最新九年级数学中考复习必考知识点大纲整理汇总
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新九年级数学中考复习必考知识点大纲整理汇总 考点一:实数及有关概念
一.实数的分类:
.⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎭⎨⎩⎪⎧⎫⎪⎪⎨⎬⎪⎪⎭⎩⎩正有理数有理数零有限小数和无限循环小数.负有理数实数正无理数无理数无限不循环小数负无理数
注意:在理解无理数时,要注意“无限不循环”,归纳起来有四类:
(1)开方开不尽的数,如3,32等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如23
π
+等;
(3)有特定结构的数,如0.1010010001…等;
(4)某些三角函数,如sin60o 等
二.绝对值 一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a≥0;若|a|=-a ,则a≤0。
三.相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零).从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=-b ,反之亦成立。
四、倒数
如果a 与b 互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零
没有倒数。
五、科学记数法和近似数
1、有效数字
一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。
2.科学记数法
科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.
六、平方根
如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方根)。一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。正数a 的平方根记做“a ±”。
正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
20)(0)(a a a a a a ≥-≤⎧==⎨⎩
七、立方根
如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
考点二:实数的计算
一.实数大小的比较
1、数轴
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
2、实数大小比较的几种常用方法
(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。 ( 2)求差比较:设a 、b 是实数,,0b a b a >⇔>- ,0b a b a =⇔=- b a b a <⇔<-0
(3)求商比较法:设a 、b 是两正实数,;1;1;1b a b a b a b a b a b a <⇔<=⇔=>⇔>
(4)绝对值比较法:设a 、b 是两负实数,则b a b a <⇔>。
(5)平方法:设a 、b 是两负实数,则b a b a <⇔>22。
二、实数的运算
1、加法交换律 a b b a +=+
2、加法结合律 )()(c b a c b a ++=++
3、乘法交换律 ba ab =
4、乘法结合律 )()(bc a c ab =
5、乘法对加法的分配律 ac ab c b a +=+)(
6、实数的运算顺序
先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
三、非负数的性质
1、0a ≥;
2、20a ≥;
3、0(0)a a ≥≥;
4、如果几个非负数的和等于零,那么这几个非负数都同时等于零
考点三:整式及其运算
一、单项式:
由数与字母或字母与字母相乘组成的代数式叫做单项式,所有字母指数的和叫做单项式的次数,数字因数叫做单项式的系数.单独的数、字母也是单项式.
二、多项式:
由几个单项式组成的代数式叫做多项式,多项式里次数最高的项的次数叫做这个多项式的次数,其中不含字母的项叫做常数项.
三.整式:
单项式和多项式统称为整式.
四.同类项:
多项式中所含字母相同并且相同字母的指数也相同的项,叫做同类项.
五.幂的运算法则
(1)同底数幂相乘:am·an =am +n(m ,n 都是整数,a≠0)
(2)幂的乘方:(am)n =amn(m ,n 都是整数,a≠0)
(3)积的乘方:(ab)n =an·bn(n 是整数,a≠0,b≠0)
(4)同底数幂相除:am÷an =am -n(m ,n 都是整数,a≠0)
六.整式乘法
单项式与单项式相乘,把系数、同底数幂分别相乘作为积的因式,只在一个单项式里含有的字母,连同它的指数一起作为积的一个因式.
单项式乘多项式:m(a +b)=ma+mb ;
多项式乘多项式:(a +b)(c +d)=ac+ad+bc+bd
七.乘法公式
(1)平方差公式:(a+b)(a-b)=a2-b2
(2)完全平方公式:(a±b)2=a2±2ab+b2.
八.整式除法
单项式与单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,连同它的指数作为商的一个因式.多项式除以单项式,将这个多项式的每一项分别除以这个单项式,然后把所得的商相加.
考点四:因式分解
1、因式分解
把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
2、因式分解的常用方法
(1)提公因式法:)(c b a ac ab +=+
(2)运用公式法:
))((22b a b a b a -+=-