高中物理-机械振动

合集下载

高中 高考物理 机械振动

高中 高考物理  机械振动

[小题速验](判断正误) 1.简谐运动是匀变速运动。( )
2 .简谐运动的物体在平衡位置所受合力一定为零。 ( ) 3.周期、频率是表征物体做简谐运动快慢程度的物理 量。( ) ) )
4.振幅即振子运动轨迹的长度。( 5.简谐运动的回复力可以是恒力。(
6.弹簧振子每次经过平衡位置时,位移为零、 动能最大。( )
续表 弹簧振子(水平) 回复力 弹簧的 弹力 提供 弹簧处于 原长 处 由振动系统本身决 定,与振幅无关 弹性势能与动能的 相互转化, 机械能 守恒 T=2π 单 摆
摆球的 重力 沿与摆线垂直 (即切向)方向的分力 最低点 l g
平衡位置 周期
能量 转化
重力势能与动能的相互转 化, 机械能 守恒
3.简谐运动的公式与图像 (1)简谐运动的公式 ①动力学表达式: F=-kx, 其中“-”号表示回复力与 位移的方向总是相反。 注意:k 是常量,由振动系统决定,即使对弹簧振子,k 也不一定是劲度系数。 ②运动学表达式:x=Asin (ωt+φ),其中 A 表示振幅, ω=2πf 表示简谐运动的快慢,(ωt+φ)表示简谐运动的相位, φ 叫做初相。
A.摆线要选择细些的、伸缩性小些的,并且尽可能长 一些 B.摆球尽量选择质量大些、体积小些的 C.为了使摆的周期大一些,以方便测量,开始时拉开 摆球,使摆线相距平衡位置有很大的角度
D.拉开摆球,使摆线偏离平衡位置不大于 5° , 在释放摆球的同时开始计时, 当摆球回到开始位置时 停止计时,此时间间隔 Δt 即为单摆周期 T E.拉开摆球,使摆线偏离平衡位置不大于 5° , 释放摆球, 当摆球振动稳定后, 从平衡位置开始计时, 记下摆球做 50 次全振动所用的时间 Δt,则单摆周期 Δt T= 50
(2)保证摆球在同一竖直平面内振动且摆角小于 10° 。 (3)选择在摆球摆到平衡位置处开始计时,并数准全振动 的次数。 (4)摆球自然下垂时, 用毫米刻度尺量出悬线长 l′, 用游 标卡尺测量摆球的直径, 然后算出摆球的半径 r, 则摆长 l=l′ + r。 (5)选用长一米左右的细线。

2024-2025学年高中物理第一章机械振动4阻尼振动受迫振动教案教科版选修3-4

2024-2025学年高中物理第一章机械振动4阻尼振动受迫振动教案教科版选修3-4
二、新课内容(25分钟)
1. 阻尼振动
a. 概念介绍
b. 运动特征
c. 影响因素
2. 受迫振动
a. 概念介绍
b. 原理阐述
c. 与阻尼振动的关系
三、案例分析(10分钟)
1. 分析实际生活中阻尼振动和受迫振动的实例,如汽车减震器、音乐乐器等。
2. 引导学生运用所学知识解释现象,提高解决问题的能力。
四、课堂小结(5分钟)
2. 设计丰富的教学活动,提高学生的课堂参与度和积极性。
3. 创设实际问题情境,培养学生运用物理知识解决问题的能力。
4. 加强课后辅导,帮助学生巩固所学知识,提高学习效果。
5. 关注学生心理健康,引导他们树立正确的学习态度,克服恐惧心理。
四、教学资源
1. 硬件资源:
- 投影仪
- 讲台
- 白板
- 振动实验器材(如弹簧振子、阻尼器等)
课堂上,我鼓励学生积极参与讨论,提出自己的想法。有些学生对于生活中的阻尼振动和受迫振动实例能够给出很好的分析,这让我感到很高兴。但也有一些学生在讨论中显得不够积极,可能是因为他们对这些概念还不够熟悉。我考虑在下次课上,提前给学生发放一些相关资料,让他们有所准备,提高课堂讨论的参与度。
在作业布置方面,我发现有些学生对于课后习题的完成情况较好,但案例分析报告的质量参差不齐。有的学生分析得非常到位,有的则过于简单。我会在批改作业时,给出详细的反馈,指导他们如何更好地进行分析。此外,小组讨论报告也反映出一些问题,有的小组讨论不够深入,报告内容较为表面。针对这个问题,我打算在下次小组讨论时,给出更明确的指导,引导他们深入探讨问题。
六、知识点梳理
1. 阻尼振动
- 定义:阻尼振动是指在振动系统中存在阻力,使振动幅度逐渐减小的振动现象。

高中物理知识点之机械振动与机械波

高中物理知识点之机械振动与机械波

高中物理知识点之机械振动与机械波机械振动与机械波是高中物理中的重要知识点,涉及到物理学中的振动和波动的相关理论及应用。

下面将从机械振动的基本概念、机械振动的特性、机械波的传播和机械波的特性等方面进行详细介绍。

一、机械振动的基本概念机械振动是物体在作用力的驱动下沿其中一轴向或其中一平面上来回往复运动的现象。

常见的机械振动有单摆振动、弹簧振动等。

1.单摆振动:单摆是由一根细线或细杆悬挂的可以在竖直平面内摆动的物体。

摆动过程中,单摆的重心沿圆弧形轨迹在竖直平面内来回运动。

2.弹簧振动:弹簧振动是指将一端固定,另一端悬挂质点的弹簧在作用力的驱动下做往复振动的现象。

弹簧振动有线性振动和简谐振动两种形式。

二、机械振动的特性1.幅度:振动中物体运动的最大偏离平衡位置的距离。

2.周期:振动一次所需要的时间,记为T。

3.频率:振动在单位时间内所完成的周期数,记为f。

频率和周期之间的关系为f=1/T。

4.角频率:单位时间内振动角度的增量,记为ω。

角频率和频率之间的关系为ω=2πf。

5.相位:刻画振动状态的物理量。

任何时刻振动的状态都可由物体与参照物的相对位移和相对速度来描述。

三、机械波的传播机械波是指质点或介质在空间传播的波动现象。

按传播方向的不同,机械波可以分为纵波和横波。

1.纵波:波动传播的方向与波的传播方向一致。

纵波的传播特点是质点沿着波动方向做往复运动,如声波就是一种纵波。

2.横波:波动传播的方向与波的传播方向垂直。

横波的传播特点是质点沿波动方向做往复运动,如水波就是一种横波。

四、机械波的特性1.波长:波的传播方向上,相邻两个相位相同的点之间的距离。

记为λ。

2.波速:波的传播速度。

波速和频率、波长之间的关系为v=λf。

3.频率:波动现象中,单位时间内波的传输周期数。

记为f。

4.能量传递:机械波在传播过程中,能量从一个质点传递到另一个质点,并随着传播的距离逐渐减弱。

5.反射和折射:机械波在传播过程中,遇到不同介质的边界时会发生反射和折射现象。

高中物理【机械振动】知识点、规律总结

高中物理【机械振动】知识点、规律总结
第 1 讲 机械振动
一、简谐运动 1.概念:质点的位移与时间的关系遵从_正__弦__函__数___的规律,即它的振动图象(x -t 图象)是一条_正__弦__曲___线__. 2.简谐运动的表达式 (1)动力学表达式:F=___-__k_x__,其中“-”表示回复力与__位__移__的方向相反. (2)运动学表达式:x=Asin(ωt+φ),其中 A 代表振幅,ω=__2_π_f___表示简谐运动的 快慢,(ωt+φ)代表简谐运动的_相__位___,φ 叫做初相.
3.做简谐运动的物体经过平衡位置时,回复力一定为零,但所受合外力不一定为 零,如单摆.
4.物体做受迫振动的频率一定等于驱动力的频率,但不一定等于系统的固有频率, 固有频率由系统本身决定.
考点一 简谐运动的特征
师生互动
受力特征 回复力 F=-kx,F(或 a)的大小与 x 的大小成正比,方向相反
靠近平衡位置时,a、F、x 都减小,v 增大;远离平衡位置时,a、F、x 运动特征
4.周期公式:T=2π
l g.
5.单摆的等时性:单摆的振动周期取决于摆长 l 和重力加速度 g,与振幅和振子(小
球)质量都没有关系.
四、受迫振动及共振
1.受迫振动 (1)概念:物体在_周__期__性___驱动力作用下的振动. (2)振动特征:受迫振动的频率等于_驱__动__力___的频率,与系统的_固__有__频__率___无关. 2.共振 (1)概念:当驱动力的频率等于_固__有__频__率___时,受迫振动的振幅最大的现象. (2)共振的条件:驱动力的频率等于_固__有__频__率___. (3)共振的特征:共振时_振__幅___最大.
受迫振动
共振
由驱动力提供
振动物体获得的能量 最大

高中物理机械振动和机械波知识点

高中物理机械振动和机械波知识点

高中物理机械振动和机械波知识点机械振动和机械波是高中物理中一个重要的内容,下面将以1200字以上的篇幅详细介绍这两个知识点。

一、机械振动1.振动的定义及特点振动是指物体在平衡位置附近做往复运动的现象。

振动具有周期性、往复性和简谐性等特点。

2.物理量与振动的关系振动常涉及到的物理量有位移、速度、加速度、力等。

振动的物体在其中一时刻的位移与速度、加速度之间存在着相位差的关系。

3.简谐振动简谐振动是指振动物体的加速度与恢复力成正比,且方向相反。

简谐振动的周期、频率和角频率与振幅无关,只与振动系统的特性有关。

4.阻尼振动阻尼振动是指振动物体受到阻力的影响而逐渐减弱并停止的振动。

阻尼振动可以分为临界阻尼、过阻尼和欠阻尼三种情况。

5.受迫振动受迫振动是指振动物体受到外界周期力的作用而发生的振动。

当外力的频率与振动系统的固有频率相同时,产生共振现象。

6.驱动力与振幅的关系外力作用下,振动物体的振幅由驱动力的频率决定。

当驱动力的频率与振动物体的固有频率接近时,振幅达到最大值。

二、机械波1.波的定义及特点波是指能量或信息在空间中的传递。

波有传播介质,传播介质可以是固体、液体或气体。

波分为机械波和电磁波两种。

2.机械波的分类及特点机械波分为横波和纵波两种,它们的传播方向与介质振动方向有关。

横波的振动方向与波的传播方向垂直,而纵波的振动方向与波的传播方向平行。

3.波的传播速度波的传播速度与介质的性质和波的频率有关。

在同一介质中,传播速度与波长成正比,与频率成反比。

在不同介质中,波长相等时,传播速度与频率成正比。

4.波的反射、折射和干涉波在传播过程中会遇到障碍物或介质边界,导致发生反射和折射现象。

当波的传播路径中存在两个或多个波源时,会发生波的干涉现象。

5.波的衍射波在通过缝隙或物体边缘时会发生波的弯曲现象,这种现象称为波的衍射。

波的衍射现象是波动性质的重要表现之一6.声波的特点及应用声波是一种机械波,的传播媒质是物质的弹性介质。

高中物理 机械振动

高中物理 机械振动

高中物理机械振动机械振动是物理学中一个重要的概念,它在日常生活中有着广泛的应用。

从钟摆的摆动到汽车的悬挂系统,机械振动无处不在。

在高中物理课程中,学生将会学习关于机械振动的原理、特性以及相关的数学模型。

本文将介绍机械振动的基本概念,帮助读者更好地理解这一重要的物理现象。

一、机械振动的定义机械振动是物体围绕某一平衡位置以一定规律作往复或周期性运动的现象。

当物体受到外力作用时,会发生形变,从而产生振动。

例如,当一个弹簧挂上一个质点并受到拉伸后突然放开,弹簧会产生振动,这就是一种典型的机械振动现象。

二、机械振动的特性1.周期性:机械振动具有周期性,即物体围绕平衡位置做往复运动的时间间隔是固定的。

2.频率:振动的频率是指单位时间内振动的次数,通常用赫兹(Hz)来表示。

频率与振动周期成反比,频率越高,周期越短。

3.振幅:振动的振幅是指物体从平衡位置最大偏离的距离,振幅越大,振动的幅度就越大。

4.阻尼:阻尼是影响振动的一个重要因素,它会使振动逐渐减弱并最终停止。

可以通过增加摩擦力或其他方法来增加阻尼。

5.共振:共振是指当外力的频率与物体的固有频率相匹配时,物体会发生共振现象,振幅增大,甚至导致破坏。

三、机械振动的数学模型在高中物理课程中,学生将接触到机械振动的数学模型,其中最基本的就是简谐振动。

简谐振动是一种最简单的机械振动形式,其运动规律可以用正弦函数来描述。

对于简谐振动,有以下几个重要的物理量:1.位移(x):物体离开平衡位置的距离。

2.速度(v):物体运动的速度,与位移的导数有关。

3.加速度(a):物体运动的加速度,与速度的导数有关。

根据牛顿第二定律和胡克定律,可以建立简谐振动的运动方程:\[ m \cdot \frac{d^2x}{dt^2} = -kx \]其中,\( m \) 为物体的质量,\( k \) 为弹簧的劲度系数,\( x \) 为位移,\( t \) 为时间。

通过解微分方程,可以得到简谐振动的解析解,包括位移、速度和加速度随时间的变化规律。

高中物理机械振动知识点

高中物理机械振动知识点

高中物理机械振动知识点一:简谐振动1、机械振动:物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。

机械振动产生的条件是:(1)回复力不为零。

(2)阻力很小。

使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。

2、简谐振动:在机械振动中最简单的一种理想化的振动。

对简谐振动可以从两个方面进行定义或理解:(1)物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。

(2)物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,在高中物理教材中是以弹簧振子和单摆这两个特例来认识和掌握简谐振动规律的。

高中物理机械振动知识点二:简谐运动的描述1、位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。

位移是矢量,其最大值等于振幅。

2、振幅A:做机械振动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。

振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。

3、周期T:振动物体完成一次余振动所经历的时间叫做周期。

所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。

4、频率f:振动物体单位时间内完成全振动的次数。

5、角频率:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。

引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。

因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。

周期、频率、角频率的关系是:。

6、相位:表示振动步调的物理量。

现行中学教材中只要求知道同相和反相两种情况。

高中物理机械振动知识点三:简谐运动的处理1、研究简谐振动规律的几个思路:(1)用动力学方法研究,受力特征:回复力F =- Kx;加速度,简谐振动是一种变加速运动。

第十二章第1讲机械振动-2025年高考物理一轮复习PPT课件

第十二章第1讲机械振动-2025年高考物理一轮复习PPT课件

高考一轮总复习•物理
2.图像 (1)从_平__衡__位__置__处开始计时,函数表达式为 x=Asin ωt,图像如图甲所示. (2)从_最__大__位__移__处开始计时,函数表达式为 x=Acos ωt,图像如图乙所示.
第10页
高考一轮总复习•物理
四、受迫振动和共振
固有频率 固有频率
最大
第11页
动条件
(2)无摩擦等阻力. (3)在弹簧弹性限度内
(1)摆线为不可伸缩的轻细 线. (2)无空气等阻力. (3)最大偏角小于 5°
高考一轮总复习•物理
第8页
模型 回复力 平衡位置 周期
能量转化
弹簧振子 弹簧的___弹__力____提供
弹簧处于___原__长____处 与振幅无关
弹性势能与动能的相互 转化,机械能守恒
答案
高考一轮总复习•物理
第25页
解析:由题分析可得振子振动图像的一种可能情况如图所示,振子在 t=0 时位于最大位 移处,速度为零,t=10 s 时,振子在平衡位置,速度最大,故 A 错误;在 t=4 s 时,振子位 于最大位移处,加速度最大,t=14 s 时,振子处于平衡位置处,此时振子的加速度为零,故 B 错误;在 t=6 s 和 t=14 s 时,振子均处于平衡位置,此时动能最大,势能最小,故 C 正确; 由振子的振动周期 T=2π mk 可知,振动周期与振子的振幅无关,故只改变振子的振幅,振 子的周期不变,只增加振子质量,振子的周期增大,故 D 正确.
12A=Asin φa, 23A=Asin φb,解得 φa=-π6或 φa=-56π(由题图中运动方向舍去),φb=π3或 φb =23π,当第二次经过 B 点时 φb=23π,则23π-2π-π6T=t,解得 T=152t,此时位移关系为 23A +12A=L,解得 A= 32+L 1,C 正确,D 错误.故选 BC.

高中物理机械振动机械波知识点总结课件新人教版选修

高中物理机械振动机械波知识点总结课件新人教版选修

物理实验中的机械振动与波
实验中的振动与波
在物理实验中,我们可以设计和进行各种与机械振动和波相关的实验,如单摆实 验、共振实验、干涉和衍射实验等。这些实验可以帮助我们深入理解机械振动和 波的原理。
实验中的注意事项
在进行与机械振动和波相关的实验时,需要注意安全问题,如避免共振引起的破 坏力、防止声波对耳膜的损伤等。
科技应用中的机械振动与波
科技应用中的振动与波
在科技领域,机械振动和波的应用非 常广泛,如地震勘测、无损检测、医 疗成像等。这些应用都基于对机械振 动和波的深入理解和掌握。
科技应用的发展前景
随着科技的不断发展,机械振动和波 的应用前景将更加广阔。例如,利用 振动和波进行物质分拣、环境监测等 领域的研究正在不断深入。
学习方法与技巧
强化基础知识的学习
注重实验与观察
机械振动与机械波的知识点比较抽象,需 要强化基础知识的学习,如振动与波的基 本概念、周期公式等。
实验是学习物理的重要手段,通过实验观 察机械振动与机械波的现象,有助于加深 对知识点的理解。
多做练习题
形成知识网络
练习是巩固知识的重要途径,通过多做练 习题可以加深对知识点的理解和掌握。
波动方程的建立
波动方程的推导
通过建立微分方程,描述波动过 程中各点的振动状态,从而得出
波动方程。
波动方程的形式
常见的波动方程形式有简谐振动方 程和一维波动方程等。
波动方程的求解
通过求解波动方程,可以得到波的 传播速度、波长等物理量。
振动方程的理解与应用
振动方程的意义
振动方程描述了单个质点在平衡位置附近的振动规律。
高中物理机械振动机械波知 识点总结课件新人教版选修
目录

高中物理机械振动知识点总结

高中物理机械振动知识点总结

高中物理机械振动知识点总结
高中物理机械振动的知识点总结如下:
1. 机械振动的概念和特点:机械振动是物体围绕平衡位置做周期性的来回振动运动,具有周期性、周期、频率、振幅等特点。

2. 动力学模型:机械振动可以用质点振动和弹簧振子来进行模拟,质点振动模型是研究单自由度振动的基本模型,弹簧振子模型是研究多自由度振动的基本模型。

3. 平衡位置和平衡力:平衡位置是物体在没有外力作用时处于的位置,平衡力是指物体在平衡位置附近的力,可以分为恢复力和阻尼力。

4. 振动方程:振动方程描述了物体在振动过程中的运动规律,可以用一阶微分方程或二阶微分方程表示,具体形式根据不同的振动模型而定。

5. 振动的能量:机械振动存在动能和势能的相互转换。

在简谐振动中,能量以振幅的平方的形式表示。

6. 简谐振动:简谐振动是指物体在恢复力作用下,在平衡位置附近做频率恒定、振幅不变、沿直线轨迹的振动。

简谐振动的特点包括周期性、频率、振幅、相位等。

7. 强迫振动和共振:强迫振动是指物体在外部周期性力的驱动下进行的振动,共振是指当外部周期性力与物体的固有频率相等或接近时,物体振幅达到最大的现象。

8. 阻尼振动:阻尼振动是指在受到阻尼力的作用下,物体振幅
逐渐减小并最终停止振动的现象。

阻尼振动可以分为欠阻尼、临界阻尼和过阻尼三种情况。

9. 波动方程:波动方程描述了波在传播过程中的运动规律,可以用一维或二维波动方程表示。

10. 波的传播:波的传播可以分为机械波和电磁波两种类型,机械波需要介质传播,而电磁波可以在真空中传播。

以上是高中物理机械振动的主要知识点总结,希望对你有帮助。

高考物理总复习机械振动

高考物理总复习机械振动
平衡位置
[9]
对于
的位移

位置的有向线段
振动物体离开平衡位置的[10] 最
大距离


描述振动的强弱和能量

返回目录
第1讲
机械振动
物理量
周期
频率
相位
定义
物理意义
振动物体完成一次[11] 全振动

描述振动的快慢,两者互为
所需的时间
振动物体[12] 单位时间
内完成

[13] 倒数
,T=
1
f
全振动的次数
ωt+φ0→ω叫圆频率,φ0叫初相位
图像的理
解和应用
返回目录
第1讲
机械振动
课标要求
核心考点
五年考情
核心素养对接
2023:上海T20;
2020:全国ⅡT34(1),上
3.通过实验,
4.科学态度与责任:通
认识受迫振
单摆及其周期 海
过实验探究,形成严
动的特点.了
公式
谨、实事求是的科学态
T16;
解产生共振
2019:全国 Ⅱ T34(1),江 度.尝试用学过的知识解
(2)相隔Δt=nT(n=0,1,2,…)的两个时刻,弹簧振子在同一位置,位移和速度都
相同.
返回目录
第1讲
机械振动
下图为某质点做简谐运动的振动图像.
由图可以看出,该质点做简谐运动的振幅A=
度ω=
0.5π rad/s
sin (0.5πt) cm
10 cm
,周期T= 4 s
,则角速

,故该质点做简谐运动的位移随时间变化的关系式为 x=10
振子的振动周期为T2=0.8 s,则该振子再经过时间Δt'=T2-0.2 s=0.6 s,第三次经过

高中物理公式大全(全集) 九、机械振动

高中物理公式大全(全集) 九、机械振动

九、机械振动1、机械振动 (1)平衡位置:物体振动时的中心位置,振动物体未开始振动时相对于参考系静止的位置,或沿振动方向所受合力等于零时所处的位置叫平衡位置。

(2)机械振动:物体在平衡位置附近所做的往复运动,叫做机械振动,通常简称为振动。

(3)振动特点:振动是一种往复运动,具有周期性和重复性 2、简谐运动(1)弹簧振子:一个轻质弹簧联接一个质点,弹簧的另一端固定,就构成了一个弹簧振子。

(2)振动形成的原因①回复力:振动物体受到的总能使振动物体回到平衡位置,且始终指向平衡位置的力,叫回复力。

振动物体的平衡位置也可说成是振动物体振动时受到的回复力为零的位置。

一、知识网络二、画龙点睛概念②形成原因:振子离开平衡位置后,回复力的作用使振了回到平衡位置,振子的惯性使振子离开平衡位置;系统的阻力足够小。

(4)简谐运动的力学特征①简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫做简谐运动。

②动力学特征:回复力F与位移x之间的关系为F=-kx式中F为回复力,x为偏离平衡位置的位移,k是常数。

简谐运动的动力学特征是判断物体是否为简谐运动的依据。

③简谐运动的运动学特征a=-k m x加速度的大小与振动物体相对平衡位置的位移成正比,方向始终与位移方向相反,总指向平衡位置。

简谐运动加速度的大小和方向都在变化,是一种变加速运动。

简谐运动的运动学特征也可用来判断物体是否为简谐运动。

例题:试证明在竖直方向的弹簧振子做的也是简谐振运动。

证明:设O为振子的平衡位置,向下方向为正方向,此时弹簧形变量为x0,根据胡克定律得x0=mg/k当振子向下偏离平衡位置x时,回复力为F=mg-k(x+x0)则F=-kx所以此振动为简谐运动。

3、振幅、周期和频率⑴振幅①物理意义:振幅是描述振动强弱的物理量。

②定义:振动物体离开平衡位置的最大距离,叫做振动的振幅。

③单位:在国际单位制中,振幅的单位是米(m)。

高中物理机械振动知识点详解和答案

高中物理机械振动知识点详解和答案

九、机械振动一、知识网络二、画龙点睛概念1、机械振动(1)平衡位置:物体振动时的中心位置,振动物体未开始振动时相对于参考系静止的位置,或沿振动方向所受合力等于零时所处的位置叫平衡位置。

(2)机械振动:物体在平衡位置附近所做的往复运动,叫做机械振动,通常简称为振动。

(3)振动特点:振动是一种往复运动,具有周期性和重复性2、简谐运动(1)弹簧振子:一个轻质弹簧联接一个质点,弹簧的另一端固定,就构成了一个弹簧振子。

(2)振动形成的原因①回复力:振动物体受到的总能使振动物体回到平衡位置,且始终指向平衡位置的力,叫回复力。

振动物体的平衡位置也可说成是振动物体振动时受到的回复力为零的位置。

②形成原因:振子离开平衡位置后,回复力的作用使振了回到平衡位置,振子的惯性使振子离开平衡位置;系统的阻力足够小。

(3)振动过程分析振子的运动A→O O→A′A′→O O→A对O点位移的方向向右向左向左向右(4)简谐运动的力学特征①简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫做简谐运动。

②动力学特征:回复力F与位移x之间的关系为F=-kx式中F为回复力,x为偏离平衡位置的位移,k是常数。

简谐运动的动力学特征是判断物体是否为简谐运动的依据。

③简谐运动的运动学特征a=-k m x加速度的大小与振动物体相对平衡位置的位移成正比,方向始终与位移方向相反,总指向平衡位置。

简谐运动加速度的大小和方向都在变化,是一种变加速运动。

简谐运动的运动学特征也可用来判断物体是否为简谐运动。

例题:试证明在竖直方向的弹簧振子做的也是简谐振运动。

证明:设O为振子的平衡位置,向下方向为正方向,此时弹簧形变量为x0,根据胡克定律得x0=mg/k当振子向下偏离平衡位置x时,回复力为F=mg-k(x+x0)则F=-kx所以此振动为简谐运动。

3、振幅、周期和频率⑴振幅①物理意义:振幅是描述振动强弱的物理量。

②定义:振动物体离开平衡位置的最大距离,叫做振动的振幅。

高中物理选修3-4机械振动_机械波_光学知识点(好全)

高中物理选修3-4机械振动_机械波_光学知识点(好全)

机械振动一、基本概念1.机械振动:物体(或物体一部分)在某一中心位置附近所做的往复运动2.回复力F:使物体返回平衡位置的力,回复力是根据效果(产生振动加速度,改变速度的大小,使物体回到平衡位置)命名的,回复力总指向平衡位置,回复力是某几个性质力沿振动方向的合力或是某一个性质力沿振动方向的分力。

(如①水平弹簧振子的回复力即为弹簧的弹力;②竖直悬挂的弹簧振子的回复力是弹簧弹力和重力的合力;③单摆的回复力是摆球所受重力在圆周切线方向的分力,不能说成是重力和拉力的合力)3.平衡位置:回复力为零的位置(物体原来静止的位置)。

物体振动经过平衡位置时不一定处于平衡状态即合外力不一定为零(例如单摆中平衡位置需要向心力)。

4.位移x:相对平衡位置的位移。

它总是以平衡位置为始点,方向由平衡位置指向物体所在的位置,物体经平衡位置时位移方向改变。

5.简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。

(1)动力学表达式为:F= -kxF=-kx是判断一个振动是不是简谐运动的充分必要条件。

凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。

(2)运动学表达式:x=A sin(ωt+φ)(3)简谐运动是变加速运动.物体经平衡位置时速度最大,物体在最大位移处时速度为零,且物体的速度在最大位移处改变方向。

(4)简谐运动的加速度:根据牛顿第二定律,做简谐运动的物体指向平衡位置的(或沿振动方向的)加速度mkxa -=.由此可知,加速度的大小跟位移大小成正比,其方向与位移方向总是相反。

故平衡位置F 、x 、a 均为零,最大位移处F 、x 、a 均为最大。

(5)简谐运动的振动物体经过同一位置时,其位移大小、方向是一定的,而速度方向不一定。

(6)简谐运动的对称性①瞬时量的对称性:做简谐运动的物体,在关于平衡位置对称的两点,回复力、位移、加速度具有等大反向的关系.速度的大小、动能也具有对称性,速度的方向可能相同或相反。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的整数倍。
C若△t=T,则在t时刻和(t+△t)时刻振
子运动的加速度一定相等
D若△t=T/2,则在t时刻和(t+△t)时刻
弹簧的长度一定相等
练习6、如图所示,一弹簧振子在振 动过程中,经a、b两点的速度相同, 若它从a到b历时0.2s,从b再回到a 的最短时间为0.4s,则该振子的振 动频率B为( )
全振动:振动物体往复运动一周 后,一切运动量(速度、位移、加 速度、动量等)及回复力的大小和 方向、动能、势能等都跟开始时的 完全一样,这就算是振动物体做了 一次全振动。
例1.如图弹簧振子在BC间作简谐运动, O为平衡位置,BC间距离是10 cm ,从 B到C运动时间是1s,则( D ) A.从O→C→O振子完成一个全振动
点评:一般说来,弹簧振子在振动过程中的振幅的求 法均是先找出其平衡位置,然后找出当振子速度为零 时的位置,这两个位置间的距离就是振幅.本题侧重 在弹簧振子运动的对称性.解答本题还可以通过求D 物运动过程中的最大加速度,它在最高点具有向下的 最大加速度,说明了这个系统有部分失重,从而确定 木箱对地面的压力
化,变化周期为振动周期T。
例2.一弹簧振子周期为2s, 当它从平衡位置向右运动了1.8 s时,其运动情况是( B )
A.向右减速 B.向右加速 C.向左减速 D.向左加速
练习1.一质点做简谐运动,在
t1和t2两个时刻加速度相同,则
在这两个时刻,下列物理量一
定相同的是;
()
A、AD 位移 B、 速度
答: f (M m)
k
Mm
kM
练习4.一个质点在平衡位置附近做 简谐振动,在图的4个函数图像中,正 确表达加速度a与对平衡位置的位移
x的关系应是( D ).
6、简谐运动的特点
(1)周期性:简谐运动的物体经过一 个周期或n个周期后,能回复到原来的 运动状态,因此处理实际问题时,要注 意多解的可能性或需定出结果的通式。
周期和振幅分别为 【B】
A、3s,6cm
B、4s,6cm
C、4s,9cm
D、2s,8cm
练习5、一弹簧振子作简谐运动,周期为
T,
【C】
A若t时刻和(t+△t)时刻振子运动的位移
大小相等、方向相同,则△t一定等于T
的整数倍。
B若t时刻和(t+△t)时刻振子运动的速度
大小相等、方向相反则△t一定等于T/2
例5.一端固定于水平面上的竖直弹簧 连着一块质量为M的薄板,板上放一质量 为m的小木块(如图).现使整个装置在竖 直方向作简谐振动,振幅为A.若要求整 个运动过程中小木块都不脱离薄板,问 应选择倔强系数κ值为多大的弹簧?
解:在最高点,m要不脱离木板,
对m,mg- N=ma N≥0 a ≤ g 对整体 (M+m)a=kA
=2.5cm。
弹簧下端的这个位置就是A球振动中的平衡位置。
悬挂B球后又剪断细线,相当于用手把A球下 拉后又突然释放,刚剪断细线时弹簧比静止悬 挂A球多伸长的长度就是振幅, 即振A动=中x-AxA球=1的5最cm大-加2.5速c度m=为12.5cm。
=50m/s2。
【练习8】如图所示,在质量为M的无下 底的木箱顶部用一轻弹簧悬挂质量均为 m(M≥m)的D、B两物体.箱子放在水 平地面上,平衡后剪断D、B间的连线, 此后D将做简谐运动.当D运动到最高点 时,木箱对地压力为( A )
由.②判断m与
M
的最终运动状态是
静止、匀速运动还是
相对往复的运动?
【解析】①在细线烧断时,小球受水平向左的弹力F与 水平向右的摩擦力f作用,开始时F必大于f.m相对小 车右移过程中,弹簧弹力减小,而小车所受摩擦力却 不变,故小车做加速度减小的加速运动.当F=f时车速 达到最大值,此时m必在O点左侧。设此时物体在O点 左侧x处,则kx=μmg。所以,当x=μmg/k时,小车 达最大速度.
k= (M+m)a/A≤ (M+m)g /A
例6、如图所示,ቤተ መጻሕፍቲ ባይዱ直悬挂的轻弹簧 下端系着A、B两球,其质量mA=0.1kg、 mB=0.5kg。 静止时弹簧伸长15cm,若 剪断A、B间的细线,则A作简谐运动 时的振幅和最大加速度为多少?
解答:由两球静止时的力平衡条 件,得弹簧的劲度系数为
=40N/m。剪断A、B间细线后,A球静止 悬挂时的弹簧的伸长量为
C、 动量 D、 回复力
练习2.简谐运动属下列哪一种 运动?( D )
A.匀速直线运动 B.匀变速直线运动 C.匀变速曲线运动 D.加速度改变的变速运动
4、简谐运动的能量:简谐运动中动 能和势能相互转换,总的机械能保 持守恒。在平衡位置动能最大,势 能最小。
5. 简谐振动的周期
T 2 m
k
与振幅无关, 只由振子质量 和弹簧的劲度 系数决定。
(2)对称性——简谐振动的物体在 振动过程中,其位移、速度、回复力、 加速度等物理量的大小关于平衡位置 对称。具有对称性的过程所用时间也 是相等的。
例4、一质点作简谐运动,先后以相
同的动量依次通过A、B两点,历时
1s,质点通过B点后再经过1s又第二
次通过B点,在这2s时间内,质点通
过的总路程为12cm,则质点的振动
例3.在水平方向做简谐振动的弹簧振
子,当振子正经过平衡位置O时,恰好
有一块橡皮泥从其上方落下,粘在振
子上随其一起振动,见图.那么,前后比
较,振子的 ( B ).
(A)周期变大,振幅不变
(B) 周期变大,振幅变小
(C) 周期变小,振幅变小
(D) 周期不变,振幅不变
O
练习3.如图所示,木块的质量为M, 小车的质量为m,它们之间的最大静 摩擦力为f,在倔强系数为k的轻质弹 簧作用下,沿水平地面做简谐振动. 为了使木块与小车在振动中不发生相 对滑动,则它们的振幅不应大于多少 ?
②小车向左运动达最大速度的时刻,物体向右运动也 达最大速度,这时物体还会继续向右运动,但它的运 动速度将减小,即小车和物体都在做振动.由于摩擦 力的存在,小车和物体的振动幅度必定不断减小,设 两物体最终有一共同速度v,因两物体组成的系统动量 守恒,且初始状态的总动量为零,故v=0,即m与M的 最终运动状态是静止的
一、机械振动
1、定义:物体在平衡位置附近做的往 复运动,叫机械振动,简称振动。 2、描述振动的概念和物理量:
平衡位置o:物体所受回复力为零
的位置;
振动位移x:由平衡位置指向振子
所在处的有向线段; 振幅A:振动物体离开平衡位置
的最大距离;
周期(T)和频率(f):f 1 T
回复力:使振动物体返回平衡位置 的力,它的方向总是指向平衡位置;
B.振动周期是1s,振幅是10 cm C.经过两次全振动,通过的路程是20 cm
D.从B开始经过5s,振子通过的路
程是50 cm



二、简谐运动
1、定义:物体在跟位移大小成正比而方向相 反的回复力作用下的振动叫简谐和振动;
2、简谐运动的特征
受力特征:F= -kx 运动特征:a= -kx/m
3、运动规律 简谐运动是一种周期性的 变加速运动,一切运动量(速度、位移、 加速度、动量等)及回复力的大小、方向 都随时间作正弦(或余弦)式周期性的变
【例7】在光滑的水平面上停放着一辆质量为
M的小车,质量为m的物体与劲度系数为k的
一轻弹簧固定相连.弹簧另一端与小车左端
固定连接,将弹簧压缩x0后用细绳将m 栓住, m静止在小车上A点,,m与M 间的动摩擦
因数为μ,O 点为弹簧原长位置,将细绳烧
断后,①当m位于O点左侧还是右侧且跟O
点多远时,小车的速度最大?并简要说明理
(A)1Hz(B)1.25Hz
(C)2Hz(D) 2.5Hz
解析:振子经a、b两点速度相同,根据弹簧振 子的运动特点,不难判断a、b两点对平衡位置 (O点)一定是对称的,振子由b经O到a所用 的时间也是0.2s,由于“从b再回到a的最短 时间是0.4s,”说明振子运动到b后是第一次 回到a点,且Ob不是振子的最大位移。设图中 的c、d为最大位移处,则振子从b→c→b历时 0.2s,同理,振子从a→d→a,也历时0.2s, 故该振子的周期T=0.8s,根据周期和频率互 为倒数的关系,不难确定该振子的振动频率为 1.25Hz。 综上所述,本题应选择(B)。
A、Mg; B.(M-m)g; C、(M+m)g ; D、(M+2m)g
D物在运动过程中,能上升到的最大高度是离其平 衡位移为A的高度,由于D振动过程中的平衡位置在弹 簧自由长度以下mg/k处,刚好弹簧的自由长度处就 是物D运动的最高点,说明了当D运动到最高点时,D 对弹簧无作用力,故木箱对地的压力为木箱的重力Mg .
相关文档
最新文档