导数比较大小之简单构造(单调性)
新教材老高考适用2023高考数学一轮总复习第四章第二节利用导数研究函数的单调性pptx课件北师大版
第二节 利用导数研究函数的单调性
内
容
索
引
01
强基础 增分策略
02
增素能 精准突破
课标解读
1.结合实例,借助几何直观了
解函数的单调性与导数的关
系.
2.能利用导数研究函数的单
调性,会求函数的单调区间.
3.能够利用导数解决与函数
单调性有关的问题.
衍生考点
核心素养
1.研究不含参函数的
单调性
数学抽象
+1
(2)若-1≤a<0,由于 ≤0,所以
+1
(- )
.
2
+1
,
+∞
+1
0,
.
f'(x)<0,即 f(x)的单调递减区间是(0,+∞).
;
+1
(3)若 a<-1, >0,当 x∈
当 x∈
+1
, +∞
+1
0,
时,f'(x)>0,所以 f(x)的单调递增区间是
且g(-2)=g(2)=2f(2)=0,g(0)=0.因为f(x)>0,所以当x>0时,由g(x)=xf(x)>0得
2.讨论含参函数的单
逻辑推理
调性
数学运算
3.与导数有关的函数
数学建模
单调性的应用
强基础 增分策略
知识梳理
1.函数的单调性与其导数的关系
导数的符号与函数的单调性之间具有如下的关系:
(1)若在某个区间内,函数y=f(x)的导数f'(x)>0,则在这个区间内,函数
第21讲 利用导数研究函数的单调性(解析版)
第21讲 利用导数研究函数的单调性【基础知识回顾】1. 利用导数研究函数的单调性在某个区间(a ,b)内,如果f′(x)≥0且在(a ,b)的任意子区间上不恒为0,那么函数y =f(x)在这个区间内单调递增;如果f′(x)≤0且在(a ,b)的任意子区间上不恒为0,那么函数y =f(x)在这个区间内单调递减.2. 判定函数单调性的一般步骤 (1)确定函数y =f(x)的定义域; (2)求导数f′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0或f′(x)<0; (4)根据(3)的结果确定函数的单调区间. 3. 已知函数单调性求参数的值或参数的范围 (1)函数y =f(x)在区间(a ,b)上单调递增,可转化为f ′(x)≥0在(a ,b)上恒成立,且在(a ,b)的任意子区间上不恒为_0;也可转化为(a ,b)⊆增区间.函数y =f(x)在区间(a ,b)上单调递减,可转化为f′(x)≤0在(a ,b)上恒成立,且在(a ,b)的任意子区间上不恒为_0;也可转化为(a ,b)⊆减区间.(2)函数y =f(x)的增区间是(a ,b),可转化为(a ,b)=增区间,也可转化为f′(x)>0的解集是(a ,b);函数y =f(x)的减区间是(a ,b),可转化为(a ,b)=减区间,也可转化为a ,b 是f′(x)=0的两根.1、.函数f (x )=3+x ln x 的单调递减区间是( ) A.⎝⎛⎭⎫1e ,e B.⎝⎛⎭⎫0,1e C.⎝⎛⎭⎫-∞,1eD.⎝⎛⎭⎫1e ,+∞【答案】 B【解析】因为函数f (x )的定义域为(0,+∞),且f ′(x )=ln x +x ·1x =ln x +1,令f ′(x )<0,解得0<x <1e,故f (x )的单调递减区间是⎝⎛⎭⎫0,1e . 2、函数f(x)=ax 3+bx 2+cx +d 的图像如图,则函数y =ax 2+32bx +c3的单调递增区间是( )第2题图A . (-∞,-2]B . ⎣⎡⎭⎫12,+∞ C . [)-2,3 D . ⎣⎡⎭⎫98,+∞【答案】D【解析】 由题图可知d =0. 不妨取a =1,∵f(x)=x 3+bx 2+cx ,∴f ′(x)=3x 2+2bx +c. 由图可知f′(-2)=0,f ′(3)=0,∴12-4b +c =0,27+6b +c =0,∴b =-32,c =-18. ∴y =x 2-94x -6,y ′=2x -94. 当x >98时,y ′>0,∴y =x 2-94x -6的单调递增区间为[98,+∞).故选D .3、函数f (x )=ln x -ax (a >0)的单调递增区间为( ) A.⎝⎛⎭⎫0,1a B.⎝⎛⎭⎫1a ,+∞ C.⎝⎛⎭⎫-∞,1a D .(-∞,a )【答案】A【解析】 由f ′(x )=1x -a >0,x >0,得0<x <1a .∴f (x )的单调递增区间为⎝⎛⎭⎫0,1a . 4、若函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,则实数a 的取值范围是________. 【答案】 (-∞,2ln 2-2)【解析】 ∵函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,∴f ′(x )=2x -e x -a >0,即a <2x -e x 有解.设g (x )=2x -e x ,则g ′(x )=2-e x ,令g ′(x )=0,得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增,当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得极大值也是最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a <2ln 2-2.考向一 求函数的单调区间例1、求下列函数的单调区间:(1)f(x)=x 3-12x 2-2x +3;(2)g(x)=x 2-2ln x.【解析】 (1)∵f′(x)=3x 2-x -2=(3x +2)(x -1),定义域为R ,∴当f ′(x )>0时,x ∈⎝⎛⎭⎫-∞,-23∪(1,+∞);当f ′(x )<0时,x ∈⎝⎛⎭⎫-23,1. ∴函数的单调增区间为⎝⎛⎭⎫-∞,-23和(1,+∞),单调减区间为⎝⎛⎭⎫-23,1. (2)g ′(x )=2x -2x =2(x +1)(x -1)x,定义域为(0,+∞),令g ′(x )=0,解得:x =1或x =-1(舍去),列表:x (0,1) 1 (1,+∞) g ′(x ) - 0+ g (x ) 减 极小值 增变式1、(1)下列函数中,在(0,+∞)内为增函数的是( ) A.f (x )=sin 2x B.f (x )=x e x C.f (x )=x 3-xD.f (x )=-x +ln x【答案】 B【解析】 由于x >0,对于A ,f ′(x )=2cos 2x ,f ′⎝⎛⎭⎫π3=-1<0,不符合题意; 对于B ,f ′(x )=(x +1)e x >0,符合题意;对于C ,f ′(x )=3x 2-1,f ′⎝⎛⎭⎫13=-23<0,不符合题意; 对于D ,f ′(x )=-1+1x ,f ′(2)=-12<0,不符合题意.(2)函数f (x )=2x 2-ln x 的单调递减区间是( ) A.⎝⎛⎭⎫-12,12 B.⎝⎛⎭⎫12,+∞ C.⎝⎛⎭⎫0,12 D.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫12,+∞ 【答案】 C【解析】 ∵函数f (x )=2x 2-ln x ,∴f ′(x )=4x -1x =4x 2-1x=4⎝⎛⎭⎫x -12⎝⎛⎭⎫x +12x.由f ′(x )<0,解得0<x <12,∴函数的单调递减区间是⎝⎛⎭⎫0,12. (3).已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的递增区间是________. 【答案】 ⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2 【解析】 f ′(x )=sin x +x cos x -sin x =x cos x . 令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2,即f (x )的单调递增区间为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2.变式2、(1)函数f(x)=x 3-15x 2-33x +6的单调减区间为__ __.(2) 函数f(x)=1+x -sin x 在(0,2π)上的单调情况是__ __.(3)已知a<0,函数f(x)=x 3+ax 2-a 2x +2的单调递减区间是__ .【解析】(1)由f(x)=x 3-15x 2-33x +6得f ′(x)=3x 2-30x -33,令f′(x)<0,即3(x -11)(x +1)<0,解得-1<x<11,∴函数f(x)的单调减区间为(-1,11). (2) f′(x)=1-cos x>0在(0,2π)上恒成立,∴f(x)单调递增.(3)f′(x)=3x 2+2ax -a 2=(3x -a)(x +a),令f′(x)<0,得a3<x<-a ,∴减区间为⎝⎛⎭⎫a3,-a . 方法总结:1. 利用导数求函数f(x)的单调区间的一般步骤为:(1)确定函数f(x)的定义域;(2)求导函数f ′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0和f′(x)<0;(4)根据(3)的结果确定函数f(x)的单调区间. 2. 利用导数求函数单调性,在对函数求导以后要对导函数进行整理并因式分解,方便后面求根和判断导函数的符号.考向二 给定区间求参数的范围例2、设函数()32132a f x x x bx c =-++,曲线()y f x =在点()()0,0f 处的切线方程为1y =. (1)求,bc 的值;(2)若0a >,求函数()f x 的单调区间;(3)设函数()()2g x f x x =+,且()g x 在区间(2,1)--内存在单调递减区间,求实数a 的取值范围.【解析】:(1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧ f 0=1,f ′0=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0),当x ∈(-∞,0)时,f ′(x )>0;当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0. 所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1),使不等式g ′(x )=x 2-ax +2<0成立,即x ∈(-2,-1)时,a <(x +2x )max =-22,当且仅当x =2x 即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22).变式1、已知g (x )=2x +ln x -ax .(1)若函数g (x )在区间[1,2]内单调递增,求实数a 的取值范围; (2)若g (x )在区间[1,2]上存在单调递增区间,求实数a 的取值范围.【解析】(1)g (x )=2x +ln x -ax (x >0),g ′(x )=2+1x +ax2(x >0).∵函数g (x )在[1,2]上单调递增, ∴g ′(x )≥0在[1,2]上恒成立, 即2+1x +ax 2≥0在[1,2]上恒成立,∴a ≥-2x 2-x 在[1,2]上恒成立, ∴a ≥(-2x 2-x )max ,x ∈[1,2]. 在[1,2]上,(-2x 2-x )max =-3, 所以a ≥-3.∴实数a 的取值范围是[-3,+∞). (2)g (x )在[1,2]上存在单调递增区间, 则g ′(x )>0在[1,2]上有解, 即a >-2x 2-x 在[1,2]上有解, ∴a >(-2x 2-x )min ,又(-2x 2-x )min =-10,∴a >-10.变式2、若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)上单调递增,则a 的取值范围是( )A.[-1,1]B.⎣⎡⎦⎤-1,13C.⎣⎡⎦⎤-13,13D.⎣⎡⎦⎤-1,-13 【答案】 C【解析】 ∵f (x )=x -13sin 2x +a sin x ,∴f ′(x )=1-23cos 2x +a cos x =-43cos 2x +a cos x +53.由f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立. 令t =cos x ,t ∈[-1,1], 则-43t 2+at +53≥0,在t ∈[-1,1]上恒成立.∴4t 2-3at -5≤0在t ∈[-1,1]上恒成立. 令g (t )=4t 2-3at -5,则⎩⎪⎨⎪⎧g (1)=-3a -1≤0,g (-1)=3a -1≤0.解之得-13≤a ≤13方法总结: 1.明晰导数概念及其几何意义在解题中的应用,强化方程的思想,培养基本运算能力.2. 辨析区间上单调和区间上存在单调区间的本质区别和处理策略的不同,提升参变分离和构造函数等解决问题的方法和技巧,感悟数学解题背后的思维和内涵.考向三 函数单调区间的讨论例3、已知函数.当时,讨论的单调性; 【解析】函数的定义域为., 因为,所以, ①当,即时,由得或,由得, 所以在,上是增函数, 在上是减函数; ②当,即时,所以在上是增函数;③当,即时,由得或,由得,所以在,.上是增函数,在.上是减函 综上可知:当时在,上是单调递增,在上是单调递减; 当时,在.上是单调递增;当时在,上是单调递增,在上是单调递减. 变式1、讨论下列函数的单调性. (1)f (x )=x -a ln x ; (2)g (x )=13x 3+ax 2-3a 2x .【解析】 (1)f (x )的定义域为(0,+∞), f ′(x )=1-a x =x -ax ,令f ′(x )=0,得x =a ,①当a ≤0时,f ′(x )>0在(0,+∞)上恒成立, ∴f (x )在(0,+∞)上单调递增. ②当a >0时,x ∈(0,a )时,f ′(x )<0,()()11ln f x x m x m R x x ⎛⎫=+-+∈ ⎪⎝⎭1m ()f x ()f x (0,)+∞'21()1m m f x x x -=+-2221(1)[(1)]x mx m x x m x x -+----==1m 10m ->011m <-<12m <<()0f x '>1x >1x m <-()0f x '<11m x -<<()f x ()0,1m -()1,+∞()1,1m -11m -=2m =()0f x '≥()f x ()0,∞+11m ->2m >()0f x '>1x m >-1x <()0f x '<11x m <<-()f x ()0,1()1,m -+∞()1,1m -12m <<()f x ()0,1m -()1,+∞()1,1m -2m =()f x ()0,∞+2m >()f x ()0,1()1,m -+∞()1,1m -x ∈(a ,+∞)时,f ′(x )>0,∴f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. 综上,当a ≤0时,f (x )在(0,+∞)上单调递增,当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. (2)g (x )的定义域为R ,g ′(x )=x 2+2ax -3a 2=(x +3a )(x -a ), 当a =0时,g ′(x )≥0, ∴g (x )在R 上单调递增. 当a >0时,x ∈(-∞,-3a )∪(a ,+∞)时,g ′(x )>0,g (x )单调递增, x ∈(-3a ,a )时,g ′(x )<0,g (x )单调递减. 当a <0时,x ∈(-∞,a )∪(-3a ,+∞)时,g ′(x )>0,g (x )单调递增, x ∈(a ,-3a )时,g ′(x )<0,g (x )单调递减, 综上有a =0时,g (x )在R 上单调递增;a <0时,g (x )在(-∞,a ),(-3a ,+∞)上单调递增,在(a ,-3a )上单调递减; a >0时,g (x )在(-∞,-3a ),(a ,+∞)上单调递增,在(-3a ,a )上单调递减. 变式2、已知函数f (x )=x -2x +a (2-ln x ),a >0.讨论f (x )的单调性.【解析】 由题知,f (x )的定义域是(0,+∞), f ′(x )=1+2x 2-a x =x 2-ax +2x 2,设g (x )=x 2-ax +2, g (x )=0的判别式Δ=a 2-8.①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0.此时f (x )在(0,+∞)上单调递增. ②当Δ=0,即a =22时,仅对x =2, 有f ′(x )=0,对其余的x >0都有f ′(x )>0. 此时f (x )在(0,+∞)上单调递增.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根, x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (0,x 1) x 1 (x 1,x 2) x 2 (x 2,+∞)f ′(x )+-+f (x )单调递增 极大值 单调递减 极小值 单调递增此时f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减, 在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.方法总结: 对含参函数的合理分类,关键是找到引起分类讨论的原因.2. 会对函数进行准确求导,求导以后进行整理并因式分解,其中能否因式分解、每个因式系数的正负、根的大小等都是引起分类讨论的原因.考向四 构造函数研究单调性例4、(1)设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则下列不等式在R 上恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x(2)已知定义域为{x |x ≠0}的偶函数f (x ),其导函数为f ′(x ),对任意正实数x 满足xf ′(x )>-2f (x ),若g (x )=x 2f (x ),则不等式g (x )<g (1)的解集是( )A .(-∞,1)B .(-1,1)C .(-∞,0)∪(0,1)D .(-1,0)∪(0,1)【答案】 (1)A (2)D【解析】(1)法一:令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2],当x >0时,g ′(x )>0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0. 综上可知,f (x )>0.法二:∵2f (x )+xf ′(x )>x 2,∴令x =0,则f (0)>0,故可排除B 、D ,不妨令f (x )=x 2+0.1,则已知条件2f (x )+xf ′(x )>x 2成立,但f (x )>x 不一定成立,故C 也是错误的,故选A.(2)∵f (x )是定义域为{x |x ≠0}的偶函数, ∴f (-x )=f (x ).对任意正实数x 满足xf ′(x )>-2f (x ), ∴xf ′(x )+2f (x )>0. ∵g (x )=x 2f (x ),∴g (x )也是偶函数,当x ∈(0,+∞)时,g ′(x )=2xf (x )+x 2f ′(x )>0. ∵g (x )在(0,+∞)上单调递增, ∴g (x )在(-∞,0)递减. 若g (x )<g (1),则|x |<1(x ≠0), 解得0<x <1或-1<x <0.故g (x )<g (1)的解集是(-1,0)∪(0,1). 变式1、已知定义在上的函数的导函数为,且,,则下列判断中正确的是( )A .B .C .D . 【答案】CD 【解析】令,,则, 因为, 所以在上恒成立, 因此函数在上单调递减, 因此,即,即,故A 错;又,所以,所以在上恒成立, 0,2π⎡⎫⎪⎢⎣⎭()f x ()f x '()00f =()cos ()sin 0f x x f x x '+<6624f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭ln 03f π⎛⎫> ⎪⎝⎭363f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭243f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭()()cos f x g x x =0,2x π⎡⎫∈⎪⎢⎣⎭2()cos ()sin ()cos f x x f x x g x x '+'=()cos ()sin 0f x x f x x '+<2()cos ()sin ()0cos f x x f x x g x x '+'=<0,2π⎡⎫⎪⎢⎣⎭()()cos f x g x x =0,2π⎡⎫⎪⎢⎣⎭64g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭64cos cos64f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>664f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭()00f =(0)(0)0cos0f g ==()()0cos f x g x x =≤0,2π⎡⎫⎪⎢⎣⎭因为,所以,故B 错; 又,所以,即,故C 正确;又,所以,即,故D 正确;故选:CD.变式2、设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是________. 【答案】 (-∞,-1)∪(0,1)【解析】 因为f (x )(x ∈R )为奇函数,f (-1)=0, 所以f (1)=-f (-1)=0. 当x ≠0时,令g (x )=f (x )x ,则g (x )为偶函数,g (1)=g (-1)=0. 则当x >0时,g ′(x )=⎣⎡⎦⎤f (x )x ′=xf ′(x )-f (x )x 2<0,故g (x )在(0,+∞)上单减,在(-∞,0)上单增.所以在(0,+∞)上,当0<x <1时,g (x )>g (1)=0,得f (x )x >0,所以f (x )>0;在(-∞,0)上,当x <-1时,由g (x )<g (-1)=0,得f (x )x<0,所以f (x )>0. 综上知,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1).变式3、设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为________. 【答案】 (-∞,-3)∪(0,3) 【解析】 f ′(x )g (x )+f (x )g ′(x )>0⇔ [f (x )g (x )]′>0,所以函数y =f (x )g (x )在(-∞,0)上单调递增. 又由题意知函数y =f (x )g (x )为奇函数,所以其图象关于原点对称,且过点(-3,0),(3,0).ln0,32ππ⎡⎫∈⎪⎢⎣⎭ln 03f π⎛⎫< ⎪⎝⎭63g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭63cos cos 63f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>363f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭43g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭43cos cos43f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>243f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭数形结合可求得不等式f (x )g (x )<0的解集为(-∞,-3)∪(0,3).方法总结:(1)对于不等式f ′(x )+g ′(x )>0(或<0),构造函数F (x )=f (x )+g (x );(2)对于不等式f ′(x )-g ′(x )>0(或<0),构造函数F (x )=f (x )-g (x ); 特别地,对于不等式f ′(x )>k (或<k )(k ≠0),构造函数F (x )=f (x )-kx . (3)对于不等式f ′(x )g (x )+f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x ); (4)对于不等式f ′(x )g (x )-f (x )g ′(x )>0(或<0),构造函数F (x )=f xg x(g (x )≠0);(5)对于不等式xf ′(x )+f (x )>0(或<0),构造函数F (x )=xf (x ); (6)对于不等式xf ′(x )-f (x )>0(或<0),构造函数F (x )=f xx(x ≠0).1、函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是【答案】D【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .2、设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0xxa -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x xf x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立,又2e 0x >,则0a ≤, 即实数a 的取值范围是(],0-∞.3、(2021·深圳市龙岗区龙城高级中学高三月考)已知函数()ln f x x =,()g x x =,则当120x x >>时( ) A .1122|()()||()()|f x g x f x g x -<-|B .1122|()()||()()|f x g x f x g x ->-C .1221|()()||()()|f x g x f x g x -<- D .1221|()()||()()|f x g x f x g x ->-【答案】C【解析】令()ln h x x x =-,则()111xh x x x-'=-=,当()0,1x ∈时,()0h x '>,()h x 单调递增,当()1,x ∈+∞时,()0h x '<,()h x 单调递减, 则()()110h x h ≤=-<,则()h x 在()0,1单调递减,在()1,+∞单调递增,∴()1h x 和()2h x 的大小不确定,故AB 错误;由()0h x <可知221ln x x x <<,即()()210f x g x -<, 令1221|()()||()()|W f x g x f x g x =---, 则1221|()()|()()W f x g x f x g x =-+-,当()()12f x g x ≥时,[][]12211122()()()()()()()()0W f x g x f x g x f x g x f x g x =-+-=-+-<; 当()()12f x g x <,[][]21212211()()()()()()()()W g x f x f x g x f x g x f x g x =-+-=+-+,()()ln y f x g x x x =+=+单调递增,0W ∴<, 综上,1221|()()||()()|f x g x f x g x -<-,故C 正确,D 错误.故选:C.4、(2021·广东高三月考)已知函数()ln f x x ax =+在函数()22g x x x b =-+的递增区间上也单调递增,则实数a 的取值范围是( ) A .(],1-∞- B .[)0,+∞C .(][),10,-∞-+∞ D .(]1,0-【答案】B【解析】因为()g x 的单调递增区间为[)1,+∞, 则由题意()f x 在[)1,+∞递增, 而()1axf x x+'=, 所以当0a ≥时,()0f x '>在 [)1,+∞恒成立,()f x 在区间[)1,+∞单调递增,符合题意; 当0a <时,由()10ax f x x +'=>,解得10x a<<- ()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,不合题意.综上,0a ≥. 故选:B5、(2021·广东高三月考)若对任意的1x ,()2,x m ∈+∞,且12x x <,都有122121ln ln 2x x x x x x -<-,则m 的最小值是( )(注: 2.71828e =⋅⋅⋅为自然对数的底数) A .1eB .eC .1D .3e【答案】A【解析】由题意知210x x >>,可得210x x ->, 则122121ln ln 2x x x x x x -<-等价于()122121ln ln 2x x x x x x -<-,即121212ln 2ln 2x x x x x x +<+,所以()()1221ln 2ln 2x x x x +<+, 所以2121ln 2ln 2x x x x ++<, 令()ln 2x f x x+=,可得21f x f x ,又由21x x m >>,所以()f x 在(),m +∞上是减函数, 所以()2ln 10x f x x--'=≤,解得1x e ≥,则1m e ≥,即m 的最小值为1e . 故选:A.6、(2021·深圳市第七高级中学高三月考)已知定义在R 上的函数()f x 满足()()()()0,6f x f x f x f x +-=+=-,且对[]12,3,0x x ∀∈-,当12x x ≠时,都有()()()()11221221x f x x f x x f x x f x +<+,则以下判断正确的是( )A .函数()f x 是偶函数B .函数()f x 在[]9,6--单调递增C .3x =是函数()f x 的对称轴D .函数()f x 的最小正周期是12【答案】BCD【解析】由定义域为R , ()()0f x f x +-=,即()()f x f x -=-,则函数为奇函数,故A 错误;因为()()6f x f x +=-,而()()f x f x -=-,所以()()6f x f x +=-,所以函数的对称轴为6032x +==,故C 选项正确; 因为()()6f x f x +=-,所以()()()126f x f x f x +=-+=,所以()f x 的最小正周期是12,故D 选项正确;因为[]12,3,0x x ∀∈-,当12x x ≠时,都有()()()()11221221x f x x f x x f x x f x +<+, 则()()()()12120x x f x f x --<,所以[]3,0x ∈-时,()f x 为减函数. 因为函数为奇函数,所以[]0,3x ∈时,()f x 为减函数,又因为函数()f x 关于3x =对称,所以[]3,6x ∈时,()f x 为增函数.因为()f x 的最小正周期是12,所以[]9,6x ∈--的单调性与[]3,6x ∈时的单调性相同. 故,[]9,6x ∈--时,()f x 单调递增,故B 选项正确. 故选:BCD. 7、()3211232f x x x ax =-++,若()f x 在2,3⎛⎫+∞ ⎪⎝⎭上存在单调递增区间,则a 的取值范围是_______ 【答案】19a >- 【解析】:()'22fx x x a =-++,有已知条件可得:2,+3x ⎛⎫∃∈∞ ⎪⎝⎭,使得()'0f x ≥,即()212a x x ≥-,只需()2min12a x x ⎡⎤≥-⎢⎥⎣⎦,而()221122122339y x x ⎡⎤⎛⎫=->-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以19a >-。
专题12 利用导数解决函数的单调性
专题12导数与函数的单调性问题【高考地位】在近几年的高考中,导数在研究函数的单调性中的应用是必考内容,它以不但避开了初等函数变形的难点,定义法证明的繁杂,而且使解法程序化,优化解题策略、简化运算,具有较强的工具性的作用.导数在研究函数的单调性中的应用主要有两方面的应用:一是分析函数的单调性;二是已知函数在某区间上的单调性求参数的取值范围.在高考中的各种题型中均有出现,其试题难度考查相对较大.类型一求无参函数的单调区间例1已知函数()ln xf x e=.(1)当1a =时,判断()f x 的单调性;【解析】(1)当1a =时,()ln 1xx f x e+=,第一步,计算函数()f x 的定义域:()0,+∞.第二步,求出函数()f x 的导函数'()f x :()1ln 1xx x f x e --'=第三步,令()1ln 1g x x x=--,则()g x 在()0,∞+上为减函数,且()10g =所以,当()0,1x ∈时,()0g x >,()0f x '>,()f x 单调递增;当()1,x ∈+∞时,()0g x <,()0f x '<,()f x 单调递减.故()f x 递增区间为()0,1;()f x 递减区间为()1,+∞【变式演练1】函数()2sin sin 2f x x x =⋅,0,2x π⎡⎤∈⎢⎥⎣⎦的单调递增区间为__________.【答案】(0,)3π;(区间两端开闭都可以)【分析】利用三角恒等变换得32sin y =,再利用换元法设sin [0,1]t x =∈,利用导数和复合函数的单调性解不等式0sin x <<,即可得到答案;【详解】令223sin sin 22sin cos sin 2sin y x x x x x =⋅=⋅=,设sin [0,1]t x =∈,则3()2h t t =,∴()'362h t tt =',2242246122346t t t t t t---=,[0.1)t∈,∴()002h t t >⇒<<',∴0sin 03x x π<<<<,∴()f x 在区间(0,)3π单调递增.故答案为:(0,)3π.【点睛】本题考查复合函数的单调性与导数的结合,考查运算求解能力,求解时注意复合函数的单调性是同增异减的原则.【变式演练2】已知函数()()2ln 1x xf x x e e -=+++,则不等式()()2210f x f x --+≤的解集为___________.【答案】(]1,3,3⎡⎫-∞-+∞⎪⎢⎣⎭【分析】首先根据题意得到()f x 是偶函数,利用导数和奇偶性得到函数()f x 的单调区间,再利用单调性和奇偶性解不等式即可.【详解】因为()()2ln 1x xf x x e e -=+++,x ∈R ,所以()()()2ln 1x xf x x e e f x -+-=++=,所以()f x 是偶函数.因为()22222111x x xx x x e f x e e x x e-'==++-+-+当0x >时,()0f x '>,所以()f x 在()0,∞+上单调递增.又因为()f x 是偶函数,所以()f x 在(),0-∞上单调递减.所以()()2210f x f x --+≤,即()()221f x f x -≤+,所以221x x -≤+,即23830x x +-≥,解得3x ≤-或13x ≥.故答案为:(]1,3,3⎡⎫-∞-+∞⎪⎢⎣⎭.【变式演练3】已知函数()2sin f x x x =-+,若a f =,(2)b f =--,2(log 7)c f =,则,,a b c 的大小关系为()A .a b c <<B .b c a<<C .c a b<<D .a c b<<【答案】D 【解析】【分析】求得函数()f x 单调性与奇偶性,再结合指数函数与对数函数的性质,得出2log 72>>,得到()22(log 7)(f f f >>,进而得到2(2)(log 7)(f f f -->>,即可得到答案.【详解】由题意,函数()2sin f x x x =-+的定义域为R ,且()2()sin()2sin ()f x x x x x f x -=-⋅-+-=-=-,即()()f x f x -=-,所以函数()f x 是R 上的奇函数,又由()2cos 0f x x '=-+<,所以函数()f x 为R 上的单调递减函数,又因为133>=,22log 7log 42>=且22log 7log 83<=,即22log 73<<,所以2log 72>>,可得()22(log 7)(f f f >>,又由函数()f x 是R 上的奇函数,可得()(2)2f f --=,所以2(2)(log 7)(f f f -->>,即a c b <<.故选:D.【点睛】本题主要考查了函数的奇偶性与函数的单调性,以及指数函数与对数函数的图象与性质的综合应用,其中解答中熟练应用函数的基本性质,结合指数函数与对数函数的性质求得自变量的大小关系式解答的关键,着重考查了推理与运算能力.【变式演练4】定义在R 上的连续函数()f x ,导函数为()f x '.若对任意不等于1-的实数x ,均有()()()10x f x f x '+->⎡⎤⎣⎦成立,且()()211xf x f x e -+=--,则下列命题中一定成立的是()A .()()10f f ->B .()()21ef f -<-C .()()220e f f -<D .()()220e f f ->【答案】B 【解析】【分析】构造函数()()x f x g x e=,利用导数分析出函数()y g x =在(),1-∞-上单调递增,在()1,-+∞上单调递减,并推导出函数()()x f x g x e=的图象关于直线1x =-对称,进而可判断出各选项的正误.【详解】构造函数()()xf xg x e=,则()()()x f x f x g x e '-'=,当1x ≠-时,()()()10x f x f x '+->⎡⎤⎣⎦.当1x >-时,则()()0f x f x '->,()0g x '<;当1x <-时,则()()0f x f x '-<,()0g x '>.所以,函数()()xf xg x e=在(),1-∞-上单调递增,在()1,-+∞上单调递减.又()()211xf x f x e-+=--,所以()()1111xxf x f x ee-+---+--=,即()()11g x g x -+=--,故函数()()x f x g x e=的图象关于直线1x =-对称.对于A 选项,()()10g g ->,即()()10ef f ->,()1f -与()0f 的大小关系不确定,A 选项错误;对于B 选项,()()21g g -<-,即()()221e f ef -<-,即()()21ef f -<-,B 选项正确;对于C 、D 选项,()()20g g -=,即()()220e f f -=,C 、D 选项错误.故选:B .【点睛】本题考查利用构造函数法判断函数值的大小关系,根据导数不等式的结构构造新函数是解题的关键,考查推理能力,属于难题.类型二判定含参数的函数的单调性例2已知函数()()2ln 21f x x x ax a R =+-+∈.(1)讨论()f x 的单调性;【解析】(1)第一步,计算函数()f x 的定义域并求出函数()f x 的导函数'()f x :()2122122(0)'x ax x x x xf a x -+=+-=>,记()2221g x x ax =-+.第二步,讨论参数的取值范围,何时使得导函数'()f x 按照给定的区间大于0或小于0:当0a ≤时,因为0x >,所以()1g x >,所以函数()f x 在()0,∞+上单调递增;当0a <≤时,因为()2420a ∆=-≤,所以()0g x ≥,函数()f x 在()0,∞+上单调递增;当a >时,由()00x g x >⎧⎨>⎩,解得22,22a a x ⎛+∈⎪⎝⎭,第三步,根据导函数的符号变换判断其单调区间:所以函数()f x 在区间22,22a a ⎛-+⎝⎭上单调递减,在区间20,2a ⎛- ⎪⎝⎭和22a ⎛⎫++∞⎪ ⎪⎝⎭上单调递增.【变式演练5】(主导函数是一次型函数)已知函数()=1,f x nx ax a R -∈.(1)讨论函数f x ()的单调性;【解析】(1)因为()ln (0)f x x ax x =->,所以11()'-=-=ax f x a x x,当0a时,()0f x '>,即函数()f x 在(0,)+∞单调递增;当0a >时,令()0f x '>,即10ax ->,解得10x a<<;令()0f x '<,即10ax -<,解得1x a>,综上所述:当0a 时,函数()f x 在(0,)+∞单调递增;当0a >时,函数()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减.【变式演练6】(主导函数为类一次型)已知函数()xf x e ax -=+.(I )讨论()f x 的单调性;【解析】(Ⅰ)函数()y f x =的定义域为R ,且()xf x a e -'=-.①当0a ≤时,()0f x '<,函数()y f x =在R 上单调递减;②当0a >时,令()0f x '<,可得ln x a <-;令()0f x '>,可得ln x a >-.此时,函数()y f x =的单调递减区间为(),ln a -∞-,单调递增区间为()ln ,a -+∞;【变式演练7】(主导函数为二次型)【2020届山西省高三高考考前适应性测试(二)】已知函数()2ln af x x a x x=--,0a ≥.(1)讨论()f x 的单调性;【解析】(1)函数()2ln a f x x a x x =--的定义域为()0,∞+,()222221a a x ax af x x x x-+'=+-=.令()22g x x ax a =-+,244a a ∆=-.①当2440a a ∆=-≤时,即当01a ≤≤时,对任意的0x >,()0g x ≥,则()0f x '≥,此时,函数()y f x =在()0,∞+上单调递增;②当2440a a ∆=->时,即当1a >时,方程()0g x =有两个不等的实根,设为1x 、2x ,且12x x <,令220x ax a -+=,解得10x a =>,20x a =+>.解不等式()0f x '<,可得a x a <<+解不等式()0f x '>,可得0x a <<-或x a >+此时,函数()y f x =的单调递增区间为(0,a ,()a ++∞,单调递减区间为(a a -+.综上所述,当01a ≤≤时,函数()y f x =的单调递增区间为()0,∞+,无递减区间;当1a >时,函数()y f x =的单调递增区间为(0,a ,()a ++∞,单调递减区间为(a a -+;【变式演练8】(主导函数是类二次型)已知函数2()(1)x f x k x e x =--,其中k ∈R.(1)当k 2≤时,求函数()f x 的单调区间;【解析】(1)()2(2)x x f x kxe x x ke '=-=-,当0k ≤时20x ke -<,令'()0f x >得0x <,令'()0f x <得0x >,故()f x 的单调递增区间为(0)()f x -∞,,的单调递减区间为(0)+∞,当02k <≤时,令'()0f x =得0x =,或2ln 0x k=≥,当02k <<时2ln0k >,当'()0f x >时2ln x k >或0x <;当'()0f x >时20ln x k <<;()f x 的单调递增区间为()2,0,ln ,k ⎛⎫-∞+∞ ⎪⎝⎭;减区间为20ln k ⎛⎫ ⎪⎝⎭,.当2k =时2ln0k=,当0x >时'()0f x >;当0x <时'()0f x >;()f x 的单调递增区间为(),-∞+∞;【变式演练9】已知函数()22ln f x x x =-,若()f x 在区间()2,1m m +上单调递增,则m 的取值范围是()A .1,14⎡⎫⎪⎢⎣⎭B .1,4⎡⎫+∞⎪⎢⎣⎭C .1,12⎡⎫⎪⎢⎣⎭D .[)0,1【答案】A 【分析】利用导数求出函数()f x 的单调递增区间为1,2⎛⎫+∞ ⎪⎝⎭,进而可得出()12,1,2m m ⎛⎫+⊆+∞ ⎪⎝⎭,可得出关于实数m的不等式组,由此可解得实数m 的取值范围.【详解】因为()22ln f x x x =-的定义域为()0,∞+,()14f x x x'=-,由()0f x '>,得140x x ->,解得12x >,所以()f x 的递增区间为1,2⎛⎫+∞ ⎪⎝⎭.由于()f x 在区间()2,1m m +上单调递增,则()12,1,2m m ⎛⎫+⊆+∞ ⎪⎝⎭,所以12122m mm +>⎧⎪⎨≥⎪⎩,解得114m ≤<.因此,实数m 的取值范围是1,14⎡⎫⎪⎢⎣⎭.故选:A.【点睛】方法点睛:利用函数()f x 在区间D 上单调递增求参数,可转化为以下两种类型:(1)区间D 为函数()f x 单调递增区间的子集;(2)对任意的x D ∈,()0f x '≥恒成立.同时也要注意区间左端点和右端点值的大小关系.类型三由函数单调性求参数取值范围例3.若()()21ln 242f x x b x =-++在()2,-+∞上是减函数,则实数b 的范围是()A .(],1-∞-B .(],0-∞C .(]1,0-D .[)1,-+∞【答案】A【解析】第一步:计算函数()f x 的定义域并求出函数()f x 的导函数'()f x :因为()()21ln 242f x x b x =-++,故可得()2b f x x x '=-++,第二步根据题意转化为相应的恒成立问题:因为()f x 在区间()2,-+∞是减函数,故02bx x -+≤+在区间()2,-+∞上恒成立.因为20x +>,故上式可整理化简为()2b x x ≤+在区间()2,-+∞上恒成立,因为()2y x x =+在区间()2,-+∞上的最小值为1-,第三步得出结论:故只需b ≤-1.故选:A.【点睛】本题考查根据函数的单调性,利用导数求解参数范围的问题,属基础题.【变式演练11】(转化为任意型恒成立)【四川省绵阳市2020高三高考数学(文科)三诊】函数2()(2)x f x e x ax b =-++在(1,1)-上单调递增,则2816a b ++的最小值为()A .4B .16C .20D .18【答案】B 【解析】【分析】由函数()()22xf x exax b =-++在()1,1-上单调递增得:()2402a x a b x -+-++≥在()1,1-上恒成立,转化成26020a b b +-≥⎧⎨+≥⎩,结合线性规划知识求解即可【详解】因为函数()()22xf x e xax b =-++在()1,1-上单调递增,所以()()()()22''22'xx f x ex ax b e x ax b =-+++-++=()2402x a x a b e x ⎡⎤+-++≥⎣⎦-在()1,1-上恒成立.又0x e >,所以()2402a x a b x -+-++≥在()1,1-上恒成立.记()()224g x a x x a b -=+-++,则()()()()12401240g a a b g a a b ⎧-=---++≥⎪⎨=-+-++≥⎪⎩,整理得:26020a b b +-≥⎧⎨+≥⎩,把横坐标看作a 轴,纵坐标看作b 轴,作出不等式组表示的区域如下图,令2816a z b =++,则2288a z b =-+-,抛物线28a b =-恰好过图中点()4,2G -,由线性规划知识可得:当抛物线2288a zb =-+-过点()4,2G -时,28z -最小,此时z 取得最小值.所以()2min 4821616z =+⨯-+=故选B【点睛】本题主要考查了单调性与导数的关系,还考查了恒成立问题及线性规划求最值,考查计算能力及转化能力,属于中档题.【变式演练12】(转化为变号零点)已知函数2()ln 1f x x a x =-+在(1,2)内不是单调函数,则实数a 的取值范围是()A .[)2,8B .[]2,8C .(][),28,-∞+∞ D .()2,8【答案】D【解析】【分析】函数()f x 的定义域为(0,)+∞,22()2a x a f x x x x-'=-=,根据题意可得到,12<<,从而可得答案.【详解】解: 函数2()1f x x alnx =-+,定义域{|0}x x >,∴22()2a x a f x x x x-'=-=,当0a时,()0f x '>,()f x 在(0,)+∞上是增函数,不符合题意,当0a >时,在⎫+∞⎪⎪⎭上,()0f x '>,()f x 单调递增,在⎛ ⎝上,()0f x '<,()f x 单调递减, 函数2()1f x x alnx =-+在(1,2)内不是单调函数,12∴<<,28a ∴<<,故选:D .【点睛】本题考查利用导数研究函数的单调性,依题意得到02a -是关键,也是难点所在,属于中档题.【变式演练13】(直接给给定单调区间)已知函数()32113f x x mx nx =+++的单调递减区间是()3,1-,则m n +的值为()A .-4B .-2C .2D .4【答案】B【解析】【分析】根据()f x 的单调区间,得到导函数()'fx 的零点,结合根与系数关系,求得m n +的值.【详解】依题意()'22f x x mx n =++,由于函数()32113f x x mx nx =+++的单调递减区间是()3,1-,所以3x =-,1x =是()'22fx x mx n =++的两个零点,所以3121313m m n n -+=-=⎧⎧⇒⎨⎨-⨯==-⎩⎩,所以2m n +=-.故选:B【点睛】本小题主要考查利用导数研究函数的单调性,属于中档题.【变式演练14】(转化为存在型恒成立)若f (x )321132x x =-++2ax 在(1,+∞)上存在单调递增区间,则a 的取值范围是()A .(﹣∞,0]B .(﹣∞,0)C .[0,+∞)D .(0,+∞)【答案】D【解析】【分析】f (x )在(1,+∞)上存在单调递增区间,等价于()f x '>0在(1,+∞)上有解.因此结合()f x '的单调性求出其在(1,+∞)上的最值,即可得出结论.【详解】f (x )321132x x =-++2ax 在(1,+∞)上存在单调递增区间,只需()f x '>0在(1,+∞)上有解即可.由已知得2()2f x x x a '=-++,该函数开口向下,对称轴为12x =,故()f x '在(1,+∞)上递减,所以(1)f '=2a >0,解得a >0.故选:D.【点睛】本题主要考查了函数单调性的应用,难度不大.。
导数与函数的单调性ppt课件演示文稿(1)
y f ( x)
1 2 x o
y
y f ( x)
y 1 2 x o
o
y f '( x )
2 x
(A)
y
(B)
y f ( x)
2
y
y f ( x)
x
o 1xΒιβλιοθήκη o 1 2(C)(D)
课堂练习
求下列函数的单调区间
(1)y 2x 5x 4
2
(2)y 3x x
3 x
(3)y (x 3)e
3 2 f ( x ) 2 x 3 x 12x 1 单调递增. 函数 (2 )求导数f’(x); 即 2 x 1时, 当 f '( x) 0,
高考 设 f '( x )是函数 f ( x ) 的导函数, y f '( x )的图象如 链接 右图所示,则 y f ( x ) 的图象最有可能的是( )
yx
y
yx
y
2
yx
3
y
1 y x y
o
x
o
x
o
x
o
x
函数在R上
(-∞,0) (0,+∞)
函数在R上
(-∞,0)
f '( x) 1 0 f '( x) 2 x 0 f '( x) 3x2 0 f '( x) x2 0
f '( x) 2 x 0
(0,+∞) f '( x) x2 0
再观察函数y=x2-4x+3的图象 总结: 函数在区间 y
0
. . . . . ..
2
导数中的构造函数(最全精编)
导数中的构造函数(最全精编)导数小题中构造函数的技巧函数与方程思想、转化与化归思想是高中数学思想中比较重要的两大思想。
在导数题型中,构造函数的解题思路恰好是这两种思想的良好体现。
下面我将分享导数小题中构造函数的技巧。
一)利用 $f(x)$ 进行抽象函数构造1、利用 $f(x)$ 与 $x$ 构造;常用构造形式有 $xf(x)$ 和$\frac{f(x)}{x}$。
在数导数计算的推广及应用中,我们对 $u\cdot v$ 的导函数观察可得,$u\cdot v$ 型导函数中体现的是“加法”,$\frac{u}{v}$ 型导函数中体现的是“除法”。
由此,我们可以猜测,当导函数形式出现的是“加法”形式时,优先考虑构造$u\cdot v$ 型;当导函数形式出现的是“除法”形式时,优先考虑构造 $\frac{u}{v}$ 型。
我们根据得出的“优先”原则,看一看例1和例2.例1】$f(x)$ 是定义在 $\mathbb{R}$ 上的偶函数,当$x0$ 的解集为?思路点拨:出现“加法”形式,优先构造 $F(x)=xf(x)$,然后利用函数的单调性、奇偶性和数形结合求解即可。
解析】构造 $F(x)=xf(x)$,则 $F'(x)=f(x)+xf'(x)$。
当$x0$ 的解集为 $(-\infty,-4)\cup(0,4)$。
例2】设 $f(x)$ 是定义在 $\mathbb{R}$ 上的偶函数,且$f(1)=2$。
当 $x0$ 恒成立。
则不等式 $f(x)>0$ 的解集为?思路点拨:出现“除法”形式,优先构造$F(x)=\frac{f(x)}{x-f(x)}$,然后利用函数的单调性、奇偶性和数形结合求解即可。
解析】构造 $F(x)=\frac{f(x)}{x-f(x)}$,则$F'(x)=\frac{xf'(x)-2f(x)}{(x-f(x))^2}$。
因为 $xf'(x)-f(x)>0$,所以 $F'(x)>0$,$F(x)$ 在 $(-\infty,0)$ 上单调递增。
利用导数研究含参函数的单调性【公开课教学PPT课件】
3
2
y
y
y
-1 0 x
-1 a 0 x a -1 0 x
①当a=-1时
②当a>-1时
③当a<-1时
小结:当两根的大小不确定时,应进行分类讨论.
探究二
变式二:讨论函数f ( x) 1 x2 +(1 a)x a ln x的单调性. 2
y
y
0a
x a0 x
①当a>0时
②当a≤0时
小结:当根大小不确定时,应讨论根的大小及根是否在定义域内.
2、已知函数f ( x) ln x a ,求f ( x)的单调区间 x
3、已知函数f ( x) 1 ax2 x (a 1)ln x,讨论f ( x)的单调性 2
感谢您的指导
邱奉美
第三章 导数应用
利用导数研究含参函数的单调性
(第1课时)
探究一
变式一:讨论函数f ( x) 1 x3 1 a x2 ax 1的单调性.
3
2
探究一
变式一:讨论函数f ( x) 1 x3 1 a x2 ax 1的单调性.
0,x2
1
1)当 1 1即a 1时,f (x)在(0, )上递增.
a
10 0a1 00
10
1 1
x 11
xx
1
xx
aa
2)当1 1即a 1时,f (x)在(0,1)和(1, )上递增; f (x)在( 1 ,1)上递减.
a
a
a
3)当1 1即0 a 1时,f (x)在(0,1)和(1, )上递增; f (x)在(1,1 )上递减.
探究二
变式三:讨论函数f ( x) 1 x2 (a 1)x a ln x的单调性. 2
构造法函数解决恒成立、比较大小问题
微专题构造法函数解决恒成立、比较大小问题方法点拨恒成立、比较大小通常都是考查函数的单调性问题,解决这类问题的重点就是根据题意条件构造出问题所涉及的函数,利用导数判断其单调性,从而解决问题。
本专题以恒成立、比较大小、和导数式的形式构造三个方面,来说明函数构造的重要性,并由此来总结几种常见的构造形式。
一、恒成立问题(一)典例解析1.已知变量,,且,若恒成立,则的最大值()A.B.C.D.1解析:1221xx x x < ,2112ln ln x x x x <∴,2211ln ln x x x x <∴。
构造函数xxx f ln )(=,21x x < ,)(x f ∴在),0(m 上单调递增。
xxx f ln 1)(-=',0)(>'x f ,),0(e x ∈,即)(x f 的增区间为),0(e ,],0(e m ∈∴。
答案:A2.不等式e ln ax a x >在(0,)+∞上恒成立,则实数a 的取值范围是()A.1,2e ∞⎛⎫+ ⎪⎝⎭B.1(,)e+∞C.1,)∞+(D.(e,)+∞解析:(1)当时,0<axae,x ln 符号不确定,∴不等式e ln axa x >在(0,)+∞上恒成立不会成立,∴0a ≤舍去。
(2)当0a >时,当(0,1]x ∈时,a a >0,ln 0x ≤,此时不等式e ln ax a x >恒成立。
当x ∈(1,)+∞时,e ln ax a x >,即e ln ax ax x x >,∴ln e ln e ax x ax x >⋅在(1,+∞)上恒成立。
∵0>a ,),1(+∞∈x ,0>ax ,0ln >x ,∴g(x)=xe x ,x ∈(0,+∞),则)e ,()(1)e x x g x x g x x '==+>0在(0,+∞)上恒成立,故)(x g 在),0(+∞上是增函数,∵ln e ln e ax x ax x >⋅,∴()(ln )g ax g x >,故ln ln ,xax x a x>>,设2ln 1ln (),(1),()x xh x x h x x x -'=>=,当1e x <<时,21ln ()0xh x x -'=>,()h x 单调递增,当e x >时,21ln ()0xh x x -'=<,()h x 单调递减,故1()(e)e h x h ≤=,则1e>a ,综上所述,实数a 的取值范围是1e>a ,答案:B(二)针对训练1.已知函数()e ln (0)x f x a x a =≠,若(0,1)x ∀∈,2()ln f x x x a <+成立,则a 的取值范围是()A.1e ,⎡⎫+∞⎪⎢⎣⎭B.1,1e ⎡⎫⎪⎢⎣⎭C.10,e ⎛⎤ ⎥⎝⎦D.1,1e ⎡⎤⎢⎥⎣⎦2.已知0a >,若在(1,)+∞上存在x 使得不等式e ln x a x x a x -≤-成立,则a 的最小值为()A.1eB.1C.2D.e二、比较大小问题(一)典例解析1.已知实数a ,b ,()0,c e ∈,且22a a =,33b b =,55c c =,则()A.()()0a c a b --<B.()()0c a c b --<C.()()0b a bc --<D.b a c<<解析:由题意,对于22a a =,ln ln 22a a =,同理33ln ln =b b ,55ln ln =c c 。
2024高考数学常考题型 导数中构造函数比大小问题题型总结(解析版)
第4讲导数中构造函数比大小问题题型总结【典型例题】题型一:构造()xxx f ln =比较大小此函数定义域为()+∞,0,求导()2ln 1x xx f -=',当()e x ,0∈时,()0>'x f ,故()x f 为增函数,当()+∞∈,e x 时,()0<'x f ,故()x f 为减函数,当e x =时,()x f 取得极大值为()ee f 1=,且()()222ln 42ln 244ln 4f f ====,此结论经常用来把函数转化到同一边进行比较【例1】(2022·广东·佛山市南海区九江中学高二阶段练习)若1ln 2ln 3,,e 23a b c ===,则,,a b c 的大小关系为()A .a c b >>B .b c a>>C .c b a>>D .a b c>>【答案】A 【解析】【分析】通过对三个数的变形及观察,可以构造出函数()ln xf x x=,通过求导分析其单调性即可得到答案【详解】解:1ln e ln 2ln 4ln 3,,e e 243a b c =====,设()()2ln 1ln ,x x f x f x x x -'==,则e x >时,()0f x '<,故()f x 在()e,∞+上单调递减,则()()()3e 4f f f >>,即ln e ln 3ln 4e34>>,所以a c b >>.故选:A.【例2】(2023·全国·高三专题练习)设24ln 4a e -=,ln 22b =,1c e =,则()A .a c b <<B .a b c<<C .b a c<<D .b c a<<【答案】C【解析】【分析】结合已知要比较函数值的结构特点,可考虑构造函数()ln xf x x=,然后结合导数与单调性关系分析出e x =时,函数取得最大值()1e ef =,可得c 最大,然后结合函数单调性即可比较大小.【详解】设()ln x f x x =,则()21ln xf x x -'=,当e x >时,()0f x '<,函数单调递减,当0e x <<时,()0f x '>,函数单调递增,故当e x =时,函数取得最大值()1e ef =,因为()2222e ln 22ln22e e e 22a f -⎛⎫=== ⎪⎝⎭,()()4ln2l e n 4e 1,24b f c f =====,2e 42e << ,当e x >时,()0f x '<,函数单调递减,可得()()2e 4e 2f f f ⎛⎫<< ⎪⎝⎭,即b a c <<.故选:C【例3】(2022·吉林·高二期末)下列命题为真命题的个数是()①ln 32<;②ln π<;③15<;④3e ln 2>.A .1B .2C .3D .4【答案】B 【解析】【分析】本题首先可以构造函数()ln x f x x =,然后通过导数计算出函数()ln xf x x=的单调性以及最值,然后通过对①②③④四组数字进行适当的变形,通过函数()ln xf x x=的单调性即可比较出大小.【详解】解:构造函数()ln x f x x =,则()21ln xf x x -'=,当0e x <<时,()0f x '>,e x >时,()0f x '<,所以函数()ln xf x x=在()0,e 上递增,在()e,+∞上递减,所以当e x =时()f x 取得最大值1e,ln 322ln 2ln 22<⇔⇔,2e <<可得()2ff <,故①正确;lnπ<⇔e <<,可得f f <,故②错误;ln 2ln 4152ln1524<⇔<⇔<<,因为函数()ln xf x x=在()e,+∞上递减,所以()4f f<,故③正确;因为e >,所以(()e f f <,ln ee <1e <,则3e <即3e ln 2<④错误,综上所述,有2个正确.故选:B .【点睛】本题考查如何比较数的大小,当两个数无法直接通过运算进行大小比较时,如果两个数都可以转化为某个函数上的两个函数值,那么可以构造函数,然后通过函数的单调性来判断两个数的大小,考查函数思想,是难题.【例4】(2021·陕西汉中·高二期末(理))已知a ,b ,c 均为区间()0,e 内的实数,且ln 55ln a a =,ln 66ln b b =,ln 77ln c c =,则a ,b ,c 的大小关系为()A .a c b >>B .a b c>>C .c a b>>D .c b a>>【答案】B 【解析】【分析】构造函数()ln xf x x=,由导数判断函数单调性,进而利用单调性即可求解.【详解】解:令()ln x f x x =,则()21ln xf x x -'=,当0e x <<时,()0f x '>,函数()F x 在()0,e 上单调递增,当e x >时,()0f x '<,函数()f x 在()e,+∞上单调递减,因为765e >>>,所以()()()765f f f <<,因为a ,b ,c 均为区间()0,e 内的实数,且ln 5ln 5a a =,ln 6ln 6b b =,ln 7ln 7c c=,所以()()()f a f b f c >>,所以a b c >>,故选:B.【例5】(2022·江西·高三阶段练习(理))设ln 28a =,21e b =,ln 612c =,则()A .a c b <<B .a b c <<C .b a c <<D .c a b<<【答案】B 【解析】【分析】根据a 、b 、c 算式特征构建函数()2ln xf x x =,通过求导确定函数单调性即可比较a 、b 、c 的大小关系.【详解】令()2ln x f x x =,则()42ln 0x x xx x f x '-==⇒=因此()2ln xf x x =在)∞+上单调递减,又因为ln 2ln 4(4)816a f ===,22ln e1=(e)e e b f ==,ln 612c f ===,因为4e >>>a b c <<.故选:B .【题型专练】1.(2022·四川省资阳中学高二期末(理))若ln212ln3,,29e a b c ===,则()A .b a c>>B .b c a>>C .a b c >>D .a c b>>【答案】A 【解析】【分析】令()ln xf x x=,利用导数说明函数的单调性,即可得到函数的最大值,再利用作差法判断a 、c ,即可得解;【详解】解:令()ln x f x x =,则()21ln xf x x-'=,所以当0e x <<时()0f x '>,当e x >时()0f x '<,所以()f x 在()0,e 上单调递增,在()e,+∞上单调递减,所以()()max ln e 1e e e f x f ===,所以1e ln22>又94ln22ln39ln 24ln 3ln 2ln 3ln 512ln 91029181818----===>所以ln22ln329>,即b a c >>.故选:A2.(2022·浙江台州·高二期末)设24ln 4e a -=,ln 22b =,c =,则()A .a b c <<B .b a c <<C .a c b<<D .b c a<<【答案】B 【解析】【分析】由题设22e ln2e 2a =,ln 44b =,ln 33c =,构造ln ()xf x x =并利用导数研究单调性,进而比较它们的大小.【详解】由题设,222e ln4ln 42e e 2a -==,ln 2ln 424b ==,ln 33c ==,令ln ()xf x x=且0x >,可得21ln ()x f x x -'=,所以()0f x '>有0e x <<,则(0,e)上()f x 递增;()0f x '<有e x >,则(e,)+∞上()f x 递减;又2e 43e 2>>>,故c a b >>.故选:B3.(2022·四川广安·模拟预测(理))在给出的(1ln 32)43ln 34<e (3)ee ππ>.三个不等式中,正确的个数为()A .0个B .1个C .2个D .3个【答案】C 【解析】【分析】根据题目特点,构造函数()ln x f x x =,则可根据函数()ln xf x x=的单调性解决问题.【详解】首先,我们来考察一下函数()ln xf x x=,则()21ln xf x x -'=,令()0,f x '>解得0e x <<,令()0,f x '<解得e x >,故()ln xf x x=在区间()0,e 上单调递增,在区间()e,+∞单调递减,所以,(1)ff <ln 3>,则正确;(2)()43e 3f f ⎛⎫< ⎪⎝⎭,即4343lne ln33e <,即43e ln 34⋅>,则错误;(3)()()πf e f >,即e e e e e e ππππππln ln ln ln ln ln >⇒>⇒>,所以,e e ππ>,则正确故选:C.4.(2022·四川资阳·高二期末(文))若ln 33a =,1eb =,3ln 28c =,则()A .b a c >>B .b c a >>C .c b a >>D .c a b>>【答案】A 【解析】【分析】设函数ln (),(0)xf x x x=>,求出其导数,判断函数的单调性,由此可判断出答案.【详解】设ln (),(0)x f x x x =>,则21ln ()xf x x -'=,当0e x <<时,()0f x '>,()f x 递增,当e x >时,()0f x '<,()f x 递减,当e x =时,函数取得最小值,由于e 38<<,故lne ln 3ln 8e 38>>,即b a c >>,故选:A5.(2022·山东日照·高二期末)π是圆周率,e 是自然对数的底数,在e 3,3e ,33,e e ,πe ,3π,π3,e π八个数中,最小的数是___________,最大的数是___________.【答案】e e π3【解析】【分析】分别利用指数函数的单调性,判断出底数同为3,e 以及π的数的大小关系,再由幂函数的单调性,找出最小的数,最后利用函数()ln xf x x=的单调性,判断出最大的数.【详解】显然八个数中最小的数是e e .函数3x y =是增函数,且e 3π<<,∴e 3π333<<;函数e x y =是增函数,且e 3π<<,e 3πe e e <<;函数πx y =是增函数,且e 3π<<,e 3ππ<;函数e y x =在()0,∞+是增函数,且e 3π<<,e e e e 3π<<,则八个数中最小的数是e e 函数πy x =在()0,∞+是增函数,且e 3<,ππe 3<,八个数中最大的数为3π或π3,构造函数()ln xf x x=,求导得()21ln xf x x -'=,当()e,x ∈+∞时()0f x '<,函数()f x 在()e,+∞是减函数,()()3πf f >,即ln 3ln π3π>,即πln 33ln π>,即π3ln 3ln π>,π33π∴>,则八个数中最大的数是π3.故答案为:e e ;π3.6.(2022·安徽省宣城中学高二期末)设24ln41,,e ea b c -===,,a b c 的大小关系为()A .a b c <<B .b a c<<C .a c b<<D .c a b<<【答案】D 【解析】【分析】设ln ()(0)xf x x x =>,利用导数求得()f x 的单调性和最值,化简可得2e 2a f ⎛⎫= ⎪⎝⎭,(e)b f =,(2)c f =,根据函数解析式,可得ln 4(4)(2)4f f ==且2e e 42<<,根据函数的单调性,分析比较,即可得答案.【详解】设ln ()(0)xf x x x=>,则221ln 1ln ()x xx x f x x x ⋅--'==,当(0,e)x ∈时,()0f x '>,则()f x 为单调递增函数,当(e,)x ∈+∞时,()0f x '<,则()f x 为单调递减函数,所以max 1()(e)ef x f ==,又222222e ln 4ln42(ln e e 2e e e 22ln 2)a f ⎛⎫-==-== ⎪⎝⎭,1(e)e b f ==,1ln 2(2)2c f ===,又2ln 4ln 2ln 2(4)(2)442f f ====,2e e 42<<,且()f x 在(e,)+∞上单调递减,所以2e (2)(4)2f f f ⎛⎫=< ⎪⎝⎭,所以b a c >>.故选:D7.(2022·黑龙江·大庆实验中学高二期末)已知实数a ,b ,c 满足ln ln ln 0e a a b cb c==-<,则a ,b ,c 的大小关系为()A .b c a <<B .c b a<<C .a b c<<D .b a c<<【答案】C 【解析】【分析】判断出01,01,1a b c <<<<>,构造函数ln (),(0)xf x x x=>,判断01x <<时的单调性,利用其单调性即可比较出a,b 的大小,即可得答案.【详解】由ln ln ln 0e a a b cb c==-<,得01,01,1a b c <<<<>,设ln (),(0)x f x x x =>,则21ln ()xf x x -'=,当01x <<时,()0f x '>,()f x 单调递增,因为01a <<,所以e 1>>a a ,所以ln ln e a aa a>,故()()ln ln ln e =>∴>a a b a f b f a b a ,则b a >,即有01a b c <<<<,故a b c <<.故选:C.题型二:利用常见不等式关系比较大小1、常见的指数放缩:)1();0(1=≥=+≥x ex e x x e xx证明:设()1--=x e x f x,所以()1-='xe xf ,所以当()0,∞-∈x 时,()0<'x f ,所以()x f 为减函数,当当()+∞∈,0x 时,()0>'x f ,所以()x f 为增函数,所以当0=x 时,()x f 取得最小值为()00=f ,所以()0≥x f ,即1+≥x e x2.常见的对数放缩:)(ln );1(1ln 11e x exx x x x x =≤=-≤≤-3.常见三角函数的放缩:x x x x tan sin ,2,0<<⎪⎭⎫⎝⎛∈π【例1】(2022·湖北武汉·高二期末)设4104a =,ln1.04b =,0.04e 1c =-,则下列关系正确的是()A .a b c >>B .b a c >>C .c a b >>D .c b a>>【答案】D 【解析】【分析】分别令()()e 10xf x x x =-->、()()()ln 10g x x x x =+->、()()()ln 101xh x x x x=+->+,利用导数可求得()0f x >,()0g x <,()0h x >,由此可得大小关系.【详解】令()()e 10xf x x x =-->,则()e 10x f x '=->,()f x ∴在()0,∞+上单调递增,()()00f x f ∴>=,即1x e x ->,则0.04e 10.04->;令()()()ln 10g x x x x =+->,则()11011x g x x x'=-=-<++,()g x ∴在()0,∞+上单调递减,()()00g x g ∴<=,即()ln 1x x +<,则ln1.040.04<;0.04e 1ln1.04∴->,即c b >;令()()()ln 101x h x x x x=+->+,则()()()22110111x h x x x x '=-=>+++,()h x ∴在()0,∞+上的单调递增,()()00h x h ∴>=,即()ln 11xx x+>+,则0.044ln1.04 1.04104>=,即b a >;综上所述:c b a >>.故选:D.【点睛】关键点点睛:本题解题关键是能够通过构造函数的方式,将问题转化为函数值的大小关系的比较问题,通过导数求得函数的单调性后,即可得到函数值的大小.【例2】(2022·山东菏泽·高二期末)已知910a =,19eb -=,101ln 11c =+,则a ,b ,c 的大小关系为()A .a b c <<B .b a c<<C .c b a <<D .c a b<<【答案】B【解析】【分析】首先设()e 1x f x x =--,利用导数得到()e 10xx x >+≠,从而得到11b a>,设()ln 1g x x x =-+,利用导数得到()ln 11x x x <-≠,从而得到111ln 1010<和c a >,即可得到答案.【详解】解:设()e 1x f x x =--,()e 1xf x '=-,令()0f x ¢=,解得0x =.(),0x ∈-∞,()0f x ¢<,()f x 单调递减,()0,x ∞∈+,()0f x ¢>,()f x 单调递增.所以()()00f x f ≥=,即e 10x x --≥,当且仅当0x =时取等号.所以()e 10xx x >+≠.又1911101e 199b a=>+==,0,0a b >>,故11b a >,所以b a <;设()ln 1g x x x =-+,()111xg x x x-'=-=,令()0g x ¢=,解得1x =.()0,1∈x ,()0g x ¢>,()g x 单调递增,()1,x ∈+∞,()0g x ¢<,()g x 单调递减.所以()()10g x g ≤=,即ln 10x x -+≤,当且仅当1x =时取等号.所以()ln 11x x x <-≠,故11111ln 1101010<-=,又1011011lnln ln ln1011101110c a -=+>+==,所以c a >,故b a c <<.故选:B.【例3】(2022·四川凉山·高二期末(文))已知0.01e a =, 1.01b =,1001ln 101c =-,则().A .c a b >>B .a c b>>C .a b c>>D .b a c>>【答案】C 【解析】【分析】构造函数()e 1x f x x =--,由导数确定单调性,进而即得.【详解】设()e 1x f x x =--,则e ()10x f x '=->,在0x >时恒成立,所以()f x 在(0,)+∞上是增函数,所以e 1(0)0x x f -->=,即e 1x x >+,0x >,∴0.01e 1.01>,又ln1.010>,∴ln1.01e 1ln1.01>+,即1001.011ln 101>-,所以a b c >>.故选:C .【例4】(2022·四川绵阳·高二期末(理))若8ln 7a =,18=b ,7ln 6c =,则()A .a c b <<B .c a b<<C .c b a <<D .b a c<<【答案】D 【解析】【分析】构造函数()1ln 1f x x x=+-,其中1x >,利用导数分析函数()f x 的单调性,可比较得出a 、b 的大小关系,利用对数函数的单调性可得出c 、a 的大小关系,即可得出结论.【详解】构造函数()1ln 1f x x x=+-,其中1x >,则()221110x f x x x x -'=-=>,所以,函数()f x 在()1,+∞上为增函数,故()()10f x f >=,则88781ln 1ln 077878f ⎛⎫=+-=-> ⎪⎝⎭,即a b >,78lnln 67> ,因此,b a c <<.故选:D.【例5】(2022·全国·高考真题(理))已知3111,cos ,4sin 3244a b c ===,则()A .c b a >>B .b a c>>C .a b c >>D .a c b>>【答案】A 【解析】【分析】由14tan 4c b =结合三角函数的性质可得c b >;构造函数21()cos 1,(0,)2f x x x x =+-∈+∞,利用导数可得b a >,即可得解.【详解】因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭所以11tan44>,即1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞,()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->,所以b a >,所以c b a >>,故选:A 【题型专练】1.(2022·福建·莆田一中高二期末)设ln1.01a =, 1.0130e b =,1101c =,则()A .a b c <<B .a c b <<C .c b a <<D .c a b<<【答案】D 【解析】【分析】构造函数()ln 1f x x x =-+(0x >),证明ln 1≤-x x ,令 1.01x =,排除选项A,B,再比较,a b 大小,即得解.【详解】解:构造函数()ln 1f x x x =-+(0x >),()10f =,()111xf x x x-'=-=,所以()f x 在()0,1上()0f x '>,()f x 单调递增,()f x 在()1,+∞上()0f x '<,()f x 单调递减,所以max ()(1)0,ln 10,ln 1f x f x x x x ==∴-+≤∴≤-,令 1.01x =,则 ln a x =,30e x b =,11c x=-,考虑到ln 1≤-x x ,可得11ln 1x x ≤-,1ln 1x x -≥-等号当且仅当 1x =时取到,故 1.01x =时a c >,排除选项A ,B.下面比较,a b 大小,由ln 1≤-x x 得 1.01ln1.01 1.0130e<<,故b a >,所以c a b <<.故选:D.2.(2022·吉林·长春市第二中学高二期末)已知1cos 5a =,4950b =,15sin 5=c ,则()A .b a c >>B .c b a >>C .b c a >>D .c a b>>【答案】D 【解析】【分析】构造函数21()cos 12f x x x =+-,利用导数求解函数()f x 的单调性,利用单调性进行求解.【详解】解:设21()cos 1,(01)2f x x x x =+-<<,则()sin f x x x '=-,设()sin ,(01)g x x x x =-<<,则()1cos 0g x x '=->,故()g x 在区间(0,1)上单调递增,即()(0)0g x g >=,即()0f x '>,故()f x 在区间(0,1)上单调递增,所以1(0)05f f ⎛⎫>= ⎪⎝⎭,可得149cos 550>,故a b >,利用三角函数线可得0,2x π⎛⎫∈ ⎪⎝⎭时,tan x x >,所以11tan 55>,即1sin1515cos 5>,所以115sincos 55>,故c a >综上,c a b >>故选:D.3(2022·湖北武汉·高二期末)设4104a =,ln1.04b =,0.04e 1c =-,则下列关系正确的是()A .a b c >>B .b a c >>C .c a b >>D .c b a>>【答案】D 【解析】【分析】分别令()()e 10xf x x x =-->、()()()ln 10g x x x x =+->、()()()ln 101xh x x x x=+->+,利用导数可求得()0f x >,()0g x <,()0h x >,由此可得大小关系.【详解】令()()e 10xf x x x =-->,则()e 10x f x '=->,()f x ∴在()0,∞+上单调递增,()()00f x f ∴>=,即1x e x ->,则0.04e 10.04->;令()()()ln 10g x x x x =+->,则()11011x g x x x'=-=-<++,()g x ∴在()0,∞+上单调递减,()()00g x g ∴<=,即()ln 1x x +<,则ln1.040.04<;0.04e 1ln1.04∴->,即c b >;令()()()ln 101x h x x x x =+->+,则()()()22110111x h x x x x '=-=>+++,()h x ∴在()0,∞+上的单调递增,()()00h x h ∴>=,即()ln 11xx x+>+,则0.044ln1.04 1.04104>=,即b a >;综上所述:c b a >>.故选:D.题型三:构造其它函数比大小(研究给出数据结构,合理构造函数)【例1】(2022·河南河南·高二期末(理))已知1ln 22a a -=,1ln 33b b -=,e ln e cc -=,其中12a ≠,13b ≠,e c ≠,则a ,b ,c 的大小关系为().A .c a b <<B .c b a<<C .a b c<<D .a c b<<【答案】A 【解析】【分析】构造函数()()ln 0f x x x x =->,并求()f x ',利用函数()f x 的图象去比较a b c 、、三者之间的大小顺序即可解决.【详解】将题目中等式整理,得11ln ln 22a a -=-,11ln ln 33b b -=-,ln e ln e c c -=-,构造函数()()ln 0f x x x x =->,()111x f x x x-'=-=,令()0f x '=,得1x =,所以()f x 在()0,1上单调递减,在()1,+∞上单调递增,函数()f x 的大致图象如图所示.因为()12f a f ⎛⎫= ⎪⎝⎭,()13f b f ⎛⎫= ⎪⎝⎭,()()e f c f =,且12a ≠,13b ≠,e c ≠,则由图可知1b a >>,01c <<,所以c a b <<.故选:A .【例2】(2022·重庆市万州第二高级中学高二阶段练习)设 1.01e a =,3eb =,ln 3c =,其中e 为自然对数的底数,则a ,b ,c 的大小关系是()A .b a c >>B .c a b>>C .a c b>>D .a b c>>【答案】D 【解析】【分析】可判断 1.012e a =>,e32b =<,ln 32c =<,再令()ln exf x x =-,[e x ∈,)∞+,求导判断函数的单调性,从而比较大小.【详解】解: 1.012e a =>,e 32b =<,ln 32c =<,令()ln exf x x =-,[e x ∈,)∞+,11()0e e e x f x x x-'=-=<,故()f x 在[e ,)∞+上是减函数,故()()e 3f f <,即3ln 30e-<,故 1.013l e e n 3<<,即c b a <<,故选:D .【例3】(2022·全国·高三专题练习)已知ln 32a =,1e 1b =-,ln 43c =,则a ,b ,c 的大小关系是()A .b a c >>B .b c a >>C .c a b >>D .c b a>>【答案】A 【解析】【分析】根据给定条件构造函数ln ()e)1xf x x x =≥-,再探讨其单调性并借助单调性判断作答.【详解】令函数ln ()(e)1x f x x x =≥-,求导得()211ln ()1x x f x x --'=-,令()11ln g x x x =--,则()210,(e)xg x x x -'=<≥,故()11ln g x x x =--,(e)x ≥单调递减,又()111ln101g =--=,故()0,(e)g x x <≥,即()0,(e)f x x '<≥,而e 34<<,则(e)(3)(4)f f f >>,即1ln 3ln 4e 123>>-,所以b a c >>,故选:A【例4】(山东省淄博市2021-2022学年高二下学期期末数学试题)设110a =,ln1.1b =,910ec -=,则()A .a b c <<B .c a b <<C .b c a <<D .b a c<<【答案】D 【解析】【分析】利用指数函数的性质可比较,a c 的大小,再构造函数()ln(1)f x x x =-+,利用导数判断函数的单调性,再利用其单调性可比较出,a b ,从而可比较出三个数的大小【详解】因为e x y =在R 上为增函数,且9110-<-,所以9110e e --<,因为11e 10-<,所以9101e 10-<,即a c <,令()ln(1)f x x x =-+(0x >),得1()1011xf x x x'=-=>++,所以()f x 在(0,)+∞上递增,所以()(0)0f x f >=,所以ln(1)x x >+,令0.1x =,则0.1ln1.1>,即1ln1.110>,即a b >,所以b a c <<,故选:D【例5】(2022·四川南充·高二期末(理))设0.010.01e a =,199b =,ln 0.99c =-,则()A .c a b <<B .c b a <<C .a b c <<D .a c b<<【答案】A 【解析】【分析】根据给定数的特征,构造对应的函数,借助导数探讨单调性比较函数值大小作答.【详解】令函数e ,,ln(1)1xxy x t u x x===---,1)x ∈,显然0,0y t >>,则ln ln ln [ln ln(1)]ln(1)y t x x x x x x -=+---=+-,令()ln(1)f x x x =+-,1)x ∈-,求导得1()1011x f x x x '=+=<--,即()f x 在1)-上单调递减,1)x ∀∈,()(0)0f x f <=,即ln ln y t y t <⇔<,因此当1)x ∈时,e 1xx x x<-,取0.01x =,则有0.010.0110.01e10.0199a b =<==-,令()e ln(1)xg x y u x x =-=+-,1)x ∈-,21(1)e 1()(1)e 11x xx g x x x x -+'=++=--,令2()(1)e 1x h x x =-+,1)x ∈,2()(21)e 0x h x x x '=+-<,()h x在1)-上单调递减,1)x ∀∈,()(0)0h x h <=,有()0g x '>,则()g x 在1)上单调递增,1)x ∀∈,()(0)0g x g >=,因此当1)x ∈时,e ln(1)x x x >--,取0.01x =,则有0.010.01e ln(10.01)ln 0.99a c =>--=-=,所以c a b <<.故选:A 【点睛】思路点睛:涉及某些数或式大小比较,探求它们的共同特性,构造符合条件的函数,利用函数的单调性求解即可.【例6】(2022·全国·高三专题练习)已知0.3πa =,20.9πb =,sin 0.1c =,则a ,b ,c 的大小关系正确的是()A .a b c >>B .c a b>>C .a c b>>D .b a c>>【答案】B 【解析】【分析】作差法比较出a b >,构造函数,利用函数单调性比较出c a >,从而得出c a b >>.【详解】2220.30.90.3π0.90.330.90ππππa b -⨯--=-=>=,所以0a b ->,故a b >,又()πsin 3f x x x =-,则()πcos 3f x x '=-在π0,6x ⎛⎫∈ ⎪⎝⎭上单调递减,又()0π30f '=->,π306f ⎛⎫'=-< ⎪⎝⎭,所以存在0π0,6x ⎛⎫∈ ⎪⎝⎭,使得()00f x '=,且在()00,x x ∈时,()0f x '>,在0π,6x x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,即()πsin 3f x x x =-在()00,x x ∈上单调递增,在0π,6x x ⎛⎫∈ ⎪⎝⎭单调递减,且ππ30124f ⎛⎫'=-> ⎪⎝⎭,所以0π12x >,又因为()00f =,所以当()00,x x ∈时,()πsin 30f x x x =->,其中因为1π1012<,所以()010,10x ∈,所以1πsin 0.10.3010f ⎛⎫=-> ⎪⎝⎭,故sin 0.10.3π>,即c a b >>.故选:B【例7】(2022·河南洛阳·三模(理))已知108a =,99b =,810c =,则a ,b ,c 的大小关系为()A .b c a >>B .b a c >>C .a c b >>D .a b c>>【答案】D 【解析】【分析】构造函数()()18ln f x x x =-,8x ≥,求其单调性,从而判断a ,b ,c 的大小关系.【详解】构造()()18ln f x x x =-,8x ≥,()18ln 1f x x x+'=--,()18ln 1f x x x+'=--在[)8,+∞时为减函数,且()295558ln 81ln 8ln e 204444f =-+-=-<-=-<',所以()18ln 10f x x x=-+-<'在[)8,+∞恒成立,故()()18ln f x x x =-在[)8,+∞上单调递减,所以()()()8910f f f >>,即10ln89ln 98ln10>>,所以10988910>>,即a b c >>.故选:D 【点睛】对于指数式,对数式比较大小问题,通常方法是结合函数单调性及中间值比较大小,稍复杂的可能需要构造函数进行比较大小,要结合题目特征,构造合适的函数,通过导函数研究其单调性,比较出大小.【例8】(2022·河南·模拟预测(理))若0.2e a =,b =ln 3.2c =,则a ,b ,c 的大小关系为()A .a b c >>B .a c b >>C .b a c >>D .c b a>>【答案】B 【解析】构造函数()()e 10xf x x x =-->,利用导数可得0.2e 1.2b a >>=,进而可得 1.2e 3.2>,可得a c >,再利用函数()()21ln 1x g x x x -=-+,可得ln 3.2 1.1>,即得.【详解】令()()e 10xf x x x =-->,则()e 10x f x '=->,∴()f x 在()0,∞+上单调递增,∴0.20.21 1.2e a b >+=>=,0.2 1.21.e ln 2e a >==,ln 3.2c =,∵()()()6551.262.7387.4,3.2335.5e e >≈≈=,∴ 1.2e 3.2>,故a c >,设()()21ln 1x g x x x -=-+,则()()()()()22221211011x xx g x x x x x +--=-=≥++',所以函数在()0,∞+上单调递增,由()10g =,所以1x >时,()0g x >,即()21ln 1x x x ->+,∴()()22121.6155ln 3.2ln 2ln1.611 1.1211.613950--=+>+=>=++,又1 1.2 1.21,1 1.1b <<<<,∴ 1.1c b >>,故a c b >>.故选:B.【点睛】本题解题关键是构造了两个不等式()e 10xx x >+>与()21ln (1)1x x x x ->>+进行放缩,需要学生对一些重要不等式的积累.【题型专练】1(2022·山东烟台·高二期末)设a =0.9,b =9ln e10c ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系为()A .b c a >>B .b a c >>C .c b a >>D .c a b>>【答案】B【分析】构造函数()ln 1f x x x =--,()g x x =-.【详解】令()ln 1f x x x =--,因为11()1x f x x x'-=-=所以,当01x <<时,()0f x '<,()f x 单调递减,所以(0.9)0.9ln 0.91(1)0f f =-->=,即90.9ln 0.91ln(e)10>+=,a c >;令()g x x =()1g x '=-所以,当114x <<时,()0g x '>,()g x 单调递增,所以(0.9)(1)g g <,即0.90<,0.9a b <.综上,c a b <<.故选:B2.(2022·山东青岛·高二期末)已知ln 3a π=,2b =,1sin 0.042c ⎫=-⎪⎪⎭,则a ,b ,c 的大小关系是()A .c b a >>B .a b c>>C .b a c>>D .a c b>>【答案】C 【解析】【分析】构造函数得出,a b 大小,又0c <即得出结论.【详解】构造函数()()()2ln 212ln 1f x x x x x =--=-+,则a b f -=,()1210f x x ⎛⎫'=-< ⎪⎝⎭在()1,+∞上恒成立,则()y f x =在()1,+∞上单调递减,故()10a b f f -=<=,则0b a >>,()π103x x =+>,则()π30121100433.x .-+-=>=,由对于函数()πsin 02g x x x x ⎛⎫=<< ⎪⎝⎭-,()πcos 1002g x x ,x ⎛⎫'=<<< ⎪⎝⎭-恒成立,所以,()()sin 00g x x x g =<=-即sin x x <在π0,2⎛⎫ ⎪⎝⎭上恒成立.所以,1sin0.04sin sin 02x x x ⎫<=<-<⎪⎭(注:004009020305.x .,...<<<<)所以,b a c >>故选:C3.(2022·湖北襄阳·高二期末)设253e 4a =,342e 5b =,35c =,则()A .b c a <<B .a b c <<C .c b a<<D .c a b<<【答案】C 【解析】【分析】根据式子结构,构造函数()()e ,01xf x x x=<<,利用导数判断单调性,得到2354f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,即可判断出a b >.记()()e 2,01xg x x x =-<<,推理判断出b c >.【详解】24452533e23e 542e e 534a b ==.记()()e ,01x f x x x =<<,则()()2e 10x xf x x -'=<,所以()e xf x x =在()0,1上单调递减.所以2354f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以a b >.433422e e 5325354b c ⎛⎫-= ⎪⨯⎝--⎭=.记()()e 2,01x g x x x =-<<,则()e 2xg x '=-.所以在()0,ln 2x ∈上,()0g x '<,则()g x 单调递减;在()ln 2,1x ∈上,()0g x '>,则()g x 单调递增;所以()()()ln 2min ln 2e 2ln 221ln 20g x g ==-⨯=->,所以()min 304g g x ⎛⎫>> ⎪⎝⎭,即3422e 0534b c ⨯⎛⎫-> ⎪⎝⎭=-.所以b c >.综上所述:c b a <<.故选:C4.(2022·福建宁德·高二期末)已知a ,R b ∈,且221a b >>,则()A .ln ln a b a b -<-e eB .ln ln b a a b <C .e a b ba->D .sin sin 1a ba b-<-【答案】D 【解析】【分析】由题设有0a b >>,分别构造e ln x y x =-、ln xy x=、e x y x =、sin y x x =-,利用导数研究在,()0x ∈+∞上的单调性,进而判断各项的正误.【详解】由221a b >>,即0a b >>,A :若e ln x y x =-且,()0x ∈+∞,则1e xy x'=-,故12|20x y ='=-<,1|e 10x y ='=->,即y '在1(,1)2上存在零点且y '在(0,)+∞上递增,所以y 在(0,)+∞上不单调,则e ln e ln a b a b -<-不一定成立,排除;B :若ln x y x =且,()0x ∈+∞,则21ln xy x -'=,所以(0,e)上0y '>,y 递增;(e,)+∞上0y '<,y 递减;故y 在(0,)+∞上不单调,则ln ln a ba b<不一定成立,排除;C :若e x y x =且,()0x ∈+∞,则e (1)0x y x '=+>,即y 在(0,)+∞上递增,所以e e a b a b >,即e a b ba-<,排除;D :若sin y x x =-且,()0x ∈+∞,则1cos 0y x '=-≥,即y 在(0,)+∞上递增,所以sin sin a a b b ->-,即sin sin 1a ba b-<-,正确.故选:D5.(2022·贵州贵阳·高二期末(理))设 1.01e a =,3eb =,ln3c =,则a ,b ,c 的大小关系是()A .b a c >>B .c a b>>C .a c b >>D .a b c>>【答案】D 【解析】【分析】分析可得2a >,(1,2)b ∈,(1,2)c ∈,令()ln ,[e,)e xf x x x =-∈+∞,利用导数可得()f x 的单调性,根据函数单调性,可比较ln 3和3e的大小,即可得答案.【详解】由题意得 1.011e e 2a =>>,3(2e 1,)b =∈,ln 3(1,2)c =∈,令()ln ,[e,)exf x x x =-∈+∞,则11e ()0e ex f x x x -'=-=≤,所以()f x 在[e,)+∞为减函数,所以(3)(e)f f <,即3eln 3ln e 0e e-<-=,所以3ln 3e<,则 1.013e ln 3e >>,即a b c >>.故选:D6.(2022·重庆南开中学高二期末)已知6ln1.25a =,0.20.2e b =,13c =,则()A .a b c <<B .c b a <<C .c a b <<D .a c b<<【答案】A 【解析】【分析】0.20.20.20.2e e ln e b ==,令()ln f x x x =,利用导数求出函数()f x 的单调区间,令()e 1xg x x =--,利用导数求出函数()g x 的单调区间,从而可得出0.2e 和1.2的大小,从而可得出,a b 的大小关系,将,b c 两边同时取对数,然后作差,从而可得出,b c 的大小关系,即可得出结论.【详解】解:0.20.20.20.2e e ln e b ==,6ln1.2 1.2ln1.25a ==,令()ln f x x x =,则()ln 1f x x '=+,当10ex <<时,()0f x '<,当1e x >时,()0f x '>,所以函数()f x 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,e ⎛⎫+∞ ⎪⎝⎭上递增,令()e 1xg x x =--,则()e 1x g x '=-,当0x <时,()0g x '<,当0x >时,()0g x '>,所以函数()g x 在(),0∞-上递减,在()0,∞+上递增,所以()()0.200g g >=,即0.21e10.2 1.2e>+=>,所以()()0.2e 1.2f f >,即0.20.2e e 1.22ln ln1.>,所以b a >,由0.20.2e b =,得()0.211ln ln 0.2e ln 55b ==+,由13c =,得1ln ln 3c =,11151ln ln ln ln ln 35535c b -=--=-,因为55625510e 3243⨯⎛⎫=>> ⎪⎝⎭,所以155e 3>,所以51ln 35>,所以ln ln 0c b ->,即ln ln c b >,所以c b >,综上所述a b c <<.故选:A.【点睛】本题考查了比较大小的问题,考查了同构的思想,考查了利用导数求函数的单调区间,解决本题的关键在于构造函数,有一定的难度.7.(2022·湖北恩施·高二期末多选)已知212ln 204a a -=>,22122ln 0eb b --=>,221ln 303c c -=>,则()A .c b <B .b a<C .c a<D .b c<【答案】AC 【解析】【分析】根据题意可将式子变形为2211ln ln 44a a -=-,222211ln ln e e b b -=-,2211ln ln 33c c -=-,构造函数()ln f x x x =-,利用导数求解函数()f x 的单调性,即可求解.【详解】解:由题意知,211,1,23a b c >>>,对三个式子变形可得2211ln ln 44a a -=-,222211ln ln e eb b -=-,2211ln ln 33c c -=-,设函数()ln f x x x =-,则()111x f x x x-'=-=.由()0f x ¢>,得1x >;由()0f x <,得01x <<,则()f x 在()0,1上单调递减,在()1,+∞上单调递增,因为211101e 43<<<<,所以222b a c >>,所以c a b <<.故选:AC.8.(2022·安徽·歙县教研室高二期末)已知01x y z ∈、、(,),且满足2e 2e x x =,3e 3e y y =,4e 4e z z =,则()A .x y z <<B .x z y<<C .z y x<<D .z x y<<【答案】C 【解析】【分析】先对已知条件取对数后得到ln ln22x x -=-,ln ln33y y -=-,ln ln44z z -=-.根据式子结构,构造函数()ln m x x x =-,利用导数判断单调性,比较大小.【详解】由2e 2e x x =得2ln ln2,x x +=+即ln ln22x x -=-.同理得:ln ln33y y -=-,ln ln44z z -=-.令()ln ,m x x x =-则()111xm x x x-=-='.故()m x 在()0,1上单调递增,1∞+(,)上单调递减.所以z y x <<.故选:C.。
2023年新高考数学一轮复习4-2 应用导数研究函数的单调性(知识点讲解)解析版
专题4.2 应用导数研究函数的单调性(知识点讲解)【知识框架】【核心素养】考查利用导数求函数的单调区间或讨论函数的单调性以及由函数的单调性求参数范围,凸显数学运算、逻辑推理的核心素养.【知识点展示】(一)导数与函数的单调性1.在(,)a b 内可导函数()f x ,'()f x 在(,)a b 任意子区间内都不恒等于0.'()0()f x f x ≥⇔在(,)a b 上为增函数.'()0()f x f x ≤⇔在(,)a b 上为减函数.2.利用导数研究函数的单调性的方法步骤:①确定函数f(x)的定义域;②求导数f ′(x);③由f ′(x)>0(或f ′(x)<0)解出相应的x 的取值范围,当f ′(x)>0时,f(x)在相应区间上是增函数;当f ′(x)<0时,f(x)在相应区间上是减增函数.特别提醒:讨论函数的单调性或求函数的单调区间的实质是解不等式,求解时,要坚持“定义域优先”原则.(二)常用结论1.在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件.2.可导函数f (x )在(a ,b )上是增(减)函数的充要条件是对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零.【常考题型剖析】题型一:判断或证明函数的单调性例1.(2017·山东·高考真题(文))若函数()e xf x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是( )A .()2xf x -= B .()2f x x = C .()-3xf x = D .()cos f x x =【答案】A 【解析】 【详解】对于A,令()e 2x x g x -=⋅,11()e (22ln )e 2(1ln )022x x x x xg x ---'=+=+>,则()g x 在R 上单调递增,故()f x 具有M 性质,故选A.例2.(2021·全国·高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围.【答案】(1)()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭;(2)1a e >.【解析】 【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据()10f >及(1)的单调性性可得()min 0f x >,从而可求a 的取值范围. 【详解】(1)函数的定义域为()0,∞+, 又()23(1)()ax ax f x x+-'=,因为0,0a x >>,故230ax +>, 当10x a<<时,()0f x '<;当1x a >时,()0f x '>;所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭.(2)因为()2110f a a =++>且()y f x =的图与x 轴没有公共点,所以()y f x =的图象在x 轴的上方,由(1)中函数的单调性可得()min 1133ln 33ln f x f a a a ⎛⎫==-=+ ⎪⎝⎭,故33ln 0a +>即1a e>.例3.(2021·全国·高考真题(文))已知函数32()1f x x x ax =-++.(1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标. 【答案】(1)答案见解析;(2) 和()11a ---,. 【解析】 【分析】(1)首先求得导函数的解析式,然后分类讨论导函数的符号即可确定原函数的单调性;(2)首先求得导数过坐标原点的切线方程,然后将原问题转化为方程求解的问题,据此即可求得公共点坐标. 【详解】(1)由函数的解析式可得:()232f x x x a '=-+,导函数的判别式412a ∆=-,当14120,3a a ∆=-≤≥时,()()0,f x f x '≥在R 上单调递增,当时,的解为:12113113,33a ax x --+-==, 当113,3a x ⎛⎫--∈-∞ ⎪ ⎪⎝⎭时,单调递增;当113113,33a a x ⎛⎫--+-∈ ⎪ ⎪⎝⎭时,单调递减;当113,3a x ⎛⎫+-∈+∞ ⎪ ⎪⎝⎭时,单调递增;综上可得:当时,在R 上单调递增,当时,在113,3a ⎛⎫---∞ ⎪ ⎪⎝⎭,113,3a⎛⎫+-+∞ ⎪ ⎪⎝⎭上单调递增,在⎣⎦上单调递减. (2)由题意可得:()3200001f x x x ax =-++,()200032f x x x a '=-+,则切线方程为:()()()322000000132y x x ax x x a x x --++=-+-,切线过坐标原点,则:()()()32200000001320x x ax x x a x --++=-+-,整理可得:3200210x x --=,即:()()20001210x x x -++=,解得:,则,()0'()11f x f a '==+切线方程为:()1y a x =+, 与联立得321(1)x x ax a x -++=+,化简得3210x x x --+=,由于切点的横坐标1必然是该方程的一个根,()1x ∴-是321x x x --+的一个因式,∴该方程可以分解因式为()()2110,x x --=解得121,1x x ==-,()11f a -=--,综上,曲线过坐标原点的切线与曲线的公共点的坐标为和()11a ---,. 【总结提升】1.利用导数研究函数的单调性的关键在于准确判定导数的符号,易错点是忽视函数的定义域.2.当f (x )含参数时,需依据参数取值对不等式解集的影响进行分类讨论.讨论的标准有以下几种可能:(1)f ′(x )=0是否有根;(2)若f ′(x )=0有根,求出的根是否在定义域内; (3)若在定义域内有两个根,比较两个根的大小. 题型二:求函数的单调区间例4.(2012·辽宁·高考真题(文))函数y=12x 2-㏑x 的单调递减区间为( ) A .(-1,1] B .(0,1] C .[1,+∞) D .(0,+∞)【答案】B 【解析】 【详解】对函数21ln 2y x x =-求导,得211x y x x x='-=-(x>0),令210{0x x x -≤>解得(0,1]x ∈,因此函数21ln 2y x x =-的单调减区间为(0,1],故选B例5.(2016·北京·高考真题(理))设函数()a x f x xe bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+, (1)求a ,b 的值;(2)求()f x 的单调区间.【答案】(Ⅰ)2a =,b e =;(2)()f x 的单调递增区间为(,)-∞+∞. 【解析】 【详解】试题分析:(Ⅰ)根据题意求出,根据(2)22,(2)1f e f e =+=-'求a,b 的值即可;(Ⅱ)由题意判断的符号,即判断1()1x g x x e -=-+的单调性,知g(x)>0,即>0,由此求得f(x)的单调区间.试题解析:(Ⅰ)因为()a x f x xe bx -=+,所以()(1)a x f x x e b -=-+'. 依题设,(2)22,{(2)1,f e f e =+=-'即222222,{1,a a eb e e b e --+=+-+=- 解得2,e a b ==.(Ⅱ)由(Ⅰ)知2()x f x xe ex -=+. 由21()(1)x x f x e x e --=-+'及20x e ->知,与11x x e --+同号.令1()1x g x x e -=-+,则1()1x g x e -=-+'. 所以,当时,,在区间上单调递减; 当时,,在区间上单调递增. 故是在区间上的最小值,从而.综上可知,,.故的单调递增区间为.【总结提升】1.利用导数求函数单调区间的方法(1)当导函数不等式可解时,解不等式f ′(x )>0或f ′(x )<0求出单调区间.(2)当方程f ′(x )=0可解时,解出方程的实根,按实根把函数的定义域划分区间,确定各区间f ′(x )的符号,从而确定单调区间.(3)若导函数的方程、不等式都不可解,根据f ′(x )结构特征,利用图象与性质确定f ′(x )的符号,从而确定单调区间.温馨提醒:所求函数的单调区间不止一个,这些区间之间不能用并集“∪”及“或”连接,只能用“,”“和”字隔开.2.解决含参数的函数的单调性问题应注意两点(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点. 题型三: 利用函数的单调性解不等式例6.(2015·全国·高考真题(理))设函数'()f x 是奇函数()f x (x ∈R )的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( ) A .(,1)(0,1)-∞- B .(1,0)(1,)C .(,1)(1,0)-∞--D .(0,1)(1,)⋃+∞【答案】A 【解析】 【详解】构造新函数()()f xg x x=,()()()2'xf x f x g x x -=',当0x >时()'0g x <. 所以在()0,∞+上()()f xg x x=单减,又()10f =,即()10g =.所以()()0f x g x x=>可得01x <<,此时()0f x >,又()f x 为奇函数,所以()0f x >在()(),00,-∞⋃+∞上的解集为:()(),10,1-∞-⋃. 故选A.点睛:本题主要考查利用导数研究函数的单调性,需要构造函数,例如()()xf x f x '-,想到构造()()f xg x x=.一般:(1)条件含有()()f x f x '+,就构造()()x g x e f x =,(2)若()()f x f x -',就构造()()xf xg x e =,(3)()()2f x f x +',就构造()()2x g x e f x =,(4)()()2f x f x -'就构造()()2xf xg x e =,等便于给出导数时联想构造函数.例7.(2017·江苏·高考真题)已知函数()3x x 1f x =x 2x+e -e-,其中e 是自然数对数的底数,若()()2f a-1+f 2a 0≤,则实数a 的取值范围是_________.【答案】1[1,]2-【解析】 【详解】因为31()2e ()ex x f x x x f x -=-++-=-,所以函数()f x 是奇函数,因为22()32e e 320x x f 'x x x -=-++≥-+,所以数()f x 在R 上单调递增,又2(1)(2)0f a f a -+≤,即2(2)(1)f a f a ≤-,所以221a a ≤-,即2210a a +-≤, 解得112a -≤≤,故实数a 的取值范围为1[1,]2-. 【总结提升】比较大小或解不等式的思路方法(1)根据导数计算公式和已知的不等式构造函数,利用不等关系得出函数的单调性,即可确定函数值的大小关系,关键是观察已知条件构造出恰当的函数.(2)含有两个变元的不等式,可以把两个变元看作两个不同的自变量,构造函数后利用单调性确定其不等关系.题型四:利用函数的单调性比较大小 例8.(2022·全国·高考真题(理))已知3111,cos ,4sin 3244a b c ===,则( ) A .c b a >> B .b a c >>C .a b c >>D .a c b >>【答案】A 【解析】 【分析】 由14tan 4c b =结合三角函数的性质可得c b >;构造函数21()cos 1,(0,)2f x x x x =+-∈+∞,利用导数可得b a >,即可得解. 【详解】因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭ 所以11tan 44>,即1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞,()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->,所以b a >,所以c b a >>, 故选:A例9.(2007·陕西·高考真题(理))已知f (x )是定义在(0,+∞) 上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意的0<a <b ,则必有( ). A .af (b )≤bf (a ) B .bf (a )≤af (b ) C .af (a )≤f (b ) D .bf (b )≤f (a )【答案】A【解析】 【详解】因为xf ′(x )≤-f (x ),f (x )≥0,所以()f x x ⎡⎤⎢⎥⎣⎦′=2'()()xf x f x x -≤22()f x x -≤0, 则函数()f x x在(0,+∞)上单调递减.由于0<a <b ,则()()f a f b a b≥,即af (b )≤bf (a ) 例10.(2013·天津·高考真题(文))设函数()2x f x e x =+-,2()ln 3g x x x =+-若实数,a b 满足()0f a =,()0g b =则( )A .()0()g a f b <<B .()0()f b g a <<C .0()()g a f b <<D .()()0f b g a <<【答案】A 【解析】 【详解】试题分析:对函数()2x f x e x =+-求导得()=1x f x e '+,函数单调递增,()()010,110f f e =-=+,由()0f a =知01a <<,同理对函数2()ln 3g x x x =+-求导,知在定义域内单调递增,(1)-20g =<,由()0g b =知1b >,所以()0()g a f b <<.例11.(2022·全国·高考真题)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<【答案】C 【解析】 【分析】构造函数()ln(1)f x x x =+-, 导数判断其单调性,由此确定,,a b c 的大小. 【详解】设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++, 当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增, 所以1()(0)09f f <=,所以101ln 099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln +01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11xx x g x x x x -+'=+=--, 令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当01x <<时,()0h x '<,函数2()e (1)+1x h x x =-单调递减,11x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增, 又(0)0h =,所以当01x <<时,()0h x <,所以当01x <<时,()0g x '>,函数()e ln(1)x g x x x =+-单调递增, 所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c > 故选:C. 【总结提升】1.在比较()1f x ,()2f x ,,()n f x 的大小时,首先应该根据函数()f x 的奇偶性与周期性将()1f x ,()2f x ,,()n f x 通过等值变形将自变量置于同一个单调区间,然后根据单调性比较大小.2.构造函数解不等式或比较大小一般地,在不等式中若同时含有f (x )与f ′(x ),常需要通过构造含f (x )与另一函数的和、差、积、商的新函数,再借助导数探索新函数的性质,进而求出结果.常见构造的辅助函数形式有:(1)f (x )>g (x )→F (x )=f (x )-g (x ); (2)xf ′(x )+f (x )→[xf (x )]′; (3)xf ′(x )-f (x )→()[]'f x x; (4)f ′(x )+f (x )→[e x f (x )]′; (5)f ′(x )-f (x )→()[]'x f x e. 题型五:根据函数的单调性求参数范围例12.(2014·全国·高考真题(文))若函数()ln f x kx x =-在区间()1,+∞上单调递增,则实数k 的取值范围是A .(],2-∞-B .(],1-∞-C .[)2,+∞D .[)1,+∞【答案】D 【解析】 【详解】 试题分析:,∵函数()ln f x kx x =-在区间()1,+∞单调递增,∴在区间()1,+∞上恒成立.∴,而在区间()1,+∞上单调递减,∴.∴的取值范围是[)1,+∞.故选D .例13.(2019·北京·高考真题(理))设函数f (x )=e x +a e −x (a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】 -1; (],0-∞. 【解析】 【分析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用导函数的解析式可得a 的取值范围. 【详解】若函数()x xf x e ae -=+为奇函数,则()()(),x x x x f x f x e ae e ae ---=-+=-+,()()1 0x x a e e -++=对任意的x 恒成立.若函数()x x f x e ae -=+是R 上的增函数,则()' 0x xf x e ae -=-≥恒成立,2,0x a e a ≤≤.即实数a 的取值范围是(],0-∞例14.(2014·全国·高考真题(理))若函数()cos 2sin f x x a x =+在区间(,)62ππ内是减函数,则实数a 的取值范围是_______. 【答案】2a ≤ 【解析】()()2sin 2cos 4sin cos cos cos 4sin .,62f x x a x x x a x x x a x ππ⎛⎫=-+=-+=-+∈ ⎪⎝'⎭时,()f x 是减函数,又cos 0x >,∴由()0f x '≤得4sin 0,4sin x a a x -+≤∴≤在,62ππ⎛⎫⎪⎝⎭上恒成立,()min 4sin ,,262a x x a ππ⎛⎫⎛⎫∴≤∈∴≤ ⎪ ⎪⎝⎭⎝⎭.【总结提升】由函数的单调性求参数的取值范围的方法(1)可导函数在区间(a ,b )上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立,得到关于参数的不等式,从而转化为求函数的最值问题,求出参数的取值范围.(2)可导函数在区间(a ,b )上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,从而转化为不等式问题,求出参数的取值范围.(3)若已知f (x )在区间I 上的单调性,区间I 上含有参数时,可先求出f (x )的单调区间,令I 是其单调区间的子集,从而求出参数的取值范围. 题型六:利用导数研究函数的图象例15.(2021·浙江·高考真题)已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+-B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =【答案】D 【解析】 【分析】由函数的奇偶性可排除A 、B ,结合导数判断函数的单调性可判断C ,即可得解.【详解】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ; 对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ;对于C ,()()21sin 4y f x g x x x ⎛⎫==+ ⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭,当4x π=时,2102164y ππ⎛⎫'=+> ⎪⎝⎭,与图象不符,排除C. 故选:D.例16.(2018·全国·高考真题(文))函数()2e e x xf x x --=的图像大致为 ( )A .B .C .D .【答案】B 【解析】 【详解】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:20,()()()x xe e xf x f x f x x --≠-==-∴为奇函数,舍去A,1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x ---+---++=='∴>'>, 所以舍去C ;因此选B.例17.(2017·浙江·高考真题)函数y ()y ()f x f x ==,的导函数的图象如图所示,则函数y ()f x =的图象可能是A .B .C .D .【答案】D 【解析】 【详解】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数'()f x 的正负,得出原函数()f x 的单调区间.【规律方法】函数图象的辨识主要从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象. 题型七:与函数单调性相关的恒成立问题例18.(2022·广东·执信中学高三阶段练习)已知函数 ()e xf x x =-,则 ()f x 的单调递增区间为________; 若对任意的()0,x ∞∈+, 不等式 ln 2e 1xx ax+-≥恒成立, 则实数 a 的取值范围为________.【答案】 (0,)+∞(填[)0,∞+亦可) 1(,]2-∞【解析】 【分析】求出函数导数,利用导数求函数单调区间,不等式恒成立可分离参数后求函数()e ln x g x x x x =⋅--的最小值,令ln t x x =+换元后可根据单调性求最值. 【详解】 ()1x f x e =-',令()0f x '>,可得()f x 的单调递增区间(0,)+∞ (或[)0+∞,亦可); ln 2e 1x x ax+-≥可化为2e ln x a x x x ≤⋅--. 令()e ln x g x x x x =⋅--=ln e e ln x x x x ⋅--=ln e (ln )x x x x +-+, 设ln t x x =+,则()e =-t h t t ,由()e xf x x =-在[)0+∞,上单调递增可知, 0()(0)e 01h t h ≥=-=,则21a ≤, 故解得12a ≤.故答案为:(0,)+∞(填[)0,∞+亦可);12a ≤例19.(2022·全国·高三专题练习)已知函数()()e ln xf x m x m =+∈R ,若对任意正数12,x x ,当12x x >时,都有()()1212f x f x x x ->-成立,则实数m 的取值范围是______. 【答案】[)0,∞+ 【解析】 【分析】令()()g x f x x =-,进而原题等价于()g x 在()0,∞+单调递增,从而转化为()e 10x mg x x'=+-≥,在()0,∞+上恒成立,参变分离即可求出结果.【详解】由()()1212f x f x x x ->-得,()()1122f x x f x x ->- 令()()g x f x x =-,∴()()12g x g x > ∴()g x 在()0,∞+单调递增,又∵()()e ln xg x f x x m x x =-=+-∴()e 10xmg x x'=+-≥,在()0,∞+上恒成立,即()1e x m x ≥- 令()()1e x h x x =-,则()()e 110xh x x '=-++<∴()h x 在()0,∞+单调递减,又因为()()01e 00h =-⨯=,∴0m ≥.故答案为:[)0,∞+.例20.(2010·全国·高考真题(理))设函数()21x f x e x ax =---.(1)若0a =,求()f x 的单调区间;(2)若当0x ≥时()0f x ≥恒成立,求a 的取值范围.【答案】(1) f (x )在(-∞,0)单调减少,在(0,+∞)单调增加;(2) a 的取值范围为(-∞,12]. 【解析】 【分析】 (1)a =0时,()1x f x e x=--,()1x f x e '=-.分别令f ′(x )<0,f ′(x )>0可求()f x 的单调区间;(2求导得到)f ′(x )=e x -1-2ax .由(1)知e x ≥1+x ,当且仅当x =0时等号成立.故问题转化为f ′(x )≥x -2ax =(1-2a )x ,从而对1-2a 的符号进行讨论即可得出结果. 【详解】 (1)a =0时,()1x f x e x=--,()1x f x e '=-.当x ∈(-∞,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.故f (x )在(-∞,0)单调减少,在(0,+∞)单调增加 (2)()12x f x e ax'-=-.由(1)知1x e x ≥+,当且仅当x =0时等号成立.故f ′(x )≥x -2ax =(1-2a )x ,从而当1-2a ≥0,即a ≤时,f ′(x )≥0(x ≥0),而f (0)=0,于是当x ≥0时,f (x )≥0.由1x e x ≥+ (x ≠0)得1x e x -≥- (x ≠0),从而当a >时,f ′(x )< 1x e -+2a (1x e --)=x e - (1x e -)(x e -2a ),故当x ∈(0,ln2a )时, f ′(x )<0,而f (0)=0,于是当x ∈(0,ln2a )时,f (x )<0, 综上可得a 的取值范围为(-∞,]. 【规律方法】处理此类问题,往往利用“构造函数法”、“分离参数法”.。
高考数学函数比较大小方法介绍与解题方法
函数1.比较大小【高考真题】1.(2022·新高考全国I 卷)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c<a<bD .a c b <<【答案】C【分析】构造函数()ln(1)f x x x =+-, 导数判断其单调性,由此确定,,a b c 的大小. 【详解】方法一:构造法设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++, 当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增, 所以1()(0)09f f <=,所以101ln 099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln +01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11x xx g x x x x -+'=+=--, 令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当021x <<-时,()0h x '<,函数2()e (1)+1x h x x =-单调递减, 当211x -<<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增, 又(0)0h =,所以当021x <<-时,()0h x <,所以当021x <<-时,()0g x '>,函数()e ln(1)x g x x x =+-单调递增, 所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c > 故选:C. 方法二:比较法 解: 0.10.1a e = , 0.110.1b =- , ln(10.1)c =-- , ① ln ln 0.1ln(10.1)a b -=+- ,令 ()ln(1),(0,0.1],f x x x x =+-∈ 则 1()1011x f x x x-'=-=<-- , 故 ()f x 在 (0,0.1] 上单调递减,可得 (0.1)(0)0f f <= ,即 ln ln 0a b -< ,所以 a b < ; ① 0.10.1ln(10.1)a c e -=+- , 令 ()ln(1),(0,0.1],x g x xe x x =+-∈则 ()()()1111'11x xxx x e g x xe e x x+--=+-=-- , 令 ()(1)(1)1x k x x x e =+-- ,所以 2()(12)0x k x x x e '=--> ,所以 ()k x 在 (0,0.1] 上单调递增,可得 ()(0)0k x k >> ,即 ()0g x '> ,所以 ()g x 在 (0,0.1] 上单调递增,可得 (0.1)(0)0g g >= ,即 0a c -> ,所以 .a c > 故 .c a b <<2.(2021·新高考全国II 卷)已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( ) A .c b a << B .b a c <<C .a c b <<D .a b c <<【答案】C【分析】对数函数的单调性可比较a 、b 与c 的大小关系,由此可得出结论. 【详解】55881log 2log 5log 22log 32a b =<==<=,即a c b <<. 故选:C.3.(2022·全国甲卷文数)已知910,1011,89m m m a b ==-=-,则( ) A .0a b >> B .0a b >>C .0b a >>D .0b a >>【答案】A【分析】法一:根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出.【详解】[方法一]:(指对数函数性质)由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m >, 所以8log 989890m b =-<-=.综上,0a b >>. [方法二]:【最优解】(构造函数) 由910m =,可得9log 10(1,1.5)m =∈.根据,a b 的形式构造函数()1(1)m f x x x x =--> ,则1()1m f x mx -'=-, 令()0f x '=,解得110m x m -= ,由9log 10(1,1.5)m =∈ 知0(0,1)x ∈ .()f x 在 (1,)+∞ 上单调递增,所以(10)(8)f f > ,即 a b > ,又因为9log 10(9)9100f =-= ,所以0a b >> .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法; 法二:利用,a b 的形式构造函数()1(1)m f x x x x =-->,根据函数的单调性得出大小关系,简单明了,是该题的最优解.4.(2022·全国甲卷理数)已知3111,cos ,4sin 3244a b c ===,则( ) A .c b a >> B .b a c >> C .a b c >> D .a c b >>【答案】A 【分析】由14tan 4c b =结合三角函数的性质可得c b >;构造函数()()21cos 1,0,2f x x x x ∞=+-∈+,利用导数可得b a >,即可得解.【详解】[方法一]:构造函数 因为当π0,,tan 2x x x ⎛⎫∈< ⎪⎝⎭故14tan 14c b =>,故1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞, ()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,故1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->, 所以b a >,所以c b a >>,故选A[方法二]:不等式放缩 因为当π0,,sin 2x x x ⎛⎫∈< ⎪⎝⎭,取18x得:2211131cos 12sin 1248832⎛⎫=->-= ⎪⎝⎭,故b a > 1114sin cos 17sin 444ϕ⎛⎫+=+ ⎪⎝⎭,其中0,2πϕ⎛⎫∈ ⎪⎝⎭,且14sin ,cos 1717ϕϕ==当114sin cos 1744+=时,142πϕ+=,及124πϕ=-此时14sin cos 417ϕ==,11cos sin 417ϕ== 故11cos 417=411sin 4sin 4417<=<,故b c < 所以b a >,所以c b a >>,故选A [方法三]:泰勒展开设0.25x =,则2310.251322a ==-,2410.250.25cos 1424!b =≈-+, 241sin10.250.2544sin1143!5!4c ==≈-+,计算得c b a >>,故选A. [方法四]:构造函数 因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭,所以11tan 44>,即1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞,()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->,所以b a >,所以c b a >>,故选:A .[方法五]:【最优解】不等式放缩 因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭,所以11tan 44>,即1cb >,所以c b >;因为当π0,,sin 2x x x ⎛⎫∈< ⎪⎝⎭,取18x得2211131cos 12sin 1248832⎛⎫=->-= ⎪⎝⎭,故b a >,所以c b a >>. 故选:A .【整体点评】方法4:利用函数的单调性比较大小,是常见思路,难点在于构造合适的函数,属于通性通法; 方法5:利用二倍角公式以及不等式π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭放缩,即可得出大小关系,属于最优解.5.(2021·全国乙卷理数)设2ln1.01a =,ln1.02b =, 1.041c =.则( ) A .a b c << B .b<c<a C .b a c << D .c<a<b【答案】B【分析】利用对数的运算和对数函数的单调性不难对a ,b 的大小作出判定,对于a 与c ,b 与c 的大小关系,将0.01换成x ,分别构造函数()()2ln 1141f x x x =+-++,()()ln 12141g x x x =+-++,利用导数分析其在0的右侧包括0.01的较小范围内的单调性,结合f (0)=0,g (0)=0即可得出a 与c ,b 与c 的大小关系. 【详解】[方法一]:2ln1.01a =2ln1.01=()2ln 10.01=+()2ln 120.010.01=+⨯+ln1.02b >=,所以b a <;下面比较c 与,a b 的大小关系.记()()2ln 1141f x x x =+-++,则()00f =,()()()214122114114x x f x x x x x +--=-+'=+++, 由于()()2214122x x x x x x +-+=-=-所以当0<x <2时,()21410x x +-+>,即()141x x +>+,0fx ,所以()f x 在[]0,2上单调递增,所以()()0.0100f f >=,即2ln1.01 1.041>-,即a c >; 令()()ln 12141g x x x =+-++,则()00g =,()()()21412221214114x x g x x x x x +--=-=++++', 由于()2214124x x x +-+=-,在x >0时,()214120x x +-+<,所以()0g x '<,即函数()g x 在[0,+∞)上单调递减,所以()()0.0100g g <=,即ln1.02 1.041<-,即b <c ; 综上,b<c<a , 故选:B. [方法二]:令()21ln 1(1)2x f x x x ⎛⎫+=--> ⎪⎝⎭()()221-01x f x x =+'-<,即函数()f x 在(1,+∞)上单调递减()()10.0410,ff b c +<=∴<令()232ln 1(13)4x g x x x ⎛⎫+=-+<< ⎪⎝⎭()()()21303x x g x x --+'=>,即函数()g x 在(1,3)上单调递增()()10.0410,gg a c +=∴综上,b<c<a , 故选:B.【点睛】本题考查比较大小问题,难度较大,关键难点是将各个值中的共同的量用变量替换,构造函数,利用导数研究相应函数的单调性,进而比较大小,这样的问题,凭借近似估计计算往往是无法解决的.6.(2020·全国I 卷理数)若242log 42log a ba b +=+,则( )A .2a b >B .2a b <C .2a b >D .2a b <【答案】B【分析】设2()2log x f x x =+,利用作差法结合()f x 的单调性即可得到答案.【详解】设2()2log x f x x =+,则()f x 为增函数,因为22422log 42log 2log a b ba b b +=+=+所以()(2)f a f b -=2222log (2log 2)a b a b +-+=22222log (2log 2)b bb b +-+21log 102==-<, 所以()(2)f a f b <,所以2a b <.2()()f a f b -=22222log (2log )a b a b +-+=222222log (2log )b b b b +-+=22222log b b b --,当1b =时,2()()20f a f b -=>,此时2()()f a f b >,有2a b >当2b =时,2()()10f a f b -=-<,此时2()()f a f b <,有2a b <,所以C 、D 错误. 故选:B.【点晴】本题主要考查函数与方程的综合应用,涉及到构造函数,利用函数的单调性比较大小,是一道中档题.7.(2020·全国II 卷文/理数)若2233x y x y ---<-,则( ) A .ln(1)0y x -+> B .ln(1)0y x -+<C .ln ||0x y ->D .ln ||0x y -<【答案】A【分析】将不等式变为2323x x y y ---<-,根据()23t tf t -=-的单调性知x y <,以此去判断各个选项中真数与1的大小关系,进而得到结果.【详解】由2233x y x y ---<-得:2323x x y y ---<-,令()23t tf t -=-,2x y =为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -与1的大小不确定,故CD 无法确定.故选:A.【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到,x y 的大小关系,考查了转化与化归的数学思想.8.(2020·全国III 卷文数)设3log 2a =,5log 3b =,23c =,则( ) A .a c b << B .a b c << C .b<c<a D .c<a<b【答案】A【分析】分别将a ,b 改写为331log 23a =,351log 33b =,再利用单调性比较即可.【详解】因为333112log 2log 9333a c =<==,355112log 3log 25333b c =>==,所以a c b <<. 故选:A.【点晴】本题考查对数式大小的比较,考查学生转化与化归的思想,是一道中档题.9.(2020·全国III 卷理数)已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <cC .b <c <aD .c <a <b【答案】A【分析】由题意可得a 、b 、()0,1c ∈,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b =,得85b =,结合5458<可得出45b <,由13log 8c =,得138c =,结合45138<,可得出45c >,综合可得出a 、b 、c 的大小关系.【详解】由题意可知a 、b 、()0,1c ∈,()222528log 3lg 3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg 522lg 5lg 25lg 5a b ⎛⎫⎛⎫++⎛⎫==⋅<⋅==<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,a b ∴<; 由8log 5b =,得85b =,由5458<,得5488b <,54b ∴<,可得45b <; 由13log 8c =,得138c =,由45138<,得451313c <,54c ∴>,可得45c >.综上所述,a b c <<. 故选:A.【点睛】本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.10.(2019·全国I 卷文理数)已知0.20.32log 0.2,2,0.2a b c ===,则( )A .a b c <<B .a c b <<C .c<a<bD .b<c<a【答案】B【分析】运用中间量0比较,a c ,运用中间量1比较,b c【详解】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,<<=则01,c a c b <<<<.故选B .【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题. 11.(2019·全国II 卷理数)若a >b ,则( ) A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0 D .│a │>│b │【答案】C【分析】本题也可用直接法,因为a b >,所以0a b ->,当1a b -=时,ln()0a b -=,知A 错,因为3x y =是增函数,所以33a b >,故B 错;因为幂函数3y x =是增函数,a b >,所以33a b >,知C 正确;取1,2a b ==-,满足a b >,12a b =<=,知D 错.【详解】取2,1a b ==,满足a b >,ln()0a b -=,知A 错,排除A ;因为9333a b =>=,知B 错,排除B ;取1,2a b ==-,满足a b >,12a b =<=,知D 错,排除D ,因为幂函数3y x =是增函数,a b >,所以33a b >,故选C .【点睛】本题主要考查对数函数性质、指数函数性质、幂函数性质及绝对值意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.【基础知识】1.作差法⎩⎪⎨⎪⎧a -b >0⇔a >b ,a -b =0⇔a =b ,a -b <0⇔a <b .(a ,b ∈R )比较两个实数的大小,可以求出它们的差的符号.作差法比较实数的大小的一般步骤是:作差→恒等变形→判断差的符号→下结论.作差后变形是比较大小的关键一步,变形的方向是化成几个完全平方式的形式或一些易判断符号的因式积的形式.2.作商法作商比较法乘方比较法依据 a >0,b >0,且ab >1⇒a >b ;a >0,b >0,且ab <1⇒a <ba 2>b 2且a >0,b >0⇒a >b应用范围 同号两数比较大小或指数式之间比较大小 要比较的两数(式)中有根号步骤①作商②变形③判断商值与1的大小①乘方②用作差比较法或作商比较法④下结论3.幂函数(1)幂函数的定义一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.(2)常见的五种幂函数的图象和性质比较函数y=x y=x2y=x3y=12x y=x-1图象性质定义域R R R{x|x≥0}{x|x≠0}值域R{y|y≥0}R{y|y≥0}{y|y≠0}奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性在R上单调递增在(-∞,0]上单调递减;在(0,+∞)上单调递增在R上单调递增在[0,+∞)上单调递增在(-∞,0)和(0,+∞)上单调递减公共点(1,1)4.指数函数及其性质(1)概念:函数y=a x(a>0,且a≠1)叫做指数函数,其中指数x是自变量,函数的定义域是R,a是底数.(2)指数函数的图象与性质a>10<a<1图象定义域R值域(0,+∞)性质过定点(0,1),即x=0时,y=1当x>0时,y>1;当x<0时,0<y<1当x<0时,y>1;当x>0时,0<y<1在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数5.对数函数的图象与性质y =log a xa >10<a <1图象定义域 (0,+∞)值域R性 质过定点(1,0),即x =1时,y =0当x >1时,y >0; 当0<x <1时,y <0 当x >1时,y <0; 当0<x <1时,y >0 在(0,+∞)上是增函数在(0,+∞)上是减函数【题型方法】 一、作法法1.若0,10a b <-<<,则下列不等关系正确的是( ) A .2ab ab a >> B .2ab ab a >> C .2ab a ab >> D .2a ab ab >>【答案】A【分析】利用作差法比较即可得到答案.【详解】因为0,10a b <-<<,所以0ab >,10b ->,10b -<,10+>b所以()210ab ab ab b -=->,即2ab ab >,()()()221110ab a a b a b b -=-=+->,所以2ab ab a >>. 故选:A2.(多选)已知a b >,则下列不等式正确的是( ) A .22a b > B .11a b> C .22ac bc ≥ D .22a b c c > 【答案】CD【分析】由作差法可逐项判断.【详解】对A ,()()22a b a b a b -=+-,无法确定a b +的正负,故A 项错误;对B ,11b aa b ab--=,无法确定ab 的正负,故B 项错误;对C ,()2220ac bc a b c -=-≥,所以C 项正确;对D ,2220a b a bc c c--=>,所以D 项正确. 故选:CD3.(多选)已知实数a 、b 、c 满足23121a b c ==>,则下列说法正确的有( ) A .20a b -> B .20b c -> C .211a b c+=D .322a bc+≥+ 【答案】BCD【分析】令23121a b c k ===>,则2log a k =,3log b k =,12log c k =,利用作差法可判断AB 选项;利用换底公式可判断C 选项;利用换底公式结合基本不等式可判断D 选项.【详解】令23121a b c k ===>,则2log a k =,3log b k =,12log c k =且0a >,0b >,0c >. 对于A ,()2323lg 3lg 2lg lg lg 2log 2log log log 0lg 2lg 3lg 2lg 3k k k a b k k k k --=-=-=-=<⋅,所以A 错误:对于B ,()312323lg lg 23lg 3lg lg 2log 2log log log 0lg 3lg 23lg 3lg 23k k kb c k k k k --=-=-=-=>⋅, 即20b c ->,所以B 正确;对于C ,2112log 2log 3log 12k k k a b c +=+==,所以C 正确:对于D :()()2223232312log log log 12log 12log 32log 32log k ka b c k++==+=⨯+⨯ 23233log 32log 232log 32log 2322=++>+⨯=+,所以D 正确.故选:BCD.二、作商法1.设()121p a a -=++,21q a a =-+,则( ).A .p q >B .p q <C .p q ≥D .p q ≤【答案】D【分析】首先配方判断p 、q 均大于零,然后作商即可比较大小. 【详解】()1222110132411p a a a a a -==>⎛⎫++⎪⎭+⎝=+++, 22131024q a a a ⎛⎫=-+=-+> ⎪⎝⎭,则()()()222121111a a a a a a a q a p --+-++++=+= ()()222222111a a a a =+-=++≥.故p q ≤,当且仅当0a =时,取等号, 故选:D【点睛】本题考查了作商法比较两个式子的大小,属于基础题. 2.若实数m ,n ,p 满足354m e =,235n e =,218p e =,则( ) A .p m n << B .p n m << C .m p n <<D .n p m <<【答案】A【分析】根据作商法比较大小,即可得出结果.【详解】因为实数m ,n ,p 满足354m e =,255n e =,218p e =, 所以315152344155m e e n e -==⋅<,①m n <;又313552421189m e e p e ==⋅>,①m p >; ①p m n <<. 故选:A .【点睛】本题主要考查作商法比较大小,属于基础题型. 3.已知41291log ,log ,0.90.8204p m n ===,则正数,,m n p 的大小关系为( ) A .p m n >> B .m n p >> C .m p n >> D .p n m >>【答案】A【分析】根据对数式与指数式之间的互化,以及作商法比较大小,即可比较,m n 的大小,由对数函数的单调性以及中间值法即可比较三者的大小. 【详解】由49log 20m =,得992010422m ==<,由121log 4n =,得1412,n =91111199942020202020201155555420444442561123432431212m n ⨯⨯⎛⎫⎛⎫⎛⎫⎛⎫======> ⎪⎪ ⎪ ⎪⨯⎝⎭⎝⎭⎝⎭⎝⎭,因此,即2m n >>;由0.90.8p =,得0.90.9log 0.8log 0.812p =>=,于是p m n >>, 所以正数,,m n p 的大小关系为p m n >>. 故选:A.三、单调性法1.下列比较大小中正确的是( )A .0.50.53223⎛⎫⎛⎫< ⎪⎪⎝⎭⎝⎭B .112335--⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭ C .3377( 2.1)( 2.2)--<- D .44331123⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭【答案】C【分析】利用函数的单调性进行判断即可.【详解】解:对于A 选项,因为0.5y x =在[0,)+∞上单调递增,所以0.50.523()()32<,故A 错误,对于B 选项,因为1y x -=在(,0)-∞上单调递减,所以1123()()35--->-,故B 错误,对于C 选项,37y x =为奇函数,且在[0,)+∞上单调递增,所以37y x =在(,0)-∞上单调递增, 因为333777115( 2.2)511--⎭==⎛⎫⎛⎫--- ⎪ ⎪⎝⎝⎭,又()337752.111⎛⎫-<- ⎪⎝⎭, 所以3377( 2.1)( 2.2)--<-,故C 正确,对于D 选项,43y x =在[0,)+∞上是递增函数,又443311()()22-=,所以443311()()23>,所以443311()()23->,故D 错误.故选:C.2.已知函数()e e x x f x -=-,则0.60.60.4(0.4),(0.6),(0.4)a f b f c f ===的大小关系为( )A .b a c <<B .a b c <<C .c<a<bD .a c b <<【答案】D【分析】利用幂函数的性质比较0.60.20.60.216=、0.40.20.40.16=、0.40.4大小,再由()f x 单调性比较a 、b 、c 大小. 【详解】由0.630.20.20.6(0.6)0.216==,0.420.20.20.4(0.4)0.16==,即0.20.20.160.216<, 所以0.40.60.40.6<,又0.60.40.40.4<,所以0.60.40.60.40.40.6<<,而()e e x x f x -=-递增, 故0.60.40.6(0.4)(0.4)(0.6)a f c f b f =<=<= 故选:D3.已知0,4πα⎛⎫∈ ⎪⎝⎭,sin (sin )a αα=,sin (cos )b αα=,cos (sin )c αα=,则( )A .c b a <<B .a c b <<C .b<c<aD .c<a<b【答案】D【分析】利用指数函数以及幂函数的单调性,即可得到结论.【详解】因为(0,)4πα∈,0sin cos 1αα∴<<<;(sin )x y α∴=单调递减;sin y x α=单调递增;sin cos (sin )(sin )αααα∴>,sin sin (sin )(cos )αααα<;a c ∴>,ab <,即c<a<b , 故选:D4.设 1.2111y =, 1.428y =,0.63130y =,则( )A .231y y y >>B .312y y y >>C .132y y y >>D .321y y y >>【答案】D【分析】通过观察三个数的特征可知,很难化成同底形式,所以可通过构造幂函数0.6y x =,利用其单调性即可比较得出结果.【详解】由题意可知,()0.61.220.611111121y ===,()()1.40.61.43 4.270.628222128y =====,因为0.6y x =在()0,∞+上是增函数,130128121>>,所以321y y y >>.故选:D.5.已知235log log log 0x y z ==<,则2x、y 、5z 的大小排序为( )A .235x y z<< B .325y x z<< C .523z x y<< D .532z y x<< 【答案】A【分析】首先设235log log log x y z k ===,利用指对互化,表示2x,3y ,5z ,再利用对数函数的单调性判断大小.【详解】x y z ,, 为正实数,且235log log log 0===<x y z k ,111235235k k k x y z ---∴===,,,可得:1112352131,51k k kx y z ---=>=>=>,.即10k -> , 因为函数1k f x x -=() 单调递增,①235x y z<<. 故选:A.6.已知e 是自然对数的底数,451e a ⎛⎫= ⎪⎝⎭,15b =,5ln 6c =-,则( ) A .c b a << B .a b c << C .c a b << D .b a c <<【答案】A【分析】根据指数函数的单调性即可比较,a b ,根据56ln ln 65c =-=,151ln e 5b ==结合对数函数的性质即可比较,bc ,即可得解.【详解】解:4511e 51e a b ⎛⎫= ⎭>>=⎪⎝, 56lnln 65c =-=, 151ln e 5b ==,因为56e 2.488325⎛⎫>= ⎪⎝⎭,所以156e 5>,所以156ln e ln5>,即b c >, 所以c b a <<. 故选:A.四、中间量法1.已知lg9a =,0.12b =,1ln 3c =,则( )A .a c b >>B .a b c >>C .b a c >>D .c b a >>【答案】C【分析】通过中间值,将三个数与0和1进行比较即可判断大小关系. 【详解】因为0lg1lg9lg101=<<=,所以()0,1a ∈, 因为0.10122>=,()1,b ∈+∞, 因为1ln ln103<=,(),0c ∈-∞,综上所述得b a c >>. 故选:C2.若sin 4a =,5log 3b =,lg 6c =,0.01e d =,则( ). A .a b c d <<< B .a c b d <<< C .b c d a <<< D .a d b c <<<【答案】A【分析】利用介值法分别与0,1比较大小,然后再利用作差法比较,b c 的大小. 【详解】由题意,0.01sin 40,e 1a d =<=>,50log 31,0lg 61b c <=<<=<,只需比较,b c 的大小,而 ()()5lg31lg 2lg 2lg3lg3lg3lg5lg 6log 3lg 6lg 6lg5lg5lg5--+-⋅-=-==()lg 21lg 60,lg5b c ⋅-+=<∴<,综上a b c d <<<.故选:A【点睛】指对数比较大小时,一般采用介值法,通过分别和0,1比较大小判断,当遇到同一范围内的数时,可以通过作差或者作商的办法比较两数大小关系.3.若正实数a ,b ,c 满足0.1e a =0.51log 5b =,2314c =,则( )A .a a c b >B .log log c b a a <C .log log a b b c >D .11a c c b --<【答案】D【分析】根据指数函数和对数函数的计算,利用中间量法进行估算,即可得解. 【详解】①0.10ee 1a =>=.①1a >,①0.50.50.51log 10log 1log 0.55b =<=<=, ①0.51b <<,①2314c =,①18c =,①00.41c b a <<<<<,①a a c b <,log log c b a a >,log 0log a b b c <<,①A ,B ,C 项错误; ①10a ->,10c -<,①1101a c c b --<<<,D 项正确. 故选:D .五、导数法1.已知1162411e sin ,e ,e sin 224a b c ππ---===,则( )A .b c a >>B .c b a >>C .b a c >>D .c a b >>【答案】A【分析】由所给数据可构造函数()e sin()e sin x x f x x x =-=-,利用导数判断函数单调性可比较,a c ,再由不等式性质可比较,a b ,利用作商法比较,b c 大小.【详解】设()e sin()e sin x x f x x x =-=-,则()πe sin e cos 2e sin 4x x xf x x x x ⎛⎫=--=-+ ⎝'⎪⎭,当3ππ44x -≤≤时,()0f x '≤,所以函数在π3π,44⎡⎤-⎢⎥⎣⎦上单调递减,1π24->-,1π()()24f f ∴-<-,即a c <, 1162110ee ,0sin 22--<<<<,116211e sin e 22--∴<,即a b <,11163π261212π4e e e 16422eb c -⨯--⎛⎫⎛⎫==>> ⎪ ⎪⎝⎭⎝⎭,b c ∴>,综上,b c a >>. 故选:A2.设0.33e a -=,0.6e b =, 1.6c =,则( ) A .a b c << B .c b a << C .b a c << D .b<c<a【答案】B【分析】先利用导数证明出e 1x x >+,令0.3x =,可以判断出 1.6c =最小;利用作商法比较出b a <,即可得到答案.【详解】设()e 1xf x x =--.因为()e 1xf x '=-,所以当0x <时,()0f x '<,()f x 在(),0∞-上单调递减, 当0x >时,()0f x '<,()f x 在()0,∞+上单调递增, 所以当x ∈R ,且0x ≠时,()()00f x f >=,即e 1x x >+. 所以()0.33e30.31 2.1a --+>=⨯=,0.6e 0.61 1.6b =>+=,所以 1.6c =最小,又因为0.60.90.3e e e13e 33b a -==<<,所以b a <.综上可知,c b a <<. 故选:B3.已知e ππe e ,π,2a b c ===,则这三个数的大小关系为( )A .c b a <<B .b c a <<C .b a c <<D .c a b <<【答案】A【分析】构造函数()()ln ,0xf x x x=>,利用导数法研究单调性,并利用单调性可比较,a b ,在同一坐标系中作出()2xy =与y x =的图象,结合图象与幂函数的性质可比较,b c ,即可求解【详解】令()()ln ,0xf x x x =>,则()()21ln ,0x f x x x -'=>, 由0fx,解得0e x <<,由()0f x '<,解得e x >,所以()()ln ,0xf x x x=>在()0,e 上单调递增,在()e,+∞上单调递减; 因为πe >, 所以()()πe f f <,即ln πln eπe<, 所以eln ππlne <,所以e πln πln e <, 又ln y x =递增, 所以e ππe <,即b a <;()()ee ππ2=2⎡⎤⎢⎥⎣⎦,在同一坐标系中作出()2xy =与y x =的图象,如图:由图象可知在()2,4中恒有()2xx >,又2π4<<,所以()ππ2>,又e y x =在()0,∞+上单调递增,且()ππ2>所以()()eπe πeπ2=2⎡⎤>⎢⎥⎣⎦,即b c >;综上可知:c b a <<, 故选:A六、特殊值法1.若()2021202120222022,x y x yx y R --->-∈,则( )A .33x y >B .ln ln x y >C .11x y< D .221111x y <++ 【答案】A【分析】构造函数()20212022x xf x -=-,分析函数()f x 的单调性,可得出x y >,再利用函数的单调性以及特殊值法可判断各选项的正误.【详解】构造函数()20212022x x f x -=-,因为函数12021x y =为R 上的增函数,函数22022xy -=为R 上的减函数,故函数()20212022x xf x -=-为R 上的增函数,因为2021202120222022x y x y --->-,则2021202220212022x x y y --->-, 即()()f x f y >,则x y >.对于A 选项,函数()3g x x =为R 上的增函数,故33x y >,A 对;对于B 选项,若0y x <<,则ln x 、ln y 均无意义,B 错; 对于C 选项,取1x =,1y =-,则11x y>,C 错; 对于D 选项,取1x =,1y =-,则221111x y =++,D 错. 故选:A.2.若a b >,则下列选项中正确的是( ) A .()ln 0a b -> B .33a b < C .330a b -> D .a b >【答案】C【分析】对于ABD ,举反例即可排除;对于C ,利用幂函数的单调性即可判断. 【详解】因为a b >,对于A ,令0,1a b ==-,则()ln ln10a b -==,故A 错误;对于B ,令0,1a b ==-,则0111,33333b a -====,即33a b >,故B 错误; 对于C ,因为幂函数3y x =在R 上单调递增,故33a b >,即330a b ->,故C 正确; 对于D ,令0,1a b ==-,则01a b =<=,故D 错误. 故选:C.3.若0a b >>,则下列不等式恒成立的是( ) A .35a b < B .11log log b a a b ++< C a b >D .tan tan a b >【答案】C【分析】取特殊值可判断ABD ,利用幂函数12y x x ==的单调性可判断C 【详解】选项A ,令4,2a b ==,则381525a b =>=,故A 错误;选项B ,令2,1a b ==,则1213log log 21log log 10b a a b ++==>==,故B 错误;选项C ,由于幂函数12y x x ==在(0,)+∞单调递增,0a b >>,故a b >恒成立,故C 正确; 选项D ,令,4a b ππ==,则tan 0tan 1a b =<=,故D 错误故选:C【高考必刷】1.设,R a b ∈且0ab ≠,若a b <,则下列不等式成立的是( ) A .22a b < B .22ab a b < C .2211ab a b< D .b aa b< 【答案】C【分析】根据不等式的性质结合作差法比较大小逐项判断即可.【详解】解:对于A ,若a b <且0ab ≠,则2,1a b =-=,得22a b >,故A 错误;对于B ,若a b <,则0b a ->,所以()22ab a b ab b a -=-,又0ab ≠,则()ab b a -的正负不能确定,即2ab 与2a b 的大小不确定,故B 错误;对于C ,若a b <且0ab ≠,,则0a b -<,所以2222110a bab a b a b --=<,即2211ab a b <,故C 正确; 对于D ,若a b <且0ab ≠,则0b a ->,所以ab 与b a +正负不能确定,则()()22b a b a b a b a a b ab ab-+--==的符号不能确定,故b a与ab 的大小不确定,故D 错误.故选:C.2.若0c b a >>>,则( ) A .b c c b a b a b > B .2ln ln ln b a c <+ C .cc a b ab->- D .log log a b c c >【答案】A【分析】利用不等式的基本性质,并对选项化简,转化,判断对错即可.【详解】解:选项A 中,由于1b cb c b c c b c b a b a a b a b b ---⎛⎫==> ⎪⎝⎭,所以b c c b a b a b >成立;故A 正确;选项B 中,22ln ln b b =,ln ln ln a c ac +=,2b 与ac 大小不能确定,故B 错误; 选项C 中,由于()10c c c a b a b a b ab ⎛⎫⎛⎫---=-+< ⎪ ⎪⎝⎭⎝⎭,故C 错误; 选项D 中,令1c =,则log log 0a b c c ==,故D 错误. 故选:A.【点睛】本题考查不等式的基本性质,考查转化能力,属于基础题. 3.已知421333111,,2325a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则( )A .a b c <<B .c<a<bC .a b c >>D .b<c<a【答案】B【分析】由已知,根据题意给出的式子,先进行化简,得到222333111,,435a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,然后根据幂函数23y x =的单调性,即可做出判断.【详解】由已知,421333111,,2325a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 化简222333111,,435a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为幂函数23y x =在()0,+∞上单调递增,而15<14<13,所以222333111543<<⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:B.4.设0.60.4a =,0.80.6b =,0.40.8c =,则( ) A .a b c >> B .c b a >> C .c a b >> D .b a c >>【答案】B【分析】先由指数运算得出555c a b >>,再由幂函数的单调性得出大小关系.【详解】因为5354520.40.064,0.1296,0.640.60.8a b c ======,所以555c a b >>,又函数5y x =在()0,∞+上单调递增,所以c b a >>. 故选:B5.三个数33342233,,224a b c -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭之间的大小关系是( )A .a c b <<B .a b c <<C .c b a <<D .b<c<a【答案】C【分析】首先将,,a b c 化简,构造函数32(),(0)f x x x =>,利用函数的单调性比较大小.【详解】332432624a ⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭,3322322,44b c ⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭ 设32(),(0)f x x x =>,此函数在定义域内是单调递增的, ①22326444<<①22326()()()444f f f << ①c b a <<. 故选:C.6.下列比较大小正确的是( ) A 12433332π--->> B .12433332π--->> C .12433332π--->> D .21433323π--->>【答案】C【分析】根据指数幂的运算法则及幂函数的性质判断即可. 【详解】解:因为()2242333πππ---⎡⎤==⎢⎥⎣⎦,()213333--=又23y x -=在()0,∞+上单调递减,23π>>,所以()22233323π---<<,所以12433332π--->>. 故选:C7.对于任意的,a b ∈R 且a b >,则下列不等式成立的是( )A .1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭B .20232023log log a b >C .11a b <D .20232023a b >【答案】D【分析】根据指数函数、对数函数、反比例函数和幂函数的定义域和单调性依次判断各个选项即可. 【详解】对于A ,12xy ⎛⎫= ⎪⎝⎭在R 上单调递减,1122ab⎛⎫⎛⎫∴< ⎪ ⎪⎝⎭⎝⎭,A 错误;对于B ,当0b a <<时,原式无意义,B 错误; 对于C ,当0a b >>时,11a b>,C 错误; 对于D ,2023y x =在R 上单调递增,20232023a b ∴>,D 正确.故选:D.8.已知 5.10.9m =,0.8log 5.1n =, 5.10.8p =,则m 、n 、p 的大小关系为( ) A .p <n <m B .n <p <m C .m <n <p D .n <m <p【答案】B【分析】根据幂函数 5.1y x =,对数函数0.8log y x =的单调性判定即可. 【详解】由于幂函数 5.1y x =在[0,)+∞单调递增, 故 5.1 5.10.90.8m p =>=,又1 5.15.000.8p >==, 5.1 5.1110.9m =>=, ①0<p <m <1,由对数函数0.8log y x =在(0,)+∞单调递减, 故0.80.8log 5.1log 10n =<=,①n <p <m . 故选:B9.若实数a ,b 满足01a b <<<,则下列式子正确的是( ) A .b b a b --< B .a a a b < C .a a a b --< D .b b b a <【答案】B【分析】根据不等式的性质以及幂函数的单调性分别进行判断即可. 【详解】对A ,1b baa -⎛⎫= ⎪⎝⎭,1bbb b -⎛⎫= ⎪⎝⎭,因为01a b <<<,所以111a b >>. 因为幂函数b y x =在()0,∞+上为增函数,所以b b a b -->,A 错;对B ,因为幂函数a y x =在()0,∞+上为增函数,所以a a a b <成立,B 对;对C ,因为1a aaa -⎛⎫= ⎪⎝⎭,1aa b b -⎛⎫= ⎪⎝⎭,且幂函数a y x =在()0,∞+上为增函数,所以a a a b -->,C 错; 对D ,因为幂函数b y x =在()0,∞+上为增函数,所以b b b a >,D 错; 故选:B.10.设,a b R ∈,若a b >,则下列不等式不恒成立的是( ) A .11a b +>+ B .22a b > C .33a b > D .sin 4sin 4a b >【答案】D【分析】根据不等式的性质可判断A;根据指数函数2,R x y x =∈的单调性判断B;根据幂函数3,R y x x =∈的单调性判断C ,可举特例说明D 中不等式不恒成立,即可得答案.【详解】对于A,由于a b >,根据不等式性质可知11a b +>+恒成立; 对于B,由于函数2,R x y x =∈是单调增函数,故若a b >,则22a b >恒成立;对于C ,由于函数3,R y x x =∈是单调增函数,故若a b >,则33a b >恒成立; 对于D ,不妨取ππ,=2a b = ,则sin 4sin 40a b ==,即a b >时,sin 4sin 4a b >不恒成立, 故选:D11.设0.83a =,0.8b π=,e13c ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系为( ) A .c<a<b B .a b c <<C .c b a <<D .b a c <<【答案】A【分析】利用幂函数、指数函数单调性并借助“媒介数”即可判断作答.【详解】因幂函数0.8y x =在(0,)+∞上单调递增,又31π>>,则有0.80.80.8311π>>=,指数函数1()3x y =在R 上单调递减,而e 0>,于是得e 011()()133<=,从而有e 0.80.81()133π<<<,所以c<a<b . 故选:A12.已知定义在R 上的幂函数()mf x x =(m 为实数)过点(2,8)A ,记()0.5log 3a f =,()2log 5b f =,()c f m =,则,,a b c 的大小关系为( ) A .a b c << B .a c b << C .c<a<b D .c b a <<【答案】A【分析】首先求出3()f x x =,得到函数的单调性,再利用对数函数的图象性质得到20.5log 5log 3m >>,即得解. 【详解】由题得3382,22,3,()m m m f x x =∴=∴=∴=. 函数3()f x x =是R 上的增函数.因为0.50.5log 3log 10<=,220log 5log 83m <<==, 所以20.5log 5log 3m >>,所以20.5()(log 5)(log 3)f m f f >>, 所以a b c <<. 故选:A【点睛】方法点睛:比较对数式的大小,一般先利用对数函数的图象和性质比较每个式子和零的大小分成正负两个集合,再利用对数函数的图象和性质比较同类数的大小. 13.已知幂函数()()2242(1)mm f x m x m R -+=-∈,在()0,∞+上单调递增.设5log 4a =,15log 3b =,0.20.5c -=,则()f a ,f b ,()f c 的大小关系是( )A .()()()f b f a c <<B .()()()f c f b f a <<C .()()()f c f a f b <<D .()()()f a f b f c <<【答案】A【分析】根据幂函数的概念以及幂函数的单调性求出m ,在根据指数函数与对数函数的单调性得到b a c -<<,根据幂函数的单调性得到()()()f b f a f c -<<,再结合偶函数可得答案. 【详解】根据幂函数的定义可得2(1)1m -=,解得0m =或2m =, 当0m =时,2()f x x =,此时满足()f x 在()0,∞+上单调递增, 当2m =时,2()f x x -=,此时()f x 在()0,∞+上单调递减,不合题意. 所以2()f x x =.因为5log 4(0,1)a =∈,0.200.50.51c -=>=,155log 3log 3(0,1)b -=-=∈,且a b >-,所以b a c -<<,因为()f x 在()0,∞+上单调递增,所以()()()f b f a f c -<<, 又因为2()f x x =为偶函数,所以()()f b f b -=, 所以()()()f b f a c <<. 故选:A【点睛】关键点点睛:掌握幂函数的概念和性质、指数函数与对数函数的单调性是解题关键. 14.设a ,R b ∈,且a b >,则( ) A .33a b > B .22a b > C .||||a b > D .1>a b【答案】A【分析】对于选项A,B,C,利用函数的单调性分析得解,对于选项D 可以利用作差法判断. 【详解】由于函数3()f x x =在R 上为增函数,由a b >得33a b >,故选A . 由于函数2yx 在定义域内不单调,所以a b >不能得到22a b >,故选项B 错误;由于函数||y x =在定义域内不单调,所以a b >不能得到||||a b >,故选项C 错误; 1a a b b b--=符号不确定,所以选项D 错误. 故选:A。
导数与函数的单调性-高考数学复习
(
√
)
(3)若函数 f ( x )在定义域上都有f'( x )>0,则 f ( x )在定义
域上一定是增函数.
(
× )
目录
高中总复习·数学
2. 如图是函数 y = f ( x )的导函数 y =f'( x )的图象,则下列判断正
确的是(
)
A. 在区间(-2,1)上 f ( x )单调递增
数的单调性,得出函数的极值、最值等性质,利用数形结合的方法确
定不等式的解集.
目录
高中总复习·数学
考向3 已知函数单调性求参数
【例5】 (2023·新高考Ⅱ卷6题)已知函数 f ( x )= a e x -ln x 在区
间(1,2)上单调递增,则实数 a 的最小值为(
A. e2
B. e
C. e-1
)
1
)在(-∞,ln
1
)上单调递减,在(ln
,+∞)上单
调递增.
综上可知,当 a ≤0时, f ( x )在(-∞,+∞)上是减函数;当
a >0时, f ( x
1
)在(-∞,ln
1
)上单调递减,在(ln
,+
∞)上单调递增.
目录
高中总复习·数学
解题技法
讨论函数 f ( x )单调性的步骤
(1)确定函数 f ( x )的定义域;
D. e-2
目录
高中总复习·数学
解析:
法一
1
1
x
x
由题意,得f'( x )= a e - ,∴f'( x )= a e -
1
利用导数运算法则构造函数含详解
利用导数运算法则构造函数✬导数的常见构造类型1. 对于()()x g x f ''>,可构造()()()x g x f x h -=注:遇到()()0'≠>a a x f 导函数大于某种非零常数(若0=a 则无需构造),则可构造()()ax x f x h -=2. 对于()()0''>+x g x f ,可构造()()()x g x f x h +=3. 对于()()0'>+x f x f ,可构造()()x f e x h x =4. 对于()()x f x f >'(或()()0'>-x f x f ),可构造()()xex f x h = 5. 对于()()0'>+x f x xf ,可构造()()x xf x h = 6. 对于()()0'>-x f x xf ,可构造()()x x f x h =7. 对于()()x nf x f +'形式,可构造()()x f e x F nx = 8. 对于()()x nf x f -'形式,可构造()()nx ex f x F =✬典型例题:类型1:和差导数公式逆用: 例1. 设函数()f x ,()g x 在[],a b 上均可导,且()()f x g x '>',则当a x b <<时,有.A ()()f x g x > .B ()()f x g x <.C ()()()()f x g a g x f a +>+ .D ()()()()f x g b g x f b +>+解:构造)()()(x g x f x F -=,0)()()(>'-'='x g x f x F , )(x F 为增函数,)()()(b F x F a F << )()()()()()(b g b f x g x f a g a f -<-<-, ∴()()()()f x g b g x f b +>+,选D 类型2,积的导数公式逆用:例 2.设函数()f x 是定义在(),0-∞上的可导函数,其导函数为()f x ',且有x x f x x f <'+)()(,则不等式0)2(2)2014()2014(>-+++f x f x 的解集为( )A .(),2012-∞-B .()20120-,C .(),2016-∞-D .()20160-,解:由()()f x xf x x '+<,0x <得: [()]0xf x x '<<,令()()F x xf x =,则当0x <时,()0F x '<, 即()F x 在(,0)-∞是减函数,(2014)+=F x (2014)(2014)x f x ++ ,(2)(2)(2)F f -=--,由题意:(2014)F x +>(2)F -又()F x 在(,0)-∞是减函数,∴20142x +<-,即2016x <-,故选C类型3,商的导数公式逆用:当出现导数差的形式是,可以考虑商的导数 例3.已知函数)(x f 是定义在R 上的奇函数,0)1(=f , 当0x >时,有2()()0xf x f x x'->成立,则不等式0)(>x f 的解集是 A .(1,0)(1,)-+∞ B .(1,0)- C .(1,)+∞ D .(,1)(1,)-∞-+∞解:由当0x >时,有2()()0xf x f x x '->成立, 知函数x x f x F )()(=的导函数0)()()(2>-'='x x f x f x x F 在),0(+∞上恒成立, 所以函数xx f x F )()(=在),0(+∞上是增函数,又因为函数)(x f 是定义在R 上的奇函数,所以函数xx f x F )()(=是定义域上的偶函数,且由0)1(=f 得0)1()1(==-F F ,由此可得函数xx f x F )()(=的大致图象为:由图可知不等式0)(>x f 的解集是),1()0,1(+∞⋃-. 故选A.例4.若定义在R 上的函数f(x)的导函数为()f x ',且满足()()f x f x '>,则(2011)f 与2(2009)f e 的大小关系为( ).A 、(2011)f <2(2009)f eB 、(2011)f =2(2009)f eC 、(2011)f >2(2009)f eD 、不能确定 【答案】C解:构造函数x ex f x g )()(=,则x e x f x f x g )()()(''-=,因为()()f x f x '>,所以0)('>x g ; 即函数)(x g 在R 上为增函数, 则20092011)2009()2011(ef e f >,即2)2009()2011(e f f >. 类型4,构造组合函数形式例 5. 定义在上R 上的可导函数)(x f ,满足2)()(x x f x f =+-,当0<x 时,x x f <')(,则不等式x x f x f +-≥+)1(21)(的解集为_________解:221)()(x x f x g -=,0)()(=-+x g x g ,)(x g 为奇函数,当0<x 时,0)()(<-'='x x f x g ,)(x g 为减函数,,x x f x f +-≥+)1(21)(, 可得22)1(21)1(21)(x x f x x f ---≥-,即)1()(x g x g -≥∴x x -≤1,即21≤x ✬好题训练 一、单选题1.已知定义在R 上的函数()f x 满足()()102f x f x '+>,且有()112f =,则()122x f x e->的解集为( )A .(),2-∞B .()1,+∞C .(),1-∞D .()2,+∞2.若定义在R 上的函数()f x 满足()()1f x f x '+>,(0)4f =,则不等式()3x x e f x e ⋅>+ (其中e 为自然对数的底数)的解集为( )A .(,0)(0,)-∞+∞B .(,0)(3,)-∞⋃+∞C .(0,)+∞D .(3,)+∞3.已知函数()f x 是(0,)+∞上的可导函数,且()()0f x f x x'+>,则( ) A .(3)(2)f f > B .(3)(2)f f < C .3(3)2(2)f f >D .3(3)2(2)f f <4.已知定义在R 上的可导函数()f x ,对x R ∀∈,都有()()2xf x e f x -=,当0x >时()()0f x f x '+<,若()()211211a a e f a e f a -+-≤+,则实数a 的取值范围是( )A .[]0,2B .(][),12,-∞-⋃+∞C .(][),02,-∞⋃+∞D .[]1,2-5.已知函数()f x 是定义在R 上的偶函数,其导函数为()f x ',若()()f x f x '<,且()2f x +是偶函数,()20174f =,则不等式()40xef x e ->的解集为( )A .(),1-∞B .(),e -∞C .()0,+∞D .1,e ⎛⎫+∞ ⎪⎝⎭6.已知函数()f x 为R 上的可导函数,且x R ∀∈,均有()()f x f x '<,则有( ) A .2021e (2021)(0)f f -<,2021(2021)e (0)f f < B .2021e (2021)(0)f f -<,2021(2021)e (0)f f >C .2021e (2021)(0)f f ->,2021(2021)e (0)f f >D .2021e (2021)(0)f f ->,2021(2021)e (0)f f <7.已知可导函数()f x 的导函数为()'f x ,若对任意的x R ∈,都有()()1f x f x '->.且()2022f x -为奇函数,则不等式()2021e 1x f x ->的解集为( ) A .(),0-∞B .()0,+∞C .(),e -∞D .()e,+∞8.函数()f x 的定义域是R ,()02f =,对任意R x ∈,()()1f x f x +'>,则不等式()e e 1x xf x >+⋅的解集为( )A .{} |0x x >B .{}|0x x <C .{|1x x <-或}1x >D .{|1x x <-或}01x <<9.已知函数()f x 满足()11f =,且()f x 的导函数()13f x '<,则()233x f x <+的解集为( ) A .{}1x x <-B .{1x x <-或}1x >C .{}1x x >D .{}0x x <10.定义在R 上的奇函数()f x 的图象光滑连续不断,其导函数为()f x ',对任意正实数x 恒有()()2xf x f x >-',若()()2g x x f x =,则不等式()()23log 110g x g ⎡⎤-+-<⎣⎦的解集是( )A .()0,2B .()2,2-C .()3,2-D .()()2,11,2--⋃11.已知函数()f x 满足()()0f x f x +-=,且当(,0)x ∈-∞时,()()0f x xf x '+<成立,若()()0.60.622a f =⋅,(ln 2)(ln 2)b f =⋅,2211loglog 88c f ⎛⎫⎛⎫=⋅ ⎪ ⎪⎝⎭⎝⎭,则a ,b ,c 的大小关系是( ) A .a b c >>B .c b a >>C .a c b >>D .c a b >>12.已知偶函数()f x 的定义域为,22ππ⎛⎫- ⎪⎝⎭,其导函数为()f x ',当02x π<<时,有()cos ()sin 0f x x f x x '+<成立,则关于x 的不等式()2cos 3f x f x π⎛⎫< ⎪⎝⎭的解集为( )A .,,2332ππππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭B .,33ππ⎛⎫- ⎪⎝⎭C .,23ππ⎛⎫-- ⎪⎝⎭D .,32ππ⎛⎫ ⎪⎝⎭13.已知奇函数()f x 是定义在R 上的可导函数,其导函数为()'f x ,当0x ≥时,有22()()f x xf x x +'>,则不等式()()()220182018420x f x f +++-<的解集为( ) A .(),2016-∞-B .()2016,2012--C .(),2018-∞-D .()2016,0-14.已知()f x 是定义在R 上的奇函数,(2)0f =,当0x ≠时,2()()f x f x x '>,则不等式()0f x <的解集为( ) A .(,2)(0,2)-∞-⋃ B .(2,0)(2,)-+∞ C .(,2)(2,)-∞-+∞D .(2,0)(0,2)-15.已知()f x 是定(,0)(0,)-∞+∞的奇函数,()'f x 是()f x 的导函数,(1)0f <,且满足:()()ln 0f x f x x x+'⋅<,则不等式(1)()0x f x -⋅<的解集为( ) A .(1,)+∞B .(,1)(0,1)-∞-C .(,1)-∞D .(,0)(1,)-∞⋃+∞ 16.已知定义在R 上的可导函数()f x ,对任意的实数x ,都有()()4f x f x x --=,且当()0,x ∈+∞时,()2f x '>恒成立,若不等式()()()1221f a f a a --≥-恒成立,则实数a 的取值范围是( )A .1,02⎛⎫- ⎪⎝⎭B .10,2⎡⎤⎢⎥⎣⎦C .1,2⎛⎫-∞ ⎪⎝⎭ D .1,2⎡⎫+∞⎪⎢⎣⎭17.已知定义域为R 的奇函数()y f x =的导函数为()y f x '=,当0x ≠时,()()0f x f x x '+<,若2211(),2(2),ln (ln )3333a fb fc f ==--=,则,,a b c 的大小关系正确的是( ) A .a b c <<B .b c a <<C .a c b <<D .c a b <<18.已知函数()f x 的定义域为R ,且()21f =,对任意x ∈R ,()()0f x xf x '+<,则不等式()()112x f x ++>的解集是( ) A .(),1-∞ B .(),2-∞ C .()1,+∞D .()2,+∞19.已知定义在R 上的函数()f x 满足1()()02f x f x '+>且有1(2)f e=,则()f x >)A .1,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .(2,)+∞20.已知()f x 是定义在R 上的函数,()'f x 是()f x 的导函数,满足:()(1)()0x x e f x e f x ++'>,且1(1)2f =,则不等式1()2(1)x e f x e +>+的解集为( ) A .()1,1-B .()(),11,-∞-+∞C .(),1-∞-D .()1,+∞21.设函数()f x 在R 上的导函数为()f x ',若()()1x f f x '+>,()()6f x f x ''=-,()31f =,()65f =,则不等式()ln 210f x x ++<的解集为( )A .()0,1B .()0,3C .()1,3D .()3,622.设函数()f x 在R 上的导函数为()'f x ,若()()1f x f x '>+,()(6)2f x f x +-=,(6)5f =,则不等式()210x f x e ++<的解集为( )A .(,0)-∞B .(0,)+∞C .(0,3)D .(3,6)23.已知函数()y f x =对于任意的,22x ππ⎛⎫∈- ⎪⎝⎭满足()()cos sin 0f x x f x x '+>(其中()f x '是函数()f x 的导函数),则下列不等式成立的是( )A .()04f π⎛⎫> ⎪⎝⎭B 34f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭C 34f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D .()023f f π⎛⎫> ⎪⎝⎭24.已知定义在,22ππ⎛⎫- ⎪⎝⎭上的奇函数()f x 的导函数为()f x ',且()tan ()0f x x f x '+⋅>,则( )A 063ππ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭B 063ππ⎛⎫⎛⎫-+> ⎪ ⎪⎝⎭⎝⎭C 064ππ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D 046ππ⎛⎫⎛⎫-+> ⎪ ⎪⎝⎭⎝⎭25.已知在定义在R 上的函数()f x 满足()()62sin 0f x f x x x ---+=,且0x ≥时,()3cos f x x '≥-恒成立,则不等式()π3ππ6224f x f x x x ⎛⎫⎛⎫≥--++ ⎪ ⎪⎝⎭⎝⎭的解集为( ) A .π0,4⎛⎤⎥⎝⎦B .,4π⎡⎫+∞⎪⎢⎣⎭C .,6π⎛⎤-∞ ⎥⎝⎦D .,6π⎡⎫+∞⎪⎢⎣⎭26.已知函数()y f x =对任意的(0,)x π∈满足()cos ()sin f x x f x x '>(其中()f x '为函数()f x 的导函数),则下列不等式成立的是( )A .63f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭ B .63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭C 63f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭D 63f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭27.已知定义在R 上的函数()f x 的导函数为'()f x ,'()()ln 20f x f x +<,则下列不等关系成立的是( ) A .2(1)(0)f f > B .2(2)(1)f f > C .2(0)(1)f f >-D .()23log 32(1)f f <28.已知定义在R 上的函数()f x 的导函数为()f x ',且满足()()0f x f x '->,2022(2022)e 0f -=,则不等式1ln 4f x ⎛⎫< ⎪⎝⎭)A .()6063e,+∞ B .()20220,eC .()8088e,+∞ D .()80880,e29.已知函数()y f x =是定义在R 上的奇函数,且当(),0x ∈-∞时,不等式()()0f x xf x '+>恒成立,若()0.30.322a f =,()()log 2log 2b f ππ=,2211log log 44c f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系是( )A .a b c >>B .c b a >>C .b a c >>D .a c b >>30.已知奇函数()f x 是定义在R 上的可导函数,其导函数为()'f x ,当0x >时,有22()()f x xf x x '+>,则不等式2(2021)(2021)4(2)0x f x f +++-<的解集为( ) A .(,2019)-∞- B .(2023,2019)-- C .(2023)-∞-, D .(2019,0)-二、多选题31.设函数()f x '是奇函数()()f x x R ∈的导函数,()10f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是( )A .(),1-∞-B .()0,1C .()1,0-D .()1,+∞32.已知函数()f x 的定义域为(0,)+∞,其导函数为()f x ',对于任意,()0x ∈+∞,都有()ln ()0x xf x f x '+>,则使不等式1()ln 1f x x x+>成立的x 的值可以为( ) A .12B .1C .2D .333.定义在(0,)+∞上的函数()f x 的导函数为()f x ',且()()2(32)()x x f x x f x '+<+恒成立,则必有( ) A .(3)20(1)f f >B .(2)6(1)f f <C .13(1)162f f ⎛⎫> ⎪⎝⎭D .(3)3(2)f f <34.已知函数()f x 的导函数为()f x ',若()()()2f x xf x f x x <<-′对()0,x ∈+∞恒成立,则下列不等式中,一定成立的是( ) A .()()1f f ππ< B .()()1f f ππ> C .()()21142f f <+ D .()()21142f f +< 35.已知函数()f x 的定义域、值域都是()0,∞+,且满足()()12f x f x '<,则下列结论一定正确的是( ) A .若()1e f =,则()322e f > B .()()23f f <C .()()3224f f >D .181176e 43f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭第II 卷(非选择题)请点击修改第II 卷的文字说明三、双空题36.定义在R 上的函数()f x 的导函数为()f x ',且()()1f x f x '>-,()06f =,则函数()()5x xg x e f x e =--在R 上单调递_______(填“增”或“减”);不等式()5x xe f x e >+(其中e 为自然对数的底数)的解集是_______.37.设()f x '是奇函数()f x 的导函数,()23f -=-,且对任意x ∈R 都有()2f x '<,则()2f =_________,使得()e 2e 1x xf <-成立的x 的取值范围是_________.四、填空题38.已知函数()f x 是定义在R 上的函数,且满足()()0f x f x +'>其中()f x '是()f x 的导函数,设()0a f =,()2ln2b f =,()e 1c f =,,,a b c 的大小关系是________.39.已知定义在R 上的函数()f x 的导函数为()'f x ,且满足()()xf x f x '<,若(ln 4)(3)(1),,ln 43f f a f b c ===,则,,a b c 的大小关系为_________. 40.已知定义在()0,∞+的函数()f x 满足()()0xf x f x '-<,则不等式()210x f f x x ⎛⎫-< ⎪⎝⎭的解集为___________. 41.已知定义在R 上的偶函数()f x 的导函数为()'f x ,当0x >时,有()()0f x xf x '+>,且(1)0f =,则使得()0f x <成立的x 的取值范围是___________. 42.若定义在R 上的函数()f x 满足()()30f x f x '->,13f e ⎛⎫= ⎪⎝⎭,则不等式()3x f x e >的解集为________________.43.若()f x 是定义在R 上函数,且(2)y f x =-的图形关于直线2x =对称,当0x <时,()()0f x xf x '+<,且(3)0f -=,则不等式()0f x >的解集为___________.答案第1页,共24页参考答案1.B 【分析】构造函数()()2xF x f x e =⋅,利用导数,结合已知条件判断()F x 的单调性,由此化简不等式()122xf x e ->并求得其解集. 【详解】设()()2x F x f x e =⋅,则()()()()()222110 22x x xF x f x e f x e e f x f x ⎡⎤'''=⋅+⋅=+>⎢⎥⎣⎦,所以函数()F x 在R 上单调递增,又()112f =,所以()()11221112F f e e =⋅=.又()122xf x e->等价于()12212x f x e e ⋅>,即()()1F x F >,所以1x >,即所求不等式的解集为()1,+∞. 故选:B 2.C 【分析】构造函数()()3x x g x e f x e =⋅--,求导结合题干条件可证明()g x 在R 上单调递增,又(0)0g =,故()0(0)0g x g x >=⇒>,即得解 【详解】令()()3x x g x e f x e =⋅--,则()()()[()()1]0x x x x g x e f x e f x e e f x f x '''=⋅+⋅-=+-> 所以()g x 在R 上单调递增, 又因为00(0)(0)30g e f e =⋅--=, 所以()0(0)0g x g x >=⇒>, 即不等式的解集是(0,)+∞ 故选:C 3.C 【分析】由已知构造函数()()g x xf x =,求导,由导函数的符号得出所令函数的单调性,从而可得选项. 【详解】 解:因为()()0f x f x x'+>,所以当0x >时,有()()0xf x f x '+>, 令()()g x xf x =,则当0x >时,()'()()>0g x xf x f x '=+,所以()g x 在()0+∞,上单调递增,所以()()3>2g g ,即3(3)2(2)f f >, 故选:C. 4.C 【分析】令()()x g x e f x =,由已知得()()xg x e f x =在区间()0,∞+单调递减, ()g x 为偶函数,且在区间(),0∞-单调递增,由此可将不等式等价转化为211a a -≥+,求解即可. 【详解】解:令()()x g x e f x =,则当0x >时,()()()0x g x e f x f x ''=+<⎡⎤⎣⎦,所以()()x g x e f x =在区间()0,∞+单调递减,又()()()()()()2x x x xg x e f x e e f x e f x g x ---=-===,所以()g x 为偶函数,且在区间(),0∞-单调递增,又()()211211a a ef a e f a -+-≤+,即()()211g a g a -≤+,所以211a a -≥+,即()()22211a a -≥+,得0a ≤或2a ≥, 故选:C. 5.A 【分析】由函数()f x 是定义在R 上的偶函数,()2f x +是偶函数可得()f x 是周期为4的周期函数,令()()x f x g x e=,然后利用()g x 的单调性可解出不等式. 【详解】因为函数()f x 是定义在R 上的偶函数,()2f x +是偶函数, 所以()()()4f x f x f x +=-=,即()f x 是周期为4的周期函数, 所以()()201714f f ==, 令()()xf xg x e=,则()()()x f x f x g x e '-'=,因为()()f x f x '<,所以()0g x '<, 所以()g x 在R 上单调递减,由()40xef x e ->可得()4x f x ee>,即()()41g x g e>=,所以1x <,故选:A. 6.B 【分析】 令()()e xf xg x =,x ∈R 并求导函数,根据已知可得函数()g x 的单调性,进而得出结论. 【详解】令()()e x f x g x =,x ∈R ,则()()()e xf x f xg x ''-=,x R ∀∈,均有()()f x f x '<,()g x ∴在R 上单调递增,(2021)(0)(2021)g g g ∴-<<,可得:2021e (2021)(0)f f -<,2021(2021)e (0)f f >.故选:B. 7.A 【分析】根据题意构造()()1e xf x F x -=,结合已知条件,讨论其单调性,再将不等式()2021e 1x f x ->转化为()F x 的不等式,即可利用单调性求解.【详解】根据题意,构造()()1exf x F x -=,则()()1xf x F x e =+,且''()()1()0exf x f x F x -+=<,故()F x 在R 上单调递减; 又()2022f x -为R 上的奇函数,故可得()020220f -=,即()02022f =,则()02021F =.则不等式()2021e 1x f x ->等价于()()20210F x F >=, 又因为()F x 是R 上的单调减函数,故解得0x <. 故选:A. 【点睛】关键点点睛:本题考查构造函数法,涉及利用导数研究函数的单调性以及利用函数单调性求解不等式;本题中,根据()()1f x f x '->以及题意,构造()()1e xf x F x -=是解决问题的关键,属中等偏上题. 8.A 【分析】构造函数()()e e x xg x f x =⋅-,结合已知条件可得()0g x '>恒成立,可得()g x 为R 上的减函数,再由()01g =,从而将不等式转换为()()0g x g >,根据单调性即可求解. 【详解】构造函数()()e e x xg x f x =⋅-,因为()()()e e e x x xx f x f x g '=⋅+-'⋅()()e e e e 0x x x x f x f x +--=⎡⎤⎣⎦='>,所以()()e e x xg x f x =⋅-为R 上的增函数.又因为()()000e 0e 1g f -⋅==,所以原不等式转化为()e e 1x xf x ->,即()()0g x g >,解得0x >.所以原不等式的解集为{}|0x x >, 故选:A. 9.C 【分析】构造函数()()233x g x f x =--,求函数的导数,利用函数的单调性即可得到结论. 【详解】解:设()()233x g x f x =--,则函数()g x 的导函数()()13g x f x ''=-,f x 的导函数()13f x '<,()()103g x f x ''∴=-<,则函数()g x 单调递减,()11f =,()()1211033g f ∴=--=,则不等式()233x f x <+,等价为()0g x <, 即()()1g x g <, 则1x >,即()233x f x <+的解集为{}1x x >, 故选:C. 10.D 【分析】分析函数()g x 的奇偶性,利用导数分析函数()g x 在R 上的单调性,将所求不等式变形为()()23log 11g x g ⎡⎤-<⎣⎦,可得出()23log 11x -<,解此不等式即可. 【详解】因为函数()f x 为R 上的奇函数,则()()2g x x f x =的定义域为R ,且()()()()22g x x f x x f x g x -=-=-=-,所以,函数()g x 为奇函数,且()00g =,对任意正实数x 恒有()()()22xf x f x f x >-=-',即()()20xf x f x '+>,则()()()()()2220g x xf x x f x x xf x f x '''=+=+>⎡⎤⎣⎦,所以,函数()g x 在()0,∞+上为增函数,故函数()g x 在(),0∞-上也为增函数, 因为函数()g x 在R 上连续,故函数()g x 在R 上为增函数,由()()23log 110g x g ⎡⎤-+-<⎣⎦得()()()23log 111g x g g ⎡⎤-<--=⎣⎦,所以,()23log 11x -<,故有2013x <-<,解得21x -<<-或12x <<.故选:D. 11.D 【分析】构造函数()()g x x f x =⋅,利用奇函数的定义得函数()g x 是偶函数,再利用导数研究函数的单调性,结合0.621ln 212log 8<-<<,再利用单调性比较大小得结论. 【详解】解:因为函数()f x 满足()()0f x f x +-=,即()()f x f x =--,且在R 上是连续函数,所以函数()f x 是奇函数,不妨令()()g x x f x =⋅,则()()()()g x x f x x f x g x -=-⋅-=⋅=,所以()g x 是偶函数, 则''()()()g x f x x f x =+⋅,因为当(,0)x ∈-∞时,()'()0f x xf x +<成立, 所以()g x 在(,0)x ∈-∞上单调递减,又因为()g x 在R 上是连续函数,且是偶函数,所以()g x 在()0+∞,上单调递增, 则()0.62a g =,(ln 2)b g =,2211loglog 88c g g ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭, 因为0.621>,0ln 21<<,()21log 33>08-=--=,所以0.621ln 212log 8<-<<,所以c a b >>,故选:D. 12.A 【分析】 先构造函数()()cos f x g x x=,进而根据题意判断出函数的奇偶性和单调性,进而解出不等式. 【详解】因为偶函数()f x 的定义域为,22ππ⎛⎫- ⎪⎝⎭,设()()cos f x g x x=,则()()()()cos cos f x f x g x x x--==-,即()g x 也是偶函数.当02x π<<时,根据题意()()()2cos sin 0cos f x x f x xg x x'+'=<,则()g x 在0,2π⎛⎫⎪⎝⎭上是减函数,而函数为偶函数,则()g x 在,02π⎛⎫- ⎪⎝⎭上是增函数.于是,()()3()2cos 3cos 3cos 3f f x f x f xg x g x ππππ⎛⎫ ⎪⎛⎫⎛⎫⎝⎭<⇔<⇔< ⎪ ⎪⎝⎭⎝⎭,所以3,,233222x x x πππππππ⎧>⎪⎪⎛⎫⎛⎫⇒∈--⋃⎨⎪ ⎪⎝⎭⎝⎭⎪-<<⎪⎩. 故选:A. 13.A 【分析】利用22(()0)f xf x x x '>+≥,构造出()()2g x x f x =,会得到()g x 在R 上单调递增,再将待解不等式的形式变成和()g x 相关的形式即可. 【详解】设()()2g x x f x =,因为()f x 为R 上奇函数,所以()()()()22g x x f x x f x -=--=-,即()g x 为R 上奇函数对()g x 求导,得[]()2()()g x f x x x xf '=+',而当0x >时,有()()220f x xf x x '>+≥,故0x >时,()0g x '>,即()g x 单调递增,所以()g x 在R 上单调递增 不等式()()()22018+2018420x f x f ++-<()()()22018+201842x f x f +<--,又()f x 是奇函数,则()()()22018+201842x f x f +<,即()()20182g x g +<所以20182x +<,解得2016x <-,即(,2016)x ∈-∞-. 故选:A. 14.A 【分析】根据题意,构造出函数()()2f x g x x=,则()0()0f x g x <⇔<,进而结合题意求得答案.【详解】设()()2f x g x x=,则()0()0f x g x <⇔<,()()()()()24322f x x xf x xf x f x g x x x ''⋅--'==,若x >0,由2()()()2()0f x f x xf x f x x ''>⇒->,则()0g x '>,即()()2f x g x x =在()0,∞+上单调递增.因为()f x 是R 上的奇函数,(2)0f =,容易判断,()()2f x g x x =在R 上是奇函数,且(2)0=g ,则函数()g x 在(),0-∞上单调递增,且(2)0g -=,所以()0<g x 的解集为:(,2)(0,2)-∞-⋃.于是()0f x <的解集为:(,2)(0,2)-∞-⋃. 故选:A. 15.D 【分析】 令()()g x lnxf x =对函数求导可得到函数()g x 单调递减,再结合()10g =,和()f x 的奇偶性,通过分析得到当0x >,()0f x <,0x <,()0f x >,故不等式(1)()0x f x -⋅<等价于()10x f x >⎧⎨<⎩或()10x f x <⎧⎨>⎩,求解即可.【详解】 令()()g x lnxf x =,则1()()()0g x f x lnx f x x'=+'<, 故函数()g x 单调递减,定义域为()0,∞+,g (1)0=,01x ∴<<时,()0>g x ;1x <时,()0<g x .01x <<时,0lnx <;1x >时,0lnx >.∴当0x >,1x ≠时,()0f x <,又f(1)0<.∴当0x >,()0f x <,又()f x 为奇函数, ∴当0x <,()0f x >.不等式(1)()0x f x -⋅<等价于()10x f x >⎧⎨<⎩或()10x f x <⎧⎨>⎩解得1x >或者0x < 故答案为:D.【分析】由题意可得()()()f x x f x x -=---,令()()2F x f x x =-,根据奇偶性的定义,可得()F x 为偶函数,利用导数可得()F x 的单调性,将题干条件化简可得()2(1)2(1)f a a f a a -≥---,即()(1)F a F a ≥-,根据()F x 的单调性和奇偶性,计算求解,即可得答案. 【详解】由()()4f x f x x --=,得()2()2()f x x f x x -=---, 记()()2F x f x x =-,则有()()F x F x =-,即()F x 为偶函数, 又当(0,)x ∈+∞时,()()20F x f x ''=->恒成立, 所以()F x 在(0,)+∞上单调递增,所以由()()()1221f a f a a --≥-,得()2(1)2(1)f a a f a a -≥---, 即()(1)F a F a ≥-(||)(|1|)F a F a ⇔-,所以|||1|a a -,即2212a a a ≥+-,解得12a, 故选:D. 17.B 【分析】 根据()()0f x f x x'+<构造函数()()g x xf x =,利用函数()g x 的奇偶性、单调性比较大小. 【详解】解:令函数()()g x xf x =,因为定义域为R 的()y f x =是奇函数,所以函数()g x 为偶函数;()()()g x f x xf x ''=+,当0x >时,因为()()0f x f x x '+<,所以()()0xf x f x x'+<,所以()()0xf x f x '+<,即()0g x '<,所以()g x 在(0,)+∞上为减函数,()()()()222111(),2(2)22,ln (ln )ln ln 3ln 3333333a f g b f g g c f g g g ⎛⎫⎛⎫===--=-====-= ⎪ ⎪⎝⎭⎝⎭, 因为2ln 323<<,所以()()2ln 323g g g ⎛⎫>> ⎪⎝⎭,即a c b >>.18.A 【分析】构造函数()()g x xf x =,利用导数法结合条件,得到()g x 在R 上单调递减,利用单调性可得答案. 【详解】设()()g x xf x =,则()()()0g x f x xf x =+'<' 所以()g x 在R 上单调递减,又()()2222g f == 由()()112x f x ++>,即()()12g x g +>,所以12x +< 所以1x < 故选:A 19.D 【分析】构造函数2()e ()x g x f x =,求导后确定其单调性,原不等式转化为关于()g x 的不等式,再利用单调性得解集. 【详解】设2()e ()x g x f x =,则221()e ()()2x x g x f x e f x ''=+,因为1()()02f x f x '+>,所以()0g x '>,所以()g x 是R 上的增函数,(2)e (2)1g f ==,不等式()f x >2e ()1xf x >,即()(2)g x g >,所以2x >, 故选:D . 20.D 【分析】构造函数()()1()xg x e f x =+,利用导数求得()g x 的单调性,由此求得不等式1()2(1)x e f x e +>+的解集. 【详解】令()()1()x g x e f x =+,则()()()1()0x xg x e f x e f x =+'+>',所以()g x 在R 上单调递增,不等式()1()21x e f x e +>+可化为()11()2x e e f x ++>, 而1(1)2f =,则1(1)(1)(1)2e g ef +=+=,即()()1g x g >, 所以1x >,即不等式解集为(1,)+∞. 故选:D 21.A 【分析】 构造函数()1(),xf xg x e+=得到()g x 也是R 上的单调递增函数.,分析得到函数()f x 关于点(3,1)对称.由()ln 210f x x ++<得到(ln )(0)g x g <,即得解. 【详解】 构造函数()1()()1(),()0x xf x f x f xg x g x e e '+--'==>, 所以()g x 也是R 上的单调递增函数.因为()()6f x f x ''=-,所以()'f x 关于直线3x =对称,所以12()(6),()(6)f x dx f x dx f x c f x c ''=-∴+=--+⎰⎰,(12,c c 为常数),21()(6)f x f x c c ∴+-=-,令3x =,所以21212(3),(3)2c c f c c f -=-∴=. 因为()31f =,所以212,c c -=所以()(6)2f x f x +-=,所以函数()f x 关于点(3,1)对称. 由(3)1,(6)5f f ==得到(0)3f =-,因为()()ln ln 210ln 122x f x x f x x e ++<∴+<-=-,, 所以()ln ln 12xf x e +<-, 所以031(ln )2(0)g x g e -+<-==, 所以(ln )(0)g x g <, 所以ln 0,01x x <∴<<. 故选:A22.A 【分析】 令()()1xf xg x e +=,根据因为()()1f x f x '>+,得到()0g x '>,得出函数()g x 为R 上的单调递增函数,由题设条件,令0x =,求得()02g =-,把不等式转化为()()0g x g <,结合单调性,即可求解. 【详解】令()()1x f x g x e +=,可得()()()()11x xf x f x f xg x e e ''+--⎛⎫'== ⎪⎝⎭, 因为()()1f x f x '>+,可得()()10f x f x '-->,所以()0g x '>,所以函数()g x 为R 上的单调递增函数, 由不等式()210x f x e ++<,可得()12x f x e +<-, 所以()12xf x e +<-,即()2g x <- 因为()(6)2f x f x +-=,令0x =,可得(0)(6)2f f +=,又因为(6)5f =,可得(0)3f =-,所以()()00102f g e+==- 所以不等式等价于()()0g x g <,由函数()g x 为R 上的单调递增函数,所以0x <,即不等式的解集为(,0)-∞. 故选:A. 23.C 【分析】 可构造函数()()cos f x g x x=,由已知可证()g x 在,22x ππ⎛⎫∈- ⎪⎝⎭单增,再分别代值检验选项合理性即可 【详解】 设()()cos f x g x x=,则()()()2cos sin 0cos f x x f g x x xx'+='>,则()g x 在,22x ππ⎛⎫∈-⎪⎝⎭单增, 对A ,()04cos0cos 4f f ππ⎛⎫ ⎪⎝⎭<,化简得()04f π⎛⎫< ⎪⎝⎭,故A 错;对B ,34cos cos 34f f ππππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭<⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭34f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,故B 错; 对C ,43cos cos 43f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭34f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故C 正确;对D ,()03cos0cos 3f f ππ⎛⎫⎪⎝⎭<⎛⎫⎪⎝⎭,化简得()023f f π⎛⎫< ⎪⎝⎭,故D 错, 故选:C 24.B 【分析】 令()()cos f x g x x =,,22x ππ⎛⎫∈- ⎪⎝⎭,得到()g x 是奇函数,单调递增,再利用函数的单调性和奇偶性分析判断得解. 【详解】因为()tan ()0f x x f x '+⋅>,所以()sin ()0,cos xf x f x x'+⋅> cos ()sin ()0x f x x f x '∴⋅+⋅>,令()()cos f x g x x =,,22x ππ⎛⎫∈- ⎪⎝⎭,则()2cos ()sin ()0cos f x x f x x g x x'⋅+⋅'=>, 所以()g x 单调递增, 所以()()()()cos()cos f x f x g x g x x x---===--,所以()g x 为奇函数,(0)0g =,所以6430cos cos cos643f f f ππππππ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭<<<,即0643πππ⎛⎫⎛⎫⎛⎫<<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以A ,C 错误;63ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,所以063ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,又因为()f x 为奇函数,所以063ππ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭,所以B 正确;64ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭064ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭.又因为()f x 为奇函数,所以046ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭,所以D 错误. 故选:B 25.B 【分析】结合已知不等式,构造新函数()()3sin g x f x x x =-+,结合单调性及奇偶性,列出不等式,即可求解. 【详解】由题意,当0x ≥时,()3cos f x x '≥-恒成立,即()3cos 0f x x '-+≥恒成立, 又由()()62sin 0f x f x x x ---+=,可得()3sin ()3sin f x x x f x x x -+=-+-, 令()()3sin g x f x x x =-+,可得()()g x g x -=-,则函数()g x 为偶函数, 且当0x ≥时,()g x 单调递增,结合偶函数的对称性可得()g x 在(,0)-∞上单调递减,由()36224f x f x x x πππ⎛⎫⎛⎫≥--++ ⎪ ⎪⎝⎭⎝⎭,化简得到()3sin 3()sin()222f x x x f x x x πππ⎛⎫-+≥---+- ⎪⎝⎭,即()()2g x g x π≥-,所以2x x π≥-,解得4x π≥,即不等式的解集为,4π⎡⎫+∞⎪⎢⎣⎭.故选:B. 26.D 【分析】令()()cos g x f x x =,求出函数的导数,根据函数的单调性判断即可. 【详解】解:令()()cos g x f x x =,(0,)x π∈ 故()()cos ()sin 0g x f x x f x x ''=->,故()g x 在(0,)π递增,所以()()36g g ππ>,可得1()()236f f ππ63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,所以D 正确;故选:D . 27.D 【分析】根据题意构造函数()()2x h x f x =,利用导数研究函数的单调性,根据单调性结合2log 31>即可求解.【详解】设()()2x h x f x =,则()()()()()22ln 22ln 2xx x h x f x f x f x f x '''=+=+⎡⎤⎣⎦,又()()ln 20f x f x '+<,20x >,所以()0h x '<,所以()h x 在(),-∞+∞上单调递减,由10>可得2(1)(0)f f >,故A 错; 由21>可得22(2)2(1)f f <,即2(2)(1)f f <,故B 错; 由01>-可得012(0)2(1)f f -<-,即2(0)(1)f f <-,故C 错; 因为2log 31>,所以()()2log 31h h <,得()()23log 321f f <,故D 正确. 故选:D 28.D 【分析】 由题设()()xf x F x e =,由已知得函数()F x 在R 上单调递增,且1ln 1(2022)4F x F ⎛⎫<= ⎪⎝⎭,根据函数的单调性建立不等式可得选项. 【详解】 由题可设()()ex f x F x =,因为()()0f x f x '->, 则2()e ()e ()()()0e e x x x xf x f x f x f x F x ''--'==>, 所以函数()F x 在R 上单调递增,又2022(2022)(2022)1e f F ==,不等式1ln 4f x ⎛⎫< ⎪⎝⎭1ln 41ln 41e x f x ⎛⎫ ⎪⎝⎭<, ∴1ln 1(2022)4F x F ⎛⎫<= ⎪⎝⎭,所以1ln 20224x <,解得80880e x <<,所以不等式1ln 4f x ⎛⎫< ⎪⎝⎭()80880,e .故选:D. 29.C 【分析】设()()g x xf x =,由奇偶性定义知()g x 为偶函数,结合导数和偶函数性质可确定()g x 在()0,∞+上单调递减,由指数和对数函数单调性可确定0.32log 42log 20π>>>,结合偶函数性质和单调性可得()()0.321log 22log4g g g π⎛⎫>> ⎪⎝⎭,由此可得大小关系. 【详解】设()()g x xf x =,则()()()()g x xf x xf x g x -=--==,()g x ∴为定义在R 上的偶函数; 当(),0x ∈-∞时,()()()0g x f x xf x ''=+>,()g x ∴在(),0-∞上单调递增, 由偶函数性质可知:()g x 在()0,∞+上单调递减,0.32log 4221log 20π=>>>>,()()()0.32log 22log 4g g g π∴>>,又()()2221log 4log 4log 4g g g ⎛⎫=-= ⎪⎝⎭,()()0.321log 22log4g g g π⎛⎫∴>> ⎪⎝⎭, 即b a c >>. 故选:C. 30.A 【分析】构造函数2()()g x x f x =,然后结合已知可判断()g x 的单调性及奇偶性,从而可求. 【详解】解:设2()()g x x f x =,由()f x 为奇函数,可得22()()()()()g x x f x x f x g x -=--=-=-, 故()g x 为R 上的奇函数,当0x >时,202()()f x xf x x '>>+,()[2()()]0g x x f x xf x ''∴=+>,()g x 单调递增,根据奇函数的对称性可知,()g x 在R 上单调递增, 则不等式2(2021)(2021)4(2)0x f x f +++-<可转化为()2(2021)(2021)4(2)42x f x f f ++<--=,即()()20212g x g +<,20212x ∴+<即2019x <-,即(),2019x ∈-∞-.故选:A 31.AB 【分析】首先根据已知条件构造函数()()f xg x x=,利用其导数得到()g x 的单调性,然后结合()f x 奇函数,将不等式()0f x >转化为()·0x g x >求解. 【详解】解:设()()f xg x x=, 则()()()2''xf x f x g x x -=,当0x >时总有()()'xf x f x <成立, 即当0x >时, ()'g x <0恒成立,∴当0x >时,函数()()f xg x x =为减函数, 又()()()()f x f x g x g x xx---===--,∴函数()g x 为定义域上的偶函数,又()()1101f g --==-,所以不等式()0f x >等价于()·0x g x >, 即()00x g x >⎧⎨>⎩或()0x g x <⎧⎨<⎩, 即01x <<或1x <-,所以()0f x > 成立的x 的取值范围是()(),10,1-∞-⋃. 故选:AB . 32.CD 【分析】构造函数1()()ln 1g x f x x x=+-,由导数确定其单调性,再由单调性解不等式,确定正确选项. 【详解】令1()()ln 1g x f x x x=+-,所以()2()1()ln f x g x f x x x x''=++, 因为()ln ()0xf x x f x x'+>,210x >,所以()0g x '>,所以()g x 在(0,)+∞上单调递增,又(1)0g =,可得()0>g x 的解集为(1,)+∞. 故选:CD. 33.BD 【分析】首先根据条件构造函数()()32f x g x x x=+,0x >,根据()()()()()()322232320f x x x f x x x g x xx+-'+'+=<得到()g x 在()0,∞+上单调递减,从而得到()()()11232g g g g ⎛⎫>>> ⎪⎝⎭,再化简即可得到答案. 【详解】由()()()()232x x f x x f x +'+<及0x >,得()()()()32232x x f x x x f x +'+<.设函数()()32f xg x x x =+,0x >, 则()()()()()()322232320f x x x f x x x g x xx+-'+'+=<, 所以()g x 在()0,∞+上单调递减,从而()()()11232g g g g ⎛⎫>>> ⎪⎝⎭,即()()()112323212368f f f f ⎛⎫ ⎪⎝⎭>>>,所以()()3181f f <,()()261f f <,()131162f f ⎛⎫< ⎪⎝⎭,()()332f f <.故选:BD 34.AD 【分析】。
第03讲 利用导数求函数的单调性-《高中数学选修2-2重难点解读》(解析版)
第三讲 利用导数求函数的单调性1.函数单调性与导数的关系在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增; 如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减;如果恒有f ′(x )=0,那么函数y =f (x )在这个区间内是常数函数.注意:在某个区间内,()0f x '>(()0f x '<)是函数()f x 在此区间内单调递增(减)的充分条件,而不是必要条件.函数()f x 在(,)a b 内单调递增(减)的充要条件是()0f x '≥(()0f x '≤)在(,)a b 内恒成立,且()f x '在(,)a b 的任意子区间内都不恒等于0.2. 函数图象的变化趋势与导数值大小的关系如果一个函数在某一范围内导数的绝对值较大,那么这个函数在这个范围内变化的快,其图象比较陡峭.即|f ′(x )|越大,则函数f (x )的切线的斜率越大,函数f (x )的变化率就越大考点一 利用导数求单调区间【例1】求下列函数的单调区间。
(1)3()23f x x x =-; (2)2()ln f x x x =-. (3)f (x )=2x -x 2.【答案】见解析【解析】(1)由题意得f(x)的定义域为R ,2()63f x x '=-.令2()630f x x '=->,解得x <或x >.当(,)2x ∈-∞-时,函数为增函数;当)2x ∈+∞时,函数也为增函数.令2()630f x x '=-<,解得x <<.当(x ∈时,函数为减函数.故函数3()23f x x x =-的单调递增区间为(,2-∞-和,)2+∞,单调递减区间为(22-.(2)函数2()ln f x x x =-的定义域为(0,)+∞.11)()2f x x x x -+'=-=.令()0f x '>,解得2x >;令()0f x '<,解得02x <<.故函数2()ln f x x x =-的单调递增区间为)2+∞,单调递减区间为(0,2. (3)要使函数f (x )=2x -x 2有意义,必须2x -x 2≥0,即0≤x ≤2.∴函数的定义域为[0,2].f ′(x )=(2x -x 2)′=12(2x -x 2)-12·(2x -x 2)′=1-x 2x -x 2 .令f ′(x )>0,则1-x 2x -x 2>0.即⎩⎨⎧ 1-x >0,2x -x 2>0,∴0<x <1.∴函数的单调递增区间为(0,1).令f ′(x )<0,则1-x 2x -x 2<0,即⎩⎨⎧ 1-x <0,2x -x 2>0,∴1<x <2.∴函数的单调递减区间为(1,2).1.函数()e x f x x -=的单调递减区间是 。
比较大小-高考数学一题多解
比较大小-高考数学一题多解本专题在高考中经常出现,并且呈现出试题越来越难的趋势.解题所需知识主要考查学生函数部分知识的掌握情况.解题有时需要的技巧多,试题灵活.突出对函数单调性的运用,利于考察学生的数形结合与方程思想,以及构造,放缩等相关知识.【典例】【2022·新高考Ⅰ第7题】设0.110.1e , ln 0.99a b c ===-,,则()A.a b c <<B.c b a <<C.c<a<bD.a c b<<(一)构造函数法——从形式上去找共性,构造函数解法1:由题意可知,0.110.10.1,,ln 0.9ln(10.1)910.1a ebc ====-=---,取0.1x =,构造函数,设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++,当(1, 0)x ∈-时,()f x '0>,当)0,( x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0, )+∞单调递减,在(1, 0)-上单调递增,所以1()(0)09f f <=,所以101ln 099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln +01010<,故1109e 10-<,所以11011e 109<,故a b <,再设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11xx x g x x x x -+'=+=--,令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当01x <<时,()0h x '<,函数2()e (1)+1x h x x =-11x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增,又(0)0h =,所以当01x <<时,()0h x <,所以当01x <<时,()0g x '>,函数()e ln(1)x g x x x =+-单调递增,所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c >,故选C.解法2:易得0x ≠时e 1x x >+,所以1x <且0x ≠时e 10x x ->->,即1e 1xx<-,所以0.11101+0.1<e 10.19<<-,所以0.11a b <<,设()()11ln 12f x x x x x ⎛⎫=--> ⎪⎝⎭,则()211112f x x x ⎛⎫'=-+ ⎪⎝⎭()22102x x -=-<,所以()()10f x f <=,即()11ln 12x x x x ⎛⎫<-> ⎪⎝⎭,取109x =,得10110919ln 0.1192910180c a ⎛⎫=<-=<< ⎪⎝⎭,故选C.【点评】1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小.2.与抽象函数有关的不等式,要充分挖掘条件关系,恰当构造函数;题目中若存在f(x)与f′(x)的不等关系时,常构造含f(x)与另一函数的积(或商)的函数,与题设形成解题链条,利用导数研究新函数的单调性,从而求解不等式.【知识链接】常见的导数不等式(1)e 1x x ≥+;(2)1e x x -≥;(3)()ln 1x x ≤+;(4)ln 1≤-x x ;(5)1ln 1x x≥-.(二)高观点下泰勒展开【思维暴露】泰勒公式是将一个在0x 处具有n 阶导数的函数利用关于0()x x -的n 次多项式来逼近函数的方法.若函数()f x 在包含0x 的某个闭区间[,]a b 上具有n 阶导数,且在开区间(,)a b 上具有(1)n +阶导数,则对闭区间[,]a b 上任意一点x ,成立下式:()20000000()()()()()()()()()2!!n n n f x f x f x f x f x x x x x x x R x n '''=+-+-++-+ 其中:()0()n fx 表示()f x 在0x x =处的n 阶导数,等号后的多项式称为函数()f x 在0x 处的泰勒展开式,剩余的()()n R x 是泰勒公式的余项,是0()nx x -的高阶无穷小量.解法3:带有拉格朗日型余项的n 阶麦克劳林公式()2(0)(0)()(0)(0)()2!!n nn f f f x f f x x x R x n '''=+++++ 知()212!!n xn x x e x o x n =+++⋯+,()231ln(1)(1)23nn n x x x x x o x n-+=-++⋯+-+,可知,20.10.10.10.1(10.1)0.11052!a e=≈⋅++=,10.11119b =≈,230.10.1ln 0.9ln(10.1)(0.10.105323c =-=--≈----=,所以c<a<b ,选C.【点评】本题的背景是泰勒公式,虽然是高数知识,但是让学生了解一些这些相关的知识,会有助于快速做出本题,并且能够拓展,推广.【知识链接】常见函数的麦克劳林展开式:(1)21e e 12!!(1)!n xxn x x x x n n θ+=++++++ (2)352122sin (1)()3!5!(21)!n nn x x x x x o x n ++=-+-+-++ (3)24622cos 1(1)()2!4!6!(2)!n n n x x x x x o x n =-+-++-+ (4)2311ln(1)(1)()231n n n x x x x x o x n +++=-+-+-++ (5)211()1n n x x x o x x=+++++- (6)22(1)(1)1()2!nn n x nx x o x -+=+++【针对训练】【2022·高考数学甲卷文科第12题】1.已知910,1011,89m m m a b ==-=-,则()A .0a b>>B .0a b >>C .0b a >>D .0b a>>【2022高考数学甲卷理科第12题】2.已知3111,cos 4sin 3244a b c ===,则()A .c b a >>B .b a c>>C .a b c>>D .a c b>>3.设2ln1.01a =,ln1.02b =,1c =-.则()A .a b c<<B .b<c<aC .b a c <<D .c<a<b 4.已知0.2653log 7log 6a b c ===,,,则()A .a b c >>B .b c a >>C .a c b >>D .b a c>>5.若都不为零的实数,a b 满足a b >,则()A .11a b<B .2b a a b+>C .e 1a b ->D .ln ln a b>6.设126a =,3log 2b =,ln 2c =,则a ,b ,c 的大小关系为()A .a b c <<B .c<a<bC .b<c<aD .c b a<<7.已知2x a =,ln b x =,3c x =,若()0,1x ∈,则a 、b 、c 的大小关系是()A .a b c >>B .a c b >>C .c b a>>D .c a b>>8.已知6log 3a =,8log 4b =,10log 5c =,则().A .b a c <<B .c b a <<C .a c b <<D .a b c<<9.已知ln 2ln 3ln 6,,235a b c ===,则正确的大小顺序是()A .b a c <<B .a c b<<C .a b c<<D .c<a<b10.设0.21e1,ln1.2,5a b c =-==,则,,a b c 的大小关系为___________.(从小到大顺序排)参考答案:1.A【分析】法一:根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出.【详解】[方法一]:(指对数函数性质)由910m=可得9lg10log 101lg 9m ==>,而()222lg 9lg11lg 99lg 9lg111lg1022+⎛⎫⎛⎫<=<= ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg 922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg 9lg10lg8lg 9>,即8log 9m >,所以8log 989890m b =-<-=.综上,0a b >>.[方法二]:【最优解】(构造函数)由910m =,可得9log 10(1,1.5)m =∈.根据,a b 的形式构造函数()1(1)m f x x x x =-->,则1()1m f x mx -'=-,令()0f x '=,解得110m x m -=,由9log 10(1,1.5)m =∈知0(0,1)x ∈.()f x 在(1,)+∞上单调递增,所以(10)(8)f f >,即a b >,又因为9log 10(9)9100f =-=,所以0a b >>.故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用,a b 的形式构造函数()1(1)m f x x x x =-->,根据函数的单调性得出大小关系,简单明了,是该题的最优解.2.A 【分析】由14tan 4c b =结合三角函数的性质可得c b >;构造函数()()21cos 1,0,2f x x x x ∞=+-∈+,利用导数可得b a >,即可得解.【详解】[方法一]:构造函数因为当π0,,tan 2x x x⎛⎫∈< ⎪⎝⎭故14tan 14c b =>,故1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞,()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,故1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->,所以b a >,所以c b a >>,故选A [方法二]:不等式放缩因为当π0,,sin 2x x x ⎛⎫∈< ⎪⎝⎭,取18x =得:2211131cos 12sin 1248832⎛⎫=->-= ⎪⎝⎭,故b a>1114sin cos 444ϕ⎛⎫+=+ ⎪⎝⎭,其中0,2πϕ⎛⎫∈ ⎪⎝⎭,且sin ϕϕ=当114sin cos 44+142πϕ+=,及124πϕ=-此时1sin cos 4ϕ==1cos sin 4ϕ==故1cos 4=11sin 4sin 44<=<,故b c <所以b a >,所以c b a >>,故选A [方法三]:泰勒展开设0.25x =,则2310.251322a ==-,2410.250.25cos 1424!b =≈-+,241sin10.250.2544sin1143!5!4c ==≈-+,计算得c b a >>,故选A.[方法四]:构造函数因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭,所以11tan 44>,即1c b >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞,()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->,所以b a >,所以c b a >>,故选:A .[方法五]:【最优解】不等式放缩因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭,所以11tan 44>,即1c b >,所以c b >;因为当π0,,sin 2x x x ⎛⎫∈< ⎪⎝⎭,取18x =得2211131cos 12sin 1248832⎛⎫=->-= ⎪⎝⎭,故b a >,所以c b a >>.故选:A .【整体点评】方法4:利用函数的单调性比较大小,是常见思路,难点在于构造合适的函数,属于通性通法;方法5:利用二倍角公式以及不等式π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭放缩,即可得出大小关系,属于最优解.3.B【分析】利用对数的运算和对数函数的单调性不难对a ,b 的大小作出判定,对于a 与c ,b 与c 的大小关系,将0.01换成x ,分别构造函数()()2ln 11f x x =+,()()ln 121g x x =+,利用导数分析其在0的右侧包括0.01的较小范围内的单调性,结合f (0)=0,g (0)=0即可得出a 与c ,b 与c 的大小关系.【详解】[方法一]:2ln1.01a =2ln1.01=()2ln 10.01=+()2ln 120.010.01=+⨯+ln1.02b >=,所以b a <;下面比较c 与,a b 的大小关系.记()()2ln 11f x x =+,则()00f =,()2121x f x x -='=+,由于()()2214122x x x x x x +-+=-=-所以当0<x <2时,()21410x x +-+>()1x >+,()0f x ¢>,所以()f x 在[]0,2上单调递增,所以()()0.0100f f >=,即2ln1.011>,即a c >;令()()ln 121g x x =+,则()00g =,()212212x g x x -=+',由于()2214124x x x +-+=-,在x >0时,()214120x x +-+<,所以()0g x '<,即函数()g x 在[0,+∞)上单调递减,所以()()0.0100g g <=,即ln1.021<,即b <c ;综上,b<c<a ,故选:B.[方法二]:令()21ln 1(1)2x f x x x ⎛⎫+=--> ⎪⎝⎭()()221-01x f x x =+'-<,即函数()f x 在(1,+∞)上单调递减()10,ff b c<=∴<令()232ln 1(13)4x g x x x ⎛⎫+=-+<< ⎪⎝⎭()()()21303x x g x x --+'=>,即函数()g x 在(1,3)上单调递增()10,gg a c=∴综上,b<c<a ,故选:B.【点睛】本题考查比较大小问题,难度较大,关键难点是将各个值中的共同的量用变量替换,构造函数,利用导数研究相应函数的单调性,进而比较大小,这样的问题,凭借近似估计计算往往是无法解决的.4.C【分析】首先用作差法及基本不等式判断b 、c ,再由幂函数的性质得到0.20.2 1.23e >>,再令()5log 5xf x x =-,利用导数说明函数的单调性,即可判断a 、c .【详解】[方法一]:作差比较:256lg 6lg 7lg 6lg5lg 7log 6log 7lg5lg 6lg5lg 6-⋅-=-=⋅因为2222lg 5lg 71lg 5lg 7lg 35lg lg 622+⎛⎫⎛⎫⋅<==< ⎪ ⎪⎝⎭⎝⎭,即2lg 6lg 5lg 70-⋅>,所以56log 6log 70->,即c b >,又0.20.23e >,令()e 1x g x x =--,则()e 1xg x '=-,所以当0x >时()0g x '>,当0x <时()0g x '<,所以()()min 00g x g ==,即e 1x x ≥+,当且仅当0x =时取等号,所以0.20.223.e 102 1.>>+=,令()5log 5x f x x =-,则()11ln 555ln 55ln 5x f x x x -'=-=⋅,所以当5ln 5x >时()0f x ¢>,所以()f x 在5,ln 5⎛⎫+∞ ⎪⎝⎭上单调递增,显然55ln 5>,又()50f =,所以()()566log 6505f f =->=,即56log 65>,所以250.20.36e 6og 5>>>,即a c b >>;故选:C.[方法二]:构造函数比较:()()()()ln 11,ln x f x x x∞+=∈+,()()()()()()2ln 1ln 1'1,1ln x x x x f x x x x x∞-++=∈++,再令()ln g x x x =,则()()()'1ln 01,g x x x ∞=+>∈+,则()g x 在(1,)+∞上单增,则ln (1)ln(1)0x x x x -++<,'()0f x <,所以()f x 在(1,)+∞上单减,所以56log 6log 70->,即c b >,又0.20.23e >,令()e 1x g x x =--,则()e 1xg x '=-,所以当0x >时()0g x '>,当0x <时()0g x '<,所以()()min 00g x g ==,即e 1x x ≥+,当且仅当0x =时取等号,所以0.20.223.e 102 1.>>+=,令()5log 5x f x x =-,则()11ln 555ln 55ln 5x f x x x -'=-=⋅,所以当5ln 5x >时()0f x ¢>,所以()f x 在5,ln 5⎛⎫+∞ ⎪⎝⎭上单调递增,显然55ln 5>,又()50f =,所以()()566log 6505f f =->=,即56log 65>,所以250.20.36e 6og 5>>>,即a c b >>;故选:C.5.C【分析】AB 可以举出反例,C 选项可以根据指数函数单调性进行判断,D 选项可以从定义域上排除.【详解】[方法一]:特值法:取1,1a b ==-,满足a b >,但11a b>,A 错误;当1,1a b ==-,满足a b >,但22b aa b+=-<,B 错误;因为a b >,所以0a b ->,所以e 1a b ->,C 正确;当a<0或0b <时,ln ,ln a b 无意义,故D 错误.故选:C[方法二]:函数性质法对于A ,由于不清楚,a b 的正负,不能直接取倒数,A 错误;对于B ,由于不清楚,a b 是否为正,没有办法利用基本不等式,B 错误;对于D ,由于不清楚,a b 的正负,ln ln a b ,不一定有意义,D 错误;故选C.6.C【分析】对,a b 通过估计值可以直接比较;对于,c b 需要结合换底公式以及不等式的性质进行比较.【详解】[方法一]:函数性质法:126a ==,因为23<<,所以23a <<;因为3log y x =在R 上单调递增,23<<,所以33log log 2log 3<<,即31log 212<<,所以112b <<;所以b a <,又3lg 2log 2lg 3b ==,lg 2ln 2lg ec ==,因为因为lg y x =在R 上单调递增,且2e 3<<,所以lg 2lg e lg 3<<,所以111lg 2lg e lg 3>>,又因为lg 20>,所以lg 2lg 21lg e lg 3>>,即1c b >>,综上:b<c<a .故选:C.[方法二]:中间量法3ln2ln2log 2ln31b c ==<=,又12ln2ln 16c e a =<=<=,综上:b<c<a .故选:C.7.B【分析】法一:根据基本初等函数的单调性可知,,a b c 的范围,即可求解.【详解】[方法一]:函数性质法由()0,1x ∈,所以(1,2)2x a ∈=,ln ln10b x =<=,3(0,1)c x =∈,所以a c b >>.故选:B.[方法二]:【最优解】特值法取12x =,则1221a =>,1ln 02b =<,3112c ⎛⎫=< ⎪⎝⎭,所以a c b >>.故选:B.【整体点评】法一:根据单调性确定各字母的范围,从而得出大小关系,是比较大小的最基本方法,是通性通法;法二:对于较简单的比较大小问题,利用特殊值得到各字母的范围,是不错的选择,是该题的最优解.8.D【分析】结合对数的运算公式以及对数函数的单调性进行转化求解即可.【详解】[方法一]:构造函数(一)由题意得,666261log 3log 1log 212log 6a ===-=-,888281log 4log 1log 212log 8b ===-=-,1010102101log 5log 1log 212log 10a ===-=-,因为函数2log y x =在(0,)+∞上单调递增,所以222log 6log 8log 10<<,则222111log 6log 8log 10>>,所以a b c <<.故选:D.[方法二]:构造函数(二)构造()()()()ln 1,ln 2x f x x x ∞=∈+,()()()()2ln2'01,ln 2f x x x x ∞=>∈+⎡⎤⎣⎦,所以()f x 在(1,)+∞上单调递增,所以222log 6log 8log 10<<,则222111log 6log 8log 10>>,所以a b c <<.故选:D.9.B【分析】方法一:作差利用对数的性质即可比较.【详解】[方法一]:【最优解】作差比较法因为ln 2ln 65ln 22ln 6ln32ln360251010a c ---=-==<,所以a c <,因为ln3ln 65ln33ln 6ln 243ln 2160351510bc ---=-==>,所以b c >,所以a c b <<.故选:B.[方法二]:构造函数法()()()ln 1,x f x x x∞=∈+,21ln ()x f x x -'=,令()0f x '<,得>x e ,所以()f x 在(,)e +∞上单减,所以ln3ln4ln2ln63426>=>,所以b >a ,因为ln 2ln 65ln 22ln 6ln32ln360251010a c ---=-=<,所以a c <,因为ln3ln 65ln33ln 6ln 243ln 2160351510bc ---=-==>,所以b c >,所以a c b <<.故选:B.【整体点评】方法一:作差法是最常用的比较大小的方法,是该题的最优解;方法二:根据式子形式,利用函数的单调性比较大小,也是常用的比较大小的方法,对于处理较难的比较大小问题,是不错的选择,但对于该题作用显得不是很好.10.b<c<a【分析】方法一:构造函数()e 1x f x x =--和()ln 1g x x x =-+,求导确定单调性,利用单调性即可比较大小.【详解】[方法一]:【最优解】构造函数法记()e 1x f x x =--,则()e 1x f x '=-,当0x >时,()0f x '>,故()f x 在()0+∞,上单调递增,故0.20.2(0.2)(0)e 0.210e 10.2f f >⇒-->⇒->,故a c >,记()ln 1g x x x =-+,则11()1x g x x x-'=-=,当1x >时,()0g x '<,故()g x 在()1+∞,单调递减,故(1.2)(1)0ln1.2 1.210ln1.20.2g g <=⇒-+<⇒<,故b c <,因此a c b >>.故答案为:b<c<a[方法二]:泰勒公式放缩0.2110.210.2a e c =->+-==,由函数切线放缩ln(1)x x +<得()ln 10.20.2b c =+<=,因此a c b >>.故答案为:b<c<a【整体点评】方法一:根据式子特征,构造相关函数,利用其单调性比较出大小关系,是该题的通性通法,也是最优解;方法二:利用泰勒公式以及切线不等式放缩,解法简洁,但是内容超出教材,不是每一个同学可以掌握.。
专题02 利用导数研究函数单调性问题(含参数讨论) (解析版)
导数及其应用专题二:利用导数研究函数单调性问题(含参数讨论)一、知识储备往往首先考虑是否导数恒大于零或恒小于零,再考虑可能大于零小于零的情况。
常与含参数的一元二次不等式的解法有关,首先讨论二次项系数,再就是根的大小或判别式,能表示出对应一元二次方程的根时讨论根的大小、端点实数的大小,不能时讨论判别式。
二、例题讲解1.(2022·山东莱州一中高三开学考试)已知函数()1ln f x x a x =--(其中a 为参数). (1)求函数()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)求导可得()af x x x'-=,分0a ≤和0a >进行讨论即可; 【详解】 (1)()af x x x'-=,(0,)x ∈+∞, 当0a ≤时,()0f x '>,()f x ∴在(0,)+∞上递增, 当0a >时,令()0f x '=,得x a =,()0,x a ∈时,()f x 单调递减, (,)x a ∈+∞时,()f x 单调递增;综上:0a ≤时,()f x 在(0,)+∞上递增,无减区间,当0a >时,()f x 的单调递减区间为()0,a ,单调递增区间为(,)a +∞;2.(2022·宁夏银川一中高三月考(文))已知函数2()(2)ln f x x a x a x =---(a R ∈) (1)求函数()y f x =的单调区间; 【分析】(1)先求出函数的定义域,然后对函数求导,分0a ≤和0a >两种情况判断导数的正负,从而可求得函数的单调区间, 【详解】(1)函数()f x 的定义域是(0,)+∞,(1)(2)()2(2)a x x a f x x a x x'+-=---= 当0a ≤时,()0f x '>对任意(0,)x ∈+∞恒成立, 所以,函数()f x 在区间(0,)+∞单调递增; 当0a >时,由()0f x '>得2a x >,由()0f x '<,得02ax <<, 所以,函数在区间,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,在区间0,2a ⎛⎫ ⎪⎝⎭上单调递减;综上:0a ≤时,()f x 的单调增区间为(0,)+∞,无单调减区间. 0a >时,()f x 的单调增区间为,2a ⎛⎫+∞ ⎪,单调减区间为0,2a ⎛⎫ ⎪.3.(2022·广西高三开学考试(理))函数()322f x x x ax =++,(1)讨论()f x 的单调性;【答案】(1)答案不唯一,具体见解析; 【分析】(1)求得()'f x ,对a 进行分类讨论,由此求得()f x 的单调性.【详解】(1)()'234f x x x a =++,1612a ∆=-①若43a ≥,则0∆≤,()'0f x ≥;()f x 单调递增; ②若43a <则0∆>,当x <x >()'0f x >,()f x 单调递增;x <<,()'0f x <,()f x 单调递减; 【点睛】若函数的导函数含有参数,则需要对参数进行分类讨论,分类讨论要做到不重不漏.三、实战练习1.(2022·全国高三月考)设函数()()()21ln 11f x x x ax x a =++--+-,a R ∈.(1)求()f x '的单调区间 【答案】(1)答案见解析; 【分析】(1)先对函数()f x 进行求导,构造函数再分0a ≤,0a >两种情况进行讨论,利用导数研究函数的单调性即可求解; 【详解】(1)由题意可得()f x 的定义域为{}1x x >-,()()ln 12f x x ax +'=-. 令()()()ln 121g x x ax x =+->-, 则()1122211a axg x a x x --=-='++. 当0a ≤时,当()1,x ∈-+∞时,()0g x '>,函数()g x 单调递增; 当0a >时,当11,12x a ⎛⎫∈-- ⎪⎝⎭时,()0g x '>,函数()g x 单调递增;当11,2x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0g x '<,函数()g x 单调递减,所以当0a ≤时,()f x '的单调递增区间为()1,-+∞; 当0a >时,()f x '的单调递增区间为11,12a ⎛⎫-- ⎪⎝⎭,单调递减区间为11,2a ⎛⎫-+∞ ⎪⎝⎭.2.(2022·浙江舟山中学高三月考)已知函数()22ln (R)f x x x a x a =-+∈(1)当0a >时,求函数()f x 的单调区间; 【答案】(1)当12a ≥时,函数在()0+∞,递增;当102a <<时,函数在()10,x 递增,()12,x x 递减,()2,x +∞递增其中12x x =; 【分析】(1)求()f x ',令()0f x '=可得2220x x a -+=,分别讨论0∆≤和0∆>时,求不等式()0f x '>,()0f x '<的解集,即可求解;【详解】(1)()22ln (R)f x x x a x a =-+∈定义域为()0,∞+, ()22222a x x af x x x x-+'=-+=()0x >, 令()0f x '=可得2220x x a -+=, 当480a ∆=-≤即12a ≥时,()0f x '≥对于()0,x ∈+∞恒成立, 所以()f x 在()0,∞+上单调递增,当480a ∆=->即102a <<时,由2220x x a -+=可得:x =,由()0f x '>可得:0x <<或x >由()0f x '<x <<所以()f x 在⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减, 综上所述:当12a ≥时,()f x 的单调递增区间为()0,∞+;当102a <<时,()f x 的单调递增区间为⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭单调递减区间为⎝⎭. 3.(2022·山东济宁一中)已知函数()ln f x x a x =-,a ∈R . (1)求函数()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)对函数求导,进而讨论a 的范围,最后得到函数的单调区间; 【详解】(1)函数()f x 的定义域为{}0x x >,()1a x a f x x x'-=-=0a ≤时,()0f x '>恒成立,函数()f x 在()0,∞+上单调递增;0a >时,令()0f x '=,得x a =.当0x a <<时,()0f x '<,函数()f x 为减函数; 当x a >时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≤时,函数()f x 的单调递增区间为()0,∞+,无单调递减区间; 当0a >时,函数()x 的单调递减区间为()0,a ,单调递增区间为(),a +∞. 4.(2022·仪征市精诚高级中学高三月考)已知函数()()1n f x x ax a =-∈R . (1)讨论函数()f x 的单调性;【答案】(1)答案不唯一,具体见解析;(2)证明见解析. 【分析】(1)求出函数导数,讨论a 的范围结合导数即可得出单调性; 【详解】 (1)11()(0)axf x a x xx-'=-=> 当0a ≤时,()0f x '>,所以()f x 在(0,)+∞上单调递增; 当0a >时,令()0f x '=,得到1x a=, 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增, 当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.5.(2022·嘉峪关市第一中学高三模拟预测(理))已知函数()21xf x e ax =--,()()2ln 1g x a x =+,a R ∈.(1)求()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)求出函数()f x 的导函数()f x ',按a 分类解不等式()0f x '<、()0f x '>即得;【详解】(1)对函数()21x f x e ax =--求导得,()2xf x e a '=-,当0a ≤时,()0f x '>,()f x 在R 上为增函数,当0a >时,由()20xf x e a '=-=,解得:()ln 2x a =,而()f x '在R 上单调递增,于是得当(,ln(2))∈-∞x a 时,()0f x '<,()f x 在(,ln(2))a -∞上为减函数, 当()()ln 2,x a ∈+∞时,()0f x '>,()f x 在()()ln 2,a +∞上为增函数, 所以,当0a ≤时,()f x 的单调递增区间为R ,当0a >时,()f x 的单调递减区间是(,ln(2))a -∞,单调递增区间是()()ln 2,a +∞;6.(2022·榆林市第十中学高三月考(文))已知函数()2ln f x ax x x =--,0a ≠.(1)试讨论函数()f x 的单调性;【答案】(1)当0a <时,函数()f x 在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 【分析】(1)求出导函数()212121ax x f x ax x x -'-=--=,设()221g x ax x =--,对a 分类讨论:当0a <时,函数()f x在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 【详解】函数()2ln f x ax x x =--的定义域为()0+∞,. (1)()212121ax x f x ax x x-'-=--=,设()221g x ax x =--当0a <时,因为函数()g x 图象的对称轴为104x a=<,()01g =-. 所以当0x >时,()0g x <,()0f x '<,函数()f x 在()0,∞+上单调递减;当0a >时,令()0g x =.得1x =2x =当20x x <<时,()0<g x ,()0f x '<,当2x x >时,()0>g x ,()0f x '>.所以函数()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 7.(2022·嘉峪关市第一中学高三三模(理))设函数()2ln f x ax a x =--,其中a ∈R .(1)讨论()f x 的单调性; 【答案】(1)答案见解析; 【分析】(1)求导,当0a ≤时,可得()0f x '<,()f x 为单调递减函数;当0a >时,令()0f x '=,可得极值点,分别讨论在⎛ ⎝和+⎫∞⎪⎭上,()'f x 的正负,可得()f x 的单调区间,即可得答案.【详解】(1)()()212120.ax f x ax x x x-'=-=>当0a ≤时,()0f x '<,()f x 在()0,∞+内单调递减. 当0a >时,由()0f x '=,有x =此时,当x ∈⎛⎝时,()0f x '<,()f x 单调递减;当x ∈+⎫∞⎪⎭时,()0f x '>,()f x 单调递增. 综上:当0a ≤时,()f x 在()0,∞+内单调递减,当0a >时,()f x 在⎛ ⎝内单调递减,在+⎫∞⎪⎭单调递增. 8.(2022·贵州省思南中学高三月考(文))设函数()22ln 1f x x mx =-+.(1)讨论函数()f x 的单调性; 【答案】(1)函数()f x 的单调性见解析; 【分析】(1)求出函数()f x 的定义域及导数,再分类讨论导数值为正、为负的x 取值区间即得; 【详解】(1)依题意,函数()f x 定义域为(0,)+∞,()222(1)2mx f x mx x x-'=-=,当0m ≤时,()0f x '>,()f x 在(0,)+∞上单调递增,当0m >时,由()0f x '=得x =,当0x <<()0f x '>,当x >时,()0f x '<,于是得()f x 在上单调递增,在)+∞上单调递减,所以,当0m ≤时,()f x 在(0,)+∞上单调递增,当0m >时,()f x 在上单调递增,在)+∞上单调递减;9.(2022·河南(理))已知函数()()2ln f x x m x x =--(8m ≥-,且0m ≠).(1)讨论函数()f x 的单调性;【答案】(1)答案不唯一,具体见解析; 【分析】(1)求导得到221()mx mx f x x --'=-,转化为二次函数2()21g x mx mx =--的正负进行讨论,分0∆≤,0∆>两种情况讨论,即得解; 【详解】(1)函数()f x 的定义域为()0,∞+,2121()(21)mx mx f x m x x x--'=--=-, 令2()21g x mx mx =--,()g x 为二次函数,28m m ∆=+, ①当80m -≤<时,0∆≤,()0g x ≤, 所以()0f x '≥,故()f x 在()0,∞+单调递增; ②当0m >时,0∆>, 令()0g x =,得1x =2x =,显然120x x <<,所以当()20,x x ∈,()0g x <, 所以()0f x '>,故()f x 单调递增;当()2,x x ∈+∞时,()0g x >, 所以()0f x '<,()f x 单调递减.综上,当0m >时,()f x 在⎛ ⎝⎭单调递增,在⎫+∞⎪⎪⎝⎭上单调递减; 当80m -≤<时,()f x 在()0,∞+单调递增.10.(2022·河南高三月考(文))已知函数()()2ln f x x m x x =--(8m ≥-,且0m ≠).(1)讨论函数()f x 的单调性;【答案】(1)答案见解析;(2)证明见解析. 【分析】(1)求导2121()(21)mx mx f x m x x x --'=--=-,令2()21g x mx mx =--,然后由0∆≤,0∆>讨论求解;【详解】(1)函数()f x 的定义域为()0,∞+,2121()(21)mx mx f x m x x x--'=--=-, 令2()21g x mx mx =--,()g x 为二次函数,28m m ∆=+, ①当80m -≤<时,0∆≤,()0g x ≤, 所以()0f x '≥,故()f x 在()0,∞+单调递增; ②当0m >时,0∆>,令()0g x =,得1x =2x =,显然120x x <<,所以当()20,x x ∈,()0g x <, 所以()0f x '>,()f x 单调递增; 当()2,x x ∈+∞时,()0g x >, 所以()0f x '<,()f x 单调递减.综上,当80m -≤<时, ()f x 在()0,∞+单调递增;当0m >时,()f x 在⎛ ⎝⎭单调递增,在⎫+∞⎪⎪⎝⎭上单调递减. 11.(2022·湖南高三模拟预测)设函数1()ln ,()3a f x x g x ax x-=+=-. (1)求函数()()()x f x g x ϕ=+的单调递增区间; 【答案】(1)答案见解析;(2)存在符合题意的整数λ,其最小值为0.【分析】(1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间即可;【详解】解:(1)函数()ϕx 的定义域为()0,∞+,函数()ϕx 的导数2(1)(1)()x ax a x x ϕ'++-=, 当0a <时,()ϕx 在10,a a -⎛⎫ ⎪⎝⎭上单调递增,在1,a a -⎛⎫+∞ ⎪⎝⎭上单调递减 当01a 时,()ϕx 在R +上单调递增.当1a >时,()ϕx 在10,a a -⎛⎫ ⎪⎝⎭上单调递减,在1,a a -⎛⎫+∞ ⎪⎝⎭上单调递增. 综上可知,当0a <时,()ϕx 的单调递增区间是10,a a -⎛⎫ ⎪⎝⎭;当01a 时,()ϕx 的单调递增区间是(0,)+∞;当1a >时,()ϕx 的单调递增区间是1,a a -⎛⎫+∞ ⎪⎝⎭. 12.(2022·安徽高三月考(文))已知函数21()ln 2f x x a x =-. (1)讨论()f x 的单调性; 【答案】(1)答案不唯一,具体见解析;(2)12a =. 【分析】 (1)求导函数()'f x ,分类讨论确定()'f x 的正负,得单调区间;【详解】解:(1)由题意,可得0x >且2 ()a x a f x x x x-'=-= ①若0a ≤,()0f x '>恒成立,则()f x 在(0,)+∞上是增函数②0a >,则2()a x a f x x x x -==='-所以当x ∈时,()0f x '<,当)x ∈+∞时,()0f x '>则()f x 在上是减函数,在)+∞上是增函数综上所述,若0a ≤,()y f x =在(0,)+∞上是增函数若0a >,()y f x =在上是减函数,在)+∞上是增函数13.(2022·湖北武汉·高三月考)已知函数2()ln (1),2a f x x x a x a R =+-+∈ (1)讨论函数()f x 的单调区间;【答案】(1)答案见解析;【分析】(1)求得(1)(1)()x ax f x x '--=,分0a ≤,01a <<,1a =和1a >四种情况讨论,结合导数的符号,即可求解; 【详解】(1)由题意,函数2()ln (1)2a f x x x a x =+-+的定义域为(0,)+∞, 且21(1)1(1)(1)()(1)ax a x x ax f x ax a x x x-++--=+-+==', ①当0a ≤时,令()0f x '>,解得01x <<,令()0f x '<,解得1x >,所以()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;②当01a <<时,令()0f x '>,解得01x <<或1x a>, 令()0f x '<,解得11x a <<, 所以()f x 在(0,1),1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,在11,a ⎛⎫ ⎪⎝⎭上单调递减; ③当1a =时,则()0f x '≥,所以在(0,)+∞上()f x 单调递增,④当1a >时,令()0f x '>,解得10x a<<或1x >, 令()0f x '<,解得11x a <<, 所以()f x 在10,a ⎛⎫ ⎪⎝⎭,(1,)+∞上单调递增,在1,1a ⎛⎫ ⎪⎝⎭上单调递减; 综上,当0a ≤时,()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;当01a <<时,()f x 在(0,1),1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,在11,a ⎛⎫ ⎪⎝⎭上单调递减;当1a =时,()f x 在(0,)+∞上单调递增;当1a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭,(1,)+∞上单调递增,在1,1a ⎛⎫ ⎪⎝⎭上单调递减; 14.(2022·双峰县第一中学高三开学考试)已知函数()2()1e x f x x ax =-+.(1)讨论()f x 的单调性;【答案】(1)当0a =时,()f x 在R 上单调递增;当0a <时,()f x 在(),1a -∞-和(1,)-+∞上单调递增,在()1,1a --上单调递减;当0a >时,()f x 在(),1-∞-和(1,)a -+∞上单调递增,在()1,1a --上单调递减;【分析】(1)先对函数求导,然后结合导数与单调性的关系,讨论0a =,0a >和0a <情况下,导数的正负,即可得到()f x 的单调性;【详解】(1)函数()2()1e x f x x ax =-+,求导()()()()21e 11e 2x x f x x a x a x a x '⎡⎤+=⎣+-⎦=-+-+由()0f x '=,得11x a =-,21x =-①当0a =时,()()21e 0x f x x '+≥=,()f x ∴在R 上单调递增;②当0a <时, 在(),1x a ∈-∞-有()0f x '>,故()f x 单调递增;在()1,1x a ∈--有()0f x '<,故()f x 单调递减;在(1,)x ∈-+∞有()0f x '>,故()f x 单调递增;③当0a >时, 在(),1x ∈-∞-有()0f x '>,故()f x 单调递增;在()1,a 1x ∈--有()0f x '<,故()f x 单调递减;在(1,)x a ∈-+∞有()0f x '>,故()f x 单调递增;综上所述,当0a =时,()f x 在R 上单调递增;当0a <时,()f x 在(),1a -∞-和(1,)-+∞上单调递增,在()1,1a --上单调递减;当0a >时,()f x 在(),1-∞-和(1,)a -+∞上单调递增,在()1,1a --上单调递减;。
(完整版)导数单调性分类讨论
类型二:导数单调性专题类型1.导数不含参。
类型2.导数含参.类型3:要求二次导 求单调性一般步骤:(1) 第一步:写出定义域,一般有()0ln >⇒x x(2) 第二步:求导,(注意有常数的求导)若有分母则通分。
一般分母都比0大,故去死若无分母,因式分解(提公因式,十字相乘法)或求根(观察分子)判断导函数是否含参,再进行讨论(按恒成立与两个由为分界)(3) 第三步由()()⎩⎨⎧≤≥解出是减区间解出是增区间00x f x f(4) 下结论类型一:导函数不含参:()()()⎪⎩⎪⎨⎧-+=--++=++=21223,22,,x x e m e x f x x c bx ax x f x b kx x f 如指数型如:二次型如:一次型 对于这类型的题,直接由导函数大于0,小于0即可(除非恒成立) 例题1求函数()()x e x x f 3-=的单调递增区间 解:()()()23'-=-+=x e e x e x f x x x 由()()202'>⇒>-=x x e x f x 所以函数在区间()+∞,2单调递增 由()()202'<⇒<-=x x e x f x所以函数在区间()2,∞-单调递减21x解:()()()()x e e x e x xe e x f x x x x x +-=-+-=-+-=11111'由()()()01011'>-<⇒>+-=x x x e x f x 或所以函数在区间(][)∞+-∞-,和01,单调递增 由()()()01011'<<-⇒<+-=x x e x f x 所以函数在区间()0,1-单调递减 例题3:求函数()xxx f ln =的单调区间例题4:已知函数()()()R k kx e x x f x ∈--=21 (1)若1=k 时,求函数()x f 的单调区间例题5.(2010·新课标全国文,21)设函数f (x )=x (e x -1)-ax 2。
利用导数研究函数的单调性专题
利用导数研究函数的单调性1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.函数的极值与导数f′(x0)=0x0附近的左侧f′(x)<0,右侧条件x0附近的左侧f′(x)>0,右侧f′(x)<0f′(x)>0图象形如山峰形如山谷极值f(x0)为极大值f(x0)为极小值极值点x0为极大值点x0为极小值点3.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.1.判断下列结论正误(在括号内打“√”或“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.( )(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.( )(3)函数的极大值一定大于其极小值.( )(4)对可导函数f(x),f′(x0)=0是x0为极值点的充要条件.( )(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( )2.(选修2-2P32A4 改编)如图是f(x)的导函数f′(x)的图象,则f(x)的极小值点的个数为( )A.1B.2C.3D.43.(选修2-2P32A5(4)改编)函数f(x)=2x-x ln x的极值是( )A.1eB.2eC.eD.e24.(2019·青岛月考)函数f(x)=cos x-x在(0,π)上的单调性是( )A.先增后减B.先减后增C.单调递增D.单调递减5.(2017·浙江卷)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是( )6.(2019·豫南九校考评)若函数f(x)=x(x-c)2在x=2处有极小值,则常数c的值为( )A.4B.2或6C.2D.6考点一 求函数的单调区间【例1】 已知函数f (x )=ax 3+x 2(a ∈R)在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x,求函数g (x )的单调减区间. 【规律方法】 1.求函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求f ′(x );(3)在定义域内解不等式f ′(x )>0,得单调递增区间;(4)在定义域内解不等式f ′(x )<0,得单调递减区间.2.若所求函数的单调区间不止一个时,用“,”与“和”连接. 【训练1】 (1)已知函数f (x )=x ln x ,则f (x )( ) A.在(0,+∞)上递增B.在(0,+∞)上递减C.在⎝ ⎛⎭⎪⎫0,1e 上递增D.在⎝ ⎛⎭⎪⎫0,1e 上递减 (2)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间为________.【例2】 (2017·全国Ⅰ卷改编)已知函数f (x )=e x(e x-a )-a 2x ,其中参数a ≤0. (1)讨论f (x )的单调性; (2)若f (x )≥0,求a 的取值范围.【训练2】 已知f (x )=x 22-a ln x ,a ∈R ,求f (x )的单调区间.考点三 函数单调性的简单应用 角度1 比较大小或解不等式【例3-1】 (1)已知函数y =f (x )对于任意的x ∈⎝⎛⎭⎪⎫0,π2满足f ′(x )cos x +f (x )sin x =1+ln x ,其中f ′(x )是函数f (x )的导函数,则下列不等式成立的是( )A.2f ⎝ ⎛⎭⎪⎫π3<f ⎝ ⎛⎭⎪⎫π4B.2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4C.2f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π4D.3f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π6 (2)已知函数f ′(x )是函数f (x )的导函数,f (1)=1e,对任意实数都有f (x )-f ′(x )>0,设F (x )=f (x )ex ,则不等式F (x )<1e2的解集为( )A.(-∞,1)B.(1,+∞)C.(1,e)D.(e ,+∞)角度2 根据函数单调性求参数【例3-2】 (2019·日照质检)已知函数f (x )=ln x ,g (x )=12ax 2+2x .(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求实数a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求实数a 的取值范围.【训练3】 (1)已知f (x )是定义在区间(0,+∞)内的函数,其导函数为f ′(x ),且不等式xf ′(x )<2f (x )恒成立,则( )A.4f (1)<f (2)B.4f (1)>f (2)C.f (1)<4f (2)D.f (1)>4f ′(2) (2)(2019·淄博模拟)若函数f (x )=kx -ln x 在区间(2,+∞)上单调递增,则k 的取值范围是( ) A.(-∞,-2] B.⎣⎢⎡⎭⎪⎫12,+∞ C.[2,+∞) D.⎝ ⎛⎦⎥⎤-∞,12【基础巩固题组】(建议用时:40分钟) 一、选择题1.函数y =f (x )的图象如图所示,则y =f ′(x )的图象可能是( )2.函数f (x )=x ·e x -e x +1的单调递增区间是( )A.(-∞,e)B.(1,e)C.(e ,+∞)D.(e -1,+∞)3.(2019·青岛二中调研)若函数f (x )=x 3-12x 在区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是( )A.k ≤-3或-1≤k ≤1或k ≥3B.不存在这样的实数kC.-2<k <2D.-3<k <-1或1<k <34.已知f (x )=ln xx,则( )A.f (2)>f (e)>f (3)B.f (3)>f (e)>f (2)C.f (3)>f (2)>f (e)D.f (e)>f (3)>f (2)5.(2019·济宁一中模拟)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ) A.(-1,1) B.(-1,+∞) C.(-∞,-1)D.(-∞,+∞)二、填空题6.已知函数f (x )=(-x 2+2x )e x(x ∈R ,e 为自然对数的底数),则函数f (x )的单调递增区间为________.7.若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是________.8.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a 的取值范围是________.三、解答题9.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.10.(2019·成都七中检测)设函数f (x )=ax 2-a -ln x ,g (x )=1x -e e x ,其中a ∈R ,e =2.718…为自然对数的底数.(1)讨论f (x )的单调性; (2)证明:当x >1时,g (x )>0.【能力提升题组】(建议用时:20分钟)11.(2017·山东卷)若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( ) A.f (x )=2-xB.f (x )=x 2C.f (x )=3-xD.f (x )=cos x12.(2019·上海静安区调研)已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f ⎝⎛⎭⎪⎫ln 1x <2f (1)的解集为( )A.(e ,+∞)B.(0,e)C.⎝ ⎛⎭⎪⎫0,1e ∪(1,e) D.⎝ ⎛⎭⎪⎫1e ,e13.若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是________.14.已知函数f (x )=a ln x -ax -3(a ∈R). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎢⎡⎦⎥⎤f ′(x )+m 2在区间(t ,3)上总不是单调函数,求m 的取值范围.15.(多填题)已知函数f (x )=x 3+mx 2+nx -2的图象过点(-1,-6),函数g (x )=f ′(x )+6x 的图象关于y 轴对称.则m =________,f (x )的单调递减区间为________.答案1.判断下列结论正误(在括号内打“√”或“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.( )(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.( )(3)函数的极大值一定大于其极小值.( )(4)对可导函数f(x),f′(x0)=0是x0为极值点的充要条件.( )(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( )【答案】(1)×(2)√(3)×(4)×(5)√【解析】(1)f(x)在(a,b)内单调递增,则有f′(x)≥0.(3)函数的极大值也可能小于极小值.(4)x0为f(x)的极值点的充要条件是f′(x0)=0,且x0两侧导函数异号.【教材衍化】2.(选修2-2P32A4 改编)如图是f(x)的导函数f′(x)的图象,则f(x)的极小值点的个数为( )A.1B.2C.3D.4【答案】 A【解析】由题意知在x=-1处f′(-1)=0,且其两侧导数符号为左负右正.3.(选修2-2P32A5(4)改编)函数f(x)=2x-x ln x的极值是( )A.1eB.2eC.eD.e2【答案】 C【解析】因为f′(x)=2-(ln x+1)=1-ln x,令f′(x)=0,所以x=e,当f′(x)>0时,解得0<x<e;当f′(x)<0时,解得x>e,所以x=e时,f(x)取到极大值,f(x)极大值=f(e)=e.【真题体验】4.(2019·青岛月考)函数f(x)=cos x-x在(0,π)上的单调性是( )A.先增后减B.先减后增C.单调递增D.单调递减【答案】 D【解析】 易知f ′(x )=-sin x -1,x ∈(0,π), 则f ′(x )<0,所以f (x )=cos x -x 在(0,π)上递减.5.(2017·浙江卷)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )【答案】 D【解析】 设导函数y =f ′(x )与x 轴交点的横坐标从左往右依次为x 1,x 2,x 3,由导函数y =f ′(x )的图象易得当x ∈(-∞,x 1)∪(x 2,x 3)时,f ′(x )<0;当x ∈(x 1,x 2)∪(x 3,+∞)时,f ′(x )>0(其中x 1<0<x 2<x 3),所以函数f (x )在(-∞,x 1),(x 2,x 3)上单调递减,在(x 1,x 2),(x 3,+∞)上单调递增,观察各选项,只有D 选项符合.6.(2019·豫南九校考评)若函数f (x )=x (x -c )2在x =2处有极小值,则常数c 的值为( ) A.4 B.2或6 C.2D.6【答案】 C【解析】 函数f (x )=x (x -c )2的导数为f ′(x )=3x 2-4cx +c 2, 由题意知,在x =2处的导数值为12-8c +c 2=0,解得c =2或6,又函数f (x )=x (x -c )2在x =2处有极小值,故导数在x =2处左侧为负,右侧为正,而当e =6时,f (x )=x (x -6)2在x =2处有极大值,故c =2.【考点聚焦】考点一 求函数的单调区间【例1】 已知函数f (x )=ax 3+x 2(a ∈R)在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x,求函数g (x )的单调减区间. 【答案】见解析【解析】(1)对f (x )求导得f ′(x )=3ax 2+2x , 因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0, 即3a ·⎝ ⎛⎭⎪⎫-432+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12.(2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x,故g ′(x )=12x (x +1)(x +4)e x.令g ′(x )<0,即x (x +1)(x +4)<0, 解得-1<x <0或x <-4,所以g (x )的单调减区间为(-1,0),(-∞,-4). 【规律方法】 1.求函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求f ′(x );(3)在定义域内解不等式f ′(x )>0,得单调递增区间;(4)在定义域内解不等式f ′(x )<0,得单调递减区间.2.若所求函数的单调区间不止一个时,用“,”与“和”连接. 【训练1】 (1)已知函数f (x )=x ln x ,则f (x )( ) A.在(0,+∞)上递增B.在(0,+∞)上递减C.在⎝ ⎛⎭⎪⎫0,1e 上递增D.在⎝ ⎛⎭⎪⎫0,1e 上递减 (2)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间为________. 【答案】 (1)D (2)⎝⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2 【解析】 (1)因为函数f (x )=x ln x ,定义域为(0,+∞),所以f ′(x )=ln x +1(x >0),当f ′(x )>0时,解得x >1e ,即函数的单调递增区间为⎝ ⎛⎭⎪⎫1e ,+∞;当f ′(x )<0时,解得0<x <1e ,即函数的单调递减区间为⎝ ⎛⎭⎪⎫0,1e .(2)f ′(x )=sin x +x cos x -sin x =x cos x .令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2,即f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2. 考点二 讨论函数的单调性【例2】 (2017·全国Ⅰ卷改编)已知函数f (x )=e x(e x-a )-a 2x ,其中参数a ≤0. (1)讨论f (x )的单调性;(2)若f (x )≥0,求a 的取值范围. 【答案】见解析【解析】(1)函数f (x )的定义域为(-∞,+∞),且a ≤0.f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x,在(-∞,+∞)上单调递增. ②若a <0,则由f ′(x )=0,得x =ln ⎝ ⎛⎭⎪⎫-a 2.当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0. 故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2上单调递减, 在区间⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞上单调递增. (2)①当a =0时,f (x )=e 2x ≥0恒成立.②若a <0,则由(1)得,当x =ln ⎝ ⎛⎭⎪⎫-a 2时,f (x )取得最小值,最小值为f ⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2=a 2⎣⎢⎡⎦⎥⎤34-ln ⎝ ⎛⎭⎪⎫-a 2,故当且仅当a 2⎣⎢⎡⎦⎥⎤34-ln ⎝ ⎛⎭⎪⎫-a 2≥0,即0>a ≥-2e 34时,f (x )≥0. 综上,a 的取值范围是[-2e 34,0].【规律方法】 1.(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.2.个别导数为0的点不影响所在区间的单调性,如f (x )=x 3,f ′(x )=3x 2≥0(f ′(x )=0在x =0时取到),f (x )在R 上是增函数.【训练2】 已知f (x )=x 22-a ln x ,a ∈R ,求f (x )的单调区间.【答案】见解析【解析】因为f (x )=x 22-a ln x ,x ∈(0,+∞),所以f ′(x )=x -a x =x 2-ax.(1)当a ≤0时,f ′(x )>0,所以f (x )在(0,+∞)上为单调递增函数. (2)当a >0时,f ′(x )=(x +a )(x -a )x,则有①当x ∈(0,a )时,f ′(x )<0,所以f (x )的单调递减区间为(0,a ). ②当x ∈(a ,+∞)时,f ′(x )>0,所以f (x )的单调递增区间为(a ,+∞). 综上所述,当a ≤0时,f (x )的单调递增区间为(0,+∞),无单调递减区间. 当a >0时,函数f (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞). 考点三 函数单调性的简单应用 角度1 比较大小或解不等式【例3-1】 (1)已知函数y =f (x )对于任意的x ∈⎝⎛⎭⎪⎫0,π2满足f ′(x )cos x +f (x )sin x =1+ln x ,其中f ′(x )是函数f (x )的导函数,则下列不等式成立的是( )A.2f ⎝ ⎛⎭⎪⎫π3<f ⎝ ⎛⎭⎪⎫π4B.2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4C.2f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π4D.3f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π6 (2)已知函数f ′(x )是函数f (x )的导函数,f (1)=1e,对任意实数都有f (x )-f ′(x )>0,设F (x )=f (x )ex ,则不等式F (x )<1e2的解集为( )A.(-∞,1)B.(1,+∞)C.(1,e)D.(e ,+∞)【答案】 (1)B (2)B【解析】 (1)令g (x )=f (x )cos x ,则g ′(x )=f ′(x )cos x -f (x )(-sin x )cos 2x =1+ln x cos 2x.由⎩⎪⎨⎪⎧0<x <π2,g ′(x )>0,解得1e <x <π2;由⎩⎪⎨⎪⎧0<x <π2,g ′(x )<0,解得0<x <1e .所以函数g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,π2上单调递增,又π3>π4,所以g ⎝ ⎛⎭⎪⎫π3>g ⎝ ⎛⎭⎪⎫π4,所以f ⎝ ⎛⎭⎪⎫π3cos π3>f ⎝ ⎛⎭⎪⎫π4cosπ4,即2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4. (2)F ′(x )=f ′(x )e x -e x f (x )(e x )2=f ′(x )-f (x )ex,又f (x )-f ′(x )>0,知F ′(x )<0, ∴F (x )在R 上单调递减. 由F (x )<1e2=F (1),得x >1,所以不等式F (x )<1e 2的解集为(1,+∞).角度2 根据函数单调性求参数【例3-2】 (2019·日照质检)已知函数f (x )=ln x ,g (x )=12ax 2+2x .(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求实数a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求实数a 的取值范围. 【答案】见解析【解析】h (x )=ln x -12ax 2-2x ,x >0.∴h ′(x )=1x-ax -2.(1)若函数h (x )在(0,+∞)上存在单调减区间, 则当x >0时,1x -ax -2<0有解,即a >1x 2-2x有解.设G (x )=1x 2-2x,所以只要a >G (x )min .又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,所以G (x )min =-1. 所以a >-1.即实数a 的取值范围是(-1,+∞). (2)由h (x )在[1,4]上单调递减,∴当x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,则a ≥1x 2-2x 恒成立,设G (x )=1x 2-2x,所以a ≥G (x )max .又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,x ∈[1,4], 因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.又当a =-716时,h ′(x )=1x +716x -2=(7x -4)(x -4)16x ,∵x ∈[1,4],∴h ′(x )=(7x -4)(x -4)16x ≤0,当且仅当x =4时等号成立. ∴h (x )在[1,4]上为减函数.故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.【规律方法】 1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小. 2.根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集. (2)f (x )是单调递增的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间存在单调区间可转化为不等式有解问题.【训练3】 (1)已知f (x )是定义在区间(0,+∞)内的函数,其导函数为f ′(x ),且不等式xf ′(x )<2f (x )恒成立,则( ) A.4f (1)<f (2) B.4f (1)>f (2) C.f (1)<4f (2)D.f (1)>4f ′(2)(2)(2019·淄博模拟)若函数f (x )=kx -ln x 在区间(2,+∞)上单调递增,则k 的取值范围是( ) A.(-∞,-2] B.⎣⎢⎡⎭⎪⎫12,+∞C.[2,+∞)D.⎝⎛⎦⎥⎤-∞,12【答案】 (1)B (2)B【解析】 (1)设函数g (x )=f (x )x 2(x >0),则g ′(x )=x 2f ′(x )-2xf (x )x 4=xf ′(x )-2f (x )x 3<0,所以函数g (x )在(0,+∞)内为减函数,所以g (1)>g (2),即f (1)12>f (2)22,所以4f (1)>f (2).(2)由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(2,+∞)上单调递增,等价于f ′(x )=k -1x≥0在(2,+∞)上恒成立,由于k ≥1x ,而0<1x <12,所以k ≥12.即k 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞. 【反思与感悟】1.已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解区间,并注意函数f (x )的定义域.2.含参函数的单调性要注意分类讨论,通过确定导数的符号判断函数的单调性.3.已知函数单调性求参数可以利用给定的已知区间和函数单调区间的包含关系或转化为恒成立问题两种思路解决. 【易错防范】1.求单调区间应遵循定义域优先的原则.2.注意两种表述“函数f(x)在(a,b)上为减函数”与“函数f(x)的减区间为(a,b)”的区别.3.在某区间内f′(x)>0(f′(x)<0)是函数f(x)在此区间上为增(减)函数的充分不必要条件.4.可导函数f(x)在(a,b)上是增(减)函数的充要条件是:对∀x∈(a,b),都有f′(x)≥0(f′(x)≤0),且f′(x)在(a,b)的任何子区间内都不恒为零.【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.函数y=f(x)的图象如图所示,则y=f′(x)的图象可能是( )【答案】 D【解析】由函数f(x)的图象可知,f(x)在(-∞,0)上单调递增,f(x)在(0,+∞)上单调递减,所以在(-∞,0)上,f′(x)>0;在(0,+∞)上,f′(x)<0,选项D满足.2.函数f(x)=x·e x-e x+1的单调递增区间是( )A.(-∞,e)B.(1,e)C.(e,+∞)D.(e-1,+∞)【答案】 D【解析】由f(x)=x·e x-e x+1,得f′(x)=(x+1-e)·e x,令f′(x)>0,解得x>e-1,所以函数f(x)的单调递增区间是(e-1,+∞).3.(2019·青岛二中调研)若函数f(x)=x3-12x在区间(k-1,k+1)上不是单调函数,则实数k的取值范围是( )A.k≤-3或-1≤k≤1或k≥3B.不存在这样的实数kC.-2<k <2D.-3<k <-1或1<k <3 【答案】 D【解析】 由f (x )=x 3-12x ,得f ′(x )=3x 2-12, 令f ′(x )=0,解得x =-2或x =2,只要f ′(x )=0的解有一个在区间(k -1,k +1)内,函数f (x )在区间(k -1,k +1)上就不单调,则k -1<-2<k +1或k -1<2<k +1,解得-3<k <-1或1<k <3. 4.已知f (x )=ln xx,则( )A.f (2)>f (e)>f (3)B.f (3)>f (e)>f (2)C.f (3)>f (2)>f (e)D.f (e)>f (3)>f (2)【答案】 D【解析】 f (x )的定义域是(0,+∞),∵f ′(x )=1-ln x x2, ∴x ∈(0,e),f ′(x )>0,x ∈(e ,+∞),f ′(x )<0, 故x =e 时,f (x )max =f (e),又f (2)=ln 22=ln 86,f (3)=ln 33=ln 96,则f (e)>f (3)>f (2).5.(2019·济宁一中模拟)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ) A.(-1,1) B.(-1,+∞) C.(-∞,-1)D.(-∞,+∞)【答案】 B【解析】 由f (x )>2x +4,得f (x )-2x -4>0,设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2, 因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增.又F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1. 二、填空题6.已知函数f (x )=(-x 2+2x )e x(x ∈R ,e 为自然对数的底数),则函数f (x )的单调递增区间为________. 【答案】 (-2,2)【解析】 因为f (x )=(-x 2+2x )e x,所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x. 令f ′(x )>0,即(-x 2+2)e x>0,因为e x >0,所以-x 2+2>0,解得-2<x <2, 所以函数f (x )的单调递增区间为(-2,2).7.若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是________. 【答案】 (-3,0)∪(0,+∞)【解析】 由题意知f ′(x )=3ax 2+6x -1,由函数f (x )恰好有三个单调区间,得f ′(x )有两个不相等的零点.需满足a ≠0,且Δ=36+12a >0,解得a >-3, 所以实数a 的取值范围是(-3,0)∪(0,+∞).8.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a 的取值范围是________. 【答案】 ⎝ ⎛⎭⎪⎫-19,+∞【解析】 对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝ ⎛⎭⎪⎫x -122+14+2a .当x ∈⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a .令29+2a >0,解得a >-19.所以a 的取值范围是⎝ ⎛⎭⎪⎫-19,+∞.三、解答题9.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间. 【答案】见解析【解析】(1)对f (x )求导得f ′(x )=14-a x 2-1x,由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32(x >0).则f ′(x )=x 2-4x -54x2. 令f ′(x )=0,且x >0, ∴x =5(x =-1舍去).当x ∈(0,5)时,f ′(x )<0;当x >5时,f ′(x )>0.所以函数f (x )的增区间为(5,+∞),减区间为(0,5).10.(2019·成都七中检测)设函数f (x )=ax 2-a -ln x ,g (x )=1x -e e x ,其中a ∈R ,e =2.718…为自然对数的底数.(1)讨论f (x )的单调性; (2)证明:当x >1时,g (x )>0. 【答案】见解析【解析】(1)解:由题意得f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0有x =12a ,当x ∈⎝⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )单调递增.(2)证明 令s (x )=ex -1-x ,则s ′(x )=ex -1-1. 当x >1时,s ′(x )>0,所以s (x )>s (1),即e x -1>x ,从而g (x )=1x -e e x =e (e x -1-x )x e x >0.【能力提升题组】(建议用时:20分钟)11.(2017·山东卷)若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( ) A.f (x )=2-xB.f (x )=x 2C.f (x )=3-xD.f (x )=cos x【答案】 A【解析】 设函数g (x )=e x ·f (x ),对于A ,g (x )=e x ·2-x=⎝ ⎛⎭⎪⎫e 2x,在定义域R 上为增函数,A 正确.对于B ,g (x )=e x ·x 2,则g ′(x )=x (x +2)e x ,由g ′(x )>0得x <-2或x >0,∴g (x )在定义域R 上不是增函数,B不正确.对于C ,g (x )=e x ·3-x =⎝ ⎛⎭⎪⎫e 3x在定义域R 上是减函数,C 不正确.对于D ,g (x )=e x·cos x ,则g ′(x )=2e xcos ⎝⎛⎭⎪⎫x +π4,g ′(x )>0在定义域R 上不恒成立,D 不正确.12.(2019·上海静安区调研)已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f ⎝⎛⎭⎪⎫ln 1x <2f (1)的解集为( ) A.(e ,+∞)B.(0,e)C.⎝ ⎛⎭⎪⎫0,1e ∪(1,e) D.⎝ ⎛⎭⎪⎫1e ,e 【答案】 D【解析】f (x )=x sin x +cos x +x 2是偶函数,所以f ⎝ ⎛⎭⎪⎫ln 1x =f(-ln x)=f(ln x). 则原不等式可变形为f(ln x)<f(1)⇔f(|ln x|)<f(1). 又f′(x)=xcos x +2x =x(2+cos x), 由2+cos x>0,得x>0时,f′(x)>0. 所以f(x)在(0,+∞)上单调递增. ∴|ln x|<1⇔-1<ln x<1⇔1e<x<e.13.若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是________.【答案】 ⎣⎢⎡⎦⎥⎤-13,13 【解析】 f ′(x )=1-23cos 2x +a cos x =1-23(2cos 2x -1)+a cos x =-43cos 2x +a cos x +53,f (x )在R上单调递增,则f ′(x )≥0在R 上恒成立.令cos x =t ,t ∈[-1,1],则-43t 2+at +53≥0在[-1,1]上恒成立,即4t 2-3at -5≤0在t ∈[-1,1]上恒成立.令g (t )=4t 2-3at -5,则⎩⎪⎨⎪⎧g (1)=4-3a -5≤0,g (-1)=4+3a -5≤0,解得-13≤a ≤13.14.已知函数f (x )=a ln x -ax -3(a ∈R). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎢⎡⎦⎥⎤f ′(x )+m 2在区间(t ,3)上总不是单调函数,求m 的取值范围.【答案】见解析【解析】(1)函数f (x )的定义域为(0,+∞),且f ′(x )=a (1-x )x, 当a >0时,f (x )的递增区间为(0,1), 递减区间为(1,+∞);当a <0时,f (x )的递增区间为(1,+∞),递减区间为(0,1); 当a =0时,f (x )为常函数.(2)由(1)及题意得f ′(2)=-a2=1,即a =-2,∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x.∴g (x )=x 3+⎝ ⎛⎭⎪⎫m2+2x 2-2x ,∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t ,3)上总不是单调函数, 即g ′(x )在区间(t ,3)上有变号零点.由于g ′(0)=-2,∴⎩⎪⎨⎪⎧g ′(t )<0,g ′(3)>0.当g ′(t )<0时,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9; 由g ′(3)>0,即m >-373.∴-373<m <-9.即实数m 的取值范围是⎝ ⎛⎭⎪⎫-373,-9. 【新高考创新预测】15.(多填题)已知函数f (x )=x 3+mx 2+nx -2的图象过点(-1,-6),函数g (x )=f ′(x )+6x 的图象关于y 轴对称.则m =________,f (x )的单调递减区间为________. 【答案】 -3 (0,2)【解析】 由函数f (x )的图象过点(-1,-6),得m -n =-3.① 由f (x )=x 3+mx 2+nx -2,得f ′(x )=3x 2+2mx +n , 所以g (x )=f ′(x )+6x =3x 2+(2m +6)x +n .21因为g (x )的图象关于y 轴对称,所以-2m +62×3=0, 所以m =-3,代入①得n =0,所以f ′(x )=3x 2-6x =3x (x -2). 由f ′(x )<0,得0<x <2,所以f (x )的单调递减区间是(0,2).。
导数利器——导数比大小十三种题型(精简版)
1导数技巧:比大小对数函数基础构造1:x ln x 型【典例分析】1(2022·全国·高三专题练习)已知a ,b ,c ∈1e ,+∞ ,且ln5a =-5ln a ,ln3b=-3ln b ,ln2c =-2ln c ,则()A.b <c <aB.c <b <aC.a <c <bD.a <b <c答案A解析【分析】构造函数f (x )=x ln x ,根据单调性即可确定a ,b ,c 的大小.【详解】设函数f (x )=x ln x ,f (x )=1+ln x ,当x ∈1e ,+∞ ,f (x )>0,此时f (x )单调递增,当x ∈0,1e,f (x )<0,此时f (x )单调递减,由题ln5a =-5ln a ,ln3b=-3ln b ,ln2c =-2ln c ,得a ln a =15ln 15,b ln b =13ln 13,c ln c =12ln 12=14ln 14,因为15<14<13<1e ,所以15ln 15>14ln 14>13ln 13,则a ln a >c ln c >b ln b ,且a ,b ,c ∈1e ,+∞ ,所以a >c >b .故选:A .【变式演练】1.(2022·全国·高三专题练习)已知a =810,b =99,c =108,则a ,b ,c 的大小关系为()A.b >c >aB.b >a >cC.a >c >bD.a >b >c答案D解析【分析】构造函数f x =18-x ln x ,x ≥8,求其单调性,从而判断a ,b ,c 的大小关系.【详解】构造f x =18-x ln x ,x ≥8,f x =-ln x +18x -1,f x =-ln x +18x -1在8,+∞ 时为减函数,且f 8 =-ln8+94-1=54-ln8<54-ln e 2=54-2<0,所以f x =-ln x +18x-1<0在8,+∞ 恒成立,故f x =18-x ln x 在8,+∞ 上单调递减,所以f 8 >f 9 >f 10 ,即10ln8>9ln9>8ln10,所以810>99>108,即a >b >c .故选:D2.(2022·四川宜宾·二模(文))已知a =1010,b =911,c =119,则a ,b ,c 的大小关系为()A.c <a <bB.b <a <cC.a <b <cD.c <b <a答案A解析【分析】先构造函数f (x )=20-x ln x x ≥9 ,求导确定函数单调性,即可判断a ,b ,c 的大小.【详解】令f (x )=20-x ln x x ≥9 ,则f (x )=-ln x +20-x ⋅1x =-ln x +20x-1,显然当x ≥9时,f (x )是减函数且f (9)=-ln9+209-1<0,故f (x )是减函数,f (9)>f (10)>f (11),即11ln9>10ln10>9ln11,ln911>ln1010>ln119,可得911>1010>119,即c <a <b .故选:A .3.(2022·安徽·淮南第一中学一模(理))设a =15ln13,b =14ln14,c =13ln15,则()A.a >c >bB.c >b >aC.b >a >cD.a >b >c答案D2解析【分析】构造函数f x =14+x ln 14-x ,利用函数f x 的导数讨论函数f x 的单调性.【详解】令f x =14+x ln 14-x ,x ∈-1,1 ,则f x =ln 14-x -14+x 14-x <ln15-1315<0,所以f x =14+x ln 14-x 在-1,1 上单调递增,所以f -1 <f 0 <f 1 ,即13ln15<14ln14<15ln13,所以,a >b >c 故选:D【题型二】对数函数基础构造2:x ln x型【典例分析】2(2022·全国·模拟预测)已知1<a <b <e ,有以下结论:①a b <b a ;②b a >e abe ;③a a <e abe ;④a b <e abe ,则其中正确的个数是()A.1个B.2个C.3个D.4个答案C解析【分析】构造f x =ln xx,x ∈1,e ,利用导函数得到其单调性,从而比较出①,②,在①的基础上得到④的正误,根据g x =a x 的单调性及④得到③的正误..【详解】设f x =ln x x ,x ∈1,e ,则f x =1-ln x x 2>0在x ∈1,e 上恒成立,所以f x =ln xx 在x ∈1,e 上单调递增,因为1<a <b <e ,所以ln a a <ln bb,即b ln a <a ln b ,因为y =ln x 单调递增,所以a b <b a ,①正确;ln b b <ln e e =1e ,即a ln b <abe ,因为y =ln x 单调递增,所以b a <e ab e ,②错误;因为a b <b a ,所以a b <e abe ,④正确;因为g x =a x 单调递增,1<a <b <e 所以a a <a b ,所以a a <e ab e ,③正确.故选:C【变式演练】1.(2022·全国·高三专题练习)a =3(2-ln3)e2,b =1e ,c =ln33,则a ,b ,c 的大小顺序为()A.a <c <bB.c <a <bC.a <b <cD.b <a <c答案A解析【分析】构造函数f (x )=ln x x ,应用导数研究其单调性,进而比较a =f e 23 ,b =f (e ),c =f (3)的大小,若t =ln xx有两个解x 1,x 2,则1<x 1<e <x 2,t ∈0,1e ,构造g (x )=ln x -2(x -1)x +1(x >1),利用导数确定g (x )>0,进而得到ln x 2-ln x 1x 2-x 1>2x 2+x 1,即可判断a 、c 的大小,即可知正确选项.【详解】令f (x )=ln x x ,则a =f e 23 =lne 23e23,b =f (e )=ln e e ,c =f (3)=ln33,而f(x )=1-ln x x 2且x >0,即0<x <e 时f (x )单调增,x >e 时f (x )单调减,又1<e 23<e <3,∴b >c ,b >a .若t =ln x x 有两个解x 1,x 2,则1<x 1<e <x 2,t ∈0,1e ,即t =ln x 2-ln x 1x 2-x 1,x 1+x 2=ln x 1x 2t,令g (x )=ln x -2(x -1)x +1(x >1),则g(x )=(x -1)2x (x +1)2>0,即g (x )在(1,+∞)上递增,∴g (x )>g (1)=0,即在(1,+∞)上,ln x >2(x -1)x +1,若x =x 2x 1即ln x 2-ln x 1x 2-x 1>2x 2+x 1,故t >2tln x 1x 2,有x 1x 2>e 23∴当x 2=3时,e >x 1>e 23,故f e 23<f (x 1)=f (3),综上:b >c >a .故选:A 2.(2022·湖北·宜都二中高三开学考试)已知a =4ln5π,b =5ln4π,c =5lnπ4,则a ,b ,c 的大小关系是()A.c <a <bB.a <b <cC.a <c <bD.c <b <a答案B解析【分析】令f x =ln xxx ≥e ,利用导数判断f x 在e ,+∞ 上的单调性,即可得a ,b ,c 的大小关系.【详解】令f x =ln x x x ≥e ,可得f x =1x ⋅x -ln xx =1-ln xx,当x ≥e 时,f x ≤0恒成立,所以f x =ln xx在e ,+∞ 上单调递减,所以f π >f 4 >f 5 ,即lnππ>ln44>ln55,可得4lnπ>πln4,5ln4>4ln5,所以lnπ4>ln4π,5πln4>4πln5,所以5lnπ4>5ln4π,5ln4π>4ln5π,即c >b ,b >a .所以a <b <c .故选:B .3.(2022·全国·高三专题练习(理))设a =20202022,b =20212021,c =20222020,则()A.a >b >cB.b >a >cC.c >a >bD.c >b >a答案A解析【分析】由于ln a ln b=ln20202021ln20212022,所以构造函数f x =ln x x +1x ≥e 2,利用导数判断其为减函数,从而可比较出f 2020 >f 2021 >0,进而可比较出a ,b 的大小,同理可比较出b ,c 的大小,即可得答案【详解】∵ln a ln b =2022ln20202021ln2021=ln20202021ln20212022,构造函数f x =ln x x +1x ≥e 2,f x =x +1-x ln x x x +1 2,令g x =x +1-x ln x ,则gx =-ln x <0,∴g x 在e 2,+∞ 上单减,∴g x ≤g e 2 =1-e 2<0,故f x <0,∴f x 在e 2,+∞ 上单减,∴f 2020 >f 2021 >0,∴ln aln b =f 2020 f 2021>1∴ln a >ln b .∴a >b ,同理可得ln b >ln c ,b >c ,故a >b >c ,故选:A【题型三】指数函数基础构造【典例分析】3设正实数a ,b ,c ,满足e 2a =b ln b =ce c =2,则a ,b ,c 的大小关系为()A.a <b <cB.a <c <bC.c <a <bD.b <a <c答案B 解析【分析】通过构造函数f (x )=xe x (x >0),利用导数判断函数的单调性,并判断c 的范围,通过变形得b =e c ,得b ,c 的大小关系,再直接解方程求a 的范围,最后三个数比较大小.【详解】设f (x )=xe x (x >0),x >0时,f x =x +1 e x >0恒成立,f (x )在(0,+∞)单调递增,x ∈12,1时,f (x )∈e2,e,而e 2<2,所以c ∈12,1 ,b ln b =ln b ⋅e ln b =ce c ,故ln b =c ,即b =e c ∈(e ,e ),而a =ln22<12,所以a <c <b .故选:B 【变式演练】1.已知a,b,c∈R.满足3b ln b=2a ln a=-2c ln c<0.则a,b,c的大小关系为().A.c>a>bB.a>c>bC.c>b>aD.b>a>c答案A解析【分析】根据指数函数值域可确定c>1,a,b∈0,1;构造函数f x =2xln x0<x<1,利用导数可知f x 在0,1上单调递减,利用2aln a=3bln b<2bln b可知b<a,由此可得结果.【详解】∵3b>0,2a>0,2c>0,∴ln b<0,ln a<0,ln c>0,∴0<b<1,0<a<1,c>1;∵3b>2b>0,ln b<0,∴2a ln a=3b ln b<2b ln b,令f x =2xln x0<x<1,则f x =2x ln2⋅ln x-2x xln x2=2x ln2⋅ln x-1xln x2,当0<x<1时,ln x<0,-1x<0,∴f x <0,∴f x 在0,1上单调递减,∵2a ln a<2b ln b,即f a <f b ,∴b<a,∴c>a>b.故选:A.2.已知a+2a=2,b+3b=2,则b lg a与a lg b的大小关系是()A.b lg a<a lg bB.b lg a=a lg bC.b lg a>a lg bD.不确定答案C解析【分析】令f x =x+2x,g x =x+3x,结合题意可知0<b<a<1,进而有a b>b b>b a,再利用对数函数的单调性和运算性质即可求解【详解】令f x =x+2x,g x =x+3x,则当x>0时,g x >f x ,当x<0时,g x <f x ;由a+2a=2,b+3b=2,得f a =2,g b =2考虑到f a =g b =2得0<b<a<1,∴a b>b b>b a由a b>b a,得lg a b >lg b a ,即b lg a>a lg b故选:C3.已知实数a=32e12,b=43e23,c=87e67,(e为自然对数的底数)则a,b,c的大小关系为()A.a<b<cB.b<c<aC.c<b<aD.b<a<c答案A解析【分析】由已知实数的形式构造函数f(x)=x+1x ex-1x,即有a=f(2),b=f(3),c=f(7),利用导数研究f(x)的单调性,再比较对应函数值的大小即可.【详解】由题意,令f(x)=x+1x ex-1x,则a=f(2),b=f(3),c=f(7),而f (x)=e x-1xx3,所以x>0时f(x)>0,即f(x)在(0,+∞)上单调递增,∴f(2)<f(3)<f(7),即a<b<c,故选:A【题型四】“取对数”法45【典例分析】4(2023·全国·高三专题练习)已知a =2ln7,b =3ln6,c =4ln5,则()A.b <c <aB.a <b <cC.b <a <cD.a <c <b答案B解析【分析】对a ,b ,c 取对数,探求它们的结构特征,构造函数f x =ln x ⋅ln 9-x (2≤x ≤4),借助导数判断单调性即可作答.【详解】对a ,b ,c 取对数得:ln a =ln2⋅ln7,ln b =ln3⋅ln6,ln c =ln4⋅ln5,令f x =ln x ⋅ln 9-x (2≤x ≤4),f x =ln 9-x x -ln x9-x =9-x ln 9-x -x ln x x 9-x ,令g (x )=x ln x ,x >1,g (x )=ln x +1>0,即g (x )=x ln x 在(1,+∞)上单调递增,由2≤x ≤4得,9-x ≥5>x >1,于是得9-x ln 9-x >x ln x ,又x 9-x >0,因此,f x >0,即f x 在2,4 上单调递增,从而得f 2 <f 3 <f 4 ,即ln2ln7<ln3ln6<ln4ln5,ln a <ln b <ln c ,所以a <b <c .故选:B【变式演练】1.(2021·全国·高三专题练习)已知实数a ,b ,c ∈0,e ,且3a =a 3,4b =b 4,5c =c 5,则()A.c <b <aB.b <c <aC.a <c <bD.a <b <c答案A解析【分析】将已知的等式两边取对数可得ln33=ln a a ,ln44=ln b b,ln55=ln c c .设函数f x =ln x x ,求导,分析导函数的正负,得出所令函数的单调性,由此可得选项.【详解】由3a =a 3,4b =b 4,5c =c 5得a ln3=3ln a ,b ln4=4ln b ,c ln5=5ln c ,因此ln33=ln a a ,ln44=ln b b,ln55=ln cc .设函数f x =ln xx,则f 3 =f a ,f 4 =f b ,f 5 =f c ,f x =1-ln xx2,令f x =0,得x =e ,所以f x 在0,e 上单调递增,在e ,+∞ 上单调递减,所以f 3 >f 4 >f 5 ,即f a >f b >f c ,又a ,b ,c ∈0,e ,所以a >b >c ,故选:A .2.(2022·全国·高三专题练习)已知a =3.93.9,b =3.93.8,c =3.83.9,d =3.83.8,则a ,b ,c ,d 的大小关系为()A.d <c <b <aB.d <b <c <aC.b <d <c <aD.b <c <d <a答案B解析【分析】构造函数f x =ln xx,利用导数判断函数的单调性,可得f 3.9 <f (3.8),从而可得3.93.8<3.83.9,再由y =x 3.8在0,+∞ 上单调递增,即可得出选项.【详解】构造函数f x =ln x x ,则f x =1-ln xx 2,当x ∈e ,+∞ 时,f x <0,故f x=ln xx在x ∈e ,+∞ 上单调递减,所以f 3.9 <f (3.8),所以ln3.93.9<ln3.83.8,3.8ln3.9<3.9ln3.8所以ln3.93.8<ln3.83.9,3.93.8<3.83.9,因为y =x 3.8在0,+∞ 上单调递增,所以3.83.8<3.93.8,同理3.83.9<3.93.9,所以3.83.8<3.93.8<3.83.9<3.93.9,故选:B3.已知55<84,134<85,设a =log 53,b =log 85,c =log 138,找出这三个数大小关系答案a <b <c 解析【分析】把a ,b ,c 用换底公式变形,已知不等关系及53>34,83<54也取对数后,可把a ,b ,c 与中间值比较大小,从而得出结论.【详解】6由已知a =lg3lg5,b =lg5lg8,c =lg8lg13,又55<84,则5lg5<4lg8,∴b =lg5lg8<45,134<85,则4lg13<5lg8,c =lg8lg13>45,又53=125>81=34,∴3lg5>4lg3,a =lg3lg5<34,而83=512<625=54,∴3lg8<4lg5,b =lg5lg8>34,综上有a <b <c .故答案为:a <b <c .【题型五】指数切线构造:e x -x +1【典例分析】5(2022·江西·南昌市八一中学三模(理))设a =1101,b =ln1.01,c =e 0.01-1,则()A.a <b <cB.b <c <aC.b <a <cD.c <a <b答案A解析【分析】观察式子的结构,进而设x =1.01,然后构造函数,随即通过求解函数的单调性得到答案.【详解】设x =1.01,所以a =1-1x,b =ln x ,c =e x -1-1,设f x =e x -x +1 x >1 ,则f x =e x -1>0,所以f x 在(1,+∞)单调递增,所以f x >f 1 =e 2-2>0⇒e x -x +1 >0⇒e x >x +1⋯①,所以e x -1>x ⋯②,由①,x >ln x +1 ⇒x -1>ln x ⇒1x -1>ln x -1⇒1x -1>-ln x ⇒ln x >1-1x⋯③,由②,x -1>ln x ⋯④,由②④,e x -1-1>x -1>ln x ,则c >b ,由③,b >a ,所以c >b >a .故选:A .【提分秘籍】基本规律指数和对数切线放缩法基础图【变式演练】71.(2022·河南·模拟预测(理))已知a =1.2,b =119,c =e 0.2,则()A.a <b <cB.c <a <bC.a <c <bD.c <b <a答案C解析【分析】构造函数f (x )=e x -x -1x >0 ,g (x )=(x +1)e -x -(1-x )e x (0<x <1),利用导数研究函数的单调性,得出f x ,g x 的单调性,得出e x >x +1(x >0),令x =0.2,可得出a <c ,再由得出的e 2x <1+x1-x(0<x <1),令x =0.1,得出c <b ,从而得出结果.【详解】解:先证e x >x +1(x >0),令f (x )=e x -x -1x >0 ,则f (x )=e x -1>0,可知f x 在0,+∞ 上单调递增,所以f x >f 0 =0,即e x >x +1(x >0),令x =0.2,则e 0.2>1.2,所以a <c ;再证e 2x <1+x1-x(0<x <1)即证(x +1)e -x >(1-x )e x ,令g (x )=(x +1)e -x -(1-x )e x (0<x <1),则g x =x e x -e -x >0,所以g x 在0,1 上单调递增,所以g x >g 0 =0,即e 2x <1+x1-x(0<x <1),令x =0.1,则e 0.2<119,所以c <b ,从而a <c <b .故选:C . 2.(2022·广东·深圳外国语学校高三阶段练习)已知a =e 0.05,b =ln1.12+1,c = 1.1,则()A.a >b >cB.c >b >aC.b >a >cD.a >c >b答案D解析【分析】利用导数可求得e x >x +1,ln x ≤x -1;分别代入x =0.1和x =1.1,整理可得a ,b ,c 的大小关系.【详解】令f x =e x -x -1x >0 ,则f x =e x -1>0,∴f x 在0,+∞ 上单调递增,∴f x >f 0 =0,即e x >x +1,∴e 0.1>1.1,∴e 0.05> 1.1,即a >c ;令g x =ln x -x +1,则g x =1x -1=1-xx,∴当x ∈0,1 时,g x >0;当x ∈1,+∞ 时,g x <0;∴g x 在0,1 上单调递增,在1,+∞ 上单调递减,∴g x ≤g 1 =0,∴ln x ≤x -1(当且仅当x =1时取等号),∴ln x ≤x -1,即ln x 2+1≤x (当且仅当x =1时取等号),∴ln1.12+1< 1.1,即b <c ;综上所述:a >c >b .故选:D .3.(2022·全国·高三专题练习)已知a =1101,b =e -99100,c =ln 101100,则a ,b ,c 的大小关系为()A.a <b <cB.a <c <bC.c <a <bD.b <a <c答案B解析【解析】首先设f x =e x-x -1,利用导数得到e x>x +1x ≠0 ,从而得到b =e-99100>-99100+1=1100>1101=a ,设g x =ln x -x +1,利用导数得到ln x <x -1x ≠1 ,从而得到b >c 和c >a ,即可得到答案.【详解】设f x =e x -x -1,f x =e x -1,令f x =0,解得x =0.x ∈-∞,0 ,f x <0,f x 为减函数,x ∈0,+∞ ,f x >0,f x 为增函数.所以f x ≥f 0 =0,即e x -x -1≥0,当且仅当x =0时取等号.所以e x >x +1x ≠0 .故b =e -99100>-99100+1=1100>1101=a ,即b >a .设g x =ln x -x +1,g x =1x -1=1-xx,令g x =0,解得x =1.x ∈0,1 ,g x >0,g x 为增函数,x ∈1,+∞ ,g x <0,g x 为减函数.所以g x ≤g 1 =0,即ln x -x +1≤0,当且仅当x =1时取等号.所以ln x <x -1x ≠1 .所以c =ln 101100<101100-1=1100,又因为b >1100,所以b >c .8又因为-ln x >-x +1x ≠1 ,所以c =ln 101100=-ln 100101>-100101+1=1101=a ,即c >a ,综上b >c >a .故选:B【题型六】对数切线构造【典例分析】6(2022·江苏·阜宁县东沟中学模拟预测)已知a >12且2a =e a -12,b >13且3b =e b -13,c >14且4c =e c -14,则()A.ln a bc <ln b ac <ln cabB.ln a bc <ln c ab<ln bac C.ln c ab <ln b ac <ln a bc D.ln b ac <ln a bc <ln c ab答案A解析【分析】对已知的等式进行变形,转化成结构一致,从而构造函数,确定构造的函数的性质,得到a 、b 、c 的大小,再根据选项构造函数,借助函数的单调性比较大小即可.【详解】由已知条件,对于2a =e a -12,两边同取对数,则有ln2+ln a =a -12,即a -ln a =12+ln2=12-ln 12,同理:b -ln b =13-ln 13;c -ln c =14-ln 14构造函数f x =x -ln x ,则f a =f 12 ,f b =f 13 ,f c =f 14 .对其求导得:f x =x -1xx >0∴当0<x <1时,f x <0,f x 单调递减;当x >1时,f x >0,f x 单调递增;又∵a >12,b >13,c >14∴1<a <b <c 再构造函数g x =x ln x ,对其求导得:g x =ln x +1x >0∴当0<x <1e 时,g x <0,g x 单调递减;当x >1e时,g x >0,g x 单调递增;∴g a <g b <g c 即:a ln a <b ln b <c ln c 又∵abc >0∴ln a bc <ln b ac <ln cab .故选:A .【提分秘籍】基本规律指数和对数放缩法基础图【变式演练】1.(2022·山西运城·高三期末(理))已知a ,b ,c ∈0,+∞ ,且e a -e -12=a +12,e b -e -13=b +13,e c -e -15=c +15,则()A.a <b <cB.a <c <bC.c <b <aD.b <c <a答案C解析【分析】构造函数f x =e x -x ,利用导函数可得函数的单调性,又f a =f -12 ,f b =f -13,f c =9f -15,a ,b ,c >0,即得.【详解】由题可得e a -a =e-12+12,e b -b =e -13+13,e c -c =e -15+15.令f x =e x -x ,则f x =e x -1,令fx =0,得x =0,∴x ∈0,+∞ 时,f x >0,f x 在0,+∞ 上单调递增,x ∈-∞,0 时,f x <0,f x 在-∞,0 上单调递减,又f a =f -12,f b =f -13 ,f c =f -15 ,a ,b ,c >0,由-12<-13<-15,可知f -12 >f -13 >f -15 即f a >f b >f c ,∴c <b <a .故选:C .2.(2021·四川·双流中学高三阶段练习(理))已知a -4=ln a 4≠0,b -5=ln b 5≠0,c -6=ln c6≠0,则()A.c <b <aB.b <c <aC.a <b <cD.a <c <b答案A解析【分析】根据给定条件构造函数f (x )=x -ln x (x >0),探讨函数的单调性,借助单调性进行推理即可得解.【详解】令函数f (x )=x -ln x (x >0),则f (x )=1-1x =x -1x,则有f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,且x 趋近于0和趋近于正无穷大时,f (x )值都趋近于正无穷大,由a -4=ln a4≠0得,a -ln a =4-ln4,即f (a )=f (4),且a ≠4,显然0<a <1,若a ≥1,而f (x )在(1,+∞)上单调递增,由f (a )=f (4)必有a =4与a ≠4矛盾,因此得0<a <1,同理,由b -5=ln b5≠0得f (b )=f (5),且b ≠5,并且有0<b <1,由c -6=ln c6≠0得f (c )=f (6),且c ≠6,并且有0<c <1,显然有f (4)<f (5)<f (6),于是得f (a )<f (b )<f (c ),又f (x )在(0,1)上单调递减,所以c <b <a .故选:A3.(2022·全国·高三专题练习)已知e ≈ 2.71828是自然对数的底数,设a =3-3e ,b =2-2e,c =e 2-1-ln2,则()A.a <b <cB.b <a <cC.b <c <aD.c <a <b答案A解析【分析】首先设f x =x -xe ,利用导数判断函数的单调性,比较a ,b 的大小,设利用导数判断e x ≥x +1,放缩c >2-ln2,再设函数g x =xe -ln x ,利用导数判断单调性,得g 2 >0,再比较b ,c 的大小,即可得到结果.【详解】设f x =x -x e ,f x =12x-1e ,10当0≤x <e 24时,f x >0,函数单调递增,当x >e 24时,f x <0,函数单调递减,a =f 3 ,b =f 2 ,e 24<2<3时,f 3 <f 2 ,即a <b ,设y =e x -x -1,y =e x -1,-∞,0 时,y <0,函数单调递减,0,+∞ 时,y >0,函数单调递增,所以当x =0时,函数取得最小值,f 0 =0,即e x ≥x +1恒成立,即e2-1>2,令g x =x e -ln x ,g x =1e -1x,x ∈0,e 时,g x <0,g x 单调递减,x ∈e ,+∞ 时,g x >0,g x 单调递增,x =e 时,函数取得最小值g e =0,即g 2 >0,得:2e >ln2,那么2-2e<2-ln2,即e 2-1-ln2>2-ln2>2-2e,即b <c ,综上可知a <b <c 故选:A 【题型七】反比例构造:ln x <2(x -1)x +1型【典例分析】7(2022·江苏·金陵中学二模)设a =e 1.1-27,b = 1.4-1,c =2ln1.1,则()A.a <b <cB.a <c <bC.b <a <cD.c <a <b答案A解析【分析】利用幂函数和指数函数的性质判断的范围,a 利用基本不等式判断b 的范围,构造新函数并利用导数讨论函数的单调性求出c 的范围,进而得出结果.【详解】由e 3<28,得e 3<28,即e 32<27,所以e 1.1<e 1.5=e 32,所以e 1.1<27,则e 1.1-27<0,即a <0;由 1.4-1= 1.41.2×1.2-1<1.41.2+1.22-1<0.184,即b <0.184;设f (x )=ln x -2(x -1)x +1(x >0),则f(x )=1x -4(x +1)2=(x -1)2x (x +1)2≥0,所以f (x )在(0,+∞)上单调递增,且f (1)=0,所以当x ∈(1,+∞)时f (x )>0,即ln x >2(x -1)x +1,当x ∈(0,1)时f (x )<0,即ln x <2(x -1)x +1,又1.1>1,则ln1.1>21.1-11.1+1≈0.095,所以c =2ln1.1>0.19,即c >0.19,综上,a <b <c .故选:A【变式演练】1.(2022·全国·高三专题练习)若a =e 0.2,b = 1.2,c =ln3.2,则a ,b ,c 的大小关系为()A.a >b >cB.a >c >bC.b >a >cD.c >b >a答案B解析【分析】构造函数f x =e x -x -1x >0 ,利用导数可得a =e 0.2>1.2>b ,进而可得e 1.2>3.2,可得a >c ,再利用函数g x =ln x -2x -1x +1,可得ln3.2>1.1,即得.【详解】令f x =e x -x -1x >0 ,则f x =e x -1>0,∴f x 在0,+∞ 上单调递增,∴a =e 0.2>0.2+1=1.2> 1.2=b ,a =e 0.2>1.2=ln e 1.2,c =ln3.2,∵e 1.2 5=e 6> 2.7 6≈387.4,3.2 5≈335.5,∴e 1.2>3.2,故a >c ,设g x =ln x-2x-1x+1,则g x =1x-2x+1-2xx+12=x-12x x+12≥0,所以函数在0,+∞上单调递增,由g1 =0,所以x>1时,g x >0,即ln x>2x-1x+1,∴ln3.2=ln2+ln1.6>22-12+1+21.6-11.6+1=1539>1550=1.1,又1<1.2<1.21,1<b= 1.2<1.1,∴c>1.1>b,故a>c>b.故选:B.2.(2022·江西·模拟预测(理))设a=4(2-ln4)e2,b=1e,c=ln44,则a,b,c的大小顺序为()A.a<c<bB.c<a<bC.a<b<cD.b<a<c 答案A解析【分析】根据a、b、c的结构,构造函数f x =ln xx,利用导数判断单调性,即可比较出a、b、c的大小,得到正确答案.【详解】因为a=4(2-ln4)e2=ln e24e24,b=1e=ln ee,c=ln44构造函数f x =ln xx,则f x =1-ln xx2,a=fe24,b=f(e),c=f4 ,f(x)在(0,e)上递增,在(e,+∞)上递减.则有b=f(e)最大,即a<b,c<b.若t=ln x x有两个解,则1<x1<e<x2,t∈0,1e,所以ln x1=tx1,ln x2=tx2,所以ln x1-ln x2=tx1-tx2,ln x1+ln x2=tx1+tx2,即t=ln x2-ln x1x2-x1,ln x1x2=t x1+x2,令g x =ln x-2x-1x+1x>1,则g x =x-12x x+1>0,故g x 在1,+∞上单增,所以g x >g1 =0,即在1,+∞上,ln x>2x-1x+1.若x=x2x1,则有lnx2x1>2x2x1-1x2x1+1,即ln x2-ln x1x2-x1>2x2+x1.故t>2tln x1x2,所以x1x2>e2.当x2=4时,有e24<x1<e,故fe24<f x1 =f4所以a<c.综上所述:a<c<b.故选:A【题型八】“零点”构造法【典例分析】8(2022·广东广州·高三开学考试)设a=ln1.1,b=e0.1-1,c=tan0.1,d=0.4π,则()A.a<b<c<dB.a<c<b<dC.a<b<d<cD.a<c<d<b 答案B解析【分析】观察4个数易得均与0.1有关,故考虑a x =ln x+1,b x =e x-1,c x =tan x,d x =4πx在x=0.1时的大小关系,故利用作差法,分别构造相减的函数判断单调性以及与0的大小关系即可.【详解】设a x =ln x+1,b x =e x-1,c x =tan x,d x =4πx,易得a0 =b0 =c0 =d0 .设y=d x -b x =4πx-e x+1,则令y =4π-e x=0有x=ln4π,故y=d x -b x 在-∞,ln4π上单调递增.①因为4π10>43.210=54 10=2516 5>2416 5=32 5>e,即4π 10>e,故10ln4π>1,即ln4π>0.1,故d0.1-1112b 0.1 >d 0 -b 0 =0,即d >b .②设y =b x -c x =e x-1-tan x ,则y=e x-1cos 2x =e x cos 2x -1cos 2x,设f x =e x cos 2x -1,则f x =e x cos 2x -2sin x =e x -sin 2x -2sin x +1 .设g x =x -sin x ,则g x =1-cos x ≥0,故g x =x -sin x 为增函数,故g x ≥g 0 =0,即x ≥sin x .故f x ≥e x -x 2-2x +1 =e x -x +1 2+2 ,当x ∈0,0.1 时f x >0,f x =e x cos 2x -1为增函数,故f x ≥e 0cos 20-1=0,故当x ∈0,0.1 时y =b x -c x 为增函数,故b 0.1 -c 0.1 >b 0 -c 0 =0,故b >c .③设y =c x -a x =tan x -ln x +1 ,y =1cos 2x -1x +1=x +sin 2xx +1cos 2x ,易得当x ∈0,0.1 时y >0,故c 0.1 -a 0.1 >c 0 -a 0 =0,即c >a .综上d >b >c >a 故选:B【变式演练】1.(2020·北海市北海中学高三)已知x 1=ln 12,x 2=e -12,x 3满足e -x 3=ln x 3,则下列各选项正确的是A.x 1<x 3<x 2B.x 1<x 2<x 3C.x 2<x 1<x 3D.x 3<x 1<x 2答案B解析【详解】因为函数y =ln x 在0,+∞ 上单调递增,所以x 1=ln 12<ln1=0;0<x 2=e -12=1e12=1e=e e <1;因为x 3满足e -x3=ln x 3,即x 3是方程1ex-ln x =0的实数根,所以x 3是函数f x=1ex -ln x 的零点,函数f (x )在定义域内是减函数,因为f 1 =1e ,f e =1ee-1<0,所以函数有唯一零点,即x 3∈1,e .所以x 1<x 2<x 3.“跨界”构造:切、弦、指、对构造【典例分析】9(2022·湖北·宜城市第二高级中学高三开学考试)已知a =e 0.2-1,b =ln1.2,c =tan0.2,其中e =2.71828⋯为自然对数的底数,则()A.c >a >bB.a >c >bC.b >a >cD.a >b >c答案B解析【分析】观察a =e 0.2-1,b =ln1.2,c =tan0.2,发现都含有0.2,把0.2换成x ,自变量在(0,1)或其子集范围内构造函数,利用导数证明其单调性,比较a ,b ,c 的大小.【详解】令f (x )=e x-1-tan x =cos x e x -cos x -sin x cos x ,0<x <π4,令g (x )=cos x e x -cos x -sin x ,g (x )=(-sin x +cos x )e x +sin x -cos x =(e x -1)⋅(cos x -sin x ),当0<x <π4时,g (x )>0,g (x )单调递增,又g (0)=1-1=0,所以g (x )>0,又cos x >0,所以f (x )>0,在0,π4成立,所以f (0.2)>0即a >c ,令h (x )=ln (x +1)-x ,h (x )=1x +1-1=-x x +1,h (x )在x ∈0,π2为减函数,所以h (x )<h (0)=0,即ln (x +1)<x ,令m (x )=x -tan x ,m (x )=1-1cos 2x,m (x )在x ∈0,π2 为减函数,所以m (x )<m (0)=0,即x <tan x ,所以ln (x +1)<x <tan x ,x ∈0,π2成立,令x =0.2,则上式变为ln (0.2+1)<0.2<tan0.2,所以b <0.2<c 所以b <c ,所以b <c <a .13故答案为:B .【提分秘籍】基本规律比较难,需要结合数据寻找合适的构造函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.已知函数.
(1)求函数的单调递减区间;
(2)若,求证:≤≤x . 2.已知函数.
⑴试讨论在定义域内的单调性; ⑵当<-1时,证明:,.求实数的取值范围. 3.已知函数.
⑴讨论函数的单调性;
⑵设,如果对任意,≥,求的取值范围.
4.已知函数.
⑴讨论函数的单调性;
⑵设,证明:对任意,.
5.已知函数f (x )=x 2-ax +(a -1),. (1)讨论函数的单调性.
(2)证明:若,则对任意x ,x ,x x ,有
. 6.已知函数
(1)确定函数的单调性;
(2)若对任意,且,都有,求实数a 的取值范围。
7.已知函数,a 为正常数. ⑴若,且a ,求函数的单调增区间; x x x f -+=)1ln()()(x f 1->x 111+-
x )1ln(+x ()(1)ln f x a x ax =+-()f x a 12,(0,1)x x ∀∈1212|()()|1||
f x f x x x ->-m 1ln )1()(2+++=ax x a x f )(x f 1-<a ),0(,21+∞∈x x |)()(|21x f x f -||421x x -a 2()(1)ln 1f x a x ax =+++()f x 2a -≤12,(0,)x x ∈+∞1212|()()|4||f x f x x x --≥2
1ln x 1a >()f x 5a <12∈(0,)+∞1≠21212()()1f x f x x x ->--()1ln (0).f x x a x a =--<()y f x =(]12,0,1x x ∈12x x ≠121211|()()|4|
|f x f x x x -<-1
)(+=
x a x ϕ)(ln )(x x x f ϕ+=29=)(x f
⑵在⑴中当时,函数的图象上任意不同的两点,,线段的中点为,记直线的斜率为,试证明:. ▲(3)若,且对任意的,,都有,求a 的取值范围.
0=a )(x f y =()11,y x A ()22,y x B AB ),(00y x C AB k )(0x f k '>)(ln )(x x x g ϕ+=(]2,0,21∈x x 21x x ≠1)()(1
212-<--x x x g x g。