数列和基本不等式的方法总结
[高一数学]不等式知识点归纳与总结
授课教案教学标题 期末复习(三) 教学目标 1 、不等式知识点归纳与总结 教学重难点重点:不等式基础知识点的熟练掌握难点:不等式在实际应用中的相互转换上次作业检查授课内容:一、数列章节知识点复习1 等差数列(1)性质:a n =an+b ,即a n 是n 的一次性函数,系数a 为等差数列的公差;(2) 等差{n a }前n 项和n d a n d Bn An S n ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=+=22122 即S n 是n 的不含常数项的二次函数;若{a n },{b n }均为等差数列,则{a n ±n n },{∑=k1i ka},{ka n +c}(k ,c 为常数)均为等差数列;当m+n=p+q 时,a m +a n =a p +a q ,特例:a 1+a n =a 2+a n-1=a 3+a n-2=…;当2n=p+q 时,2a n =a p +a q ; ① 等差数列依次每k 项的和仍成等差数列,其公差为原公差的k 2倍...,,232k k k k k S S S S S --; ② 若等差数列的项数为2()+∈N n n ,则,奇偶nd S S =-1+=n na a S S 偶奇;等差数列等比数列 定义 d a a n n =-+1)0(1≠=+q q a a nn 递推公式 d a a n n +=-1;()n m a a n m d =+-q a a n n 1-=;m n m n q a a -= 通项公式 d n a a n )1(1-+=11-=n n q a a (0,1≠q a )中项2kn k n a a A +-+=(*,,0n k N n k ∈>>))0( k n k n k n k n a a a a G +-+-±=(*,,0n k N n k ∈>>)前n 项和)(21n n a a nS +=d n n na S n 2)1(1-+=()⎪⎩⎪⎨⎧≠--=--==)1(111)1(111q q qa a qq a q na S n n n 重要性质),,,,(*q p n m N q p n m a a a a qp n m +=+∈+=+),,,,(*q p n m N q p n m a a a a qp n m +=+∈⋅=⋅③ 若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇, 1-=n n S S 偶奇 (4)常用公式:①1+2+3 …+n =()21+n n ②()()61213212222++=+++n n n n③()2213213333⎥⎦⎤⎢⎣⎡+=++n n n[注]:熟悉常用通项:9,99,999,…110-=⇒n n a ; 5,55,555,…()11095-=⇒nna .2 等比数列 (1)性质当m+n=p+q 时,a m a n =a p a q ,特例:a 1a n =a 2a n-1=a 3a n-2=…,当2n=p+q 时,a n 2=a p a q ,数列{ka n },{∑=k1i ia}成等比数列。
基本不等式知识点归纳
基本不等式知识点总结向量不等式:注意: a b 、同向或有0⇔||||||a b a b +=+≥||||||||a b a b -=-; a b 、反向或有0⇔||||||a b a b -=+≥||||||||a b a b -=+; a b 、不共线⇔||||||||||||a b a b a b -<±<+.这些和实数集中类似代数不等式:,a b 同号或有0||||||||||||a b a b a b a b ⇔+=+-=-≥; ,a b 异号或有0||||||||||||a b a b a b a b ⇔-=+-=+≥.绝对值不等式: 123123a a a a a a ++++≤双向不等式:a b a b a b -±+≤≤左边当0(0)ab ≤≥时取得等号,右边当0(0)ab ≥≤时取得等号.放缩不等式:①00a b a m >>>>,,则b m b b ma m a a m-+<<-+. 说明:b b m a a m+<+0,0a b m >>>,糖水的浓度问题. 拓展:,则,,000>>>>n m b a ba nb n a m a m b a b <++<<++<1. ②,,a bc R +∈,b d ac <,则b bd da a c c+<<+; ③n N +∈<< ④,1n N n +∈>,21111111n n n n n-<<-+-. ⑤ln 1x x -≤(0)x >,1xe x +≥()x R ∈.函数()(0)bf x ax a b x=+>、图象及性质1函数()0)(>+=b a xbax x f 、图象如图:2函数()0)(>+=b a xb ax x f 、性质:①值域:),2[]2,(+∞--∞ab ab ;②单调递增区间:(,-∞,)+∞;单调递减区间:(0,,[0). 基本不等式知识点总结重要不等式1、和积不等式:,a b R ∈⇒222a b ab +≥当且仅当a b =时取到“=”.变形:①222()22a b a b ab ++≤≤当a = b 时,222()22a b a b ab ++==注意:(,)2a b a b R ++∈,2()(,)2a b ab a b R +∈≤ 2、均值不等式:两个正数b a 、的调和平均数、几何平均数、算术平均数、均方根之间的关系,即“平方平均≥算术平均≥几何平均≥调和平均”.若0x >,则12x x +≥ 当且仅当1x =时取“=”; 若0x <,则12x x+≤- 当且仅当1x =-时取“=”若0x ≠,则11122-2x x x xxx+≥+≥+≤即或 当且仅当b a =时取“=”.若0>ab ,则2≥+ab ba 当且仅当b a =时取“=”若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 当且仅当b a =时取“=” 3、含立方的几个重要不等式a 、b 、c 为正数:3333a b c abc ++≥0a b c ++>等式即可成立,时取等或0=++==c b a c b a ;不等式的变形在证明过程中或求最值时,有广泛应用,如:当0>ab 时,ab b a 222≥+同时除以ab 得2≥+b a a b 或ba ab -≥-11; ,,b a 均为正数,b a ba -≥22八种变式: ①222b a ab +≤ ; ②2)2(b a ab +≤; ③2)2(222b a b a +≤+ ④)(222b a b a +≤+;⑤若b>0,则b a b a -≥22;⑥a>0,b>0,则ba b a +≥+411;⑦若a>0,b>0,则ab b a 4)11(2≥+; ⑧ 若0≠ab ,则222)11(2111b a ba +≥+; 上述八个不等式中等号成立的条件都是“b a =”;最值定理积定和最小①,0,x y x y >+≥由若积()xy P =定值,则当x y =时和x y +有最小值和定积最大②,0,x y x y >+≥由若和()x y S +=定值,则当x y =是积xy 有最大值214s .推广:已知R y x ∈,,则有xy y x y x 2)()(22+-=+.1若积xy 是定值,则当||y x -最大时,||y x +最大;当||y x -最小时,||y x +最小.2若和||y x +是定值,则当||y x -最大时,||xy 最小;当||y x -最小时,||xy 最大.③已知,,,R a x b y +∈,若1ax by +=,则有则的最小值为:21111()()2 ()by axax by a b a b ab a b x y x y x y+=++=+++++=+≥④已知,若则和的最小值为:①.②应用基本不等式求最值的“八种变形技巧”:⑴凑系数乘、除变量系数.例1.当 04x <<时,求函的数(82)y x x =-最大值.⑵凑项加、减常数项:例2.已知54x <,求函数1()4245f x x x =-+-的最大值.⑶调整分子:例3.求函数2710()(1)1x x f x x x ++=≠-+的值域; ⑷变用公式:基本不等式2a b ab +≥有几个常用变形2222a b a b ++≥,222()22a b a b ++≥不易想到,应重视;例4.求函数152152()22y x x x =--<<的最大值;⑸连用公式:例5.已知0a b >>,求216()y a b a b =+-的最小值;⑹对数变换:例6.已知1,12x y >>,且xy e =,求ln (2)yt x =的最大值;⑺三角变换:例7.已知20y x π<<≤,且tan 3tan x y =,求t x y =-的最大值;⑻常数代换逆用条件:例8.已知0,0a b >>,且21a b +=,求11t a b=+的最小值. “单调性”补了“基本不等式”的漏洞: ⑴平方和为定值若22x y a +=a 为定值,0a ≠,可设,,x a y a αα==,其中02απ<≤.①(,)2)4f x y x y a a a πααα=+==+在15[0,],[,2)44πππ上是增函数,在15[,]44ππ上是减函数; ②1(,)sin 22g x y xy a α==在1357[0,],[,],[,2)4444πππππ上是增函数,在1357[,],[,]4444ππππ上是减函数;③11(,)x y m x y x yxy +=+==.令sin cos )4t πααα=+=+,其中[1)(1,1)(1,2]t ∈--.由212sincos t αα=+,得22sin cos 1t αα=-,从而2(,)1)m x y t t==-在[1)(1,1)(1,2]--上是减函数. ⑵和为定值若x y b +=b 为定值,0b ≠,则.y b x =-①2(,)g x y xy x bx ==-+在(,]2b -∞上是增函数,在[,)2b +∞上是减函数;②211(,)x y bm x y x y xy x bx +=+==-+.当0b >时,在(,0),(0,]2b -∞上是减函数,在[,),(,)2b b b +∞上是增函数;当0b <时,在(,),(,]2b b b -∞上是减函数,在[,0),(0,)2b+∞上是增函数. ③2222(,)22n x y x y x bx b =+=++在(,]2b -∞上是减函数,在[,)2b +∞上是增函数;⑶积为定值若xy c =c为定值,0c ≠,则.c y x= ①(,)cf x y x y x x=+=+.当0c >时,在[上是减函数,在(,)-∞+∞上是增函数;当0c <时,在(,0),(0,)-∞+∞上是增函数;②111(,)()x y cm x y x x y xy c x+=+==+.当0c >时,在[上是减函数,在(,)-∞+∞上是增函数;当0c <时,在(,0),(0,)-∞+∞上是减函数;③222222(,)()2c c n x y x y x x c x x=+=+=+-在(,-∞上是减函数,在()+∞上是增函数.⑷倒数和为定值若112x y d +=d 为定值,111,,x d y ,则.c y x=成等差数列且均不为零,可设公差为z ,其中1z d≠±,则1111,,z z x d y d =-=+得,.11d d x y dz dz ==-+. ①222()1d f x x y d z =+=-.当0d >时,在11(,),(,0]d d -∞--上是减函数,在11[0,),(,)d d+∞上是增函数;当0d <时,在11(,),(,0]d d -∞上是增函数,在11[0,),(,)d d --+∞上减函数;②222(,).1d g x y xy d z ==-.当0d >时,在11(,),(,0]d d -∞--上是减函数,在11[0,),(,)d d+∞上是增函数;当0d <时,在11(,),(,0]d d -∞上是减函数,在11[0,),(,)d d --+∞上是增函数;③222222222(1)(,).(1)d d z n x y x y d z +=+=-.令221t d z =+,其中1t ≥且2t ≠,从而22222(,)4(2)4d t d n x y t t t==-+-在[1,2)上是增函数,在(2,)+∞上是减函数.。
基本不等式题型及常用方法总结
基本不等式题型及常用方法总结1. 引言不等式是数学中重要的概念之一,它在数学建模、优化理论、概率论等领域中有着广泛的应用。
基本不等式是解决不等式问题的基础,掌握常用的解题方法对于学习和应用不等式理论至关重要。
本文将系统总结基本不等式题型及常用方法,以帮助读者更好地理解和应用这一领域的知识。
2. 一元一次不等式2.1 一元一次线性不等式2.1.1 基本性质:线性函数图像特点、函数值与符号关系在解决一元一次线性函数时,我们首先需要了解线性函数图像的特点。
对于形如ax+b>0或ax+b<0的线性函数,我们可以通过求解对应方程ax+b=0得到临界点x=-b/a,并以此为界将数轴分为两个区间。
在每个区间内,我们可以通过选取任意一个测试点来判断该区间内函数值与符号之间的关系。
2.1.2 解法:图像法、代数法对于一元一次线性不等式,我们可以通过图像法和代数法来解决问题。
图像法是通过绘制线性函数的图像,通过观察函数在不同区间的变化来确定不等式的解集。
代数法则是通过代数运算,将不等式转化为等价的形式,从而得到解集。
例如,对于ax+b>0形式的线性不等式,我们可以将其转化为ax>-b,并根据a的正负性讨论出解集。
2.2 一元一次绝对值不等式绝对值函数是一个常见的非线性函数,在解决绝对值不等式时我们需要特别注意其特点和解题方法。
对于形如|ax+b|>c或|ax+b|<c的绝对值不等式,我们可以将其转化为一个或多个线性不等式,并根据这些线性不等式得到最终的解集。
2.3 一元二次根号型不等式二次根号型函数在数学中也有着重要地位,在解决二次根号型函数时我们需要掌握特定方法。
例如,在求解形如√(ax^2+bx+c)>0或√(ax^2+bx+c)<0 的二次根号型函数时,可以通过求出二次方程ax^2+bx+c=0 的两个实数根,并根据根的位置和函数的凹凸性来确定函数值与符号之间的关系。
不等式求解方法归纳
一、不等式基本知识1、基本性质性质一:a b b a <⇔>(对称性)性质二:c a c b b a >⇒>>,,(传递性)性质三:c b c a b a +>+⇔>性质四:bc ac c b a bc ac c b a <⇔<>>⇔>>0,;0,2、运算性质d b c a d c b a +>+⇒>>,(加法法则);bd ac d c b a >⇒>>>>0,0(乘法法则)n n b a N n b a >⇒∈>>+,0(乘方法则);n n b a N n b a >⇒∈>>+,0(开方法则) 3、常用不等式(1)ab b a b a ≥+≥+222)2(2 (2)||222ab b a ≥+ 取等号条件:一正、二定、三相等(3)2|1|≥+x x (4)若ma mb a b m b a ++<>>>,0,0 (5)n n n x x x n x x x x ⋅⋅⋅⋅⋅⋅⋅≥+⋅⋅⋅+++21321(0≥i x )二、不等式的证明方法常用的方法有:比较法、分析法、综合法、归纳法、反证法、类比法、放缩法、换元法、判别式法、导数法、几何法、构造函数、数轴穿针法等。
1、比较法例1、若,0,0>>b a 求证:b a ba ab +≥+22。
证明:abb a b a b a ab b ab a b a b a b a a b 22222))(()())(()(-+=+-+-+=+-+0≥,∴b a a b b a +≥+22。
2、分析法例2已知y x b a ,,,都是正实数,且.,11y x b a >>求证:yb y x a x +>+。
解: y x b a ,,,都是正实数,∴要证yb y x a x +>+,只要证)()(x a y y b x +>+,即证ay bx >,也就是ab ay ab bx >,即,b y a x >而由.,11y x b a >>,知by a x >成立,原式得证。
高中数学会考必修公式总结大全
高中数学会考必修公式总结大全作为高中数学的重要组成部分,会考必修公式的掌握对于学生的数学成绩至关重要。
本文将总结高中数学会考必修的公式,帮助同学们更好地理解和掌握这些知识点。
一、有理数运算公式1. 加法交换律:a+b=b+a2. 加法结合律:(a+b)+c=a+(b+c)3. 减法法则:a-b-c=a-(b+c)4. 乘法交换律:ab=ba5. 乘法结合律:(ab)c=a(bc)6. 乘法分配律:(a+b)c=ac+bc二、数列求和公式1. 等差数列求和:Sn=(a1+an)n/2或Sn=n(a1+an)/22. 等比数列求和:Sn=a1(1-q^n)/(1-q)或Sn=A1/(1-q)+An/(1-q)三、基本不等式公式1. 平均值不等式:a+b≥2√ab(当且仅当a=b时等号成立)2. 海伦-秦九韶公式:√(p(p-a)(p-b)(p-c)),其中p=(a+b+c)/2四、几何公式1. 两点之间的距离公式:点A(x1,y1),B(x2,y2),则AB的长度为|AB|=√[(x2-x1)²+(y2-y1)²]2. 向量加法、减法、数乘运算公式:(1)a=(x,y),b=(x',y')→a+b=(x+x',y+y');(2)(c,d)+a=(c+x,d+y);(3)λa=(λx,λy);(4)(a-b)·i=x-y,(a-b)·j=xj+yj;3. 圆的方程:圆的一般方程为(x-a)²+(y-b)²=r²,其中圆心坐标为(a,b),半径为r;4. 直线与圆的位置关系判断公式:d<r,则直线与圆相交;d=r,则直线与圆相切;d>r,则直线与圆相离。
五、三角函数公式高中数学会考中,三角函数是非常重要的一部分内容。
以下是一些常见的三角函数公式:1. 正弦函数(sin):y=sinx;余弦函数(cos):y=cosx;正切函数(tan):y=tanx。
不等式的性质与证明方法总结
不等式的性质与证明方法总结在数学中,不等式是一种非常重要的数学工具,用于描述数值之间的大小关系。
不等式可以帮助我们解决各种实际问题,同时也是数学推理和证明的基础。
本文将总结一些常见的不等式性质和证明方法,帮助读者更好地理解和应用不等式。
一、基本不等式性质1. 传递性:如果a < b,b < c,则有a < c。
这个性质是不等式推理的基础,可以用于简化证明过程。
2. 加法性:如果a < b,则a + c < b + c。
这个性质表示在不等式两边同时加上一个相同的数,不等式的大小关系不变。
3. 乘法性:如果a < b,c > 0,则ac < bc;如果a < b,c < 0,则ac > bc。
这个性质表示在不等式两边同时乘以一个正数或负数,不等式的大小关系会发生改变。
4. 对称性:如果a < b,则-b < -a。
这个性质表示如果不等式两边同时取相反数,不等式的大小关系会发生改变。
二、常见不等式1. 平均不等式:对于任意非负实数a1, a2, ..., an,有以下不等式成立:(a1 + a2 + ... + an) / n >= (a1 * a2 * ... * an)^(1/n)平均不等式可以用于证明其他不等式,如均值不等式、柯西不等式等。
2. 均值不等式:对于任意非负实数a1, a2, ..., an,有以下不等式成立:(a1 + a2 + ... + an) / n >= (a1^p + a2^p + ... + an^p)^(1/p)其中p为大于0的实数。
均值不等式可以用于证明其他不等式,如柯西不等式、夹逼定理等。
3. 柯西不等式:对于任意实数a1, a2, ..., an和b1, b2, ..., bn,有以下不等式成立:(a1b1 + a2b2 + ... + anbn)^2 <= (a1^2 + a2^2 + ... + an^2)(b1^2 + b2^2 + ... +bn^2)柯西不等式可以用于证明向量内积的性质,以及其他不等式的推导。
数列与不等式公式
一、【等差数列定义与性质】(1)定义:d a a n n =-+1或d a a n n =-1-(为常数),(2)通项公式:d n a a n )1(1-+=,(3)推广的通项公式:d m n a a m n )(-+=(4)等差中项:b A a ,,成等差数列A b a 2=+⇔二、【等差数列前n 项和Sn 及其性质】(1)前项和(2)若,则(3)仍为等差数列,公差为d n 2;(4)若是等差数列,且前项和分别为,则三、【等比数列定义与性质】(1)定义:q a a n n =+1或者q a a n n =1-(为常数,),(2)通项公式 (3)推广的通项公式:m n m n q a a -⋅= (4)等比中项:b G a ,,成等比数列ab G =⇒2四、【等比数列前n 项和Sn 及其性质】(1)前项和: (2)若,则 (3)仍为等比数列,公比为n q .五、【a n 与S n 的关系式】1=n 时,; 时,.六、【不等式】(1):基本不等式 ab b a 2≥+, (2)重要不等式 ab b a 222≥+d n ()()11122n n a a n n n S na d +-==+m n p q +=+m n p q a a a a +=+;232n n n n n S S S S S --,,……n n a b ,n n n S T ,2121m m m m a S b T --=q 0q ≠11n n a a q -=n ()11(1)1(1)1n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩m n p q +=+mn p q a a a a =··232n n n n n S S S S S --,,……11a S =2n ≥1n n n a S S -=-一、【等差数列定义与性质】(1)定义:___________________________,(2)通项公式:____________________(3)推广的通项公式:_________________________________________________(4)等差中项:b A a ,,成等差数列⇔_____________________________________二、【等差数列前n 项和Sn 及其性质】(1)前项和_____________________________________________________(2)若,则____________________________________________(3)仍为________________,公差为___________;(4)若是等差数列,且前项和分别为,则=mm b a _____________ 三、【等比数列定义与性质】(1)定义:_____________________________,(2)通项公式________________(3)推广的通项公式:__________ (4)等比中项:b G a ,,成等比数列⇒_______四、【等比数列前n 项和Sn 及其性质】(1)前项和:__________________________________________(2)若,则____________________________________(3)仍为_________________,公比为________________.五、【a n 与S n 的关系式】_________________________; ___________________________________.六、【不等式】(1):基本不等式 _____________________________________________(2)重要不等式 _____________________________________________ n m n p q +=+232n n n n n S S S S S --,,……n n a b ,n n n S T ,n m n p q +=+232n n n n n S S S S S --,,……。
高考数学:数列公式
高考数学:数列公式数列的基本概念等差数列
(1)数列的通项公式an=f(n)
(2)数列的递推公式
(3)数列的通项公式与前n项和的关系
an+1-an=d
an=a1+(n-1)d
a,A,b成等差 2A=a+b
m+n=k+l am+an=ak+al
等比数列常用求和公式
an=a1qn_1
a,G,b成等比 G2=ab
m+n=k+l aman=akal
不等式
不等式的基本性质重要不等式
ab b
ab,bc
ab a+cb+c
a+bc-b
ab,cd a+cb+d
ab,cbc
ab,c0 ac
a0,c0 ac
a0 dnbn(n∈Z,n1)
a0 (n∈Z,n1)
(a-b)2≥0
a,b∈R a2+b2≥2ab
|a|-|b|≤|a±b|≤|a|+|b|
证明不等式的基本方法
比拟法
(1)要证明不等式ab(或a
a-b0(或a-b0=即可
(2)假定b0,要证ab,只需证明,
要证a
综合法综合法就是从或已证明过的不等式动身,依据不等式的性质推导出欲证的不等式(由因导果)的方法。
剖析法剖析法是从寻求结论成立的充沛条件入手,逐渐寻求所需条件成立的充沛条件,直至所需的条件正确时为止,清楚地表现出〝持果索因〞。
高三数列不等式知识点总结
高三数列不等式知识点总结数列不等式是数学中的重要概念,也是高中数学中的一个重要知识点。
在高三数学学习中,数列不等式常常作为数列章节的延伸和拓展,对于学生来说是一个较为复杂的内容。
下面将从不等式基本概念、解不等式的方法以及解决实际问题等几个方面对高三数列不等式进行总结。
一、不等式基本概念1. 不等式的定义:不等式是表示两个数之间的大小关系的数学式子,其形式通常为a < b、a ≤ b、a > b、a ≥ b等。
2. 不等式的性质:不等式具有传递性、对称性、加法性和乘法性等性质。
学生需要熟练掌握这些性质,以便在解不等式时能够合理运用。
二、解不等式的方法1. 穷举法:对于一些简单的不等式,可以通过列举出数值的方式来得到不等式的解集。
2. 图像法:对于一些简单的不等式,可以用数轴上的点来表示不等式中的数,通过观察数轴上的点的位置关系,判断不等式的解集。
3. 对称性法:当不等式中含有绝对值符号时,可以利用对称性来求解不等式。
4. 区间法:对于一些复杂的不等式,可以利用区间的概念,将数轴分为若干段,然后通过每个区间上符号的变化情况来求解不等式。
5. 函数法:通过对不等式进行等价变形,转化为函数的性质,然后利用函数的性质来解不等式。
三、解决实际问题1. 关于数列的不等式问题:在数列中常常会出现一些不等式问题,例如求数列的最大值、最小值、数列元素的范围等,这些问题都可以通过对数列不等式的分析和求解来得到答案。
2. 关于应用问题的不等式问题:不等式在实际生活中有着广泛的应用。
例如金融领域中的利润和损失、生活中的成本问题等,都可以通过建立不等式模型来解决。
3. 关于优化问题的不等式问题:在一些最优化问题中,不等式常常作为约束条件来限制优化问题的解集,通过解不等式可以得到最优解。
综上所述,高三数列不等式作为数列章节的重要延伸内容,对于学生来说是一项重要且复杂的知识点。
学生需要充分了解不等式的基本概念、掌握解不等式的方法以及能够应用不等式解决实际问题。
高中数学知识点总结(不等式选讲 第二节 不等式的证明)
第二节 不等式的证明一、基础知识1.基本不等式(1)定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. (2)定理2:如果a ,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.(3)定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.2.比较法(1)作差法的依据是:a -b >0⇔a >b . (2)作商法:若B >0,欲证A ≥B ,只需证AB ≥1.3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.考点一 比较法证明不等式[典例] 已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.[解] (1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2,得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2,得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1, 从而(a +b )2-(1+ab )2 =a 2+b 2-a 2b 2-1 =(a 2-1)(1-b 2)<0. 因此|a +b |<|1+ab |. [题组训练]1.当p ,q 都是正数且p +q =1时,求证:(px +qy )2≤px 2+qy 2. 解:(px +qy )2-(px 2+qy 2) =p 2x 2+q 2y 2+2pqxy -(px 2+qy 2) =p (p -1)x 2+q (q -1)y 2+2pqxy .因为p +q =1,所以p -1=-q ,q -1=-p . 所以(px +qy )2-(px 2+qy 2) =-pq (x 2+y 2-2xy )=-pq (x -y )2. 因为p ,q 为正数,所以-pq (x -y )2≤0,所以(px +qy )2≤px 2+qy 2.当且仅当x =y 时,不等式中等号成立. 2.求证:当a >0,b >0时,a a b b≥(ab )+2a b .证明:∵a ab b ab+2a b =⎝⎛⎭⎫a b -2a b ,∴当a =b 时,⎝⎛⎭⎫a b -2a b =1,当a >b >0时,ab >1,a -b 2>0,∴⎝⎛⎭⎫a b -2a b>1,当b >a >0时,0<ab <1,a -b 2<0,∴⎝⎛⎭⎫a b -2a b>1,∴a a b b≥(ab )+2a b.考点二 综合法证明不等式[典例] (2017·全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.[证明] (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6 =(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)∵(a +b )3=a 3+3a 2b +3ab 2+b 3 =2+3ab (a +b )≤2+3a +b 24(a +b )=2+3a +b 34,∴(a +b )3≤8,因此a +b ≤2.[解题技法] 综合法证明不等式的方法(1)综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系,合理进行转换,恰当选择已知不等式,这是证明的关键;(2)在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.[题组训练]1.设a ,b ,c ,d 均为正数,若a +b =c +d ,且ab >cd ,求证:a +b >c +d . 证明:因为(a +b )2=a +b +2ab ,(c +d )2=c +d +2cd . 由题设a +b =c +d ,ab >cd 得(a +b )2>(c +d )2. 因此 a +b >c +d .2.(2018·湖北八校联考)已知不等式|x |+|x -3|<x +6的解集为(m ,n ). (1)求m ,n 的值;(2)若x >0,y >0,nx +y +m =0,求证:x +y ≥16xy . 解:(1)由|x |+|x -3|<x +6,得⎩⎪⎨⎪⎧ x ≥3,x +x -3<x +6或⎩⎪⎨⎪⎧ 0<x <3,3<x +6或⎩⎪⎨⎪⎧x ≤0,-x +3-x <x +6, 解得-1<x <9,∴m =-1,n =9.(2)证明:由(1)知9x +y =1,又x >0,y >0, ∴⎝⎛⎭⎫1x +1y (9x +y )=10+y x +9xy≥10+2y x ×9xy=16, 当且仅当y x =9x y ,即x =112,y =14时取等号,∴1x +1y ≥16,即x +y ≥16xy .考点三 分析法证明不等式[典例] (2019·长春质检)设不等式||x +1|-|x -1||<2的解集为A . (1)求集合A ;(2)若a ,b ,c ∈A ,求证:⎪⎪⎪⎪⎪⎪1-abc ab -c >1.[解] (1)由已知,令f (x )=|x +1|-|x -1|=⎩⎪⎨⎪⎧2,x ≥1,2x ,-1<x <1,-2,x ≤-1,由|f (x )|<2,得-1<x <1,即A ={x |-1<x <1}. (2)证明:要证⎪⎪⎪⎪⎪⎪1-abc ab -c >1,只需证|1-abc |>|ab -c |,即证1+a 2b 2c 2>a 2b 2+c 2,即证1-a 2b 2>c 2(1-a 2b 2), 即证(1-a 2b 2)(1-c 2)>0,由a ,b ,c ∈A ,得-1<ab <1,c 2<1,所以(1-a 2b 2)(1-c 2)>0恒成立. 综上,⎪⎪⎪⎪⎪⎪1-abc ab -c >1.[解题技法] 分析法证明不等式应注意的问题(1)注意依据是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论. (2)注意从要证不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件是已知(或已证)的不等式.(3)注意恰当地用好反推符号“⇐”或“要证明”“只需证明”“即证明”等词语. [题组训练]1.已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a . 证明:由a >b >c 且a +b +c =0, 知a >0,c <0. 要证b 2-ac <3a , 只需证b 2-ac <3a 2.∵a +b +c =0,∴只需证b 2+a (a +b )<3a 2, 即证2a 2-ab -b 2>0, 即证(a -b )(2a +b )>0, 即证(a -b )(a -c )>0.∵a >b >c ,∴a -b >0,a -c >0, ∴(a -b )(a -c )>0显然成立, 故原不等式成立.2.已知函数f (x )=|x +1|.(1)求不等式f (x )<|2x +1|-1的解集M ; (2)设a ,b ∈M ,求证:f (ab )>f (a )-f (-b ). 解:(1)由题意,|x +1|<|2x +1|-1, ①当x ≤-1时,不等式可化为-x -1<-2x -2, 解得x <-1; ②当-1<x <-12时,不等式可化为x +1<-2x -2, 此时不等式无解; ③当x ≥-12时,不等式可化为x +1<2x ,解得x >1. 综上,M ={x |x <-1或x >1}.(2)证明:因为f (a )-f (-b )=|a +1|-|-b +1|≤|a +1-(-b +1)|=|a +b |, 所以要证f (ab )>f (a )-f (-b ), 只需证|ab +1|>|a +b |, 即证|ab +1|2>|a +b |2,即证a 2b 2+2ab +1>a 2+2ab +b 2, 即证a 2b 2-a 2-b 2+1>0, 即证(a 2-1)(b 2-1)>0.因为a ,b ∈M ,所以a 2>1,b 2>1,所以(a 2-1)(b 2-1)>0成立,所以原不等式成立.[课时跟踪检测]1.已知△ABC 的三边a ,b ,c 的倒数成等差数列,试用分析法证明:∠B 为锐角. 证明:要证∠B 为锐角,只需证cos B >0, 所以只需证a 2+c 2-b 2>0, 即a 2+c 2>b 2,因为a 2+c 2≥2ac , 所以只需证2ac >b 2, 由已知得2ac =b (a +c ).所以只需证b (a +c )>b 2,即a +c >b ,显然成立. 所以∠B 为锐角.2.若a >0,b >0,且1a +1b =ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由. 解:(1)由ab =1a +1b ≥2ab,得ab ≥2,仅当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,仅当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2. (2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6. 3.(2019·南宁模拟)(1)解不等式|x +1|+|x +3|<4; (2)若a ,b 满足(1)中不等式,求证:2|a -b |<|ab +2a +2b |.解:(1)当x <-3时,|x +1|+|x +3|=-x -1-x -3=-2x -4<4,解得x >-4,所以 -4<x <-3;当-3≤x <-1时,|x +1|+|x +3|=-x -1+x +3=2<4恒成立, 所以-3≤x <-1;当x ≥-1时,|x +1|+|x +3|=x +1+x +3=2x +4<4,解得x <0,所以-1≤x <0. 综上,不等式|x +1|+|x +3|<4的解集为{x |-4<x <0}. (2)证明:因为4(a -b )2-(ab +2a +2b )2 =-(a 2b 2+4a 2b +4ab 2+16ab ) =-ab (b +4)(a +4)<0, 所以4(a -b )2<(ab +2a +2b )2, 所以2|a -b |<|ab +2a +2b |.4.(2018·武昌调研)设函数f (x )=|x -2|+2x -3,记f (x )≤-1的解集为M . (1)求M ;(2)当x ∈M 时,求证:x [f (x )]2-x 2f (x )≤0.解:(1)由已知,得f (x )=⎩⎪⎨⎪⎧x -1,x ≤2,3x -5,x >2.当x ≤2时,由f (x )=x -1≤-1, 解得x ≤0,此时x ≤0;当x >2时,由f (x )=3x -5≤-1, 解得x ≤43,显然不成立.故f (x )≤-1的解集为M ={x |x ≤0}.(2)证明:当x ∈M 时,f (x )=x -1,于是x [f (x )]2-x 2f (x )=x (x -1)2-x 2(x -1)=-x 2+x =-⎝⎛⎭⎫x -122+14. 令g (x )=-⎝⎛⎭⎫x -122+14, 则函数g (x )在(-∞,0]上是增函数, ∴g (x )≤g (0)=0. 故x [f (x )]2-x 2f (x )≤0.5.(2019·西安质检)已知函数f (x )=|2x -1|+|x +1|. (1)解不等式f (x )≤3;(2)记函数g (x )=f (x )+|x +1|的值域为M ,若t ∈M ,求证:t 2+1≥3t+3t .解:(1)依题意,得f (x )=⎩⎪⎨⎪⎧-3x ,x ≤-1,2-x ,-1<x <12,3x ,x ≥12,∴f (x )≤3⇔⎩⎪⎨⎪⎧x ≤-1,-3x ≤3或⎩⎪⎨⎪⎧-1<x <12,2-x ≤3或⎩⎪⎨⎪⎧x ≥12,3x ≤3,解得-1≤x ≤1,即不等式f (x )≤3的解集为{x |-1≤x ≤1}.(2)证明:g (x )=f (x )+|x +1|=|2x -1|+|2x +2|≥|2x -1-2x -2|=3, 当且仅当(2x -1)(2x +2)≤0,即-1≤x ≤12时取等号,∴M =[3,+∞). t 2+1-3t -3t =t 3-3t 2+t -3t=t -3t 2+1t,∵t ∈M ,∴t -3≥0,t 2+1>0, ∴t -3t 2+1t ≥0,∴t 2+1≥3t+3t .6.(2019·长春质检)已知函数f (x )=|2x -3|+|3x -6|. (1)求f (x )<2的解集;(2)若f (x )的最小值为T ,正数a ,b 满足a +b =12,求证:a +b ≤T .解:(1)f (x )=|2x -3|+|3x -6|=⎩⎪⎨⎪⎧-5x +9,x <32,-x +3,32≤x ≤2,5x -9,x >2.作出函数f (x )的图象如图所示.由图象可知,f (x )<2的解集为⎝⎛⎭⎫75,115. (2)证明:由图象可知f (x )的最小值为1, 由基本不等式可知a +b2≤ a +b2= 14=12, 当且仅当a =b 时,“=”成立,即a +b ≤1=T . 7.已知函数f (x )=|2x -1|-⎪⎪⎪⎪x +32. (1)求不等式f (x )<0的解集M ;(2)当a ,b ∈M 时,求证:3|a +b |<|ab +9|.解:(1)f (x )=⎩⎪⎨⎪⎧52-x ,x <-32,-3x -12,-32≤x ≤12,x -52,x >12.当x <-32时,f (x )<0,即52-x <0,无解;当-32≤x ≤12时,f (x )<0,即-3x -12<0,得-16<x ≤12;当x >12时,f (x )<0,即x -52<0,得12<x <52.综上,M =⎩⎨⎧⎭⎬⎫x ⎪⎪-16<x <52. (2)证明:要证3|a +b |<|ab +9|,只需证9(a 2+b 2+2ab )<a 2b 2+18ab +81, 即证a 2b 2-9a 2-9b 2+81>0, 即证(a 2-9)(b 2-9)>0.因为a ,b ∈M ,所以-16<a <52,-16<b <52,所以a 2-9<0,b 2-9<0, 所以(a 2-9)(b 2-9)>0, 所以3|a +b |<|ab +9|.8.已知函数f (x )=m -|x +4|(m >0),且f (x -2)≥0的解集为[-3,-1]. (1)求m 的值;(2)若a ,b ,c 都是正实数,且1a +12b +13c =m ,求证:a +2b +3c ≥9.解:(1)法一:依题意知f (x -2)=m -|x +2|≥0, 即|x +2|≤m ⇔-m -2≤x ≤-2+m .由题意知不等式的解集为[-3,-1],所以⎩⎪⎨⎪⎧-m -2=-3,-2+m =-1,解得m =1.法二:因为不等式f (x -2)≥0的解集为[-3,-1],所以-3,-1为方程f (x -2)=0的两根,即-3,-1为方程m -|x +2|=0的两根,所以⎩⎪⎨⎪⎧m -|-3+2|=0,m -|-1+2|=0,解得m =1.(2)证明:由(1)可知1a +12b +13c=1(a ,b ,c >0),所以a +2b +3c =(a +2b +3c )⎝⎛⎭⎫1a +12b +13c =3+⎝⎛⎭⎫a 2b +2b a +⎝⎛⎭⎫a 3c +3c a +⎝⎛⎭⎫2b 3c +3c2b ≥9,当且仅当a =2b =3c ,即a =3,b =32,c =1时取等号.。
数列与不等式的综合-高中数学知识点讲解
数列与不等式的综合1.数列与不等式的综合【知识点的知识】证明与数列求和有关的不等式基本方法:(1)直接将数列求和后放缩;(2)先将通项放缩后求和;(3)先将通项放缩后求和再放缩;(4)尝试用数学归纳法证明.常用的放缩方法有:2푛1 12푛―12푛2푛+12푛<,2푛+12푛2푛―1>,2푛+1<2푛,11푛3<푛(푛2―1)=112[푛(푛―1)―1푛(푛+1)]1푛―1푛+1=111푛(푛―1)=푛(푛+1)<푛2<1푛―1―1(n≥2),푛11푛2<푛2―1=11(푛―1―21)(n≥2),푛+11푛2=4414푛2<4푛2―1=2(2푛―1―4푛2―1=2(2푛―1―12푛+1),2(푛+1―푛)=2푛+1―푛<1푛=22푛<2푛+푛―1= 2(푛―푛―1).1푛+1+1푛+2+⋯+12푛≥12푛+12푛+⋯+12푛=푛2푛=12푛+(푛+1)푛(푛+1)<.2【解题方法点拨】证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材.这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:1/ 4(1)添加或舍去一些项,如: 푎2 + 1>|a |; 푛(푛 + 1)>n ;(2)将分子或分母放大(或缩小);푛 + (푛 + 1)(3)利用基本不等式; 푛(푛 + 1)<;2(4)二项式放缩;(5)利用常用结论;(6)利用函数单调性.(7)常见模型:①等差模型;②等比模型;③错位相减模型;④裂项相消模型;⑤二项式定理模型;⑥基本不等式模型.【典型例题分析】题型一:等比模型푎1 ― 1 典例 1:对于任意的 n ∈N *,数列{a n }满足 21 + 1 +푎2 ― 2 22 + 1 +⋯ + 푎푛 ― 푛 2푛 + 1 = n +1. (Ⅰ)求数列{a n }的通项公式;2 (Ⅱ)求证:对于 n ≥2, 푎2 +2 푎3 +⋯ + 2 푎푛+1<1 ― 1 2푛. 푎1 ― 1 解答:(Ⅰ)由 21 + 1 +푎2 ― 2 22 + 1 +⋯ + 푎푛 ― 푛 2푛 + 1 = 푛 + 1①, 푎1 ― 1 当 n ≥2 时,得 21 + 1 +푎2 ― 2 22 + 1 +⋯ + 푎푛―1 ― (푛 ― 1) 2푛―1 + 1 = 푛②, 푎푛― 푛 ①﹣②得2푛 + 1 = 1(푛 ≥ 2).∴푎푛= 2푛 +1 + 푛(푛 ≥ 2). 푎1 ― 1又 1=7 不适合上式.21 + 1 = 2,得 a综上得푎푛= {7 ,푛 = 12푛 + 1 + 푛,푛 ≥ 2;2 (Ⅱ)证明:当 n ≥2 时,푎푛 =2 2 2푛 + 1 + 푛< 2푛 = 1 2푛―1.2/ 42 ∴ 푎2 + 2 푎3 +⋯ + 2 1 2 + 푎푛+1< 1 22 +⋯ + 1 2푛 = 1 1 2 (1 ― 2푛 1 ― 1 2) = 1 ― 1 2푛. 2 ∴当 n ≥2 时,푎2 + 2 푎3 +⋯ + 2 푎푛+1<1 ―1 2푛. 题型二:裂项相消模型典例 2:数列{a n }的各项均为正数,S n 为其前 n 项和,对于任意 n ∈N *,总有 a n ,S n ,a n 2 成等差数列.(1)求数列{a n }的通项公式;(2)设푏푛 = 1 푛푎2푛,数列{b n }的前 n 项和为 T n ,求证:푇푛> 푛 + 1.分析:(1)根据 a n =S n ﹣S n ﹣1,整理得 a n ﹣a n ﹣1=1(n ≥2)进而可判断出数列{a n }是公差为 1 的等差数列,根 据等差数列的通项公式求得答案.(2)由(1)知푏푛 = 1 1 1 푛2,因为 푛(푛 + 1) = 푛2> 1 푛 ―1 1 ,所以푏푛> 푛 ―푛 + 11,从而得证. 푛 + 1 解答:(1)由已知:对于 n ∈N *,总有 2S n =a n +a n 2①成立∴2푆푛―1 = 푎푛―1 + 푎푛―12(n ≥2)②①﹣②得 2a n =a n +a n 2﹣a n ﹣1﹣a n ﹣12,∴a n +a n ﹣1=(a n +a n ﹣1)(a n ﹣a n ﹣1)∵a n ,a n ﹣1 均为正数,∴a n ﹣a n ﹣1=1(n ≥2)∴数列{a n }是公差为 1 的等差数列又 n =1 时,2S 1=a 1+a 12,解得 a 1=1,∴a n =n .(n ∈N *)(2)解:由(1)可知푏푛 = 1 1 1 푛2∵ 푛(푛 + 1) = 푛2>푛2∵ 푛(푛 + 1) =1 푛 ― 1 푛 + 1 ∴푇푛>(1 ― 1 1 2) + (2 ― 1 1 3) + +(푛 ―1 푛 + 1) = 푛 푛 + 1 【解题方法点拨】(1)放缩的方向要一致.(2)放与缩要适度.(3)很多时候只对数列的一部分进行放缩法,保留一些项不变(多为前几项或后几项).3/ 4(4)用放缩法证明极其简单,然而,用放缩法证不等式,技巧性极强,稍有不慎,则会出现放缩失当的现象.所以对放缩法,只需要了解,不宜深入.4/ 4。
高一奥数基本不等式知识点
高一奥数基本不等式知识点不等式是数学中重要的概念,奥数中常涉及的一个主题就是基本不等式。
在高一阶段,学生们开始接触不等式的概念和相关的基本知识。
本文将介绍高一奥数中的基本不等式知识点,包括基本不等式的概念、常见的基本不等式以及解决基本不等式问题的方法。
一、基本不等式的概念基本不等式是指在一定条件下,某个数学不等式在所有情况下都成立的不等式。
在高一奥数中,我们会遇到一些常见的基本不等式。
这些基本不等式是根据数学原理和性质得出的,具有普遍性和重要性。
二、常见的基本不等式1. 等差数列的均值不等式等差数列的均值不等式是指,对于一个等差数列,它的任意n个连续项的平均数大于等于这些项的几何平均数。
具体而言,对于等差数列$a_1, a_2, a_3, ..., a_n$,有以下不等式成立:$\frac{a_1+a_2+a_3+...+a_n}{n} \geq \sqrt[n]{a_1 \cdot a_2 \cdota_3 \cdot ... \cdot a_n}$2. 平均数-均方差不等式平均数-均方差不等式是指,对于任意一组数的平均数和均方差,平均数的平方大于等于这些数减去平均数的差的平方的平均值。
具体而言,对于一组数$x_1, x_2, x_3, ..., x_n$,平均数记作$\overline{x}$,均方差记作$s$,有以下不等式成立:$(\overline{x})^2 \geq \frac{(x_1-\overline{x})^2+(x_2-\overline{x})^2+...+(x_n-\overline{x})^2}{n}$3. 柯西-施瓦茨不等式柯西-施瓦茨不等式是指,对于两个向量的点积,其绝对值小于等于这两个向量的模的乘积。
具体而言,对于两个向量$a=(a_1, a_2, ..., a_n)$和$b=(b_1, b_2, ..., b_n)$,有以下不等式成立:$|a \cdot b| \leq |a| \cdot |b|$4. 三角形不等式三角形不等式是指,三角形的任意两边之和大于第三边。
初中数学教案:不等式与数列的应用
初中数学教案:不等式与数列的应用一、引言不等式与数列是初中数学中的重要内容,掌握它们的应用,对学生的数学能力提升有着重要的帮助。
本教案将着重介绍不等式与数列的应用方法,以帮助学生更好地理解和运用这些知识。
二、不等式的应用1. 探索不等式的解集不等式是我们在数学中常常遇到的问题,了解如何确定不等式的解集对解决问题至关重要。
我们可以通过图形、试数法和代数法等多种方法来求解不等式。
(1)图形法对于简单的一元一次不等式,我们可以绘制数轴,并标出相应的区间,从而获得不等式的解集。
通过观察图形,我们可以更直观地理解不等式的解集,这对学生的数学思维发展非常有益。
(2)试数法试数法是一种简单而实用的方法,通过选择不同的数值代入不等式,判断该数值是否满足不等式,从而确定解集。
试数法可以帮助学生培养逻辑思维和推理能力,并提高解决问题的效率。
(3)代数法对于更复杂的不等式,我们可以利用代数性质进行求解。
通过化简、移项、分离变量等基本运算,将不等式转化为一个等价的形式,并求解得到解集。
这种方法需要学生对代数知识的掌握和灵活运用。
2. 应用不等式解决实际问题不等式在实际问题中的应用十分广泛,比如在金融领域中用于求解利润和成本的关系、在几何问题中用于求解图形的边界条件等。
学生通过学习和实践,可以将不等式与实际问题相结合,提高解决问题的能力。
(1)利润问题假设某公司一种产品的成本为x元,售价为y元,利润为y-x元。
我们可以根据给定的条件建立不等式y>x,并通过解不等式确定该产品的利润范围。
这样的应用能够培养学生的财务意识和综合分析能力。
(2)几何问题在几何问题中,我们常常需要根据图形的特征和条件求解相关参数。
例如,已知一个三角形两边之和大于第三边,求满足条件的三边长。
根据三角形两边之和大于第三边的不等式,我们可以列出相关的表达式,并通过解不等式得到解集。
这种应用可以帮助学生加深对几何知识的理解与应用。
三、数列的应用1. 理解数列与序列数列是一系列按照一定规则排列的数值,序列是一系列具有特定关系的数值。
基本不等式完整版(非常全面)
基本不等式专题辅导一、知识点总结1、基本不等式原始形式(1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤2、基本不等式一般形式(均值不等式)若*,R b a ∈,则ab b a 2≥+3、基本不等式的两个重要变形 (1)若*,R b a ∈,则ab ba ≥+2(2)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值;特别说明:以上不等式中,当且仅当b a =时取“=”4、求最值的条件:“一正,二定,三相等”5、常用结论 (1)若0x >,则12x x+≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x+≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)(4)若R b a ∈,,则2)2(222b a b a ab +≤+≤ (5)若*,R b a ∈,则2211122b a b a ab b a +≤+≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式(1)若,,,abc d R ∈,则22222()()()a b c d a c b d ++≥+(2)若123123,,,,,a a a b b b R ∈,则有:22222221231123112233()()()a a a b b b a b a b a b ++++≥++(3)设1212,,,,,,n n a a a b b ⋅⋅⋅⋅⋅⋅与b 是两组实数,则有 222(a a a ++⋅⋅⋅+)222)b b b ++⋅⋅⋅+(2()a b a b a b ≥++⋅⋅⋅+二、题型分析题型一:利用基本不等式证明不等式1、设b a ,均为正数,证明不等式:ab ≥ba 112+2、已知cb a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++2223、已知1a b c ++=,求证:22213a b c ++≥4、已知,,a b c R+∈,且1a b c ++=,求证:a b cc b a 8)1)(1)(1(≥---5、已知,,a b c R+∈,且1a b c ++=,求证:1111118a bc ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭6、(2013年新课标Ⅱ卷数学(理)选修4—5:不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥.7、(2013年江苏卷(数学)选修4—5:不等式选讲 已知0>≥b a ,求证:b a ab b a 223322-≥- 题型二:利用不等式求函数值域1、求下列函数的值域 (1)22213x x y += (2))4(x x y -=(3))0(1>+=x x x y (4))0(1<+=x xx y题型三:利用不等式求最值 (一)(凑项)1、已知2>x ,求函数42442-+-=x x y 的最小值;变式1:已知2>x ,求函数4242-+=x x y 的最小值;变式2:已知2<x ,求函数4242-+=x x y 的最大值;练习:1、已知54x >,求函数14245y x x =-+-的最小值;2、已知54x <,求函数14245y x x =-+-的最大值;题型四:利用不等式求最值 (二)(凑系数)1、当时,求(82)y x x =-的最大值;变式1:当时,求4(82)y x x =-的最大值;变式2:设230<<x ,求函数)23(4x x y -=的最大值。
不等式证明的方法与技巧
不等式证明的方法与技巧陈怡不等式证明是不等式中的基本内容之一,也是其重难点所在。
许多学生遇到不等式证明题不知所措,无从下手。
因此,有必要从解题思路入手,总结一些不等式证明的方法、技巧以及在某些方法技巧中所体现的数学思想,使学生们在解题时有的放矢。
除常见的综合法、分析法、反证法、放缩法及利用公式证明不等式外,本文另总结、归纳常见不等式证明方法技巧如下:一、利用数列的单调性证不等式法:我们常常用数学归纳证明含自然数n的不等式(这里不举例说明),然而,换一种角度,用数列的单调证性证此类不等式,更是简单明晰。
例1.求证明:1+++…+>(n>1)证明:令:a n=1+++…+-=11+++…+-则a n-1∴a n-a n=+--1=>0∴a n>a n-1即数列{a n}递增∴1+++…+>(n>1)例2.求证:1+++…+<2-(n≥2)证明:令a n=1+++…+-2+=1+++…++-2+(n≥)则a n-1∴a n-a n=+--1=-<0+<…<a2=-<0∴a n<a n-1∴1+++…+<2-仔细分析上面两个例题,我们发现这里运用了转化的思想,其实是把难解的关于自然数n的不等式证明问题,转化成了熟悉易解的求某数列的单调性问题。
将未知归为已知,从而最终求得原问题的解决。
下再举一例说明不等式证明中的转化思想。
例3.a、b、c∈R+,求证:++≥(a+b+c)(分析:由左边的形式联想到复数的模,引入复数,不等式证明问题转化为复数问题。
)证明:令Z1=a+bi,Z2=b+ci,Z3=c+ai则Z1+Z2+Z3=(a+b+c)+(a+b+c)I|Z1|+|Z2|+|Z3|≥|Z1+Z2+Z3=|∴++≥(a+b+c)二、不等量代换法此法虽是“代换”,但不同于换元法。
一般用于证明条件不等式,如能先求出一个适当的不等式进行代换,往往能简化证明过程。
但在代换时,必须注意保持非严格不等式等号成立的条件的一致性。
谈谈证明数列不等式的三种方法
解题宝典数列不等式证明具有较强的综合性,且难度较大.此类问题往往综合考查了等差、等比数列的通项公式、前n 项和公式、性质、不等式的可加性、可乘性、传递性等,对同学们的逻辑推理和分析能力有较高的要求.本文主要介绍三种证明数列不等式的方法.一、裂项放缩法若数列的通项公式为分式,且可裂为或通过放缩后化为两项之差的形式,则可采用裂项放缩法求解.首先将数列的各项拆分,在求和时绝对值相等、符号相反的项便会相互抵消,再将所得的结果进行适当的放缩,便可证明数列不等式.例1.若数列{}a n ,{}b n 的通项公式分别为a n =n (n +1),b n =()n +12,试证明1a 1+b 1+1a 2+b 2+⋯+1a n +b n<512.证明:当n =1时,1a 1+b 1=16<512,当n ≥2时,a n +b n =()n +1()2n +1>2()n +1n ,1a n +b n =1()n +1()2n +1<12n ()n +1=12æèöø1n -1n +1,∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n ùûú<16+12éëêæèöø12-13+⋯+æèöø1n -1n +1,∵12éëêùûúæèöø12-13+⋯+æèöø1n -1n +1=12æèöø12-1n +1<14,∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n <16+14=512∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n <512成立.{}1a n +b n的通项公式为分式,且可通过放缩、裂项将其转化为两项之差:12æèöø1n -1n +1,于是采用裂项放缩法求证.运用裂项放缩法证明不等式时,需根据数列通项公式的特点或和的特点进行适当的放缩,同时要把握放缩的“度”,不可“放”得过大,也不可“缩”得过小.二、构造函数法数列是一种特殊的函数.在解答数列不等式证明题时,可根据目标不等式的特点构造出函数模型,此时需将n ∈N *看作函数的自变量,将目标式看作关于n 的函数式,利用函数的单调性、有界性来求得函数式的最值,从而证明不等式成立.例2.已知数列{}a n 的通项公式为a n =3n -1,且该数列的每一项均大于零.若数列{}b n 的前n 项和为T n ,且a n ()2b n-1=1,证明:3T n -1>log 2()a n +3.证明:∵a n()2b n-1=1,a n=3n -1,∴b n =log 2æèçöø÷1+1a n =log 23n 3n -1,∴T n =b 1+b 2+⋯+b n =log 2æèöø32∙65∙⋯∙3n 3n -1,∴3T n -1-log 2()a n +3=log 2æèöø32⋅65⋅⋯⋅3n 3n -13∙23n +2,设f ()n =æèöø32∙65∙⋯∙3n 3n -13∙23n +2,∴f ()n +1f ()n =3n +23n +5∙æèöø3n +33n +23=()3n +32()3n +5()3n +22,∵()3n +33-()3n +5()3n +22=9n +7>0,∴f ()n +1>f ()n ,∴f ()n 单调递增,∴f ()n ≥f ()1=2720>1,∴3T n -1-log 2()a n +3=log 2f ()n >0,∴3T n -1>log 2()a n +3成立.解答本题,需先求得b n 、T n ,并将目标式化简,然后根据目标不等式的特点构造函数f ()n ,通过比较f ()n +1、f ()n 的大小,判断出函数的单调性,进而根据函数的单调性证明不等式成立.一般地,在判断数列或函数的单调性时,可采用作差或作商法来比较数列的前后两项a n +1、a n 的大小,若a n +1>a n ,则函数或数列单调递增;若a n +1<a n ,则函数或数列单调递减.三、数学归纳法数学归纳法主要用于证明与自然数N 有关的命题.运用数学归纳法证明数列不等式,需先根据题意证明当n =1时不等式成立;然后假设当n =k 时不等式成立,再根据题意,通过运算、推理证明当n =k +1时不等式也成立,这样便可证明对任意n ∈N *不等式恒成立.42下下下下下下下下下下下下下下下下下方法集锦例3.已知数列{a n }的通项公式为a n =2éëêùûú()2-1n+1,若数列{b n }中b 1=2,b n +1=3b n +42b n +3,试证明:2<b n ≤a 4n -3.证明:当n =1时,2<2,b 1=a 1=2,∴2<b 1≤a 1,不等式成立,假设当n =k 时,不等式成立,∴2<b k ≤a 4k -3,即0<b k -2≤a 4k -3-2,当n =k +1时,b k +1-2=3b k +42b k +3-2=()3-22b k+()4-322b k +3=()3-22()b k -22b k +3>0,∵2<b k ,∴12b k +3<2+33-22,b k +1-2=()3-22()b k-22b k +3<()3-222()b k-2≤()2-14()a 4k -3-2=a 4k +1-2.∴当n =k +1时,不等式成立,即2<b n ≤a 4n -3成立.解答本题主要采用了数学归纳法,分两步完成,首先证明当n =1时不等式成立,然后假设当n =k 时不等式成立,并将其作为已知条件,证明2<b k ,进而证明当n =k +1时,不等式也成立.相比较而言,构造函数法的适用范围较广,裂项放缩法和数学归纳法的适用范围较窄,且裂项放缩法较为灵活,运用数学归纳法证明不等式过程中的运算量较大.因此在证明数列不等式时,可首先采用构造函数法,然后再根据不等式的特点和解题需求运用裂项放缩法或数学归纳法求证.(作者单位:湖北省恩施土家族苗族自治州高级中学)圆锥曲线的离心率是反映圆锥曲线几何特征的一个基本量.圆锥曲线的离心率主要是指椭圆与双曲线的离心率,可用e =ca来表示.求圆锥曲线的离心率问题是一类常考的题目.下面谈一谈求圆锥曲线离心率的三种途径.一、根据圆锥曲线的定义圆锥曲线的定义是解答圆锥曲线问题的重要依据.我们知道,椭圆的焦半径长为c 、长半轴长为a ;双曲线的焦半径长为c 、实半轴长为a ,而圆锥曲线的离心率为e =ca.因此,只要根据圆锥曲线的定义确定a 、c的值,即可求得圆锥曲线的离心率.例1.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,如果双曲线上存在点P ,使∠F 1PF 2=90°,并且||PF 1=3||PF 2,求双曲线的离心率.解:因为||PF 1=3||PF 2,①由双曲线的定义得||PF 1-||PF 2=2a ,②由①②得||PF 1=3a ,||PF 2=a .且||F 1F 2=2c ,∠F1PF 2=90°,则|F 1F 2||2=PF 1||2+PF 2|2,即(2c )2a )2+a 2,解得5a =2c ,所以e =ca .题目中指出了两个焦半径||PF 1、||PF 2之间的关系,可将其与双曲线的定义:平面内与两个定点F 1、F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹关联起来,根据双曲线的定义建立关于两个焦半径的方程,通过解方程求得双曲线的离心率.二、利用几何图形的性质圆锥曲线的几何性质较多,如双曲线、椭圆的对称轴为坐标轴,对称中心为原点,双曲线的范围为x ≥a或x ≤-a .在求圆锥曲线的离心率时,要仔细研究几何图形,明确焦半径、实半轴长、虚半轴长与几何图形的位置关系,据此建立关于a 、b 、c 关系式,再通过解方43。
数列与不等式
数列与不等式数列和不等式是数学中的两个重要概念,它们在不同的数学领域中都有广泛的应用。
数列是由一系列按照一定规律排列的数所组成的序列,而不等式则描述了两个数或者多个数之间的大小关系。
本文将介绍数列和不等式的基本定义和性质,并探讨它们在数学中的应用。
一、数列的定义和性质数列就是按照一定规律排列的一系列数字的集合。
一般来说,数列可以表示为$a_1, a_2, a_3, \ldots, a_n, \ldots$,其中$a_n$表示数列的第$n$个数。
常见的数列有等差数列和等比数列。
等差数列是指数列中相邻两项之差都相等的数列。
如果数列的首项为$a_1$,公差为$d$,则数列的通项公式可以表示为$a_n = a_1 + (n-1)d$。
等差数列的性质包括:1. 通项公式:$a_n = a_1 + (n-1)d$2. 前$n$项和公式:$S_n = \frac{n}{2}(a_1 + a_n)$3. 任意三项的中项:$a_n = \frac{a_k + a_m}{2}$,其中$k,m,n$为正整数且$k<m<n$。
等比数列是指数列中相邻两项之比都相等的数列。
如果数列的首项为$a_1$,公比为$r$,则数列的通项公式可以表示为$a_n = a_1 \cdotr^{(n-1)}$。
等比数列的性质包括:1. 通项公式:$a_n = a_1 \cdot r^{(n-1)}$2. 前$n$项和公式(当$r \neq 1$):$S_n = \frac{a_1(1-r^n)}{1-r}$3. 任意三项的中项:$a_n^2 = a_k \cdot a_m$,其中$k,m,n$为正整数且$k<m<n$。
二、不等式的定义和性质不等式是描述数之间大小关系的数学表达式。
一般来说,不等式可以表示为$x>y$、$x \geq y$、$x<y$、$x \leq y$、$x \neq y$等形式,其中$x$和$y$为实数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、最全的数列通项公式的求法
数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。
而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。
本文给出了求数列通项公式的常用方法。
◆1、直接法又称观察法
根据数列的特征,使用作差法等直接写出通项公式。
例1. 根据下列数列的前几项,说出数列的通项公式:
21212,1,,,,3253
……… ◆2、公式法
①利用等差数列或等比数列的定义求通项
②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式
⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n n
n 求解. (注意:求完后一定要考虑合并通项)
◆3、累加或累乘法
对于形如)(1n f a a n n +=+型或形如n n a n f a )(1=+型的数列,我们可以根据递推公式,写出n 取1到n 时的所有的递推关系式,然后将它们分别相加(或相乘)即可得到通项公式。
例4. 若在数列{}n a 中,31=a ,n a a n n +=+1,求通项n a 。
解析:由n a a n n +=+1得n a a n n =-+1,所以
11-=--n a a n n ,221-=---n a a n n ,…,112=-a a ,
将以上各式相加得:1)2()1(1+⋅⋅⋅+-+-=-n n a a n ,又31=a
所以 n a =
32
)1(+-n n ◆4、待定系数法: 一般地,形如a 1+n =p a n +q (p ≠1,pq ≠0)型的递推式均可通过待定系数法对常数
a 1+n +k=p ( a n +k )
二、数列前n 项和的求法
◆1、利用常用求和公式求和
利用下列常用求和公式求和是数列求和的最基本最重要的方法.
(1)等差数列求和公式:d n n na a a n S n n 2
)1(2)(11-+=+= (2)等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a q
q a q na S n n n ◆2、错位相减法求和
这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.
[例2] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S
◆3、倒序相加法求和
这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.
[例3] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值
◆4、分组法求和
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.
[例4] 求数列的前n 项和:12123171411--+⋅⋅⋅++++n a
n a a ,…
◆5、裂项法求和
这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:
(1))()1(n f n f a n -+=(2)111)1(1+-=+=n n n n a n n n n n -+=++11
1)3( 三、线性规划问题的常见题型
◆1.求函数的最值
◆2.求平面图形的面积
◆3.求斜率的范围
例如.(2007年辽宁高考试题)已知变量x、y满足约束条件,则的取值范围是()
◆4.求距离
例如.(2006年湖南高考题)已知则的最小值是 . 分析:可行域如右图阴影部分,由图知A(1,2)到原点的距离最小,所以,
.
◆5.求参数取值范围(注意最优解仅有一个或有无数多个的区别)
例6.(2009年陕西试题)若x、y满足约束条件,目标函数
仅在点(1,0)处取得最小值,则a的取值范围是()
A、 B、 C、 D、
◆6.解决实际问题(应用题)
四、利用基本不等式求最值的技巧
在运用基本不等式ab b a 222≥+与2b a ab +≤
或其变式解题时,要注意如下技巧 ◆1:配系数凑常数
【例1】 已知230<
<x ,求)23(x x y -=的最大值. 答案43=x 时,8
9max =y . ◆2:添加项凑常数
【例2】已知23>
x ,求3
22-+=x x y 的最小值. 答案:当且仅当322)32(21-=-x x 即27min =y . ◆3:拆项配凑法
【例3】已知2>x ,求2
632-+-=x x x y 的最小值. 【解】由于2>x ,所以,
3124)2(2124)2(2)2(3)22(26322=+-⨯-≥+-+-=---+-=-+-=x x x x x x x x x x y 当且仅当2
42-=-x x 即4=x 时,3m in =y . ◆4:常数代换法(如用”1”代换)
◆5:由等式转化为不等式
【例9】已知正数b a ,满足3++=b a ab ,求ab 的取值范围.
【分析】由于条件式3++=b a ab 含有b a ab +,,它们都在2b a ab +≤
式中出现,故可直接运用基本不等式转化为待求式的关系式后再求. 【解】利用基本不等式b a ab +≤2得323+≥++=ab b a ab ,令ab t =,则得0322≥--t t ,所以0)1)(3(≥+-t t ,由于0>t ,所以3≥t 即9≥ab ,故ab 的取值范围是),9[+∞.。