(12分)26.解:该几何体如图所示.(4分)表面积为2×π×⎝⎛⎭⎫822+8π×10+5×8-π×82×5=(92π+40)(mm 2);(9分)体积为π×⎝⎛⎭⎫822×10-12π×⎝⎛⎭⎫822×5=120π(mm 3).(14分)27.解:(1)由对称性可知AP =BQ ,设AP =BQ =x m.∵MP ∥BD ,∴∠AMP =∠ADB ,∠APM =∠ABD ,∴△APM ∽△ABD ,(3分)∴MP BD =AP AB ,∴1.69.6=x 2x +12,解得x =3.(6分)∴AB =2x +12=2×3+12=18(m),即两个路灯之间的距离为18m ;(8分)(2)设王华走到路灯BD 处头的顶部为E ,连接CE 并延长交AB 的延长线于点F ,(10分)则BF 即为此时他在路灯AC 下的影子长(如图②).设BF =y m ,∵BE ∥AC ,∴∠BEF =∠ACF ,∠EBF =∠CAF ,∴△FEB ∽△FCA ,(13分)∴BE AC =BF F A ,即1.69.6=y y +18,解得y =3.6.即当王华同学走到路灯BD 处时,他在路灯AC 下的影子长是3.6m.(16分)。
北师大新版九年级上册《第5章投影与视图》单元测试卷(4)及答案解析
北师大新版九年级上册《第5章投影与视图》单元测试卷一、选择题:(每小题3分,共30分)1.小明从正面观察如图所示的物体,看到的是( )A.B.C.D.2.在同一时刻,身高1.6m的小强的影长是1.2m,旗杆的影长是15m,则旗杆高为( ) A.16m B.18m C.20m D.22m3.如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )A.B.C.D.4.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了.这是因为( )A.汽车开的很快B.盲区减小C.盲区增大D.无法确定5.由下列光线形成的投影不是中心投影的是( )A.手电筒B.探照灯C.太阳D.电灯6.平行投影中的光线是( )A.平行的B.聚成一点的C.不平行的D.向四面八方发散的A.三视图是中心投影B.小华观察牡丹花,牡丹花就是视点C.球的三视图均是半径相等的圆D.阳光从矩形窗子里照射到地面上得到的光区仍是矩形8.圆形的物体在太阳光的投影下是( )A.圆形B.椭圆形C.以上都有可能D.以上都不可能9.小丽制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是( )A.B.C.D.10.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于( )A.4.5米B.6米C.7.2米D.8米二.填空题:(每小题3分,共18分)11.我们常说的三种视图分别是指__________、__________、__________.12.请写出三种视图都相同的两种几何体是__________.13.如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称__________.14.一张桌子摆放若干碟子,从三个方向上看,三种视图如图所示,则这张桌子上共有__________个碟子.15.小明希望测量出电线杆AB的高度,于是在阳光明媚的一天,他在电线杆旁的点D处立一标杆CD,使标杆的影子DE与电线杆的影子BE部分重叠(即点E、C、A在一直线上),量得ED=2米,DB=4米,CD=1.5米.则电线杆AB长=__________米.16.棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积是__________cm2.三、作图题(按要求画出图形并写出名称)17.画出如图组合体的三种视图.18.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.四、解答题(19题12分,20题12分,21题13分)19.为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:实践:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如图,测量方案:把镜子放在离树(AB)8.7米的点E处,然后沿着直线BE后退到点D,这是恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7米,观察者目高CD=1.6米,请你计算树(AB)的高度.(精确到0.1米)20.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.21.(13分)为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?北师大新版九年级上册《第5章投影与视图》单元测试卷一、选择题:(每小题3分,共30分)1.小明从正面观察如图所示的物体,看到的是( )A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:主视图是从正面看所得到的图形,圆柱从正面看是长方形,正方体从正面看是正方形,所以从左往右摆放一个圆柱体和一个正方体,它们的主视图是左边一个长方形,右边一个正方形.故选C.【点评】此题主要考查了三视图的知识,主视图是从物体的正面看得到的视图.2.在同一时刻,身高1.6m的小强的影长是1.2m,旗杆的影长是15m,则旗杆高为( ) A.16m B.18m C.20m D.22m【考点】相似三角形的应用.【专题】计算题.【分析】设旗杆高为xm,则利用在同一时刻物高与影长的比相等得到=,然后根据比例性质求x即可.【解答】解:设旗杆高为xm,根据题意得=,解得x=20,即旗杆高为20.故选C.【点评】本题考查了相似三角形的应用:通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.3.如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )A.B.C.D.【考点】简单组合体的三视图.【专题】压轴题.【分析】找到从正面看所得到的图形即可,注意所有看到的棱都应表现在主视图中.【解答】解:从正前方观察,应看到长有三个立方体,且中间的为三个立方体叠加;高为两个立方体,在中间且有两个立方体叠加.故选B.【点评】此题主要考查三视图的知识、学生的观察能力和空间想象能力.4.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了.这是因为( )A.汽车开的很快B.盲区减小C.盲区增大D.无法确定【考点】视点、视角和盲区.【分析】前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了,说明看到的范围减少,即盲区增大.【解答】解:根据题意我们很明显的可以看出“沉”下去的建筑物实际上是到了自己的盲区的范围内.故选C.【点评】本题结合了实际问题考查了对视点,视角和盲区的认识和理解.5.由下列光线形成的投影不是中心投影的是( )A.手电筒B.探照灯C.太阳D.电灯【考点】中心投影.【分析】利用中心投影和平行投影的定义判断即可.【解答】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有C 选项得到的投影为平行投影.故选C.【点评】本题考查了中心投影的定义,解题的关键是理解中心投影的形成光源是灯光.6.平行投影中的光线是( )A.平行的B.聚成一点的C.不平行的D.向四面八方发散的【考点】平行投影.【分析】解答本题关键是要理解平行投影,平行投影中的光线是平行的,如阳光等.【解答】解:平行投影中的光线是平行的.故选A.【点评】本题考查平行投影的定义,需注意与中心投影定义的区别.A.三视图是中心投影B.小华观察牡丹花,牡丹花就是视点C.球的三视图均是半径相等的圆D.阳光从矩形窗子里照射到地面上得到的光区仍是矩形【分析】根据球的三视图即可作出判断.【解答】解:A,错误,三视图是平行投影;B,错误,小华是视点;C,正确;D,错误,也可以是平行四边形;故选C.【点评】本题考查了三视图,投影,视点的概念.8.圆形的物体在太阳光的投影下是( )A.圆形B.椭圆形C.以上都有可能D.以上都不可能【考点】平行投影.【分析】根据圆形的物体与太阳光线的位置关系进行判断.【解答】解:圆形的物体在太阳光的投影下可能为圆形,也可能为椭圆形.故选C.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.9.小丽制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是( )A.B.C.D.【考点】几何体的展开图.【分析】本题考查了正方体的展开与折叠.可以动手折叠看看,充分发挥空间想象能力解决也可以.【解答】解:根据题意及图示只有A经过折叠后符合.故选:A.【点评】本题着重考查学生对立体图形与平面展开图形之间的转换能力,与课程标准中“能以实物的形状想象出几何图形,由几何图形想象出实物的形状”的要求相一致,充分体现了实践操作性原则.要注意空间想象哦,哪一个平面展开图对面图案都相同10.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于( )A.4.5米B.6米C.7.2米D.8米【考点】相似三角形的应用.【专题】压轴题;转化思想.【分析】由于人和地面是垂直的,即和路灯到地面的垂线平行,构成两组相似.根据对应边成比例,列方程解答即可.【解答】解:如图,GC■BC,AB■BC,■GC■AB,■■GCD■■ABD(两个角对应相等的两个三角形相似),■,设BC=x,则,同理,得,■,■x=3,■,■AB=6.故选:B.【点评】本题考查相似三角形性质的应用.在解答相似三角形的有关问题时,遇到有公共边的两对相似三角形,往往会用到中介比,它是解题的桥梁,如该题中的“”.二.填空题:(每小题3分,共18分)11.我们常说的三种视图分别是指主视图、俯视图、左视图.【考点】平行投影.【分析】根据三视图的定义求解.【解答】解:我们常说的三种视图分别是指主视图、俯视图、左视图.故答案为主视图、俯视图、左视图.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.记住三视图的定义.12.请写出三种视图都相同的两种几何体是球,正方体(答案不唯一).【考点】由三视图判断几何体.【专题】开放型.【分析】球的三视图是3个全等的圆;正方体的三视图是3个全等的正方形.【解答】解:球的三视图是3个全等的圆;正方体的三视图是3个全等的正方形,故答案为球,正方体(答案不唯一).【点评】考查由三视图判断几何体;常见的三视图相同的几何体如球,正方体等应熟记.13.如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称圆锥.【考点】由三视图判断几何体.【分析】从主视图以及左视图都为一个三角形,俯视图为一个圆形看,可以确定这个几何体为一个圆锥.【解答】解:根据三视图可以得出立体图形是圆锥,故答案为:圆锥.【点评】本题考查了由几何体的三种视图判断出几何体的形状,应从所给几何体入手分析得出是解题关键.14.一张桌子摆放若干碟子,从三个方向上看,三种视图如图所示,则这张桌子上共有12个碟子.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:易得三摞碟子数分别为3,4,5则这个桌子上共有12个碟子.故答案为:12.【点评】本题考查对三视图的理解应用及空间想象能力.15.小明希望测量出电线杆AB的高度,于是在阳光明媚的一天,他在电线杆旁的点D处立一标杆CD,使标杆的影子DE与电线杆的影子BE部分重叠(即点E、C、A在一直线上),量得ED=2米,DB=4米,CD=1.5米.则电线杆AB长=4.5米.【考点】相似三角形的应用.【分析】根据题意求出■ECD■■EBA,利用相似三角形的对应边成比例即可解答.【解答】解:■CD■AB,■■ECD■■EAB,■ED:EB=CD:AB,■2:6=1.5:AB,■AB=4.5米.答:电线杆AB长为4.5米.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程即可求出电线杆AB长.16.棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积是36cm2.【考点】几何体的表面积.【专题】计算题.【分析】解此类题应利用视图的原理从不同角度去观察分析以进行解答.【解答】解:从上面看到的面积为6×(1×1),从正面看面积为6×2×(1×1),从两个侧后面看面积为2×6×(1×1),底面看到的面积为6×(1×1),故这个几何体的表面积为36cm2.故答案为36cm2.【点评】几何体的表面积是所有围成几何体的表面面积之和.三、作图题(按要求画出图形并写出名称)17.画出如图组合体的三种视图.【考点】作图-三视图.【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为1,3,1,左视图有2列,每列小正方形数目分别为2,3,2.俯视图有3列,每一列的正方形个数为3,3,3据此可画出图形.【解答】解:如图所示:.【点评】此题主要考查了画三视图,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.18.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.【考点】中心投影.【专题】作图题.【分析】根据中心投影的特点可知,连接物体和它影子的顶端所形成的直线必定经过点光源.所以分别把已知影长的两个人的顶端和影子的顶端连接并延长可交于一点,即点光源的位置,再由点光源出发连接小赵顶部的直线与地面相交即可找到小赵影子的顶端.【解答】解:【点评】本题考查平行投影和中心投影的作图,解题的关键是要知道:连接物体和它影子的顶端所形成的直线必定经过点光源.四、解答题(19题12分,20题12分,21题13分)19.为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:实践:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如图,测量方案:把镜子放在离树(AB)8.7米的点E处,然后沿着直线BE后退到点D,这是恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7米,观察者目高CD=1.6米,请你计算树(AB)的高度.(精确到0.1米)【考点】相似三角形的应用.【专题】阅读型.【分析】如图容易知道CD■BD,AB■BE,即■CDE=■ABE=90°.由光的反射原理可知■CED=■AEB,这样可以得到■CED■■AEB,然后利用对应边成比例就可以求出AB.【解答】解:由题意知■CDE=■ABE=90°,又由光的反射原理可知■CED=■AEB,■■CED■■AEB■■.■AB≈5.2米.答:树高是5.2米.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的性质就可以求出结果.20.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.【考点】平行投影;相似三角形的性质;相似三角形的判定.【专题】计算题;作图题.【分析】(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系.计算可得DE=10(m).【解答】解:(1)连接AC,过点D作DF■AC,交直线BC于点F,线段EF即为DE的投影.(2)■AC■DF,■■ACB=■DFE.■■ABC=■DEF=90°■■ABC■■DEF.■,■■DE=10(m).说明:画图时,不要求学生做文字说明,只要画出两条平行线AC和DF,再连接EF即可.【点评】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.要求学生通过投影的知识并结合图形解题.21.(13分)为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?【考点】解直角三角形的应用;平行投影.【专题】应用题;压轴题.【分析】在不违反规定的情况下,需使阳光能照到旧楼的一楼;据此构造Rt■DCE,其中有CE=30米,■DCE=30°,解三角形可得DE的高度,再由DB=BE+ED可计算出新建楼房的最高高度.【解答】解:过点C作CE■BD于E.■AB=40米,■CE=40米,■阳光入射角为30°,■■DCE=30°,在Rt■DCE中tan■DCE=.■,■DE=40×=米,■AC=BE=1米,■DB=BE+ED=1+=米.答:新建楼房最高为米.【点评】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.需注意通过投影的知识结合图形相似的性质巧妙地求解或解直角三角形.。
(北师大版)北京市九年级数学上册第五单元《投影与视图》检测(包含答案解析)
一、选择题1.下面的三视图所对应的物体是().A. B. C.D.2.用小立方块搭成的几何体从正面和上面看的视图如图,这个几何体中小立方块的个数不可以是()A.11 B.10 C.9 D.83.如图所示几何体的俯视图是()A.B.C.D.4.如图1是由大小相同的小正方体搭成的几何体,将它左侧的小正方体移动后得到图2.关于移动前后的几何体的三视图,下列说法正确的是( )A .主视图相同B .左视图相同C .俯视图相同D .三种视图都不相同 5.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是( )A .仅主视图不同B .仅俯视图不同C .仅左视图不同D .主视图、左视图和俯视图都相同 6.如图,一个几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为( )A .4πB .2πC .32πD .π7.小明在太阳光下观察矩形木板的影子,不可能是( )A .平行四边形B .矩形C .线段D .梯形8.下列说法正确的是( )A .三角形的正投影一定是三角形B .长方体的正投影一定是长方形C .球的正投影一定是圆D .圆锥的正投影一定是三角形9.由4个小立方体搭成如图所示的几何体,从正面看到的平面图形是( )A .B .C .D . 10.如图所示的几何体,它的左视图为( ).A.B.C.D.11.如图,小明从左面看在水平讲台上放置的圆柱形水杯和长方体形粉笔盒看到的是()A.B.C.D.12.图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A.B.C.D.二、填空题13.用若干个大小相同的小立方块搭一个几何体,使得从正面和从上面看到的这个几何体的形状如图所示,则搭出这个几何体至少需要_____个小立方体,最多需要_____个小立方体.14.一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为__________.15.已知10个棱长为m的小正方体组成如图所示的几何体,则这个几何体的表面积是_________.16.某一时刻,长为1m的标杆影长为0.8m,此时身高为1.75m的小明影长为____m.17.小明希望测量出电线杆AB的高度,于是在阳光明媚的一天,他在电线杆旁的点D处立一标杆CD,使标杆的影子DE与电线杆的影子BE部分重叠(即点E、C、A在一直线上),量得ED=2米,DB=4米,CD=1.5米,则电线杆AB长为_____18.某几何体的三视图如图所示,则这个几何体的名称是_________.19.如图所示,身高1.5m的小华站在距路灯杆5m的C点处,测得她在灯光下的影长CD 为2.5m,则路灯的高度AB为_____米.cm.20.如图所示是某种型号的正六角螺母毛坯的三视图,则它的侧面积为2三、解答题21.(1)一个几何体由大小相同的小立方体搭成,从上面看到的几何体的形状如图1所示,其中小正方形中的数字表示在该位置的小立方块的个数,请在方格纸画出从正面和从左面看到的这个几何体的形状图.(2)如图2,已知四点A、B、C、D,根据下列语句,画出图形.①连接AD;②画直线AB、CD交于点E;③连接DB,并延长线段DB到点F,使DB=BF;④图中以D为顶点的角中,小于平角的角共有个.【答案】(1)见解析;(2)①见解析;②见解析;③见解析;④5【分析】(1)由已知条件可知,主视图有3列,每列小正方形数目分别为3,3,1;左视图有3列,每列小正方形数目分别为3,3,2.据此可画出图形.(2)①用线段连接AD即可;②根据直线的定义画图即可;③用线段连接DB,再延长即可;④根据角的定义解答即可.【详解】解:(1)如图所示:(2)①如图所示;②如图所示;③如图所示;④图中以D为顶点的角中,小于平角的角共有5个.故答案为5.【点睛】本题考查几何体的三视图画法,以及作图-复杂作图,熟练掌握三视图的定义、直线、射线、线段的定义是解答本题的关键.22.一个几何体是由几个相同的正方体小块搭成,从上面观察这个几何体,看到的形状如图所示,其中数字表示在该位置的小立方块的个数,分别画出从正面、左面看到的形状图.【答案】见解析.【分析】由已知条件可知,主视图有2列,每列小正方数形数目分别为3、2,左视图有3列,每列小正方形数目分别为2、2、3,然后画出图形即可.【详解】解:如图所示:.【点睛】本题考查几何体的三视图画法,由几何体的俯视图及小正方形内的数字,确定主视图和左视图的列数和每列每列小正方形数个数是解答本题的关键.23.如图,AB和DE是直立在地面上的两根立柱.AB=6m,某时刻AB在阳光下的投影为BC.(1)请在图中画出此时DE在阳光下的投影;(2)如果测得BC=4m,DE在阳光下的投影长为6m,请计算DE的长.【答案】(1)答案见解析;(2)9m.【分析】(1)直接利用平行投影的性质得出答案;(2)利用同一时刻实际物体的影子与物体的高度比值相同进而得出答案.【详解】(1)如图所示,DE在阳光下的投影为EF;(2)∵AB∥DE,AC∥DF,∴△ABC∽△DEF,∴AB BCDE EF=,即646 DE=,∴DE=9.答:DE的长为9m.【点睛】此题主要考查了应用设计与作图,正确掌握平行投影的性质是解题关键.24.下图是一个长方体的三视图(单位:cm),其中俯视图为正方形,求这个长方体的表面积.66cm【答案】()2【分析】根据三视图图形得出AC=BC=3,EC=4,然后求出这个长方体的表面积.【详解】解:如图所示:AB=32,∵AC2+BC2=AB2,∴AC=BC=3,∴正方形ACBD面积为:3×3=9,侧面积为:4AC×CE=3×4×4=48,66cm.故这个长方体的表面积为:48+9+9=()2【点睛】此题主要考查了利用三视图求长方体的表面积,得出长方体各部分的边长是解决问题的关键.25.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方体的个数.(1)请在方格纸中分别画出从正面、从左面看到的这个几何体的形状图;(2)若每个小立方体的边长为1cm,根据从三个方向看到的形状图,直接写出这个几何体的表面积为______2cm.【答案】(1)见解析;(2)24【分析】(1)由已知条件可知,从正面看有2列,每列小正方数形数目分别为2,3,从左面看有2列,每列小正方形数目分别为3,1.据此可画出图形.(2)首先确定该几何体的六个面上裸露的正方形的个数,然后确定面积即可.【详解】解:(1)如图所示.(2)该几何体的表面积为2×(3+4+5)=24;故答案为:24.【点睛】本题考查从不同方向看几何体,重点考查学生的空间想象能力,要弄清楚每个方向有几列,每列有多少个正方体.26.如图,若干个完全相同的小正方体堆成一个几何体.(1)从左面、上面观察该几何体,分别在所给的网格图中画出你所看到的形状图;(2)若现在你手头还有一些相同的小正方体,如果保持从左面、上面观察该几何体得到的形状图不变,那么堆成这样的几何体最多需要个立方块.【答案】(1)见解析;(2)2.【分析】(1)根据三视图的定义画出图形即可;(2)保持从左面、上面观察该几何体得到的形状图不变,可在后面一排第二层空缺的部分添加两个小正方体.【详解】解:(1)如图所示:(2)保持从左面、上面观察该几何体得到的形状图不变,则可以在后面一排第二层空缺的部分添加两个小正方体,即堆成这样的几何体最多需要2个立方块.【点睛】本题考查三视图,解题的关键是熟练掌握三视图的画法,属于中考常考题型.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】本题可利用排除法解答.从俯视图看出这个几何体上面一个是圆,直径与下面的矩形的宽相等,故可排除B,C,D.【详解】解:从主视图左视图可以看出这个几何体是由上、下两部分组成的,故排除D选项,从上面物体的三视图看出这是一个圆柱体,故排除B选项,从俯视图看出是一个底面直径与长方体的宽相等的圆柱体,故选:A.【点睛】此题考查由三视图还原实物基本能力,还原实物的形状关键是能想象出三视图和立体图形之间的关系,从而得出该物体的形状.本题只从俯视图入手也可以准确快速解题.2.A解析:A【分析】首先从正视图易得这个几何体共有3层,由俯视图可得第一层正方体的个数;然后再根据主视图可得第二层和第三层最少或最多的正方体的个数,相加即可.【详解】从正面看这个几何体共有3层,由俯视图可得第一层正方体的个数是6个;由主视图可得第二层最多有正方体2个,最少有1个,第三层最多的正方体的个数是2个,最少有1个,∴这个几何体中小立方块的个数最多有:6+2+2=10个,最少有:6+1+1=8个,故选:A.【点睛】本题主要考查的是三视图判断几何体,熟练掌握几何体的三视图画法是解题的关键.3.D解析:D【分析】直接找出从上面看到的图形即可.【详解】解:该几何体的俯视图为,故选:D.【点睛】本题考查几何体的三视图,注意看不到的边要用虚线表示出来.4.B解析:B【分析】根据三视图解答即可.【详解】解:图1的三视图为:图2的三视图为:故选:B.【点睛】本题考查了由三视图判断几何体,解题的关键是学生的观察能力和对几何体三种视图的空间想象能力.5.D解析:D【分析】分别画出所给两个几何体的三视图,然后比较即可得答案.【详解】第一个几何体的三视图如图所示:第二个几何体的三视图如图所示:观察可知这两个几何体的主视图、左视图和俯视图都相同,故选D .【点睛】本题考查了几何体的三视图,正确得出各几何体的三视图是解题的关键.6.D解析:D【分析】这个几何体的侧面是以底面圆周长为长、圆柱体的高为宽的矩形,根据矩形的面积公式计算即可.【详解】根据三视图可得几何体为圆柱,圆柱体的侧面积=底面圆的周长⨯圆柱体的高=11ππ⨯⨯= 故答案为:D .【点睛】本题考查了圆柱体的侧面积问题,掌握矩形的面积公式是解题的关键.7.D解析:D【分析】根据平行投影的特点可确定矩形木板与地面平行且与光线垂直时所成的投影为矩形;当矩形木板与光线方向平行且与地面垂直时所成的投影为一条线段;除以上两种情况矩形在地面上所形成的投影均为平行四边形,据此逐一判断即可得答案.【详解】A.将木框倾斜放置形成的影子为平行四边形,故该选项不符合题意,B.将矩形木框与地面平行放置时,形成的影子为矩形,故该选项不符合题意,C.将矩形木框立起与地面垂直放置时,形成的影子为线段,D.∵由物体同一时刻物高与影长成比例,且矩形对边相等,梯形两底不相等,∴得到投影不可能是梯形,故该选项符合题意,故选:D.【点睛】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,平行物体的影子仍旧平行或重合.灵活运用平行投影的性质是解题的关键.8.C解析:C【解析】【分析】根据正投影是垂直照射物体时所看到的平面图形,特别要注意这与物体的摆放有直接的关系,由此分析各选项即可得解.【详解】A. 三角形的正投影不一定是三角形,错误B. 长方体的正投影不一定是长方形,错误C. 球的正投影一定是圆,正确D. 圆锥的正投影不一定是三角形,错误故选C.【点睛】此题主要考察了正投影的概念:光线垂直照射物体所看到的平面图形叫做正投影;一个物体的正投影与物体的摆放有直接的关系.9.C解析:C【解析】【分析】找到从正面看所得到的图形即可.【详解】解:该几何体的主视图是故选C.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.10.D解析:D【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看是上大下小等宽的两个矩形,矩形的公共边是虚线,故选:D.【点睛】本题考查简单组合体的三视图,从左边看得到的图形是左视图,注意看不到而且是存在的线是虚线.11.D解析:D【解析】【分析】先细心观察原立体图形中圆柱和长方体的位置关系,找到从左面看所得到的图形即可.【详解】圆柱的左视图是长方形,长方体的左视图是长方形,所以它们的左视图是:故答案选:D.【点睛】本题考查的是简单组合体的三视图,解题时注意:左视图是从物体的左面看得到的视图.要注意几何体看得见部分的轮廓线画成实线,被其他部分遮挡而看不见的部分的轮廓线化成虚线.12.C解析:C【解析】【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【详解】A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正方形的个数均依次为1,1,不符合所给图形;D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选C.【点睛】考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形.二、填空题13.710【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由主视图可得第二层立方体的可能的个数相加即可【详解】解:综合主视图和俯视图这个几何体的底层有5个小正方体第二层最少有2个最多有5个因解析:7, 10.【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【详解】解:综合主视图和俯视图,这个几何体的底层有5个小正方体,第二层最少有2个,最多有5个,因此搭成这样的一个几何体至少需要小正方体木块的个数为:5+2=7个,至多需要小正方体木块的个数为:5+5=10个,故答案为:7,10.【点睛】此题主要考查了几何体的三视图,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.14.【分析】由已知三视图为圆柱首先得到圆柱底面半径从而根据圆柱体积=底面积乘高求出它的体积【详解】解:由三视图可知圆柱的底面直径为4高为6∴底面半径为2∴V=πr2h=22×6•π=24π故答案是:24解析:24【分析】由已知三视图为圆柱,首先得到圆柱底面半径,从而根据圆柱体积=底面积乘高求出它的体积.【详解】解:由三视图可知圆柱的底面直径为4,高为6,∴底面半径为2,∴V=πr2h=22×6•π=24π,故答案是:24π.【点睛】此题考查的是圆柱的体积及由三视图判断几何体,关键是先判断圆柱的底面半径和高,然后求其体积.15.36m2【分析】前后两面小正方形的个数为:2×(1+2+3);上下两面小正方形的个数为:2×(1+2+3);左右两面正方形的个数为:2×(1+2+3)【详解】如图所示:一共有10个小正方体构成表面共解析:36m2【分析】前后两面小正方形的个数为:2×(1+2+3);上下两面小正方形的个数为:2×(1+2+3);左右两面正方形的个数为:2×(1+2+3)【详解】如图所示:一共有10个小正方体构成表面共有2×(1+2+3)+2×(1+2+3)+2×(1+2+3)=36个正方形,因为小正方体的棱长为m,所以每个小正方形的面积为:m2.所以这个几何体的表面积36m2故答案为:36 m2.【点睛】本题主要考查组合体的表面积,解决这类题的关键是明确该几何体是由哪些特殊的几何体构成的,它们的内在联系是什么:几何体的表面积是所有围成几何体的表面面积之和.16.【分析】设小明影子长为根据同一时刻物高与影子长度对应成比例列出关于的方程即可求出答案【详解】设小明影子长为长为的标杆影长为小明身高为解之得:故答案为【点睛】本题主要考查了平行投影明确同一时刻的物高与解析:75【分析】设小明影子长为xm,根据同一时刻物高与影子长度对应成比例,列出关于x的方程,即可求出答案.【详解】设小明影子长为xm,长为1m的标杆影长为0.8m,小明身高为1.75m,∴1 1.750.8x=解之得:75x=故答案为7 5【点睛】本题主要考查了平行投影,明确同一时刻的物高与影子长度对应成比例是解题关键. 17.5【分析】根据题意求出△ECD∽△EAB利用相似三角形的对应边成比例即可解答【详解】∵CD∥AB∴△ECD∽△EAB∴ED:EB=CD:AB∴2:6=15:AB∴AB=45米答:电线杆AB长为45米解析:5【分析】根据题意求出△ECD∽△EAB,利用相似三角形的对应边成比例即可解答.【详解】∵CD∥AB,∴△ECD∽△EAB,∴ED:EB=CD:AB,∴2:6=1.5:AB,∴AB=4.5米.答:电线杆AB长为4.5米.故答案为4.5.【点睛】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程即可求出电线杆AB长.18.圆柱【解析】试题解析:圆柱【解析】试题根据主视图和左视图为长方形判断出是柱体,根据俯视图是圆形可判断出这个几何体应该是圆柱.点睛:主视图和左视图的大致轮廓为长方形的几何体为柱体,俯视图为圆就是圆柱.19.5【解析】【分析】由于人和地面是垂直的即和路灯平行构成相似三角形根据对应边成比例列方程解答即可【详解】解:∵CE∥AB∴△ADB∽△EDC∴AB:CE=BD:CD即AB:15=75:25解得:AB=解析:5.【解析】【分析】由于人和地面是垂直的,即和路灯平行,构成相似三角形.根据对应边成比例,列方程解答即可.【详解】解:∵CE∥AB,∴△ADB∽△EDC∴AB:CE=BD:CD即AB:1.5=7.5:2.5解得:AB=4.5m.即路灯的高度为4.5米.故答案为4.5【点睛】考查相似三角形的应用,只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出路灯的高度,体现了转化的思想.20.36【分析】正六角螺母侧面为6个相同的长方形求出每个长方形的面积即可得出它的侧面积【详解】2×3=6cm26×6=36cm2故答案为:36【点睛】本题主要考查正六棱柱的三视图将三视图上边的长度转化为解析:36【分析】正六角螺母侧面为6个相同的长方形,求出每个长方形的面积,即可得出它的侧面积.【详解】2×3=6cm2,6×6=36cm2.故答案为:36.【点睛】本题主要考查正六棱柱的三视图,将三视图上边的长度转化为正六棱柱对应边的长度是解题关键.三、解答题21.无22.无23.无24.无25.无26.无。
北师大版九年级数学上册《第五章投影与视图》单元测试卷及答案
北师大版九年级数学上册《第五章投影与视图》单元测试卷及答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列是平行投影的是()A.B.C.D.2.如图,晚上小明在路灯下沿路从A处径直走到B处,这一过程中他在地上的影子()A.一直都在变短B.先变短后变长C.一直都在变长D.先变长后变短3.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m4.如图,将一个长方体内部挖去一个圆柱,这个几何体的主视图是()A .B .C .D .5.如图,是一个由铁铸灌成的几何体的三视图,根据图中所标数据,铸灌这个几何体需要的铁的体积为( )A .12πB .18πC .24πD .78π6.从某个方向观察一个正六棱柱,可看到如图所示的图形,其中四边形ABCD 为矩形,E F 、分别是AB DC 、的中点.若86AD AB ==,,则这个正六棱柱的侧面积为( )A .483B .96C .144D .963二、填空题7.如图是三角尺在灯泡O 的照射下在墙上形成的影子,现测得30cm 20cm OA AA '==,,这个三角尺的面积与它在墙上形成的影子的面积的比是 .8.古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF 长32米,它的影长FD 是3米,同一时测得OA 是274米,则金字塔的高度BO 是米.9.地面上有一支蜡烛,蜡烛前面有一面墙,王涛同学在蜡烛与墙之间运动,则他在墙上的投影长度随着他离墙的距离变小而 (增大、变小)10.墙壁CD 上D 处有一盏灯(如图),小明站在A 处测得他的影长与身长相等,都为1.6m ,他向墙壁走1m 到B 处时发现影子刚好落在A 点,则灯泡与地面的距离CD = .11.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据计算该几何体的底面周长为cm .12.用八个同样大小的小立方体粘成一个大立方体如图1,得到的几何体的三视图如图2所示,若小明从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图仍是图2,则他取走的小立方体最多可以是个.三、解答题13.在学习完投影的知识后,小张同学立刻进行了实践,他利用所学知识测量操场旗杆的高度.(1)如图,请你根据小张(AB)在阳光下的投影(BE),画出此时旗杆(CD)在阳光下的投影.(2)已知小张的身高为1.76m,在同一时刻测得小张和旗杆的投影长分别为0.44m和5.5m,求旗杆的高度.14.如图,是小亮晚上在广场散步的示意图,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置(1)在小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为.(2)请你在图中画出小亮站立AB处的影子.15.如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)画出这个几何体的表面展开图;(3)根据图中的数据,求这个几何体的侧面积.16.如图,是用几个相同的正方体搭出的几何体,请解答下列问题:(1)分别在方格纸中画出从正面、左面、上面看这个几何体时看到的图形;(2)若每个小正方体的棱长为2,要给这个几何体地面以上的部分涂上颜色,求涂色部分的面积;(3)小亮说可以在这个几何体上再摆放上几个相同的小正方体,使新几何体和原几何体分别从上面和从左面看到的形状相同,你觉得他说的对吗?如果你认为小亮说法正确请在下面的方格纸中画出两种添加小正方体后,从正面看到的新几何体的形状图;你认为可以有___________种添加小正方体的方式;满足小亮说法的添加小正方体个数最少可以摆___________个,最多可以摆___________个.如果你认为小亮说法不正确,请说明理由.参考答案题号 1 2 3 4 5 6答案 B B A A B D1.【答案】B【分析】本题考查了平行投影的知识,定义:在一束平行光线照射下形成的投影叫做平行投影.特征:平行投影的投影线是平行的.牢记平行投影的定义是解题的关键.【详解】如图所示,连接影子的顶端和物体的顶端得到投影线,若投影线平行则为平行投影.通过作图可知A、C、D中影子的顶端和物体的顶端连线不平行,只有选项B中影子的顶端和物体的顶端连线平行.故选B.2.【答案】B【分析】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.根据中心投影的特征可得小亮在地上的影子先变短后变长.【详解】解:在小亮从A处径直走到路灯下时,他在地上的影子逐渐变短;当他走到路灯下,再走到B处时,他在地上的影子逐渐变长∴小亮在地上的影子先变短后边长故选:B.3.【答案】A 【详解】∵BE∵AD ∵∵BCE∵∵ACD ∵CB CEAC CD=,即CB CE AB BC DE EC =++ ∵BC=1,DE=1.8,EC=1.2 ∵1 1.21 1.8 1.2AB =++ ∵1.2AB=1.8 ∵AB=1.5m . 故选A . 4.【答案】A【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 【详解】解:从正面看易得主视图为长方形,中间有两条垂直地面的虚线. 故选:A .【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图. 5.【答案】B【分析】直接利用三视图得出几何体的形状,再利用圆柱体积求法得出答案. 【详解】解:由三视图可得,几何体是空心圆柱,其小圆半径是1,大圆半径是2 则大圆面积为:224ππ⨯=,小圆面积为:21ππ⨯= 故这个几何体的体积为:64624618πππππ⨯-⨯=-=. 故选:B .【点睛】此题主要考查了由三视图判断几何体,正确判断出几何体的形状是解题关键. 6.【答案】D【分析】根据题意,正六边形的边长为AG BG 、,过点G 作GE AB ⊥,则GE 垂直平分AB ,根据正六边形的性质求得AG ,进而求得正六棱柱的侧面积.【详解】解:如图,正六边形的边长为AG BG 、,过点G 作GE AB ⊥∵GE 垂直平分AB由正六边形的性质可知11203032AGB A B AE AB ∠=︒∠=∠=︒==,, ∵ 323,cos30AE AG ===︒正六棱柱的侧面积66238963AG AD =⨯=⨯=故选:D .【点睛】本题考查了三视图,正多边形与圆,解直角三角形,掌握以上知识是解题的关键. 7.【答案】9:25【分析】本题考查了相似三角形的应用.先根据相似三角形对应边成比例求出三角尺与影子的相似比,再根据相似三角形面积的比等于相似比的平方解答即可. 【详解】解:∵30cm 20cm OA AA '==, ∵50cm OA '= ∵:30:503:5OA OA '== ∵三角尺与影子是相似三角形∵三角尺的周长与它在墙上形成的影子的面积的比是9:25 故答案为:9:25. 8.【答案】137【分析】本题考查平行投影,根据同一时刻,物高与影长对应成比例,列出比例式进行求解即可. 【详解】解:由题意,得:EF OBFD OA= 即:323274OB =∵137OB =; 故答案为:137. 9.【答案】变小.【分析】可连接光源和人的头顶可知,墙上的影长和人到墙的距离变化规律是:距离墙越近,影长越短,距离墙越远影长越长.【详解】连接光源和人的头顶可知,墙上的影长和人到墙的距离变化规律是:距离墙越近,影长越短,距离墙越远影长越长,则王涛同学在墙上投影长度随着他离墙的距离变小而变小. 故答案为:变小.【点睛】本题综合考查了中心投影的特点和规律,中心投影的特点是:(1)等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;()2等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.10.【答案】64 15m【分析】利用相似三角形的相似比,列出方程组,通过解方程组求出灯泡与地面的距离即可.【详解】如图:根据题意得:BG=AF=AE=1.6m,AB=1m∵BG//AF//CD∵∵EAF∵∵ECD,∵ABG∵∵ACD∵AE:EC=AF:CD,AB:AC=BG:CD设BC=x m,CD=y m,则CE=(x+2.6)m,AC=(x+1)m∵1.6 1.62.6x y=+1 1.61x y=+解得:x=53,y=6415∵CD=64 15m.∵灯泡与地面的距离为64 15m故答案为:64 15m.11.【答案】4πcm.【分析】根据主视图是等腰三角形,利用等腰三角形的性质,勾股定理求得底边的长,这就是圆锥底面圆的直径,计算周长即可.【详解】如图,根据主视图的意义,得三角形是等腰三角形∵三角形ABC是直角三角形()2222642AB AC--∵底面圆的周长为:2πr=4πcm.故答案为:4πcm.【点睛】本题考查了几何体的三视图,熟练掌握圆锥的三视图及其各视图的意义是解题的关键.12.【答案】4【详解】解:由于是粘上的,故每一层交错拿走对角线位置的两个正方体,可得每一层的每一行每一列都要保留一个立方体,故取走的小立方体最多可以是4个.故答案为:413.【答案】(1)见解析(2)旗杆的高度为22m.【分析】本题考查作图-应用与设计作图,设计平行投影,解题的关键是读懂题意,掌握平行投影的特征.(1)连接AE,过C作CF AE∥交BD于F,线段DF即为所求;(2)根据平行投影特征得:1.760.44 5.5CD=,即可解得答案.【详解】(1)解:连接AE,过C作CF AE∥交BD于F,如图:线段DF即为所求;(2)解:根据题意得:1.760.44 5.5CD=解得22CD=∴旗杆的高度为22m.14.【答案】(1)变短;(2)见详解.【分析】(1)先选取B,O之间一点D,分别作出小亮的影子,比较代表影长的线段长度即可得出变化情况即可;(2)连结线段P A,并延长交底面于点E,得到线段BE即可.【详解】解(1)在小亮由B处沿BO所在的方向行走到达O处的过程取点D通过灯光在B处小亮的影长为BE,当小亮走到D处时,小亮的影长为FDBE>FD∵小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为变短故答案为:变短;(2)如图所示,连结P A,并延长交底面于E,则线段BD为求作小亮的影长.【点睛】本题考查投影知识,从远处向灯光处走去影长的变化,掌握影长变化规律,向灯光走近,影长变短,远离灯光,影长变长,先走近再走远先变短再变长是解题关键.15.【答案】(1)三棱柱(2)见详解(3)272cm【分析】本题考查三视图、几何体的侧面展开图等知识,解题的关键是理解三视图、看懂三视图.(1)根据三视图,即可解决问题;(2)画出正三棱柱的表面展开图即可;(3)侧面展开图是矩形,求出矩形的面积即可.【详解】(1)解:根据三视图可知这个几何体的名称是三棱柱.(2)这个几何体的表面展开图如下:(答案不唯一)(3)这个几何体的侧面积是2⨯⨯=.83372cm16.【答案】(1)见解析(2)108(3)小亮说法正确,图见解析,5,1,3【分析】(1)观察图形可得:从正面看到从左往右依次有小正方形的数量为2、1、3;从左面看到有小正方形的数量为3、1;从上面看到从左往右依次有小正方形的数量为2,2,1,即可求解;(2)先找出每个小正方体所需要涂色的面的个数,再求和即需要涂颜色的面的总数,然后计算出总面积即可;(3)根据从上面和从左面看到的形状相同,添加一个小正方体,可在俯视图中添加,再验证从上面和从左面看到的形状,即可求解.【详解】(1)解∵如图(2)解∵ 2222⨯⨯+⨯⨯+⨯+⨯=6224225222108(3)解∵ 小亮说法正确有5种添加小正方体的方式,如下图其中添加小正方体个数最少可以摆1个,最多可以摆3个.故答案为∵ 5,1,3【点睛】此题主要考查了画三视图,关键是掌握在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.。
(常考题)北师大版初中数学九年级数学上册第五单元《投影与视图》测试卷(有答案解析)(5)
一、选择题1.一个三棱柱的三视图如图所示,其中俯视图为等边三角形,则其表面积为( )A .1223+B .183+C .1823+D .1243+ 2.如图是某几何体的三视图,这个几何体是( )A .三棱柱B .三棱锥C .长方体D .正方体 3.如图所示几何体的俯视图是( )A .B .C .D .4.如图所示的几何体是由几个大小相同的小正方体搭成的,将正方体①移走后,从左面看到的图形是( )A.B.C.D.5.如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是()A.20πB.18πC.16πD.14π6.下列哪个图形,主视图、左视图和俯视图相同的是()A.圆锥B.圆柱C.三棱柱D.正方体7.如图,由一些完全相同的小正方体搭成的几何体的左视图和俯视图,则这个几何体的主视图不可能是()A.B.C.D.8.如图,一个几何体由5个大小相同的正方体搭成,则这个立体图形从左面观察得到的平面图形是()A.B.C.D.9.如图是由五个棱长为2的小立方块搭建而成的几何体,则它的左视图的面积是()A.3 B.4 C.12 D.1610.如图所示,该立体图形的俯视图是()A.B.C.D.11.下列四个几何体中,从正面看得到的平面图形是三角形的是()A.B.C.D.12.如图所示的几何体,它的左视图为( ).A.B.C.D.二、填空题13.身高1.5米的小强站在旗杆旁,测得小强和旗杆在地面上的影长分别为2米和16米,则旗杆的高度为___米.14.一个几何体的三视图如图所示,则这个几何体是_____.15.如果一个几何体从某个方向看到的平面图形是圆,则该几何体可能是________ (至少填两种几何体)16.一个几何体的三视图如图所示,则该几何体的体积为________.17.如图所示的几何体都是由棱长为1个单位的正方体摆成的,经计算可得第(1)个几何体的表面积为6个平方单位,第(2)个几何体的表面积为18个平方单位,第(3)个几何体的表面积是36个平方单位,…依次规律,则第(20)个几何体的表面积是______个平方单位.18.如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n,则n的最小值与最大值的和为______.19.如图,棱长为5的正方体无论从哪一个面看,都有两个直通的边长为1的正方形孔,则这个有孔的正方体的表面积(含孔内各面)是__________.20.在如图所示的几何体中,其三视图中有三角形的是________.(填序号)三、解答题21.从正面、左面、上面三个方向看该立体图形,请在下面网格中分别画出看到的平面图形.【答案】见解析【分析】从正面看:共有4列,从左往右分别有1,3,1,1个小正方形;从左面看:共有3列,从左往右分别有3,1,1个小正方形;从上面看:共分4列,从左往右分别有1,3,1,1个小正方形.据此可画出图形.【详解】解:如图所示:【点睛】考查了作图-三视图,用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.22.画出下列几何体的三视图【答案】见解析【分析】根据主视图是从正面看所得到的图形,俯视图是从上面看所得到的图形,左视图时从左边看所得到的图形画出图形即可.【详解】如图所示:【点睛】本题主要考查了几何体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.23.一个小朋友用五块正方体积木摆成了一件作品[如图].请你只移动一块积木,使这件作品从正面看是图一,左面是图二,你有几种移动方法,从上面看移动后的作品,请你把看到的平面图形画出来(画出所有情况).【答案】见解析【分析】从上面看移动后的作品,有3列,从左往右正方形的个数依次为2,1,1;一种情况上面1个小正方形;另一种情况下面1个小正方形;然后即可画出图形.【详解】解:从上面看如图所示:【点睛】本题考查了立体图形的三视图,掌握主视图,左视图,俯视图的概念是解答本题的关键.24.如图,是由五个相同的小正方体搭成的几何体,分别画出从正面、左面、上面看到的形状图.【答案】见解析【分析】根据三视图的定义及其分布情况作图可得.【详解】从正面看:从左面看:从上面看:【点睛】本题主要考查作图-三视图,解题的关键是熟练掌握三视图的定义.25.如图 1,一长方体容器,长、宽均为2,高为6,里面盛有水,水的高度为4,若沿底面一横进行旋转倾斜,倾斜后的长方体容器的主视图如图2所示,倾斜容器使水恰好流出,求CD的值.【答案】25【分析】设DE=x,则AD=6-x,由长方体容器内水的体积得出方程,解方程求出DE,再由勾股定理求出CD即可.【详解】解:如图所示:设DE=x,则AD=6﹣x,根据题意得12( 6﹣x+6)×2×2=2×2×4,解得:x=4,∴DE=4,∵∠E=90°,由勾股定理得:CD=222242DE CE+=+=25.【点睛】本题考查了勾股定理的应用、长方体的体积、梯形的面积的计算方法;熟练掌握勾股定理,由长方体容器内水的体积得出方程是解决问题的关键.26.如图,这是一个由小立方块塔成的几何体从上面看到的形状图,小正方形中的数字表示该位置的小立方块的个数.请你画出它从正面、从左面看到的形状图.【答案】见解析【分析】分别利用小立方块的个数得出其形状,进而画出左视图与主视图.【详解】解:如图所示:【点睛】本题考查了作三视图,正确想象出立体图形的形状是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由题意可知,图形为三棱柱,求三棱柱的表面积,即为5个面的面积之和.【详解】解:如图:作EF⊥MN,垂足F.因为底面是正三角形, EF⊥MN所以,S△EMN123=3 2=⨯因为侧面是矩形所以,S矩形ABCD236=⨯=S三棱柱的表面积=5个面的面积之和,=3S矩形ABCD+2S△EMN1323+2232=⨯⨯⨯⨯3.故选C.【点睛】本题考查了通过三视图求表面积,解题的关键是学生的空间想象能力,能通过三视图将原图复原.2.A解析:A【分析】由俯视图和左视图确定是柱体,锥体还是球体,再由主视图确定具体形状.【详解】解:根据俯视图和左视图为矩形判断出是柱体,根据主视图是三角形可判断出这个几何体应该是三棱柱,故选:A.【点睛】此题主要考查了由三视图判断几何体,俯视图和左视图的大致轮廓为长方形的几何体为柱体,主视图为几边形就是几棱柱.3.D解析:D【分析】直接找出从上面看到的图形即可.【详解】解:该几何体的俯视图为,故选:D .【点睛】本题考查几何体的三视图,注意看不到的边要用虚线表示出来.4.B解析:B【分析】利用组合体的形状,结合三视图可得出主视图没有发生变化.【详解】解:将正方体①移走后,新几何体的三视图与原几何体的三视图相比,主视图和左视图都没有发生改变.故选:B .【点睛】此题主要考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题关键. 5.B解析:B【分析】由几何体的三视图可得出原几何体为圆锥和圆柱组合体,根据图中给定数据求出表面积即可.【详解】 由几何体的三视图可得出原几何体为圆锥和圆柱组合体,且底面半径为422r ==, ∴这个几何体的表面积=底面圆的面积+圆柱的侧面积+圆锥的侧面积 22r rh rl πππ=++=22π+2⨯2⨯2π+3⨯2π=18π,故选:B .【点睛】本题考查了由三视图判断几何体、圆锥和圆柱的计算,由几何体的三视图可得出原几何体为圆锥和圆柱组合体是解题的关键.6.D解析:D【分析】分别得出圆锥体、圆柱体、三棱柱、正方体的三视图的形状,再判断即可.【详解】解:圆锥的主视图、左视图都是等腰三角形,而俯视图是圆,因此选项A不符合题意;圆柱体的主视图、左视图都是矩形,而俯视图是圆形,因此选项B不符合题意;三棱柱主视图、左视图都是矩形,而俯视图是三角形,因此选项C不符合题意;正方体的三视图都是形状、大小相同的正方形,因此选项D符合题意;故选:D.【点睛】本题考查简单几何体的三视图,明确圆锥、圆柱、三棱柱、正方体的三视图的形状和大小是正确判断的前提.7.A解析:A【分析】由左视图可得出这个几何体有2层,由俯视图可得出这个几何体最底层有4个小正方体.分情况讨论即可得出答案.【详解】解:由题意可得出这个几何体最底层有4个小正方体,有2层,当第二层第一列有1个小正方体时,主视图为选项B;当第二层第二列有1个小正方体时,主视图为选项C;当第二层第一列,第二列分别有1个小正方体时,主视图为选项D;故选:A.【点睛】本题考查的知识点是简单几何体的三视图,根据所给三视图能够还原几何体是解此题的关键.8.B解析:B【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【详解】从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形.故选:B.【点睛】本题考查了三视图的知识,左视图是从物体的左侧面看得到的视图.9.C解析:C【分析】先确定几何体的左视图的形状,再根据图形求面积.【详解】由图知该几何体的左视图由两列构成,第一列是两个小正方块,第二列是一个小正方块,共三个小正方块,∴它的左视图的面积是23212,故选:C.【点睛】此题考查几何体的三视图,根据几何体得到三视图的图形形状是解题的关键.10.C解析:C【分析】根据俯视图是从物体的上面看得到的视图进行解答即可.【详解】从上面看是一个正方形,正方形的左下角是一个小正方形,故C正确;故选:C【点睛】考核知识点:三视图.理解视图的定义是关键.11.B解析:B【分析】依次分析每个几何体的主视图,即可得到答案.【详解】A.主视图为矩形,不符合题意;B.主视图为三角形,符合题意;C.主视图为矩形,不符合题意;D.主视图为矩形,不符合题意.故选:B.【点睛】此题考查几何体的三视图,掌握每一个几何体的三视图的图形是解题关键.12.D解析:D【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看是上大下小等宽的两个矩形,矩形的公共边是虚线,故选:D.【点睛】本题考查简单组合体的三视图,从左边看得到的图形是左视图,注意看不到而且是存在的线是虚线.二、填空题13.12【分析】根据同一时刻同一地点物高与影长成正比求得答案即可【详解】设旗杆高度为x米根据题意得:解得:x=12故答案为:12【点睛】考核知识点:相似三角形的应用理解相似三角形性质是关键解析:12【分析】根据同一时刻同一地点物高与影长成正比求得答案即可.【详解】设旗杆高度为x米,根据题意得:1.5 162 x=解得:x=12,故答案为:12.【点睛】考核知识点: 相似三角形的应用.理解相似三角形性质是关键.14.三棱柱【解析】试题分析:如图所示根据三视图的知识可使用排除法来解答解:根据俯视图为三角形主视图以及左视图都是矩形可得这个几何体为三棱柱故答案为三棱柱考点:由三视图判断几何体解析:三棱柱【解析】试题分析:如图所示,根据三视图的知识可使用排除法来解答.解:根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱,故答案为三棱柱.考点:由三视图判断几何体.15.圆锥圆柱球【解析】只要几何体的三视图中得一个视图是圆即可找到视图中有圆的几何体即可解:视图中有圆的几何体有圆锥圆柱球等故答案为圆锥圆柱球解析:圆锥、圆柱、球【解析】只要几何体的三视图中得一个视图是圆即可找到视图中有圆的几何体即可解:视图中有圆的几何体有圆锥,圆柱,球等.故答案为圆锥、圆柱、球.16.【分析】观察三视图可知这个立体图形是底面为半圆的半个圆柱(如图所示)根据体积等于底面积高计算即可【详解】解:观察三视图可知这个立体图形是底面为半圆的半个圆柱(如图所示)故答案为:【点睛】本题考查三视解析:π【分析】观察三视图可知,这个立体图形是底面为半圆的半个圆柱(如图所示),根据体积等于底面积⨯高计算即可.【详解】解:观察三视图可知,这个立体图形是底面为半圆的半个圆柱(如图所示).21122V ππ=⨯=, 故答案为:π.【点睛】本题考查三视图,圆柱的体积公式等知识,解题的关键是理解题意,熟练掌握基本知识,属于中考常考题型.17.1260【分析】结合图形发现每一个图形的表面积得出规律计算即可;【详解】结合图形发现:(1)中个平方单位(2)中个平方单位以此推论可得第(20)个图形的表面积是个平方单位故答案为:1260【点睛】本解析:1260【分析】结合图形,发现每一个图形的表面积得出规律计算即可;【详解】结合图形,发现:(1)中166⨯=个平方单位,(2)中()12618+⨯=个平方单位,以此推论可得第(20)个图形的表面积是()122061260++⋅⋅⋅+⨯=个平方单位. 故答案为:1260.【点睛】本题主要考查了与图形有关的规律题型,结合图形表面积的计算是解题的关键. 18.26【分析】从俯视图中可以看出最底层小正方体的个数及形状由主视图可以看出每一列的最大层数和个数从而算出总的个数【详解】解:根据主视图和俯视图可知该几何体中小正方体最少分别情况如下:故n 的最小值为1+ 解析:26【分析】从俯视图中可以看出最底层小正方体的个数及形状,由主视图可以看出每一列的最大层数和个数,从而算出总的个数【详解】解:根据主视图和俯视图可知,该几何体中小正方体最少分别情况如下:故n 的最小值为1+1+1+1+3+2+1=10,该几何体中小正方体最多分别情况如下:该几何体中小正方体最大值为3+3+3+2+2+2+1=16,故最大值与最小值得和为10+16=26故答案为:26【点睛】本题主要考查了由三视图判断几何体中小正方体的个数问题,可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的可能个数.19.222【分析】先明确题目的含义:正方体共有6个直通小孔有6个交汇处计算即可解:正方体无【详解】解:正方体无论从哪一个面看都有两个直通的边长为1的正方形孔正方体共有6个直通小孔有6个交汇处表面积等于正解析:222【分析】先明确题目的含义:正方体共有6个直通小孔,有6个交汇处,计算即可解:正方体无【详解】解:正方体无论从哪一个面看,都有两个直通的边长为1的正方形孔,正方体共有6个直通小孔,有6个交汇处,表面积等于正方体的表面积减去12个表面上的小正方形面积加上6个棱柱的侧面积,减去6个通道的6个小正方体的表面积则6251264566222S 全,故答案为:222.【点睛】主要考查空间想象能力及分析问题能力对空间想象力有较高要求,同时会利用容斥原理的思想分析、解决交并问题.20.②③【分析】主视图左视图俯视图是分别从物体正面左面和上面看所得到的图形据此作答【详解】①圆柱体的主视图是矩形左视图是矩形俯视图是圆②圆锥的主视图左视图是等腰三角形俯视图是带有圆心的圆③三棱锥的主视图解析:②③【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,据此作答.【详解】①圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,②圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,③三棱锥的主视图、左视图是矩形,俯视图是三角形,④球的三视图完全相同,都是圆.∴其三视图中有三角形的是②③.故答案为:②③.【点睛】本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大九年级数学上册 第五章 投影与视图 单元检测试卷
考试总分: 120 分 考试时间: 120 分钟
学校:__________ 班级:__________ 姓名:__________ 考号:__________
一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 ) 1.正方形在太阳光下的投影不可能是( ) A.正方形 B.一条线段 C.矩形 D.三角形 2.如图所示是由一些相同的小正方体构成的立体图形的三视图,这些相同的小正方体的个数是( )
A.4
B.5
C.6
D.7 3.电影院座位号呈阶梯状或下坡状的原因是( ) A.减小盲区 B.增大盲区 C.盲区不变 D.为了美观 4.四个几何体中,三视图都是相同图形的是( ) A.
长方体
B.
圆柱 C.
球
D.
三棱柱
5.当你站在博物馆的展览厅中时,你知道站在何处观赏最理想吗?如图,设墙壁上的展品最高点P 距地面2.5米,最低点Q 距地面2米,观赏者的眼睛E 距地面1.6米,
当视角∠PEQ 最大时,站在此处观赏最理想,则此时E 到墙壁的距离为( )米.
A.1
B.0.6
C.0.5
D.0.4
6.用块完全相同的长方体搭成如图几何体,这个几何体从正面看到的形状是( )
A.
B.
C.
D.
7.一个由n 个相同大小的正方体组成的简单几何体的正视图、俯视图如下,那么它的左视图不可能是下面的( )
A.
B.
C.
D.
8.如图所示的几何体的主视图是( )
A.
B.
C.
D.
9.由一些大小相同的小正方体搭成的几何体的左视图和主视图,如图所示,则搭成该几何体的小正方体的个数最少是( )
A.3
B.4
C.5
D.6 10.下列几何体中,左视图与主视图不相同的只可能是( ) A.
B.
C.
D.
二、填空题(共10 小题,每小题 3 分,共30 分)
11.在阳光照射下,直立于地面的竹竿一天的影长变化情况是________.
12.如果一个立体图形的主视图为长方形,则这个立体图形可能是________(只需填上一个立体图形).
13.球的主视图、俯视图、左视图都是________.
14.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小
________.
15.在路灯下的甲、乙两人影长相等,那么两人的身高为________.(相等,不相等,不一定相等)
16.一个几何体从正面看,左面看,上面看到的平面图形一样,那么这个几何体
可能是________或________.
17.身高相同的小明和小丽站在灯光下的不同位置,已知小明的投影比小丽的投影长,我们可以判定小明离灯光较________.
18.人离窗子越远,向外眺望时此人的盲区是________.
19.一个物体的主视图和左视图是全等的正方形,俯视图为圆、若正方形的边长为4厘米,则该物体的表面积为________cm2.
20.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则从上面看到的该几何体的形状图的面积是________.
三、解答题(共9 小题,共60 分)
21.(6分) 由一些大小相同的小正方体组成的简单几何体的主视图和俯视图如图:
(1)请你画出这个几何体的其中两种左视图;
(2)若组成这个几何体的小正方体的块数为n,请你写出n的所有可能值.
22.(6分)如图,如图是由几个小正方体所搭几何体的俯视图.小正方形中的数字表示在该位置的小正方体的个数,请画出这个几何体的主视图和左视图.
23.(6分) 如图,这是由三个大小不等的正方体拼成的组合立体图,其中最小的正方体的棱长是最大正方体棱长的1
3
(1)请按这个立体图画出它的三视图;
(2)若组合立体图的主视、俯视和左视图的面积分别为S1,S2,S3,则S1,S2,S3之间大小关系.
24.(7分)用小立方块搭一个几何体,使得从左面和上面看得到的平面图形分别为图所示的图(甲)(乙)这样的几何体最少需要多少个小立方块?最多需要多少个小立方块?你能画出需要最多的从正面看到的图形么?
25.(7分)如图是几个正方体所组成的几何体的从上面看的图形,小正方形中的数字表示该位置小正方块的个数,请画出从正面看、从左面看的图形.
26.(7分) 用若干个大小相同的小立方块搭一个几何体,使得从正面和从上面看到的这个几何体的形状如图所示
(1)请画出一种从左面看到的它的形状图;
(2)根据你所画出的从左面看到的形状图,结合从正面和从上面看到的这个几何体的形状图直接写出这个几何体所需要的小立方体的个数.
27.(7分) 小明和小丽在操场上玩耍,小丽突然高兴地对小明说:“我踩到你的‘脑袋’了.”如图即表示此时小明和小丽的位置.
(1)请画出此时小丽在阳光下的影子;
(2)若已知小明身高为1.60m,小明和小丽之间的距离为2m,而小丽的影子长为1.75m,求小丽的身高.
28.(7分)下面几何体的三种视图有无错误?如果有,请改正.
29.(7分) 若正方体的棱长为1米,在地面上摆成如图所示的形式.
(1)写出它的俯视图的名称;
(2)求第四层时几何图形的表面积.
答案
1.D
2.A
3.A
4.C
5.B
6.C
7.A
8.B
9.B
10.B
11.由长变短,然后又变长
12.圆柱
13.圆
14.相同
15.不一定相等
16.正方体球
17.远
18.变大
19.24π
20.3
21.解:(1)
(2)∵俯视图有5个正方形,
∵最底层有5个正方体,
由主视图可得第2层最少有2个正方体,第3层最少有1个正方体;
由主视图可得第2层最多有4个正方体,第3层最多有2个正方体;
∵该组合几何体最少有5+2+1=8个正方体,最多有5+4+2=11个正方体,∵n可能为8或9或10或11.
22.解:如图所示:
23.解:(1)如图所示:
;(2)∵主视、俯视和左视图的面积分别为S1,S2,S3,
∵S1>S2>S3.
24.解:观察图形,可知几何体最少需要4+4+1+3=12个小正方体,最多需要7+7+3+3=20个小正方体;
需要最多的从正面看到的图形如图所示:
25.解:如图所示:
26.解:(1)如图所示:
,
还能搭出满足条件的其他几何体,此题有很多种不同几何体.(2)根据俯视图可得底面有5个小正方体,结合左视图和主视图可得第二层可能有2个或3个或4个,共有7个、8个或9个.
27.小丽的身高为1.4m.
28.解:主视图对,左视图对,俯视图错,中间应画一条虚线,
如图:
.
29.解:(1)它的俯视图是边长为4米的正方形;(2)S=(1+2+3+4)×12×4+ 4×4
=40+16
=56m2.。