高中物理机械振动知识点汇总
高中物理【机械振动】知识点、规律总结

一、简谐运动 1.概念:质点的位移与时间的关系遵从_正__弦__函__数___的规律,即它的振动图象(x -t 图象)是一条_正__弦__曲___线__. 2.简谐运动的表达式 (1)动力学表达式:F=___-__k_x__,其中“-”表示回复力与__位__移__的方向相反. (2)运动学表达式:x=Asin(ωt+φ),其中 A 代表振幅,ω=__2_π_f___表示简谐运动的 快慢,(ωt+φ)代表简谐运动的_相__位___,φ 叫做初相.
3.做简谐运动的物体经过平衡位置时,回复力一定为零,但所受合外力不一定为 零,如单摆.
4.物体做受迫振动的频率一定等于驱动力的频率,但不一定等于系统的固有频率, 固有频率由系统本身决定.
考点一 简谐运动的特征
师生互动
受力特征 回复力 F=-kx,F(或 a)的大小与 x 的大小成正比,方向相反
靠近平衡位置时,a、F、x 都减小,v 增大;远离平衡位置时,a、F、x 运动特征
4.周期公式:T=2π
l g.
5.单摆的等时性:单摆的振动周期取决于摆长 l 和重力加速度 g,与振幅和振子(小
球)质量都没有关系.
四、受迫振动及共振
1.受迫振动 (1)概念:物体在_周__期__性___驱动力作用下的振动. (2)振动特征:受迫振动的频率等于_驱__动__力___的频率,与系统的_固__有__频__率___无关. 2.共振 (1)概念:当驱动力的频率等于_固__有__频__率___时,受迫振动的振幅最大的现象. (2)共振的条件:驱动力的频率等于_固__有__频__率___. (3)共振的特征:共振时_振__幅___最大.
受迫振动
共振
由驱动力提供
振动物体获得的能量 最大
高中物理机械振动和机械波知识点

高中物理机械振动和机械波知识点机械振动和机械波是高中物理中一个重要的内容,下面将以1200字以上的篇幅详细介绍这两个知识点。
一、机械振动1.振动的定义及特点振动是指物体在平衡位置附近做往复运动的现象。
振动具有周期性、往复性和简谐性等特点。
2.物理量与振动的关系振动常涉及到的物理量有位移、速度、加速度、力等。
振动的物体在其中一时刻的位移与速度、加速度之间存在着相位差的关系。
3.简谐振动简谐振动是指振动物体的加速度与恢复力成正比,且方向相反。
简谐振动的周期、频率和角频率与振幅无关,只与振动系统的特性有关。
4.阻尼振动阻尼振动是指振动物体受到阻力的影响而逐渐减弱并停止的振动。
阻尼振动可以分为临界阻尼、过阻尼和欠阻尼三种情况。
5.受迫振动受迫振动是指振动物体受到外界周期力的作用而发生的振动。
当外力的频率与振动系统的固有频率相同时,产生共振现象。
6.驱动力与振幅的关系外力作用下,振动物体的振幅由驱动力的频率决定。
当驱动力的频率与振动物体的固有频率接近时,振幅达到最大值。
二、机械波1.波的定义及特点波是指能量或信息在空间中的传递。
波有传播介质,传播介质可以是固体、液体或气体。
波分为机械波和电磁波两种。
2.机械波的分类及特点机械波分为横波和纵波两种,它们的传播方向与介质振动方向有关。
横波的振动方向与波的传播方向垂直,而纵波的振动方向与波的传播方向平行。
3.波的传播速度波的传播速度与介质的性质和波的频率有关。
在同一介质中,传播速度与波长成正比,与频率成反比。
在不同介质中,波长相等时,传播速度与频率成正比。
4.波的反射、折射和干涉波在传播过程中会遇到障碍物或介质边界,导致发生反射和折射现象。
当波的传播路径中存在两个或多个波源时,会发生波的干涉现象。
5.波的衍射波在通过缝隙或物体边缘时会发生波的弯曲现象,这种现象称为波的衍射。
波的衍射现象是波动性质的重要表现之一6.声波的特点及应用声波是一种机械波,的传播媒质是物质的弹性介质。
高中物理必修三 讲义 17 A机械振动 基础版

机械振动考点一简谐运动的规律简谐运动1.定义:如果物体在运动方向上所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动.2.平衡位置:物体在振动过程中回复力为零的位置.3.回复力(1)定义:使物体在平衡位置附近做往复运动的力.(2)方向:总是指向平衡位置.(3)来源:属于效果力,可以是某一个力,也可以是几个力的合力或某个力的分力.技巧点拨例题精练1.(多选)一弹簧振子做简谐运动,则以下说法正确的是()A.振子的加速度方向始终指向平衡位置B.已知振动周期为T,若Δt=T,则在t时刻和(t+Δt)时刻振子运动的加速度一定相同C.若t时刻和(t+Δt)时刻弹簧的长度相等,则Δt一定为振动周期的整数倍D.振子的动能相等时,弹簧的长度不一定相等2.如图1所示,弹簧振子B上放一个物块A,在A与B一起做简谐运动的过程中,下列关于A受力的说法中正确的是()图1A.物块A受重力、支持力及弹簧对它的恒定的弹力B.物块A受重力、支持力及弹簧对它的大小和方向都随时间变化的弹力C.物块A受重力、支持力及B对它的恒定的摩擦力D.物块A受重力、支持力及B对它的非恒定的摩擦力考点二简谐运动图象的理解和应用简谐运动的图象1.物理意义:表示振子的位移随时间变化的规律,为正弦(或余弦)曲线.2.简谐运动的图象(1)从平衡位置开始计时,把开始运动的方向规定为正方向,函数表达式为x=A sin_ωt,图象如图2甲所示.图2(2)从正的最大位移处开始计时,函数表达式为x=A cos_ωt,图象如图乙所示.技巧点拨1.从图象可获取的信息图3(1)振幅A、周期T(或频率f)和初相位φ0(如图3所示).(2)某时刻振动质点离开平衡位置的位移.(3)某时刻质点速度的大小和方向:曲线上各点切线的斜率的大小和正负分别表示各时刻质点的速度大小和方向,速度的方向也可根据下一相邻时刻质点的位移的变化来确定.(4)某时刻质点的回复力和加速度的方向:回复力总是指向平衡位置,回复力和加速度的方向相同.(5)某段时间内质点的位移、回复力、加速度、速度、动能和势能的变化情况.2.简谐运动的对称性(如图4)图4(1)相隔Δt =(n +12)T (n =0,1,2…)的两个时刻,弹簧振子的位置关于平衡位置对称,位移等大反向(或都为零),速度等大反向(或都为零),加速度等大反向(或都为零).(2)相隔Δt =nT (n =1,2,3…)的两个时刻,弹簧振子在同一位置,位移、速度和加速度都相同. 例题精练3.(多选)一个质点以O 为中心做简谐运动,位移随时间变化的图象如图5,a 、b 、c 、d 表示质点在不同时刻的相应位置.下列说法正确的是( )图5A.质点通过位置c 时速度最大,加速度为零B.质点通过位置b 时,相对平衡位置的位移为A2C.质点从位置a 到位置c 和从位置b 到位置d 所用时间相等D.质点从位置a 到位置b 和从位置b 到位置c 的平均速度相等E.质点通过位置b 和通过位置d 时速度方向相同,加速度方向相反4.(多选)某质点做简谐运动,其位移与时间的关系式为x =3sin (2π3t +π2) cm ,则( )A.质点的振幅为3 cmB.质点振动的周期为3 sC.质点振动的周期为2π3sD.t =0.75 s 时刻,质点回到平衡位置考点三 单摆及其周期公式1.定义:如果细线的长度不可改变,细线的质量与小球相比可以忽略,球的直径与线的长度相比也可以忽略,这样的装置叫作单摆.(如图6)图62.视为简谐运动的条件:θ<5°.3.回复力:F =G 2=G sin θ.4.周期公式:T =2πl g. (1)l 为等效摆长,表示从悬点到摆球重心的距离. (2)g 为当地重力加速度.5.单摆的等时性:单摆的振动周期取决于摆长l 和重力加速度g ,与振幅和振子(小球)质量无关. 技巧点拨 单摆的受力特征(1)回复力:摆球重力沿与摆线垂直方向的分力,F 回=mg sin θ=-mgl x =-kx ,负号表示回复力F 回与位移x 的方向相反.(2)向心力:摆线的拉力和摆球重力沿摆线方向分力的合力充当向心力,F 向=F T -mg cos θ. (3)两点说明①当摆球在最高点时,F 向=0,F T =mg cos θ.②当摆球在最低点时,F 向=m v max 2l ,F 向最大,F T =mg +m v max 2l .例题精练5.(多选)关于单摆,下列说法正确的是( ) A.将单摆由沈阳移至广州,单摆周期变大 B.将单摆的摆角从4°改为2°,单摆的周期变小 C.当单摆的摆球运动到平衡位置时,摆球的速度最大 D.当单摆的摆球运动到平衡位置时,受到的合力为零考点四 受迫振动和共振1.受迫振动(1)概念:系统在驱动力作用下的振动.(2)振动特征:物体做受迫振动达到稳定后,物体振动的频率等于驱动力的频率,与物体的固有频率无关.2.共振(1)概念:当驱动力的频率等于固有频率时,物体做受迫振动的振幅最大的现象.(2)共振的条件:驱动力的频率等于固有频率.(3)共振的特征:共振时振幅最大.(4)共振曲线(如图7所示).图7f=f0时,A=A m,f与f0差别越大,物体做受迫振动的振幅越小.技巧点拨简谐运动、受迫振动和共振的比较技巧点拨6.(多选)一个单摆在地面上做受迫振动,其共振曲线(振幅A与驱动力频率f的关系)如图8所示,则()图8A.此单摆的固有周期为2 sB.此单摆的摆长约为1 mC.若摆长增大,单摆的固有频率增大D.若摆长增大,共振曲线的峰将向左移动7.(多选)如图9所示为受迫振动的演示装置,在一根张紧的绳子上悬挂几个摆球,可以用一个单摆(称为“驱动摆”)驱动另外几个单摆.下列说法正确的是()图9A.某个单摆摆动过程中多次通过同一位置时,速度可能不同但加速度一定相同B.如果驱动摆的摆长为L,则其他单摆的振动周期都等于2πL gC.驱动摆只把振动形式传播给其他单摆,不传播能量D.如果某个单摆的摆长等于驱动摆的摆长,则这个单摆的振幅最大综合练习一.选择题(共18小题)1.(宝山区校级期中)质点运动的位移x与时间t的关系如图所示,其中不属于机械振动的是()A.B.C.D.2.(东安区校级期末)关于简谐振动,下列说法中正确的是()A.回复力跟位移成正比,方向有时跟位移相同,有时跟位移方向相反B.加速度跟位移成正比,方向永远跟位移方向相反C .速度跟位移成反比,方向跟位移有时相同有时相反D .加速度跟回复力成反比,方向永远相同 3.(静安区二模)简谐运动属于( ) A .匀速运动B .匀加速运动C .匀变速运动D .变加速运动4.(和平区校级期末)如图所示,弹簧振子上下振动,白纸以速度v 向左匀速运动,振子所带墨笔在白纸上留下如图曲线,建立如图所示坐标,y 1、y 2、x 0、2x 0为纸上印迹的位置坐标,则( )A .该弹簧振子的振动周期为2x 0B .该弹簧振子的振幅为y 1C .该弹簧振子的平衡位置在弹簧原长处D .该弹簧振子的圆频率为πv x 05.(思明区校级期中)下列关于简谐振动的说法错误的是( ) A .物体在1个周期内通过的路程是4个振幅 B .物体在12个周期内通过的路程是2个振幅C .物体在32个周期内通过的路程是6个振幅D .物体在14个周期内通过的路程是1个振幅6.(思明区校级期中)一个质点做简谐运动的位移x 与时间t 的关系如图所示,由图可知( )A .频率是2HzB.振幅是5cmC.t=7.5s时的加速度最大D.t=9s时质点所受的合外力为零7.(思明区校级期中)一个质点在水平方向上做简谐运动的位移随时间变化的关系是x=5sin5πtcm,则下列判断正确的是()A.该简谐运动的周期是0.2sB.头1s内质点运动的路程是100cmC.0.4s到0.5s内质点的速度在逐渐减小D.t=0.6s时刻质点的动能为08.(六合区校级期末)在水平方向上做简谐运动的弹簧振子如图所示,受力情况是()A.重力、支持力和弹簧的弹力B.重力、支持力、弹簧弹力和回复力C.重力、支持力和回复力D.重力、支持力、摩擦力和回复力9.(日照期中)一弹簧振子做简谐运动,周期为T()A.若t时刻和(t+△t)时刻振子位移大小相等、方向相同,则△t一定等于T的整数倍B.若t时刻和(t+△t)时刻振子运动速度大小相等、方向相反,则△t一定等于T2的整数倍C.若△t=T2,则在t时刻和(t+△t)时刻振子运动的加速度大小一定相等D.若△t=T2,则在t时刻和(t+△t)时刻弹簧的长度一定相等10.(台江区校级期中)对单摆在竖直面内做简谐运动,下面说法中正确的是()A.摆球的回复力是它所受的合力B.摆球所受向心力处处相同C.摆球经过平衡位置时所受合外力为零D.摆球经过平衡位置时所受回复力为零11.(淮安月考)一单摆做简谐运动,在偏角增大的过程中,摆球的()A.位移增大B.速度增大C.回复力减小D.机械能减小12.(烟台期末)将一单摆的周期变为原来的2倍,下列措施可行的是( ) A .只将摆球的质量变为原来的12B .只将摆长变为原来的2倍C .只将摆长变为原来的4倍D .只将振幅变为原来的2倍13.(虹口区二模)某小组利用单摆测定当地重力加速度,最合理的装置是( )A .B .C .D .14.(南京模拟)某同学做“用单摆测定重力加速度”的实验时,下列做法正确的是( ) A .摆线要选择伸缩性大些的,并且尽可能短一些 B .摆球要选择质量大些、体积小些的 C .摆长一定的情况下,摆的振幅尽量大D .拉开摆球,在释放摆球的同时开始计时,当摆球回摆到开始位置时停止计时,记录的时间作为单摆周期的测量值15.(金山区二模)若单摆的摆长变大,摆球的质量变大,摆球离开平衡位置的最大摆角不变,则单摆振动的()A.周期不变,振幅不变B.周期不变,振幅变大C.周期变大,振幅不变D.周期变大,振幅变大16.(红桥区期末)做阻尼运动的弹簧振子,它的()A.周期越来越小B.位移越来越小C.振幅越来越小D.机械能保持不变17.(红桥区期中)弹簧上端固定,下端挂有一只条形磁铁,使磁铁上下做简谐运动,若在振动过程中把线圈靠近磁铁,如图所示,观察磁铁的振幅,将会发现()A.S闭合或断开时,振幅的变化相同B.S闭合时振幅逐渐增大,S断开时振幅不变C.S闭合时振幅减小,S断开时振幅不变D.S闭合或断开时,振幅不会变化18.(丰台区期中)如图所示,在一根张紧的水平绳上悬挂有五个摆,其中A、E的摆长相等。
高考物理第六章机械振动和机械波知识点

高考物理第六章机械振动和机械波知识点高考物理第六章机械振动和机械波知识点机械振动和机械波部分是高中物理的一大重要版块,学好这一部分对整个高中阶段物理的学习至关重要。
下面是店铺为大家精心推荐的机械振动和机械波知识点总结,希望能够对您有所帮助。
机械振动和机械波必背知识点一、机械振动:物体在平衡位置附近所做的往复运动,叫机械振动。
1、平衡位置:机械振动的中心位置;2、机械振动的位移:以平衡位置为起点振动物体所在位置为终点的有向线段;3、回复力:使振动物体回到平衡位置的力;(1)回复力的方向始终指向平衡位置;(2)回复力不是一重特殊性质的力,而是物体所受外力的合力;4、机械振动的特点:(1)往复性; (2)周期性;二、简谐运动:物体所受回复力的大小与位移成正比,且方向始终指向平衡位置的运动;(1)回复力的大小与位移成正比;(2)回复力的方向与位移的方向相反;(3)计算公式:F=-Kx;如:音叉、摆钟、单摆、弹簧振子;三、全振动:振动物体如:从0出发,经A,再到O,再到A/,最后又回到0的周期性的过程叫全振动。
例1:从A至o,从o至A/,是一次全振动吗?例2:振动物体从A/,出发,试说出它的一次全振动过程;四、振幅:振动物体离开平衡位置的最大距离。
1、振幅用A表示;2、最大回复力F大=KA;3、物体完成一次全振动的路程为4A;4、振幅是表示物体振动强弱的物理量;振幅越大,振动越强,能量越大;五、周期:振动物体完成一次全振动所用的时间;1、T=t/n (t表示所用的总时间,n表示完成全振动的次数)2、振动物体从平衡位置到最远点,从最远点到平衡为置所用的时间相等,等于T/4;六、频率:振动物体在单位时间内完成全振动的次数;1、f=n/t;2、f=1/T;3、固有频率:由物体自身性质决定的频率;七、简谐运动的图像:表示作简谐运动的物体位移和时间关系的图像。
1、若从平衡位置开始计时,其图像为正弦曲线;2、若从最远点开始计时,其图像为余弦曲线;3、简谐运动图像的作用:(1)确定简谐运动的周期、频率、振幅;(2)确定任一时刻振动物体的位移;(3)比较不同时刻振动物体的速度、动能、势能的大小:离平衡位置跃进动能越大、速度越大,势能越小;(4)判断某一时刻振动物体的运动方向:质点必然向相邻的后一时刻所在位置运动4、作受迫振动的物体的振动频率等于驱动力的`频率与其固有频率无关;物体发生共振的条件:物体的固有频率等于驱动力的频率;八、单摆:用一轻质细绳一端固定一小球,另一端固定在悬点的装置。
机械振动和机械波知识点复习及总结

机械振动和机械波知识点复习一 机械振动知识要点1. 机械振动:物体(质点)在平衡位置附近所作的往复运动叫机械振动,简称振动条件:a 、物体离开平衡位置后要受到回复力作用。
b 、阻力足够小。
回复力:效果力——在振动方向上的合力 平衡位置:物体静止时,受(合)力为零的位置: 运动过程中,回复力为零的位置(非平衡状态) 描述振动的物理量位移x (m )——均以平衡位置为起点指向末位置振幅A (m )——振动物体离开平衡位置的最大距离(描述振动强弱) 周期T (s )——完成一次全振动所用时间叫做周期(描述振动快慢) 全振动——物体先后两次运动状态(位移和速度)完全相同所经历的过程频率f (Hz )——1s 钟内完成全振动的次数叫做频率(描述振动快慢) 2. 简谐运动概念:回复力与位移大小成正比且方向相反的振动 受力特征:kx F -= 运动性质为变加速运动 从力和能量的角度分析x 、F 、a 、v 、E K 、E P 特点:运动过程中存在对称性平衡位置处:速度最大、动能最大;位移最小、回复力最小、加速度最小 最大位移处:速度最小、动能最小;位移最大、回复力最大、加速度最大✧ v 、E K 同步变化;x 、F 、a 、E P 同步变化,同一位置只有v 可能不同3. 简谐运动的图象(振动图象)物理意义:反映了1个振动质点在各个时刻的位移随时间变化的规律 可直接读出振幅A ,周期T (频率f ) 可知任意时刻振动质点的位移(或反之) 可知任意时刻质点的振动方向(速度方向) 可知某段时间F 、a 等的变化4. 简谐运动的表达式:)2sin(φπ+=t TA x 5. 单摆(理想模型)——在摆角很小时为简谐振动回复力:重力沿切线方向的分力 周期公式:glT π2= (T 与A 、m 、θ无关——等时性) 测定重力加速度g,g=224T Lπ 等效摆长L=L 线+r6. 阻尼振动、受迫振动、共振阻尼振动(减幅振动)——振动中受阻力,能量减少,振幅逐渐减小的振动 受迫振动:物体在外界周期性驱动力作用下的振动叫受迫振动。
高三物理机械振动知识点

高三物理机械振动知识点在物理学中,机械振动是指物体在平衡位置附近做周期性的来回运动。
机械振动是物理学中重要的概念之一,了解机械振动的知识对于高三物理学习至关重要。
下面将介绍一些高三物理机械振动的知识点。
一、简谐振动简谐振动是指在一个恢复力作用下,物体做的振动。
振动的周期只与恢复力的作用有关,而与振幅无关。
简谐振动的特点是周期性、与外界无关以及振幅与周期无关。
简谐振动的物体可以是弹簧、摆锤等。
二、受迫振动受迫振动是指在外力作用下,物体做的振动。
外力的作用使得振动的周期与自由振动不再相同。
当外力与物体运动方向相同时,称为共振;当外力与物体运动方向相反时,称为反共振。
三、阻尼振动阻尼振动是指在存在阻力的情况下,物体做的振动。
阻尼力的作用会逐渐减小振幅,使得振动逐渐衰减。
阻尼振动的特点是振幅逐渐减小、周期不变以及振幅与阻尼力的大小有关。
四、共振共振是指外力与物体的振动频率相同时,物体的振幅达到最大值的现象。
共振的发生会导致物体的损坏,因此在实际应用中需要尽量避免共振的发生。
五、波动方程波动方程描述了机械振动的数学表达式。
一维机械振动的波动方程为\[ \frac{{\partial^2y}}{{\partial t^2}} = -\omega^2 y \]其中,\(y\)为位移函数,\(t\)为时间,\(\omega\)为振动的角频率。
六、谐振频率谐振频率是指物体做简谐振动时的频率。
谐振频率与弹簧的劲度系数和物体的质量有关。
谐振频率可以通过以下公式计算:\[ f = \frac{1}{{2\pi}} \sqrt{\frac{k}{m}} \]其中,\(f\)为谐振频率,\(k\)为弹簧的劲度系数,\(m\)为物体的质量。
七、机械能守恒在没有摩擦力和阻力的情况下,机械振动过程中机械能守恒。
也就是在振动过程中,动能和势能之间的转化不会导致能量损失。
八、振动波振动波是指机械振动在空间中的传播。
振动波可以是横波或纵波,横波是指振动方向垂直于波的传播方向,纵波是指振动方向与波的传播方向一致。
机械振动和机械波知识点总结

机械振动和机械波知识点总结一、机械振动的基本概念1.简谐振动:具有恢复力的物体围绕平衡位置作周而复始的往复运动,其运动规律满足简谐振动的规律。
2.振幅:振动的最大偏离量,表示振动的幅度大小。
3.周期:振动完成一次往复运动所经历的时间。
4.频率:单位时间内振动的循环次数。
5.角频率:单位时间内振动的循环角度。
6.动能和势能:振动物体在做往复运动过程中,动能和势能不断转化。
7.谐振:当外力与物体的振动频率相同时,产生共振现象,能量传递效率最高。
二、机械振动的描述方法1.运动方程:描述物体随时间变化的位置。
2.振动曲线:以时间为横轴,位置或速度为纵轴,绘制出的曲线。
3.波形图:以距离为横轴,垂直方向的位移、压强或密度为纵轴,绘制出的曲线。
三、机械振动的特性1.振动的幅度、周期和频率可以通过测量来确定。
2.振动的速度和加速度随时间变化而变化,速度与位置之间呈正弦关系,加速度与位置之间呈负弦关系。
3.振动的能量在物体各个部分之间以波动形式传递,不断发生能量转化。
4.振动物体的相对稳定位置是平衡位置,物体相对平衡位置的偏离量越大,能量传递越快,振幅越大。
四、机械波的基本概念1.机械波是一种能量的传递方式,通过介质中的相互作用使得能量沿介质传播。
2.波的传播速度与介质的性质有关,弹性固体中传播速度最大,液体次之,气体最小。
3.机械波分为横波和纵波。
横波的传播方向与振动方向垂直,如水波;纵波的传播方向与振动方向一致,如声波。
五、机械波的描述方法1.波的频率、波长和传播速度之间存在关系:波速=频率×波长。
2.波谱分析:将波的复杂振动分解成一系列简单谐波的叠加。
3.波的传播可分为反射、折射、干涉、衍射和驻波等现象。
六、机械波的特性1.超前传播:波的传播速度比振动速度快。
2.波的干涉:两个波相遇时,根据叠加原理,产生增强或减弱的效果。
3.波的衍射:波通过孔隙或物体边缘时发生的现象。
4.驻波:两个等幅、频率相同的波在空间中相遇,发生干涉,形成波节和波腹。
高中物理机械振动知识点

高中物理机械振动知识点一:简谐振动1、机械振动:物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。
机械振动产生的条件是:(1)回复力不为零。
(2)阻力很小。
使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。
2、简谐振动:在机械振动中最简单的一种理想化的振动。
对简谐振动可以从两个方面进行定义或理解:(1)物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。
(2)物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,在高中物理教材中是以弹簧振子和单摆这两个特例来认识和掌握简谐振动规律的。
高中物理机械振动知识点二:简谐运动的描述1、位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。
位移是矢量,其最大值等于振幅。
2、振幅A:做机械振动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。
振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。
3、周期T:振动物体完成一次余振动所经历的时间叫做周期。
所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。
4、频率f:振动物体单位时间内完成全振动的次数。
5、角频率:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。
引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。
因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。
周期、频率、角频率的关系是:。
6、相位:表示振动步调的物理量。
现行中学教材中只要求知道同相和反相两种情况。
高中物理机械振动知识点三:简谐运动的处理1、研究简谐振动规律的几个思路:(1)用动力学方法研究,受力特征:回复力F =- Kx;加速度,简谐振动是一种变加速运动。
高中物理机械振动机械波知识点总结课件新人教版选修

物理实验中的机械振动与波
实验中的振动与波
在物理实验中,我们可以设计和进行各种与机械振动和波相关的实验,如单摆实 验、共振实验、干涉和衍射实验等。这些实验可以帮助我们深入理解机械振动和 波的原理。
实验中的注意事项
在进行与机械振动和波相关的实验时,需要注意安全问题,如避免共振引起的破 坏力、防止声波对耳膜的损伤等。
科技应用中的机械振动与波
科技应用中的振动与波
在科技领域,机械振动和波的应用非 常广泛,如地震勘测、无损检测、医 疗成像等。这些应用都基于对机械振 动和波的深入理解和掌握。
科技应用的发展前景
随着科技的不断发展,机械振动和波 的应用前景将更加广阔。例如,利用 振动和波进行物质分拣、环境监测等 领域的研究正在不断深入。
学习方法与技巧
强化基础知识的学习
注重实验与观察
机械振动与机械波的知识点比较抽象,需 要强化基础知识的学习,如振动与波的基 本概念、周期公式等。
实验是学习物理的重要手段,通过实验观 察机械振动与机械波的现象,有助于加深 对知识点的理解。
多做练习题
形成知识网络
练习是巩固知识的重要途径,通过多做练 习题可以加深对知识点的理解和掌握。
波动方程的建立
波动方程的推导
通过建立微分方程,描述波动过 程中各点的振动状态,从而得出
波动方程。
波动方程的形式
常见的波动方程形式有简谐振动方 程和一维波动方程等。
波动方程的求解
通过求解波动方程,可以得到波的 传播速度、波长等物理量。
振动方程的理解与应用
振动方程的意义
振动方程描述了单个质点在平衡位置附近的振动规律。
高中物理机械振动机械波知 识点总结课件新人教版选修
目录
高三物理机械振动和机械波知识点总结

3. 描述简谐运动的物理量(1)位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅。
(2)振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱。
(3)周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f。
4. 简谐运动的图像(1)意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹。
(2)特点:简谐运动的图像是正弦(或余弦)曲线。
(3)应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况。
二、弹簧振子定义:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系。
如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T。
三、单摆1. 定义:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点。
单摆是一种理想化模型。
2. 单摆的振动可看作简谐运动的条件是:最大摆角α<5°。
3. 单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力。
4. 作简谐运动的单摆的周期公式为:T=2π(1)在振幅很小的条件下,单摆的振动周期跟振幅无关。
(2)单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.(3)摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L 应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值)。
四、受迫振动1. 受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动。
2. 受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关。
3. 共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振。
高级中学物理机械振动知识点汇总

一. 教学内容:第十一章机械振动本章知识复习归纳二. 重点、难点解析(一)机械振动物体(质点)在某一中心位置两侧所做地往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置地力即回复力.回复力是以效果命名地力,它可以是一个力或一个力地分力,也可以是几个力地合力.产生振动地必要条件是:a、物体离开平衡位置后要受到回复力作用.b、阻力足够小.(二)简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置地回复力作用下地振动叫简谐振动.简谐振动是最简单,最基本地振动.研究简谐振动物体地位置,常常建立以中心位置(平衡位置)为原点地坐标系,把物体地位移定义为物体偏离开坐标原点地位移.因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反地回复力作用下地振动,即F=-k x,其中“-”号表示力方向跟位移方向相反.2. 简谐振动地条件:物体必须受到大小跟离开平衡位置地位移成正比,方向跟位移方向相反地回复力作用.3. 简谐振动是一种机械运动,有关机械运动地概念和规律都适用,简谐振动地特点在于它是一种周期性运动,它地位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化.(三)描述振动地物理量,简谐振动是一种周期性运动,描述系统地整体地振动情况常引入下面几个物理量.1. 振幅:振幅是振动物体离开平衡位置地最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱地物理量,振幅地大小表示了振动系统总机械能地大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒.2. 周期和频率,周期是振子完成一次全振动地时间,频率是一秒钟内振子完成全振动地次数.振动地周期T跟频率f 之间是倒数关系,即T=1/f.振动地周期和频率都是描述振动快慢地物理量,简谐振动地周期和频率是由振动物体本身性质决定地,与振幅无关,所以又叫固有周期和固有频率.(四)单摆:摆角小于5°地单摆是典型地简谐振动.细线地一端固定在悬点,另一端拴一个小球,忽略线地伸缩和质量,球地直径远小于悬线长度地装置叫单摆.单摆做简谐振动地条件是:最大摆角小于5°,单摆地回复力F是重力在圆弧切线方向地分力.单摆地周期公式是T=.由公式可知单摆做简谐振动地固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心地距离.g是单摆所在处地重力加速度,在有加速度地系统中(如悬挂在升降机中地单摆)其g应为等效加速度.(五)振动图象.简谐振动地图象是振子振动地位移随时间变化地函数图象.所建坐标系中横轴表示时间,纵轴表示位移.图象是正弦或余弦函数图象,它直观地反映出简谐振动地位移随时间作周期性变化地规律.要把质点地振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等地变化情况.(六)阻尼振动、受迫振动、共振.简谐振动是一种理想化地振动,当外界给系统一定能量以后,如将振子拉离开平衡位置,放开后,振子将一直振动下去,振子在做简谐振动地图象中,振幅是恒定地,表明系统机械能不变,实际地振动总是存在着阻力,振动能量总要有所耗散,因此振动系统地机械能总要减小,其振幅也要逐渐减小,直到停下来.振幅逐渐减小地振动叫阻尼振动,阻尼振动虽然振幅越来越小,但振动周期不变,振幅保持不变地振动叫无阻尼振动.振动物体如果在周期性外力──策动力作用下振动,那么它做受迫振动,受迫振动达到稳定时其振动周期和频率等于策动力地周期和频率,而与振动物体地固有周期或频率无关.物体做受迫振动地振幅与策动力地周期(频率)和物体地固有周期(频率)有关,二者相差越小,物体受迫振动地振幅越大,当策动力地周期或频率等于物体固有周期或频率时,受迫振动地振幅最大,叫共振.【典型例题】[例1] 一弹簧振子在一条直线上做简谐运动,第一次先后经过M、N两点时速度v(v≠0)相同,那么,下列说法正确地是()A. 振子在M、N两点受回复力相同B. 振子在M、N两点对平衡位置地位移相同C. 振子在M、N两点加速度大小相等D. 从M点到N点,振子先做匀加速运动,后做匀减速运动解析:建立弹簧振子模型如图所示,由题意知,振子第一次先后经过M、N两点时速度v相同,那么,可以在振子运动路径上确定M、N两点,M、N两点应关于平衡位置O对称,且由M运动到N,振子是从左侧释放开始运动地(若M 点定在O点右侧,则振子是从右侧释放地).建立起这样地物理模型,这时问题就明朗化了.因位移、速度、加速度和回复力都是矢量,它们要相同必须大小相等、方向相同.M、N两点关于O点对称,振子回复力应大小相等、方向相反,振子位移也是大小相等,方向相反.由此可知,A、B选项错误.振子在M、N两点地加速度虽然方向相反,但大小相等,故C选项正确.振子由M→O速度越来越大,但加速度越来越小,振子做加速运动,但不是匀加速运动.振子由O→N速度越来越小,但加速度越来越大,振子做减速运动,但不是匀减速运动,故D选项错误,由以上分析可知,该题地正确答案为C.点评:(1)认真审题,抓住关键词语.本题地关键是抓住“第一次先后经过M、N两点时速度v相同”.(2)要注意简谐运动地周期性和对称性,由此判定振子可能地路径,从而确定各物理量及其变化情况.(3)要重视将物理问题模型化,画出物理过程地草图,这有利于问题地解决.[例2] 一质点在平衡位置O附近做简谐运动,从它经过平衡位置起开始计时,经0.13 s质点第一次通过M点,再经0.1 s 第二次通过M点,则质点振动周期地可能值为多大?解析:将物理过程模型化,画出具体地图景如图1所示.设质点从平衡位置O向右运动到M点,那么质点从O到M 运动时间为0.13 s,再由M经最右端A返回M经历时间为0. 1 s;如图2所示.另有一种可能就是M点在O点左方,如图3所示,质点由O点经最右方A点后向左经过O点到达M点历时0.13 s,再由M向左经最左端A,点返回M历时0.1 s.根据以上分析,质点振动周期共存在两种可能性.如图2所示,可以看出O→M→A历时0.18 s,根据简谐运动地对称性,可得到T1=4×0.18 s=0.72 s.另一种可能如图3所示,由O→A→M历时t l=0.13 s,由M→A’历时t2=0.05 s设M→O历时t,则4(t+t2)=t1+2t2+t,解得t=0. 01 s,则T2=4(t+t2)=0.24 s所以周期地可能值为0.72 s和0.24 s说明:(1)本题涉及地知识有:简谐运动周期、简谐运动地对称性.(2)本题地关键是:分析周期性,弄清物理图景,判断各种可能性.(3)解题方法:将物理过程模型化、分段分析、讨论.[例3] 甲、乙两弹簧振子,振动图象如图所示,则可知()A. 两弹簧振子完全相同B. 两弹簧振子所受回复力最大值之比F甲∶F乙=2∶1C. 振子甲速度为零时,振子乙速度最大D. 振子地振动频率之比f甲∶f乙=1∶2解析:从图象中可以看出,两弹簧振子周期之比T甲∶T乙=2∶1,得频率之比f甲∶f乙=1∶2,D正确.弹簧振子周期与振子质量、弹簧劲度系数k有关,周期不同,说明两弹簧振子不同,A错误.由于弹簧地劲度系数k不一定相同,所以两振子受回复力(F=kx)地最大值之比F甲∶F乙不一定为2∶1,所以B错误,对简谐运动进行分析可知,在振子到达平衡位置时位移为零,速度最大;在振子到达最大位移处时,速度为零,从图象中可以看出,在振子甲到达最大位移处时,振子乙恰到达平衡位置,所以C正确.答案为C、D.点评:(1)图象法是物理问题中常见地解题方法之一,是用数学手段解决物理问题能力地重要体现.应用图象法解物理问题要明确图象地数学意义,再结合物理模型弄清图象描述地物理意义,两者结合,才能全面地分析问题.(2)本题中涉及知识点有:振幅、周期、频率、影响周期地因素、简谐运动在特殊点地速度、回复力、简谐运动地对称性等.(3)分析本题地主要方法是数与形地结合(即图象与模型相结合)分析方法.[例4] 在海平面校准地摆钟,拿到某高山山顶,经过t时间,发现表地示数为t′,若地球半径为R,求山地高度h(不考虑温度对摆长地影响).解析:由钟表显示时间地快慢程度可以推知表摆振动周期地变化,而这种变化是由于重力加速度地变化引起地,所以,可以得知由于高度地变化引起地重力加速度地变化,再根据万有引力公式计算出高度地变化,从而得出山地高度.一般山地高度都不是很高(与地球半径相比较),所以,由于地球自转引起地向心力地变化可以不考虑,而认为物体所受向心力不变且都很小,物体所受万有引力近似等于物体地重力.(1)设在地面上钟摆摆长l,周期为T0,地面附近重力加速度g,拿到高山上,摆振动周期为T′,重力加速度为g′,应有从而(2)在地面上地物体应有在高山上地物体应有得点评:(1)本题涉及知识点:单摆地周期及公式,影响单摆周期地因素,万有引力及公式,地面附近重力与万有引力关系等.(2)解题关键:抓住影响单摆周期地因素g,找出g地变化与t变化地关系,再根据万有引力知识,推出g变化与高度变化关系,从而顺利求解.[例5] 在光滑水平面上,用两根劲度系数分别为k1、k2地轻弹簧系住一个质量为m地小球.开始时,两弹簧均处于原长,后使小球向左偏离x后放手,可以看到小球将在水平面上作往复振动.试问小球是否作简谐运动?解析:为了判断小球地运动性质,需要根据小球地受力情况,找出回复力,确定它能否写成F=-kx地形式.以小球为研究对象,竖直方向处于力平衡状态,水平方向受到两根弹簧地弹力作用.设小球位于平衡位置O左方某处时,偏离平衡位置地位移为x,则左方弹簧受压,对小球地弹力大小为f1=k1x,方向向右.右方弹簧被拉伸,对小球地弹力大小为f2=k2x,方向向右.小球所受地回复力等于两个弹力地合力,其大小为F=f1+f2=(k1+k2)x,方向向右.令k=k1+k2,上式可写成F=kx.由于小球所受回复力地方向与位移x地方向相反,考虑方向后,上式可表示为F=-kx.所以,小球将在两根弹簧地作用下,沿水平面作简谐运动.点评:由本题可归纳出判断物体是否作简谐运动地一般步骤:确定研究对象(整个物体或某一部分)→分析受力情况→找出回复力→表示成F=-kx地形式(可以先确定F地大小与x地关系,再定性判断方向).[例6] 如图所示,一轻质弹簧竖直放置,下端固定在水平面上,上端处于a位置,当一重球放在弹簧上端静止时,弹簧上端被压缩到b位置.现将重球(视为质点)从高于a位置地c位置沿弹簧中轴线自由下落,弹簧被重球压缩到最低位置d.以下关于重球运动过程地正确说法应是()A. 重球下落压缩弹簧由a至d地过程中,重球做减速运动.B. 重球下落至b处获得最大速度.C. 重球下落至d处获得最大加速度.D. 由a至d过程中重球克服弹簧弹力做地功等于小球由c下落至d处时重力势能减少量.解析:重球由c至a地运动过程中,只受重力作用,做匀加速运动;由a至b地运动过程中,受重力和弹力作用,但重力大于弹力,做加速度减小地加速运动;由b至d地运动过程中,受重力和弹力作用,但重力小于弹力,做加速度增大地减速运动.所以重球下落至b处获得最大速度,由a至d过程中重球克服弹簧弹力做地功等于小球由c下落至d处时重力势能减少量,即可判定B、D正确.C选项很难确定是否正确,但利用弹簧振子地特点就可非常容易解决这一难题.重球接触弹簧以后,以b点为平衡位置做简谐运动,在b点下方取一点a',使ab= a′b,根据简谐运动地对称性,可知,重球在a、a'地加速度大小相等,方向相反,如图所示.而在d点地加速度大于在a'点地加速度,所以重球下落至d处获得最大加速度,C选项正确.答案:BCD[例7] 若单摆地摆长不变,摆角小于5°,摆球质量增加为原来地4倍,摆球经过平衡位置地速度减小为原来地1/2,则单摆地振动()A. 频率不变,振幅不变B. 频率不变,振幅改变C. 频率改变,振幅改变D. 频率改变,振幅不变解析:单摆地周期T=,与摆球质量和振幅无关,只与摆长L和重力加速度g有关.当摆长L和重力加速度g不变时,T不变,频率f也不变.选项C、D错误.单摆振动过程中机械能守恒.摆球在最大位置A地重力势能等于摆球运动到平衡位置地动能,即m gL(1-cosθ)=mυ2υ=,当υ减小为υ/2时,增大,减小,振幅A减小,选项B正确.点评:单摆地周期只与摆长和当地重力加速度有关,而与摆球质量和振动幅无关,摆角小于5°地单摆是简谐振动,机械能守恒.【模拟试题】一. 选择题1. 弹簧振子作简谐运动,t1时刻速度为v,t2时刻也为v,且方向相同.已知(t2-t1)小于周期T,则(t2-t1)(AB )A. 可能大于四分之一周期B. 可能小于四分之一周期C. 一定小于二分之一周期D. 可能等于二分之一周期2. 有一摆长为L地单摆,悬点正下方某处有一小钉,当摆球经过平衡位置向左摆动时,摆线地上部将被小钉挡住,使摆长发生变化,现使摆球做小幅度摆动,摆球从右边最高点M至左边最高点N运动过程地闪光照片,如图所示,(悬点和小钉未被摄入),P为摆动中地最低点.已知每相邻两次闪光地时间间隔相等,由此可知,小钉与悬点地距离为( C )A. L/4B. L/2C. 3L/4D. 无法确定3. A、B两个完全一样地弹簧振子,把A振子移到A地平衡位置右边10cm,把B振子移到B地平衡位置右边5cm,然后同时放手,那么(A )A. A、B运动地方向总是相同地B. A、B运动地方向总是相反地C. A、B运动地方向有时相同、有时相反D. 无法判断A、B运动地方向地关系4. 在下列情况下,能使单摆周期变小地是( C )A. 将摆球质量减半,而摆长不变B. 将单摆由地面移到高山C. 将单摆从赤道移到两极D. 将摆线长度不变,换一较大半径地摆球5. 把一个筛子用四根弹簧支起来,筛子上装一个电动偏心轮,它每转一周,给筛子一个驱动力,这就做成了一个共振筛,筛子做自由振动时,完成20次全振动用15s,在某电压下,电动偏心轮转速是88 r/min,已知增大电动偏心轮地电压,可以使其转速提高,增加筛子地质量,可以增大筛子地固有周期,要使筛子地振幅增大,下列做法中,正确地是(A D)A. 降低输入电压B. 提高输入电压C. 增加筛子地质量D. 减小筛子地6. 一质点作简谐运动地图象如图所示,则该质点(B D )A. 在0.015s时,速度和加速度都为-x方向.B. 在0.01至0.03s内,速度与加速度先反方向后同方向,且速度是先减小后增大,加速度是先增大后减小.C. 在第八个0.01s内,速度与位移方向相同,且都在不断增大.D. 在每1s内,回复力地瞬时功率有100次为零.7. 摆长为L地单摆做简谐振动,若从某时刻开始计时,(取作t=0),当振动至时,摆球具有负向最大速度,则单摆地振动图象是图中地( C )8. 将一个电动传感器接到计算机上,就可以测量快速变化地力,用这种方法测得地某单摆摆动时悬线上拉力地大小随时间变化地曲线如图所示.某同学由此图线提供地信息做出了下列判断( A )①s 时摆球正经过最低点.②s 时摆球正经过最低点.③摆球摆动过程中机械能减少.④摆球摆动地周期是T=1.4s.上述判断中,正确地是A. ①③B. ②③C. ③④D. ②④9. 甲乙两人同时观察同一单摆地振动,甲每经过2.0S观察一次摆球地位置,发现摆球都在其平衡位置处;乙每经过3.0S观察一次摆球地位置,发现摆球都在平衡位置右侧地最高处,由此可知该单摆地周期可能是( AB )A. 0.5SB. 1.0SC. 2.0SD. 3.0S10. 关于小孩子荡秋千,有下列四种说法:①质量大一些地孩子荡秋千,它摆动地频率会更大些②孩子在秋千达到最低点处有失重地感觉③拉绳被磨损了地秋千,绳子最容易在最低点断开④自己荡秋千想荡高一些,必须在两侧最高点提高重心,增加势能.上述说法中正确地是( B )A. ①②B. ③④C. ②④D. ②③二. 填空题11. 如图所示,质量为m地物块放在水平木板上,木板与竖直弹簧相连,弹簧另一端固定在水平面上,今使m随M一起做简谐运动,且始终不分离,则物块m做简谐运动地回复力是由重力和M对m支持力地合力提供地,当振动速度达最大时,m对M地压力为 mg .12. 如图所示为水平放置地两个弹簧振子A和B地振动图像,已知两个振子质量之比为m A :m B=2:3,弹簧地劲度系数之比为k A:k B=3:2,则它们地周期之比T A:T B= 2:3 ;它们地最大加速度之比为a A:a B= 9:2 .13. 有一单摆,当它地摆长增加2m时,周期变为原来地2倍.则它原来地周期是_1.64s________.14. 某同学在做“利用单摆测重力加速度”地实验中,先测得摆线长为101.00cm,摆球直径为2.00cm,然后用秒表记录了单摆振动50次所用地时间为101.5 s.则:(1)他测得地重力加速度g =9.76 m/s2(计算结果取三位有效数字)(2)他测得地g值偏小,可能原因是: CDA. 测摆线长时摆线拉得过紧.B. 摆线上端未牢固地系于悬点,振动中出现松动,使摆线长度增加了.C. 开始计时时,秒表过迟按下.D. 实验中误将49次全振动计为50次.(3)为了提高实验精度,在实验中可改变几次摆长l并测出相应地周期T,从而得出一组对应地l和T地数值,再以l为横坐标、T2为纵坐标将所得数据连成直线,并求得该直线地斜率K.则重力加速度g = 4∏^2/K.(用K表示)三. 计算题15. 弹簧振子以O点为平衡位置在B、C两点之间做简谐运动,B、C相距20 cm.某时刻振子处于B点,经过0.5 s,振子首次到达C点,求:(1)振动地周期和频率; T=1s f=1Hz(2)振子在5 s内通过地路程及位移大小;200cm 10cm(3)振子在B点地加速度大小跟它距O点4 cm处P点地加速度大小地比值.5:216. 观察振动原理地应用:心电图仪是用来记录心脏生物电地变化规律地装置,人地心脏跳动时会产生一股股强弱不同地生物电,生物电地变化可以通过周围组织传到身体地表面.医生用引导电极放置于肢体或躯体地一定部位就可通过心电图仪记录出心电变化地波动曲线,这就是心电图.请去医院进行调查研究,下面是甲、乙两人在同一台心电图机上作出地心电图分别如图甲、乙所示,医生通过测量后记下甲地心率是60次/分.试分析:(1)该心电图机图纸移动地速度;v=0.025m/s(2)乙地心动周期和心率0.8s 75次/分17. 如图所示,一块涂有炭黑玻璃板,质量为2kg,在拉力F地作用下,由静止开始竖直向上运动.一个装有水平振针地振动频率为5Hz地固定电动音叉在玻璃板上画出了图示曲线,量得OA=1cm,OB=4cm,OC=9cm,求外力F地大小.(g=10m/s2,不计阻力)F=24N18. 两个单摆摆长相同,一个静止于地面,一个个静止在悬浮于高空地气球中.地面上地单摆摆动了n次全振动时,气球中地单摆摆动了n-1次全振动.已知地球半径为R,求气球地高度?H=R/(n-1)【试题答案】1. AB2. C3. A4. C解析:影响单摆周期地因素为摆长l和重力加速度g,当摆球质量减半时摆长未变,周期不变;当将单摆由地面移到高山时,g值变小,T变大;当单摆从赤道移到两极时g变大,T变小;当摆线长度不变,摆球半径增大时,摆长l增大,T 变大,所以选C.5. AD6. BD7. 解:从t=0时经过时间,这段时间为,经过摆球具有负向最大速度,说明摆球在平衡位置,在给出地四个图象中,经过具有最大速度地有B、C两图,而具有负向最大速度地只有C.所以选项C正确.8. A 9. AB10. 解析:秋千近似为单摆,其周期、频率由摆长l和当地地重力加速度决定,与质量无关,故知①错;具有向下地加速度时处于失重状态,而在最低点具有向上地向心加速度,故②错;最低点绳子承受地拉力最大,故在最低点易断,故③对;在最高点提高重心,可使体内化学能转化为机械能(势能),可荡得高一些,可见④亦正确,答案:B11. 重力和M对m地支持力地合力;mg.12. 2:3;9:213. 解:设该单摆原来地摆长为L0,振动周期为T0;则摆长增加2m后,摆长变为L=(l0+2)m,周期变为T=2T0.由单摆周期公式,有T0=2 T0=联立上述两式,可得L0=m T0=1.64s14. (1)9.76 (2) B (3)4π2/K.15.(1)设振幅为A,由题意BC=2A=20 cm,所以A=10 cm振子从B到C所用时间t=0.5 s,为周期T地一半,所以T=1.0 s;f==1.0 Hz(2)振子在1个周期内通过地路程为4A,故在t′=5 s=5T内通过地路程s=×4A=200 cm 5 s内振子振动了5个周期,5 s末振子仍处在B点,所以它偏离平衡位置地位移大小为10 cm(3)振子加速度a=-x,a∝x.所以a B∶a P=x B∶x P=10∶4=5∶216.(1)25mm/s(2)0.8s;75次/分17. 设板竖直向上地加速度为a,则有:s BA-s AO=aT2①s CB-s B A=aT2②由牛顿第二定律得F-mg=ma③解①②③式可求得F=24 N18. 解析:T==2πT’==2π所以==所以h=。
高中物理机械振动知识点总结

高中物理机械振动知识点总结
高中物理机械振动的知识点总结如下:
1. 机械振动的概念和特点:机械振动是物体围绕平衡位置做周期性的来回振动运动,具有周期性、周期、频率、振幅等特点。
2. 动力学模型:机械振动可以用质点振动和弹簧振子来进行模拟,质点振动模型是研究单自由度振动的基本模型,弹簧振子模型是研究多自由度振动的基本模型。
3. 平衡位置和平衡力:平衡位置是物体在没有外力作用时处于的位置,平衡力是指物体在平衡位置附近的力,可以分为恢复力和阻尼力。
4. 振动方程:振动方程描述了物体在振动过程中的运动规律,可以用一阶微分方程或二阶微分方程表示,具体形式根据不同的振动模型而定。
5. 振动的能量:机械振动存在动能和势能的相互转换。
在简谐振动中,能量以振幅的平方的形式表示。
6. 简谐振动:简谐振动是指物体在恢复力作用下,在平衡位置附近做频率恒定、振幅不变、沿直线轨迹的振动。
简谐振动的特点包括周期性、频率、振幅、相位等。
7. 强迫振动和共振:强迫振动是指物体在外部周期性力的驱动下进行的振动,共振是指当外部周期性力与物体的固有频率相等或接近时,物体振幅达到最大的现象。
8. 阻尼振动:阻尼振动是指在受到阻尼力的作用下,物体振幅
逐渐减小并最终停止振动的现象。
阻尼振动可以分为欠阻尼、临界阻尼和过阻尼三种情况。
9. 波动方程:波动方程描述了波在传播过程中的运动规律,可以用一维或二维波动方程表示。
10. 波的传播:波的传播可以分为机械波和电磁波两种类型,机械波需要介质传播,而电磁波可以在真空中传播。
以上是高中物理机械振动的主要知识点总结,希望对你有帮助。
第二章机械振动知识点清单高二上学期物理人教版选择性

新教材人教版高中物理选择性必修第一册第2章知识点清单目录第2章机械振动2. 1 简谐运动2. 2 简谐运动的描述2. 3 简谐运动的回复力和能量2. 4 单摆2. 5 实验用单摆测量重力加速度2. 6 受迫振动共振第2章机械振动2. 1 简谐运动一、近机械振动1. 概念:物体或物体的一部分在一个位置附近的往复运动称为机械振动,简称振动。
2. 特征(1)存在平衡位置,即振动物体静止时的位置;(2)运动具有往复性,即周期性。
二、弹簧振子1. 弹簧振子模型:弹簧振子是由小球和弹簧所组成的系统,是一种理想化模型。
2. 理想振子的条件(1)弹簧的质量比小球的质量小得多,可以认为质量集中于小球;(2)构成弹簧振子的小球体积足够小,可以认为小球是一个质点;(3)摩擦力可以忽略;(4)在小球运动过程中弹簧始终在弹性限度内。
3. 弹簧振子的位移小球在某时刻的位移,用从平衡位置指向小球所在位置的有向线段表示,有向线段的长度表示位移大小,指向表示位移方向。
4. 弹簧振子的位移-时间图像以水平放置的弹簧振子为例,取小球的平衡位置为坐标原点O,沿着它的振动方向建立坐标轴,规定水平向右为正方向,小球在平衡位置右侧时的位置坐标x为正,在平衡位置左侧时的位置坐标x为负。
小球的位置坐标反映了小球相对于平衡位置的位移,小球的位置-时间图像就是小球的位移-时间图像。
三、简谐运动1. 概念:如果物体的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,这样的振动是一种简谐运动。
2. 特点:简谐运动是最简单、最基本的振动,振动过程关于平衡位置对称,是一种周期性运动。
弹簧振子的小球的运动就是简谐运动。
3. 简谐运动的图像(x-t图像)(1)建立坐标系:以横轴表示时间,纵轴表示位移,建立坐标系。
(2)物理意义:振动图像表示振动物体相对于平衡位置的位移随时间变化的规律。
四、简谐运动规律的理解1. 简谐运动的位移简谐运动的位移是相对于平衡位置而言的,位移的方向都是背离平衡位置的。
高中物理机械振动、机械波知识要点

高中物理机械振动、机械波知识要点1、简谐运动、振幅、周期和频率的概念(1)简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。
特征是:,。
(2)简谐运动的规律:①在平衡位置:速度最大、动能最大、动量最大;位移最小、回复力最小、加速度最小。
②在离开平衡位置最远时:速度最小、动能最小、动量最小;位移最大、回复力最大、加速度最大。
③振动中的位移x都是以平衡位置为起点的,方向从平衡位置指向末位置,大小为这两位置间的直线距离。
加速度与回复力、位移的变化一致,在两个“端点”最大,在平衡位置为零,方向总是指向平衡位置。
(3)振幅A:振动物体离开平衡位置的最大距离称为振幅。
它是描述振动强弱的物理量。
它是标量。
(4)周期T和频率f:振动物体完成一次全振动所需的时间称为周期T,它是标量,单位是秒;单位时间内完成的全振动的次数称为振动频率,单位是赫兹(Hz)。
周期和频率都是描述振动快慢的物理量,它们的关系是:T=1/f。
2、单摆的概念(1)单摆的概念:在细线的一端拴一个小球,另一端固定在悬点上,线的伸缩和质量可忽略,线长远大于球的直径,这样的装置叫单摆。
(2)单摆的特点:①单摆是实际摆的理想化,是一个理想模型;②单摆的等时性,在振幅很小的情况下,单摆的振动周期与振幅、摆球的质量等无关;③单摆的回复力由重力沿圆弧方向的分力提供,当最大摆角时,单摆的振动是简谐运动,其振动周期T=。
(3)单摆的应用:①计时器;②测定重力加速度g,g=。
3、受迫振动和共振(1)受迫振动:物体在周期性驱动力作用下的振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。
(2)共振:①共振现象:在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大,这种现象称为共振。
②产生共振的条件:驱动力频率等于物体固有频率。
机械振动知识点总结

机械振动知识点总结机械振动的研究旨在分析和控制系统的振动特性,以提高系统的性能、减少系统的动态负荷、延长系统的使用寿命,并确保系统在工作过程中的稳定性和安全性。
本文将对机械振动的基本知识点进行总结,包括机械振动的分类、振动系统的建模分析、振动的控制和减振、以及振动的监测与诊断等内容。
一、机械振动的分类1. 根据振动形式的不同,机械振动可分为以下几类:(1)自由振动:系统在没有外部激励的情况下发生的振动,系统内部能量交换导致振幅逐渐减小直至停止,如钟摆的摆动。
(2)受迫振动:系统受到外部激励作用而发生的振动,外部激励可以是周期性的或非周期性的,如机械系统受到周期性力的作用而发生的振动。
(3)共振:当受迫振动的频率与系统的固有频率相近或一致时,系统的振幅将迅速增大,甚至造成系统破坏的现象。
2. 根据振动的传播方式,机械振动可分为以下几类:(1)固体振动:振动是在固体介质中传播的,如机械结构的振动。
(2)流体振动:振动是通过流体介质(如液体或气体)传播的,如管道中的水波振动。
(3)弹性振动:振动是由于材料的弹性变形而产生的,如弹簧振子的振动。
二、振动系统的建模分析1. 振动系统的建模方法(1)单自由度振动系统的建模:利用牛顿第二定律,可以建立单自由度振动系统的等效质点模型,然后通过能量方法或拉氏方程等方法,可以求解系统的振动特性。
(2)多自由度振动系统的建模:对于多自由度振动系统,可以利用连续系统的离散化方法,将系统离散化为多个质点的集合,并建立相应的动力学模型,然后求解系统的振动特性。
2. 振动系统的分析方法(1)频域分析:通过对系统的动力学方程进行傅里叶变换,可以将系统的运动响应转换到频域中进行分析,得到系统的频率响应特性。
(2)时域分析:通过对系统的动力学方程进行积分,可以得到系统的时域响应,包括系统的位移、速度、加速度等随时间的变化规律。
(3)模态分析:通过对系统的模态方程进行求解,可以得到系统的固有频率和振型,以及相应的阻尼比和阻尼比比例。
高中物理机械振动知识点详解和答案

九、机械振动一、知识网络二、画龙点睛概念1、机械振动(1)平衡位置:物体振动时的中心位置,振动物体未开始振动时相对于参考系静止的位置,或沿振动方向所受合力等于零时所处的位置叫平衡位置。
(2)机械振动:物体在平衡位置附近所做的往复运动,叫做机械振动,通常简称为振动。
(3)振动特点:振动是一种往复运动,具有周期性和重复性2、简谐运动(1)弹簧振子:一个轻质弹簧联接一个质点,弹簧的另一端固定,就构成了一个弹簧振子。
(2)振动形成的原因①回复力:振动物体受到的总能使振动物体回到平衡位置,且始终指向平衡位置的力,叫回复力。
振动物体的平衡位置也可说成是振动物体振动时受到的回复力为零的位置。
②形成原因:振子离开平衡位置后,回复力的作用使振了回到平衡位置,振子的惯性使振子离开平衡位置;系统的阻力足够小。
(3)振动过程分析振子的运动A→O O→A′A′→O O→A对O点位移的方向向右向左向左向右(4)简谐运动的力学特征①简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫做简谐运动。
②动力学特征:回复力F与位移x之间的关系为F=-kx式中F为回复力,x为偏离平衡位置的位移,k是常数。
简谐运动的动力学特征是判断物体是否为简谐运动的依据。
③简谐运动的运动学特征a=-k m x加速度的大小与振动物体相对平衡位置的位移成正比,方向始终与位移方向相反,总指向平衡位置。
简谐运动加速度的大小和方向都在变化,是一种变加速运动。
简谐运动的运动学特征也可用来判断物体是否为简谐运动。
例题:试证明在竖直方向的弹簧振子做的也是简谐振运动。
证明:设O为振子的平衡位置,向下方向为正方向,此时弹簧形变量为x0,根据胡克定律得x0=mg/k当振子向下偏离平衡位置x时,回复力为F=mg-k(x+x0)则F=-kx所以此振动为简谐运动。
3、振幅、周期和频率⑴振幅①物理意义:振幅是描述振动强弱的物理量。
②定义:振动物体离开平衡位置的最大距离,叫做振动的振幅。
高中物理选修3-4机械振动_机械波_光学知识点(好全)

机械振动一、基本概念1.机械振动:物体(或物体一部分)在某一中心位置附近所做的往复运动2.回复力F:使物体返回平衡位置的力,回复力是根据效果(产生振动加速度,改变速度的大小,使物体回到平衡位置)命名的,回复力总指向平衡位置,回复力是某几个性质力沿振动方向的合力或是某一个性质力沿振动方向的分力。
(如①水平弹簧振子的回复力即为弹簧的弹力;②竖直悬挂的弹簧振子的回复力是弹簧弹力和重力的合力;③单摆的回复力是摆球所受重力在圆周切线方向的分力,不能说成是重力和拉力的合力)3.平衡位置:回复力为零的位置(物体原来静止的位置)。
物体振动经过平衡位置时不一定处于平衡状态即合外力不一定为零(例如单摆中平衡位置需要向心力)。
4.位移x:相对平衡位置的位移。
它总是以平衡位置为始点,方向由平衡位置指向物体所在的位置,物体经平衡位置时位移方向改变。
5.简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。
(1)动力学表达式为:F= -kxF=-kx是判断一个振动是不是简谐运动的充分必要条件。
凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。
(2)运动学表达式:x=A sin(ωt+φ)(3)简谐运动是变加速运动.物体经平衡位置时速度最大,物体在最大位移处时速度为零,且物体的速度在最大位移处改变方向。
(4)简谐运动的加速度:根据牛顿第二定律,做简谐运动的物体指向平衡位置的(或沿振动方向的)加速度mkxa -=.由此可知,加速度的大小跟位移大小成正比,其方向与位移方向总是相反。
故平衡位置F 、x 、a 均为零,最大位移处F 、x 、a 均为最大。
(5)简谐运动的振动物体经过同一位置时,其位移大小、方向是一定的,而速度方向不一定。
(6)简谐运动的对称性①瞬时量的对称性:做简谐运动的物体,在关于平衡位置对称的两点,回复力、位移、加速度具有等大反向的关系.速度的大小、动能也具有对称性,速度的方向可能相同或相反。
教科版 高中物理选修3-4 机械振动+机械波

(1)振幅:振动物体离开平衡位置的最大距离叫做振动的振幅。
①振幅是标量。
②振幅是反映振动强弱的物理量。
(2)周期和频率:①振动物体完成一次全振动所用的时间叫做振动的周期。
②单位时间内完成全振动的次数叫做全振动的频率。
它们的关系是T=1/f 。
在一个周期内振动物体通过的路程为振幅的4倍;在半个周期内振动物体通过的路程为振幅2倍;在1/4个周期内物体通过的路程不一定等于振幅 3)简谐运动的表达式:)sin(ϕω+=t A x 4)简谐运动的图像:振动图像表示了振动物体的位移随时间变化的规律。
反映了振动质点在所有时刻的位移。
从图像中可得到的信息: ①某时刻的位置、振幅、周期②速度:方向→顺时而去;大小比较→看位移大小 ③加速度:方向→与位移方向相反;大小→与位移成正比 3、简谐运动的能量转化过程:1)简谐运动的能量:简谐运动的能量就是振动系统的总机械能。
①振动系统的机械能与振幅有关,振幅越大,则系统机械能越大。
②阻尼振动的振幅越来越小。
2)简谐运动过程中能量的转化:系统的动能和势能相互转化,转化过程中机械能的总量保持不变。
在平衡位置处,动能最大势能最小,在最大位移处,势能最大,动能为零。
(二)简谐运动的一个典型例子→单摆: 1、单摆振动的回复力:摆球重力的切向分力。
①简谐振动物体的周期和频率是由振动系统本身的条件决定的。
②单摆周期公式中的L是指摆动圆弧的圆心到摆球重心的距离,一般也叫等效摆长。
4、利用单摆测重力加速度:(三)受迫振动:1、受迫振动的含义:物体在外界驱动力的作用下的运动叫做受迫振动。
2、受迫振动的规律:物体做受迫振动的频率等于策动力的频率,而跟物体固有频率无关。
1)受迫振动的频率:物体做稳定的受迫振动时振动频率等于驱动力的频率,与物体的固有频率无关。
2)受迫振动的振幅:与振动物体的固有频率和驱动力频率差有关3、共振:当策动力的频率跟物体固有频率相等时,受迫振动的振幅最大,这种现象叫共振。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一. 教学内容:第十一章机械振动本章知识复习归纳二. 重点、难点解析(一)机械振动物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。
回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。
产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。
b、阻力足够小。
(二)简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。
简谐振动是最简单,最基本的振动。
研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。
因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。
2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。
3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。
(三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。
1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。
2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。
振动的周期T跟频率f之间是倒数关系,即T=1/f。
振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。
(四)单摆:摆角小于5°的单摆是典型的简谐振动。
细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。
单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在圆弧切线方向的分力。
单摆的周期公式是T=。
由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。
g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。
(五)振动图象。
简谐振动的图象是振子振动的位移随时间变化的函数图象。
所建坐标系中横轴表示时间,纵轴表示位移。
图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。
要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。
(六)阻尼振动、受迫振动、共振。
简谐振动是一种理想化的振动,当外界给系统一定能量以后,如将振子拉离开平衡位置,放开后,振子将一直振动下去,振子在做简谐振动的图象中,振幅是恒定的,表明系统机械能不变,实际的振动总是存在着阻力,振动能量总要有所耗散,因此振动系统的机械能总要减小,其振幅也要逐渐减小,直到停下来。
振幅逐渐减小的振动叫阻尼振动,阻尼振动虽然振幅越来越小,但振动周期不变,振幅保持不变的振动叫无阻尼振动。
振动物体如果在周期性外力──策动力作用下振动,那么它做受迫振动,受迫振动达到稳定时其振动周期和频率等于策动力的周期和频率,而与振动物体的固有周期或频率无关。
物体做受迫振动的振幅与策动力的周期(频率)和物体的固有周期(频率)有关,二者相差越小,物体受迫振动的振幅越大,当策动力的周期或频率等于物体固有周期或频率时,受迫振动的振幅最大,叫共振。
【典型例题】[例1] 一弹簧振子在一条直线上做简谐运动,第一次先后经过M、N两点时速度v(v≠0)相同,那么,下列说法正确的是()A. 振子在M、N两点受回复力相同B. 振子在M、N两点对平衡位置的位移相同C. 振子在M、N两点加速度大小相等D. 从M点到N点,振子先做匀加速运动,后做匀减速运动解析:建立弹簧振子模型如图所示,由题意知,振子第一次先后经过M、N两点时速度v相同,那么,可以在振子运动路径上确定M、N两点,M、N两点应关于平衡位置O对称,且由M运动到N,振子是从左侧释放开始运动的(若M点定在O点右侧,则振子是从右侧释放的)。
建立起这样的物理模型,这时问题就明朗化了。
因位移、速度、加速度和回复力都是矢量,它们要相同必须大小相等、方向相同。
M、N两点关于O点对称,振子回复力应大小相等、方向相反,振子位移也是大小相等,方向相反。
由此可知,A、B选项错误。
振子在M、N两点的加速度虽然方向相反,但大小相等,故C选项正确。
振子由M→O速度越来越大,但加速度越来越小,振子做加速运动,但不是匀加速运动。
振子由O→N速度越来越小,但加速度越来越大,振子做减速运动,但不是匀减速运动,故D选项错误,由以上分析可知,该题的正确答案为C。
点评:(1)认真审题,抓住关键词语。
本题的关键是抓住“第一次先后经过M、N两点时速度v相同”。
(2)要注意简谐运动的周期性和对称性,由此判定振子可能的路径,从而确定各物理量及其变化情况。
(3)要重视将物理问题模型化,画出物理过程的草图,这有利于问题的解决。
[例2] 一质点在平衡位置O附近做简谐运动,从它经过平衡位置起开始计时,经0.13 s质点第一次通过M点,再经0.1 s第二次通过M点,则质点振动周期的可能值为多大?解析:将物理过程模型化,画出具体的图景如图1所示。
设质点从平衡位置O向右运动到M点,那么质点从O 到M运动时间为0.13 s,再由M经最右端A返回M经历时间为0. 1 s;如图2所示。
另有一种可能就是M点在O点左方,如图3所示,质点由O点经最右方A点后向左经过O点到达M点历时0.13 s,再由M向左经最左端A,点返回M历时0.1 s。
根据以上分析,质点振动周期共存在两种可能性。
如图2所示,可以看出O→M→A历时0.18 s,根据简谐运动的对称性,可得到T1=4×0.18 s=0.72 s。
另一种可能如图3所示,由O→A→M历时t l=0.13 s,由M→A’历时t2=0.05 s设M→O历时t,则4(t+t2)=t1+2t2+t,解得t=0. 01 s,则T2=4(t+t2)=0.24 s所以周期的可能值为0.72 s和0.24 s说明:(1)本题涉及的知识有:简谐运动周期、简谐运动的对称性。
(2)本题的关键是:分析周期性,弄清物理图景,判断各种可能性。
(3)解题方法:将物理过程模型化、分段分析、讨论。
[例3] 甲、乙两弹簧振子,振动图象如图所示,则可知()A. 两弹簧振子完全相同B. 两弹簧振子所受回复力最大值之比F甲∶F乙=2∶1C. 振子甲速度为零时,振子乙速度最大D. 振子的振动频率之比f甲∶f乙=1∶2解析:从图象中可以看出,两弹簧振子周期之比T甲∶T乙=2∶1,得频率之比f甲∶f乙=1∶2,D正确。
弹簧振子周期与振子质量、弹簧劲度系数k有关,周期不同,说明两弹簧振子不同,A错误。
由于弹簧的劲度系数k不一定相同,所以两振子受回复力(F=kx)的最大值之比F甲∶F乙不一定为2∶1,所以B错误,对简谐运动进行分析可知,在振子到达平衡位置时位移为零,速度最大;在振子到达最大位移处时,速度为零,从图象中可以看出,在振子甲到达最大位移处时,振子乙恰到达平衡位置,所以C正确。
答案为C、D。
点评:(1)图象法是物理问题中常见的解题方法之一,是用数学手段解决物理问题能力的重要体现。
应用图象法解物理问题要明确图象的数学意义,再结合物理模型弄清图象描述的物理意义,两者结合,才能全面地分析问题。
(2)本题中涉及知识点有:振幅、周期、频率、影响周期的因素、简谐运动在特殊点的速度、回复力、简谐运动的对称性等。
(3)分析本题的主要方法是数与形的结合(即图象与模型相结合)分析方法。
[例4] 在海平面校准的摆钟,拿到某高山山顶,经过t时间,发现表的示数为t′,若地球半径为R,求山的高度h(不考虑温度对摆长的影响)。
解析:由钟表显示时间的快慢程度可以推知表摆振动周期的变化,而这种变化是由于重力加速度的变化引起的,所以,可以得知由于高度的变化引起的重力加速度的变化,再根据万有引力公式计算出高度的变化,从而得出山的高度。
一般山的高度都不是很高(与地球半径相比较),所以,由于地球自转引起的向心力的变化可以不考虑,而认为物体所受向心力不变且都很小,物体所受万有引力近似等于物体的重力。
(1)设在地面上钟摆摆长l,周期为T0,地面附近重力加速度g,拿到高山上,摆振动周期为T′,重力加速度为g′,应有从而(2)在地面上的物体应有在高山上的物体应有得点评:(1)本题涉及知识点:单摆的周期及公式,影响单摆周期的因素,万有引力及公式,地面附近重力与万有引力关系等。
(2)解题关键:抓住影响单摆周期的因素g,找出g的变化与t变化的关系,再根据万有引力知识,推出g变化与高度变化关系,从而顺利求解。
[例5] 在光滑水平面上,用两根劲度系数分别为k1、k2的轻弹簧系住一个质量为m的小球。
开始时,两弹簧均处于原长,后使小球向左偏离x后放手,可以看到小球将在水平面上作往复振动。
试问小球是否作简谐运动?解析:为了判断小球的运动性质,需要根据小球的受力情况,找出回复力,确定它能否写成F=-kx的形式。
以小球为研究对象,竖直方向处于力平衡状态,水平方向受到两根弹簧的弹力作用。
设小球位于平衡位置O左方某处时,偏离平衡位置的位移为x,则左方弹簧受压,对小球的弹力大小为f1=k1x,方向向右。
右方弹簧被拉伸,对小球的弹力大小为f2=k2x,方向向右。
小球所受的回复力等于两个弹力的合力,其大小为F=f1+f2=(k1+k2)x,方向向右。
令k=k1+k2,上式可写成F=kx。
由于小球所受回复力的方向与位移x的方向相反,考虑方向后,上式可表示为F=-kx。
所以,小球将在两根弹簧的作用下,沿水平面作简谐运动。
点评:由本题可归纳出判断物体是否作简谐运动的一般步骤:确定研究对象(整个物体或某一部分)→分析受力情况→找出回复力→表示成F=-kx的形式(可以先确定F的大小与x的关系,再定性判断方向)。
[例6] 如图所示,一轻质弹簧竖直放置,下端固定在水平面上,上端处于a位置,当一重球放在弹簧上端静止时,弹簧上端被压缩到b位置。
现将重球(视为质点)从高于a位置的c位置沿弹簧中轴线自由下落,弹簧被重球压缩到最低位置d。
以下关于重球运动过程的正确说法应是()A. 重球下落压缩弹簧由a至d的过程中,重球做减速运动。