用空间向量解立体几何问题方法归纳

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用空间向量解立体几何题型与方法

平行垂直问题基础知识

直线l 的方向向量为a =(a 1,b 1,c 1).平面α,β的法向量u =(a 3,b 3,c 3),v =(a 4,b 4,c 4) (1)线面平行:l ∥α⇔a ⊥u ⇔a ·u =0⇔a 1a 3+b 1b 3+c 1c 3=0 (2)线面垂直:l ⊥α⇔a ∥u ⇔a =k u ⇔a 1=ka 3,b 1=kb 3,c 1=kc 3 (3)面面平行:α∥β⇔u ∥v ⇔u =k v ⇔a 3=ka 4,b 3=kb 4,c 3=kc 4 (4)面面垂直:α⊥β⇔u ⊥v ⇔u ·v =0⇔a 3a 4+b 3b 4+c 3c 4=0

例1、如图所示,在底面是矩形的四棱锥P -ABCD 中,P A ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2.

(1)求证:EF ∥平面P AB ; (2)求证:平面P AD ⊥平面PDC .

[证明] 以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立空

间直角坐标系如图所示,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),所以E ⎝ ⎛⎭⎪⎫1

2,1,12,

F ⎝ ⎛⎭⎪⎫0,1,12,EF =⎝ ⎛⎭

⎪⎫

-12,0,0,PB =(1,0,-1),PD =(0,2,-1),AP =(0,0,1),AD =(0,2,0),DC =(1,0,0),AB =(1,0,0).

(1)因为EF =-1

2AB ,所以EF ∥AB ,即EF ∥AB . 又AB ⊂平面P AB ,EF ⊄平面P AB ,所以EF ∥平面P AB .

(2)因为AP ·DC =(0,0,1)·(1,0,0)=0,AD ·DC =(0,2,0)·(1,0,0)=0,

所以AP ⊥DC ,AD ⊥DC ,即AP ⊥DC ,AD ⊥DC .

又AP ∩AD =A ,AP ⊂平面P AD ,AD ⊂平面P AD ,所以DC ⊥平面P AD .因为DC ⊂平面PDC , 所以平面P AD ⊥平面PDC .

使用空间向量方法证明线面平行时,既可以证明直线的方向向量和平面内一条直线的方向向量平行,然后根据线面平行的判定定理得到线面平行,也可以证明直线的方向向量与平面的法向量垂直;证明面面垂直既可以证明线线垂直,然后使用判定定理进行判定,也可以证明两个平面的法向量垂直.

例2、在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,

且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点. 求证:(1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD .

证明:(1)以B 为坐标原点,BA 、BC 、BB 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则B (0,0,0),D (0,2,2),B 1(0,0,4),设BA =a ,则A (a,0,0),

所以BA =(a,0,0),BD =(0,2,2),1B D =(0,2,-2),

1B D ·

BA =0,1B D ·BD =0+4-4=0,即B 1D ⊥BA ,B 1D ⊥BD . 又BA ∩BD =B ,因此B 1D ⊥平面ABD .

(2)由(1)知,E (0,0,3),G ⎝ ⎛⎭⎪⎫a 2,1,4,F (0,1,4),则EG =⎝ ⎛⎭

⎪⎫

a 2,1,1,EF =(0,1,1), 1B D ·

EG =0+2-2=0,1B D ·EF =0+2-2=0,即B 1D ⊥EG ,B 1D ⊥EF . 又EG ∩EF =E ,因此B 1D ⊥平面EGF . 结合(1)可知平面EGF ∥平面ABD . 利用空间向量求空间角基础知识

(1)向量法求异面直线所成的角:若异面直线a ,b 的方向向量分别为a ,b ,异面直线所成的角为θ,则cos θ=|cos 〈a ,b 〉|=

|a·b |

|a ||b |

. (2)向量法求线面所成的角:求出平面的法向量n ,直线的方向向量a ,设线面所成的角为θ,则sin θ=|cos 〈n ,a 〉|=|n·a |

|n ||a |.

(3)向量法求二面角:求出二面角α-l -β的两个半平面α与β的法向量n 1,n 2,

若二面角α-l -β所成的角θ为锐角,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2|

|n 1

||n 2

|;

若二面角α-l -β所成的角θ为钝角,则cos θ=-|cos 〈n 1,n 2〉|=-|n 1·n 2|

|n 1

||n 2

|.

例1、如图,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,

点D 是BC 的中点.

(1)求异面直线A 1B 与C 1D 所成角的余弦值; (2)求平面ADC 1与平面ABA 1所成二面角的正弦值.

[解] (1)以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,2,0),D (1,1,0),A 1(0,0,4),C 1(0,2,4),所以1A B

(2,0,-4),1C D =(1,-1,-4).

因为cos 〈1A B ,1C D 〉=

1A B ·1C D

| 1A B ||1C D |

=1820×18=31010,

所以异面直线A 1B 与C 1D 所成角的余弦值为

310

10

. (2)设平面ADC 1的法向量为n 1=(x ,y ,z ),因为AD =(1,1,0),1AC =(0,2,4),所以n 1·AD =0,n 1·1AC =0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面ABA 1的一个法向量为n 2=(0,1,0).设平面ADC 1与平面ABA 1所成二面角的大小为θ.

由|cos θ|=⎪⎪⎪⎪⎪⎪n 1·

n 2|n 1||n 2|=29×1

=23,得sin θ=53.

因此,平面ADC 1与平面ABA 1所成二面角的正弦值为5

3.

例2、如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°. (1)证明:AB ⊥A 1C ;

(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值. [解] (1)证明:取AB 的中点O ,连接OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB .

由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB . 因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .

(2)由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB , 所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.

以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz . 由题设知A (1,0,0),A 1(0,3,0),C (0,0,3),B (-1,0,0).

则BC =(1,0,3),1BB =1AA =(-1,3,0),1A C =(0,-3,3). 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,

相关文档
最新文档