普通高等学校招生全国统一考试含答案
2023年全国乙卷理科综合高考试卷(原卷+答案)
绝密★启用前2023年普通高等学校招生全国统一考试(全国乙卷)(适用地区:内蒙古、江西、河南、陕西、甘肃、青海、宁夏、新疆、安徽、云南、吉林、黑龙江)理科综合注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案书写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
可能用到的相对原子质量:H 1 C 12 O 16一、选择题:本题共13小题,每小题6分,共78分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 生物体内参与生命活动的生物大分子可由单体聚合而成,构成蛋白质等生物大分子的单体和连接键以及检测A. ①可以是淀粉或糖原B. ②是氨基酸,③是肽键,⑤是碱基C. ②和⑤都含有C、H、O、N元素D. ④可以是双缩脲试剂,⑥可以是甲基绿和吡罗红混合染色剂2. 植物叶片中的色素对植物的生长发育有重要作用。
下列有关叶绿体中色素的叙述,错误的是()A. 氮元素和镁元素是构成叶绿素分子的重要元素B. 叶绿素和类胡萝卜素存在于叶绿体中类囊体的薄膜上C. 用不同波长的光照射类胡萝卜素溶液,其吸收光谱在蓝紫光区有吸收峰D. 叶绿体中的色素在层析液中的溶解度越高,随层析液在滤纸上扩散得越慢3. 植物可通过呼吸代谢途径的改变来适应缺氧环境。
在无氧条件下,某种植物幼苗的根细胞经呼吸作用释放CO2的速率随时间的变化趋势如图所示。
下列相关叙述错误的是()A. 在时间a之前,植物根细胞无CO2释放,只进行无氧呼吸产生乳酸B. a~b时间内植物根细胞存在经无氧呼吸产生酒精和CO2的过程C. 每分子葡萄糖经无氧呼吸产生酒精时生成的A TP比产生乳酸时的多D. 植物根细胞无氧呼吸产生的酒精跨膜运输的过程不需要消耗A TP4. 激素调节是哺乳动物维持正常生命活动的重要调节方式。
(2024年高考真题含解析)2024年普通高等学校招生全国统一考试政治试卷 新课标综合卷(含解析)
2024年普通高等学校招生全国统一考试新课标综合卷政治试卷养成良好的答题习惯,是决定成败的决定性因素之一。
做题前,要认真阅读题目要求、题干和选项,并对答案内容作出合理预测;答题时,切忌跟着感觉走,最好按照题目序号来做,不会的或存在疑问的,要做好标记,要善于发现,找到题目的题眼所在,规范答题,书写工整;答题完毕时,要认真检查,查漏补缺,纠正错误。
一、单选题1.在社会主义发展史上,空想社会主义者在批判资本主义带来的各种灾难和罪恶的同时,也描绘了未来理想社会的蓝图。
反映空想社会主义者为建立美好社会而努力的有()①缔结反映各族人民意愿的国家联盟②进行共产主义的“新和谐公社”新村实验③成立被誉为新社会的光辉先驱的巴黎公社④倡导建立人人劳动、普遍协作的“和谐制度”A.①②B.①③C.②④D.③④2.中共中央办公厅2024年印发的《关于在全党开展党纪学习教育的通知》指出,为了深入学习贯彻修订后的《中国共产党纪律处分条例》,经党中央同意,自2024年4月至7月,在全党开展党纪学习教育。
开展党纪学习教育是中国共产党()①区别于其他政党的显著标志②以伟大自我革命引领伟大社会革命的政治保障③推进全面从严治党,解决大党独有难题的重要举措④保持先进性和纯洁性,跳出治乱兴衰历史周期率的利器A.①②B.①③C.②④D.③④3.2024年政府工作报告提出,要着力扩大国内需求,促进消费稳定增长,推动经济实现良性循环。
下列举措有助于促进消费增长的有()①提升餐饮质量和配送标准化水平②取消新能源汽车车辆购置税减免政策③对“以旧换新”的家电产品给予适当补贴④提高家庭第二套住房商业性个人住房贷款利率A.①②B.①③C.②④D.③④4.以下是某县关于如何盘活本地闲置耕地的讨论。
农户:家里青壮年外出打工了,耕地闲置了,不如流转给村集体吧!村集体:可是我们不擅长经营!不如把闲置耕地外包给专业合作社,农户、村集体和专业合作社,三方按合理比例分红。
2024年全国统一高考英语试卷(新课标Ⅰ卷)含答案
2024年普通高等学校招生全国统一考试(新课标Ⅰ卷)英语(适用省份:福建、湖南、湖北、河北、广东、山东、江苏、江西、河南、安徽)第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话,每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt?A. £19. 15.B. £9. 18.C. £9. 15.答案是C。
1. What is Kate doing?A. Boarding a flight.B. Arranging a trip.C. Seeing a friend off.2. What are the speakers talking about?A. A pop star.B. An old song.C. A radio program.3. What will the speakers do today?A. Go to an art show.B. Meet the man's aunt.C. Eat out with Mark.4. What does the man want to do?A. Cancel an order.B. Ask for a receipt.C. Reschedule a delivery.5. When will the next train to Bedford leave?A. At 9:45.B. At 10:15.C. At 11:00.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
2023年新高考全国Ⅰ卷语文真题(含答案)
A.“粮食优先”智库的工作人员塔尼娅·科森在谈到安第斯山藜麦种植者时表示:“坦率地说,他们厌倦了藜麦,因此开始购买其他食物。”
B.加拿大《环球邮报》一则新闻的标题为“你对藜麦的爱越深,你对玻利维亚人和秘鲁人的伤害就越深”。
C.制片人迈克尔·威尔科克斯专门为这个问题制作了一部纪录片,他说:“我见过一些反对食用藜麦的文字评论,实际上,停止消费才会真正伤害这些农民。”
你谢过主人,再别理狗的讹诈,去河边寻找滩船。如果你运气好,船上只有一两个客,你就能躺在舱里,将头枕着船帮,河水拍击船底的声音顿时变得很重。船在桨声中不紧不慢地走。双桨“吱呀吱呀”的,古人说是“欸乃”,也对。怎么说怎么像。
板桥就在太阳落下去的地方。你沿着大埂走,右边是漕河,它连接着巢湖和长江。河滩如没被淹,一定有放牛的。你走过窑场就不远了。可以问问人,谁都愿意回答你,也许还会领你走一段,把咄咄逼人的狗子赶开。走到你的腿有点酸了,那就差不多到了。
B.“它的价格不太可能再度回升”,可能是因为市场对藜麦的需求量不再大幅增加,而藜麦的种植面积持续扩大,供给日益增长。
C.“每个新手辩论者”“都知道如何挑选最有利于自己的真相”,可见有些“沟通者”会选择有助于推进个人意图的真相,而这种选择具有一定的灵活性。
D.从藜麦事件可以发现,一组片面的事实编织在一起引发了一场良心危机,而这场良心危机对玻利维亚和秘鲁当地的居民造成了真正的伤害。
为了解藜麦的种植情况,我去了秘鲁科尔卡山谷,这里在印加时代以前就得到了开垦。藜麦是一种美丽的作物,拥有深红色或金黄色的巨大种球。在安第斯山的这片区域,人们在梯田上同时种植藜麦以及当地特有的玉米和马铃薯品种。“国外需求绝对是一件好事,”我的秘鲁向导杰西卡说道,“农民非常高兴,所有想吃藜麦的人仍然买得起这种食物。”她还解释了另一个好处。之前,秘鲁城里人往往认为他们这片区域吃藜麦的人“很土”。现在,由于美国人和欧洲人的重视,食用藜麦被视作一种时尚。“利马人终于开始尊重我们这些高原人和我们的传统了。”玻利维亚西南部有一片遥远而不适合居住的区域,那里到处都是盐湖和休眠火山。在那里,我看到了由藜麦资金支持的当地急需的开发和旅游项目。千百年来勉强能够养家糊口的自耕农开始为更加美好的未来而投资。我在2017年4月听到的玻利维亚人对于该作物的唯一抱怨是,日益增长的供给正在拉低价格。玻利维亚的藜麦种植面积增长了两倍多,从2007年的5万公顷增长到2016年的18万公项。马克·贝勒马尔后来对我说:“这是一个令人悲伤的结局,因为它的价格不太可能再度回升。”在风景如画的科尔卡山谷,当太阳落山时,我问杰西卡,欧洲和北美的消费者是否应该为吃掉秘鲁人和玻利维亚人的食物而感到内疚。我可以猜到答案,但我想听到当地人的亲口否认。“相信我,”杰西卡笑道,“我们有许多藜麦。”乍一看,这一关于食物热潮、全球贸易和消费者忧虑的事件讲述了谎言被揭穿的过程。不过,这些受到错误解读的真相可能会对当地的人们造成真正的伤害。各行各业有经验的沟通者会通过片面的事实、数字、背景呈现某种世界观,从而影响现实。在这个例子中,新闻工作者和博主出于高尚的理由引导消费者远离藜麦:他们由衷地为一个贫困群体感到担忧,害怕狂暴的全球贸易风潮会危及这一群体的利益。我们很早就知道这一点:每个新手辩论者和犯错误的小学生都知道如何挑选最有利于自己的真相。不过,我们可能不知道这些真相为沟通者提供了多大的灵活性。很多时候,你可以通过许多方式描述一个人、一件事物或者一起事件,这些描述可能具有同等的真实性。我将它们称为“竞争性真相”。
2024年高考真题——语文(北京卷)含答案
2024年普通高等学校招生全国统一考试·北京卷语文(答案在最后)限时150分钟满分150分一、本大题共5小题,共18分。
阅读下面材料,完成各题。
材料一气候的波动变化对文明发展产生了重要影响,重建古代气候变化过程具有重要意义。
由于缺乏合适的温度代用指标,我国古温度重建结果分辨率较低,且多以定性记录为主,定量的古温度重建相对较少。
全球历史温度变化曲线的重建主要借助冰芯、深海沉积物和树轮的记录,而我国是传统的农耕文明社会,陆地上的沉积记录才能更好地反映我国历史气候变化。
随着技术的革新,微生物分子化石的研究蓬勃发展,微生物分子化石中的一类化合物——brGDGTs(支链甘油二烷基甘油四醚酯)——被用于古气候研究。
brGDGTs是细菌细胞膜的组成部分,其分子结构中有4到6个甲基和0到2个环戊烷。
如同人天冷需要加衣、天热需要减衣一样,寒冷的气候条件下细菌倾向于合成更多的甲基,而温暖的环境下合成的甲基数量则减少。
微生物活体死亡后,细胞膜中的brGDGTs等大分子能在地质体中长期保留下来,可以通过brGDGTs结构中的甲基个数推断当时的温度。
六盘山北联池靠近中华文明核心区,由中国科学院、南京大学、兰州大学等单位的研究人员组成的联合团队选取这里的沉积物样品,借助brGDGTs,通过定量分析,重建了5000年以来我国北方更高分辨率的暖季(4月至10月)温度变化过程。
结合山西某地沉积物的孢粉重建的降水记录,联合团队获得了我国北方地区5000年以来完整的气候演变历程。
从重建的温度与降水结果来看,我国北方地区的气候呈现出不断变冷、变干的大趋势。
大约前3000年变化缓慢,之后的2000年变化加速。
这主要与太阳辐射变化有关,太阳辐射能量在过去5000年间持续下降。
另外,过去2000年以来的快速冷干现象还可能与太阳活动、局部火山活动等因素有关。
而且这一时期内区域植被中木本植物逐渐减少,导致地表反射率上升,也可能加快了气候变冷变干的速度。
地理(新课标卷●河南卷)丨2024年普通高等学校招生全国统一考试地理试卷及答案
绝密★启用前2024年普通高等学校招生全国统一考试(新课标卷)地理注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共35小题,每小题4分,共140分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
湖南省永顺县双凤村是一个典型的土家族村寨,地处武陵山区腹地,村寨中一条小溪蜿蜒流淌,潺潺水声伴随着弯弯青石板路和依山而建的土家转角吊脚楼,勾勒出一幅土家山寨的美丽画卷,被誉为中国“土家第一村”。
左图示意双凤村地建筑分布,右图示意在建的转角吊脚楼。
据此完成下面小题。
1.双凤村传统民居的空间分布特点是()A.沿等高线分布B.沿溪流分布C.围绕公共建筑分布D.沿公路分布2.双凤村传统民居的转角设计主要是为了()A.适应潮湿环境B.便于就地取材C.充分利用空间D.追求视觉美观3.摆手堂(含土王祠)、风雨桥为双凤村村民进行公共活动和交流提供场所,这体现了乡村公共空间的()①均衡性②经济性③公益性④文化性A.①②B.①③C.②④D.③④容积率是城市建设用地地块上总建筑面积与地块面积的比值,一般来说,工业园区中楼层越多,容积率越高,如图示意某城市工业园区规划的功能分区,其中,各产业园容积率按照适合生产的最大容许程度取值,以提高土地利用效率。
生活居住区曾有以高层建筑为主的高容积率和以中高层建筑为主的低容积率两个规划方案,政府部门最后采纳了低容积率方案。
据此完成下面小题。
4.如图所示的各产业园中,规划容积率最高和最低的可能是()A.Ⅲ和IB.IV和IC.II和IIID.IV和II5.推测政府部门采纳生活居住区低容积率方案的目的是()①打造舒适生活空间②提升建筑物质量③与城区建筑相协调④提高土地出让价格A.①③B.①④C.②③D.②④我国广西西南部某喀斯特地区(22.5°N附近),峰丛顶部多为旱生型矮林,峰丛洼地内为雨林,其顶层多被望天树(热带雨林的代表性树种)占据。
2023年全国甲卷高考语文试题及答案完整解析
2023年全国甲卷高考语文试题及答案完整解析2023年全国甲卷高考语文试题及答案2023年普通高等学校招生全国统一考试语文试题一、现代文阅读1. 论述类文本阅读节选自中国社会科学院徐良高的《以考古学构建中国上古史》,论证中国考古学取得的巨大成就,“延伸了历史轴线,增强了历史信度,丰富了历史内涵,活化了历史场景”,文章展现了中国上古史构建的广阔学术前景。
文中列举的诸多考古发现,有助于考生增强文化自信,更好地认识源远流长、博大精深的中华文明,鼓励他们继续探索未知、揭示本源。
2. 实用类文本阅读材料摘编自德国科普作家彼得•渥雷本《树的秘密生命》第6题要求学生回答,人工栽培的植物要经常喷洒农药带给人们什么思考,引导学生在充分掌握和理解材料信息的基础上,对从材料引申出来的问题作深入思考。
3. 文学类文本阅读选用巴金的散文《机械的诗——旅途随笔之一》,文章赞美机械具有“创造的喜悦”和“散布生命”的诗性,以独特的视角塑造工人形象,礼赞劳动,引导考生思考“机械的诗”背后是工人的辛勤创造。
二、古代诗文阅读1. 文言文阅读(单文本)材料选自《隆平集•儒学行义》,文中周尧卿是一位出色的学者,事母至孝、周济亲族、为官爱民。
第11题B选项将文中“何怨”与教材中李白《行路难》“今安在”的结构进行比较。
疑问句中疑问代词宾语前置是文言文教学中的一个重要的知识点,试题不要求考生具备系统的文言文语法知识,只需要熟悉课文中同类句子即可。
2. 古代诗歌阅读材料选用宋代晁补之的《临江仙》,是一首典型的“言情”之作,面对未来与友人的离别,词人愈加珍视与朋友的相聚时光,词作以细腻的笔触表达了两人间深厚的情谊。
词中有被后人赞为“绝妙”的两句“柳垂江上影,梅谢雪中枝”。
第15题要求学生分析这两句的“妙处”,引导考生借助联想和想象丰富自己对文学作品的体验和感受,品味诗词的语言之美。
3. 名篇名句默写(1)《行路难》(2)《邹忌讽齐王纳谏》(3)以花喻雪或以雪喻花三、语言文字运用材料摘编自张志公的《说工具》一文,通过介绍三位教师对成语“破釜沉舟”的不同教学方法,引入对语言作为思维和交流工具的思考。
2024年全国统一高考英语试卷(新课标Ⅱ卷)含答案
2024年普通高等学校招生全国统一考试(新课标Ⅱ卷)英语(适用省份:山西、广西、辽宁、吉林、黑龙江、海南、重庆、贵州、云南、西藏、甘肃、新疆)第一部分听力(1—20小题)在笔试结束后进行。
第二部分阅读(共两节,满分50分)第一节(共15小题;每小题2.5分,满分37.5分)阅读下列短文,从每题所给的A、B、C、D四个选项中选出最佳选项。
AChoice of Walks for Beginner and Experienced WalkersThe Carlow Autumn Walking Festival is a great opportunity for the beginner, experienced or advanced walker to enjoy the challenges of Carlow’s mountain hikes or the peace of its woodland walks.Walk 1 — The Natural WorldWith environmentalist Éanna Lamhna as the guide, this walk promises to be an informative tour. Walkers are sure to learn lots about the habitats and natural world of the Blackstairs.Date and Time: Saturday, 1st October, at 09:00Start Point: Scratoes BridgeWalk Duration: 6 hoursWalk 2 — Introduction to HillwalkingEmmanuel Chappard, an experienced guide, has a passion for making the great outdoors accessible to all. This mountain walk provides an insight into the skills required for hillwalking to ensure you get the most from future walking trips.Date and Time: Sunday, 2nd October, at 09:00Start Point: Deerpark Car ParkWalk Duration: 5 hoursWalk 3 — Moonlight Under the StarsWalking at night-time is a great way to step out of your comfort zone. Breathtaking views of the lowlands of Carlow can be enjoyed in the presence of welcoming guides from local walking clubs. A torch(手电筒)along with suitable clothing is essential for walking in the dark. Those who are dressed inappropriately will be refused permission to participate.Date and Time: Saturday, 1st October, at 18:30Start Point: The Town HallWalk Duration: 3 hoursWalk 4 — Photographic Walk in Kilbrannish ForestThis informative walk led by Richard Smyth introduces you to the basic principles of photography in the wild. Bring along your camera and enjoy the wonderful views along this well-surfaced forest path.Date and Time: Sunday, 2nd October, at 11:45Start Point: Kilbrannish Forest Recreation AreaWalk Duration: 1.5 hours21. Which walk takes the shortest time?A. The Natural World.B. Introduction to Hillwalking.C. Moonlight Under the Stars.D. Photographic Walk in Kilbrannish Forest.22. What are participants in Walk 3 required to do?A. Wear proper clothes.B. Join a walking club.C. Get special permits.D. Bring a survival guide.23. What do the four walks have in common?A. They involve difficult climbing.B. They are for experienced walkers.C. They share the same start point.D. They are scheduled for the weekend.BDo you ever get to the train station and realize you forgot to bring something to read? Yes, we all have our phones, but many of us still like to go old school and read something printed.Well, there’s a kiosk(小亭)for that. In the San Francisco Bay Area, at least.“You enter the fare gates(检票口)and you’ll see a kiosk that is lit up and it tells you can get a one-minute, a three-minute, or a five-minute story,” says Alicia Trost, the chief communications officer for the San Francisco Bay Area Rapid Transit — known as BART. “You choose which length you want and it gives you a receipt-like short story.”It’s that simple. Riders have printed nearly 20,000 short stories and poems since the program was launched last March. Some are classic short stories, and some are new original works.Trost also wants to introduce local writers to local riders. “We wanted to do something where we do a call to artists in the Bay Area to submit stories for a contest,” Trost says. “And as of right now, we’ve received about 120 submissions. The winning stories would go into our kiosk and then you would be a published artist.”Ridership on transit(交通)systems across the country has been down the past half century, so could short stories save transit?Trost thinks so.“At the end of the day all transit agencies right now are doing everything they can to improve the rider experience. So I absolutely think we will get more riders just because of short stories,” she says.And you’ll never be without something to read.24. Why did BART start the kiosk program?A. To promote the local culture.B. To discourage phone use.C. To meet passengers’ needs.D. To reduce its running costs.25. How are the stories categorized in the kiosk?A. By popularity.B. By length.C. By theme.D. By language.26. What has Trost been doing recently?A. Organizing a story contest.B. Doing a survey of customers.C. Choosing a print publisher.D. Conducting interviews with artists.27. What is Trost’s opinion about BART’s future?A. It will close down.B. Its profits will decline.C. It will expand nationwide.D. Its ridership will increase.CWe all know fresh is best when it comes to food. However, most produce at the store went through weeks of travel and covered hundreds of miles before reaching the table. While farmer’s markets are a solid choice to reduce the journey, Babylon Micro-Farm(BMF)shortens it even more.BMF is an indoor garden system. It can be set up for a family. Additionally, it could serve a larger audience such as a hospital, restaurant or school. The innovative design requires little effort to achieve a reliable weekly supply of fresh greens.Specifically, it’s a farm that relies on new technology. By connecting through the Cloud, BMF is remotely monitored. Also, there is a convenient app that provides growing data in real time. Because the system is automated, it significantly reduces the amount of water needed to grow plants. Rather than watering rows of soil, the system provides just the right amount to each plant. After harvest, users simply replace the plants with a new pre-seeded pod(容器)to get the next growth cycle started.Moreover, having a system in the same building where it’s eaten means zero emissions(排放)from transporting plants from soil to salad. In addition, there’s no need for pesticides and other chemicals that pollute traditional farms and the surrounding environment.BMF employees live out sustainability in their everyday lives. About half of them walk or bike to work. Inside the office, they encourage recycling and waste reduction by limiting garbage cans and avoiding single-use plastic. “We are passionate about reducing waste, carbon and chemicals in our environment,” said a BMF employee.28. What can be learned about BMF from paragraph 1?A. It guarantees the variety of food.B. It requires day-to-day care.C. It cuts the farm-to-table distance.D. It relies on farmer’s markets.29. What information does the convenient app offer?A. Real-time weather changes.B. Current condition of the plants.C. Chemical pollutants in the soil.D. Availability of pre-seeded pods.30. What can be concluded about BMF employees?A. They have a great passion for sports.B. They are devoted to community service.C. They are fond of sharing daily experiences.D. They have a strong environmental awareness.31. What does the text mainly talk about?A. BMF’s major strengths.B. BMF’s general management.C. BMF’s global influence.D. BMF’s technical standards.DGiven the astonishing potential of AI to transform our lives, we all need to take action to deal with our AI-powered future, and this is where AI by Design: A Plan for Living with Artificial Intelligence comes in. This absorbing new book by Catriona Campbell is a practical roadmap addressing the challenges posed by the forthcoming AI revolution(变革).In the wrong hands, such a book could prove as complicated to process as the computer code (代码)that powers AI but, thankfully, Campbell has more than two decades’ professional experience translating the heady into the understandable. She writes from the practical angle of a business person rather than as an academic, making for a guide which is highly accessible and informative and which, by the close, will make you feel almost as smart as AI.As we soon come to learn from AI by Design, AI is already super-smart and will become more capable, moving from the current generation of “narrow-AI” to Artificial General Intelligence. From there, Campbell says, will come Artificial Dominant Intelligence. This is why Campbell has set out to raise awareness of AI and its future now-several decades before these developments are expected to take place. She says it is essential that we keep control of artificial intelligence, or risk being sidelined and perhaps even worse.Campbell’s point is to wake up those responsible for AI-the technology companies and world leaders-so they are on the same page as all the experts currently developing it. She explains we are at a “tipping point” in history and must act now to prevent an extinction-level event for humanity.We need to consider how we want our future with Al to pan out. Such structured thinking, followed by global regulation, will enable us to achieve greatness rather than our downfall.AI will affect us all, and if you only read one book on the subject, this is it.32. What does the phrase “In the wrong hands” in paragraph 2 probably mean?A. If read by someone poorly educated.B. If reviewed by someone ill-intentioned.C. If written by someone less competent.D. If translated by someone unacademic.33. What is a feature of AI by Design according to the text?A. It is packed with complex codes.B. It adopts a down-to-earth writing style.C. It provides step-by-step instructions.D. It is intended for AI professionals.34. What does Campbell urge people to do regarding AI development?A. Observe existing regulations on it.B. Reconsider expert opinions about it.C. Make joint efforts to keep it under control.D. Learn from prior experience to slow it down.35. What is the author’s purpose in writing the text?A. To recommend a book on AI.B. To give a brief account of AI history.C. To clarify the definition of AI.D. To honor an outstanding AI expert.第二节(共5小题;每小题2.5分,满分12.5分)阅读下面短文,从短文后的选项中选出可以填入空白处的最佳选项。
2023年普通高等学校招生统一考试数学及答案(新课标全国Ⅰ卷)
2023年普通高等学校招生全国统一考试(试卷类型:A )数学本试卷共4页,22小题,满分150分。
考试用时120分钟。
注意事项:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答 案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定 区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不 准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共计40分,每小题给出的四个选项中,只有一个选项是正确的,请把正确的选项填涂在答题卡相应的位置上. 1.已知集合M ={-2,-1,0,1,2,3},N ={x |x 2-x -6≥0},则M ∩N =( ) A.{-2,-1,0,1}B.{0,1,2}C.{-2}D.22.已知z =1i22i-+则z z -=( ) A.-iB.iC.0D.13.已知向量a =(1,1),b =(1,-1).若(a +λb )⊥(a +μb ),则( ) A.λ+μ=1B.λ+μ=-1C.λμ=1D.λμ=-14设函数f (x )=2x (x -a )在区间(0,1)单调递减,则a 的取值范围是( ) A.(-∞,-2]B.[-2,0)C.(0,2]D.[2,+∞)5.设椭圆C 1:2221x y a+=(a >1),C 2:2214x y +=的离心率分别为e 1,e 2若e 21,则a =( )6.过(0,-2)与圆x 2+y 2-4x -1=0相切的两条直线的夹角为a ,则sin α=( )A.17.记S n 为数列{a n }的前n 项和,设甲:{a n }为等差数列;乙:{nS n}为等差数列,则(( ) A .甲是乙的充分条件但不是必要条件 B .甲是乙的必要条件但不是充分条件 C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 8.已知sin(α-β)=13,cos αsin β=16则cos(2α+2β)=( ) A.79B.19C.-19D.-79二、选择题:本大题共4小题,每小题5分,共计20分每小题给出的四个选项中,有多项符合题目要求。
普通高等学校招生全国统一考试卷及含答案) (1)
普通高等学校招生全国统一考试数学(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1.如右图, A 、B 、C 、D 是某煤矿的四个采煤点, l 是公路, 图中所标线段为道路, ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3, 运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站, 使四个采煤点的煤运到中转站的费用最少, 则地点应选在( ) A.P 点B.Q 点C.R 点D.S 点2.若(3a2 -312a ) n 展开式中含有常数项, 则正整数n 的最小值是 ( )A .4B .5C . 6D . 83. 从5名演员中选3人参加表演, 其中甲在乙前表演的概率为 ( ) A .B .C .D .4、等差数列中,已知,,使得的最小正整数n 为( )A .7B .8C .9D .105、为了解疾病A 是否与性别有关,在一医院随机的对入院50人进行了问卷调查得到了如下的列联表:患疾病A 不患疾病A 合计 男 20 5 25 女101525203103201101{}n a112a =-130S =0n a >EFDOC BA合计 3020 50请计算出统计量,你有多大的把握认为疾病A 与性别有关下面的临界值表供参考: ( )0.050.010 0.005 0.0013.841 6.635 7.879 10.828A. B. C. D.6.计算机是将信息转换成二进制进行处理的, 二进制即“逢2进1”如(1101)2表示二进制数, 将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数转换成十进制形式是( )A.217-2B.216-2C.216-1D.215-17.已知f(cosx)=cos3x,则f(sin30°)的值是( ) A.1B.23C.0D.-18.已知y=f(x)是偶函数, 当x>0时, f(x)=x+x 4,当x ∈[-3,-1]时, 记f(x)的最大值为m , 最小值为n , 则m -n 等于( ) A.2B.1C.3D.239.某村有旱地与水田若干, 现在需要估计平均亩产量, 用按5%比例分层抽样的方k 95%99%99.5%99.9%法抽取了15亩旱地45亩水田进行调查,则这个村的旱地与水田的亩数分别为()A.150,450B.300,900C.600,600D.75,22510.在同一直角坐标系中,函数y =1xa,y=loga(x+12)(a>0,且a≠1)的图象可能是( )11.设0<a<1,则随机变量X的分布列是( )则当a在(0,1)内增大时,A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大12.设三棱锥V–ABC的底面是正三角形,侧棱长均相等,P是棱V A上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P–AC–B的平面角为γ,则( )A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β二、填空题(共4小题,每小题5分;共计20分)1、已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为_________.2、不等式0)5(1<--x x )(的解集是______. (用集合表示) 3.ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b a c B ===,则ABC △的面积为__________.4.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.三、大题:(满分70分)1、甲、乙两名篮球运动员,甲投篮的命中率为0.6,乙投篮的命中率为0.7,两人是否投中相互之间没有影响,求:(1)两人各投一次,只有一人命中的概率;(2)每人投篮两次,甲投中1球且乙投中2球的概率. 2、已知f(x)=2x +3,g(x +2)=f(x),求g(x)3.已知点M 是离心率是上一点:过点M 作直线MA 、MB 交椭圆C 于A :B 两点:且斜率分别为 (1)若点A :B 关于原点对称:求的值:2222:1(0)3x y C a b a b +=>>12,.k k 12k k ⋅(2)若点M 的坐标为(0:1):且:求证:直线AB 过定点:并求直线AB 的斜的取值范围。
2024年高考真题——英语(北京卷)含答案
2024年普通高等学校招生高考真题全国统一考试(北京卷)英语(答案在最后)第一部分知识运用(共两节,30分)第一节(共10小题;每小题 1.5分,共15分)阅读下面短文,掌握其大意,从每题所给的A、B、C、D四个选项中,选出最佳选项。
I’d just arrived at school,ready for another school day.I was reading a book in the classroom when there was an___1___.“Today at1:10there will be auditions(面试)for a musical.”My friends all jumped up in excitement and asked me,“Will you be going,Amy?”“Sure,”I said.I had no___2___in drama,but I’d try out because my friends were doing it.At1:10,there was a___3___outside the drama room.Everyone looked energetic.I hadn’t expected I’d be standing there that morning.But now that I was doing it,I___4___felt nervous.What if I wasn’t any good?I entered the room and the teachers made me say some lines from the musical.They then___5___my singing skills and asked what role I wanted to play.The teachers were smiling and praising me.I felt like I had a___6___,so I said,“A big role.”They said they’d look into it.I started getting really nervous.What if I didn’t get a main role?Soon,the cast list was___7___.My friends checked and came back shouting,“Amy,you got the main role!”Sure enough,my name was at the top.I just stared at it and started to___8___.I was so happy.After two months we were all prepared and ready to go on stage.It was fun.And when people started___9___,that gave me a boost of confidence.It stayed with me and made me feel___10___.I realised that by trying something new,I can have fun—even if it means stepping out of my comfort zone.1.A.assignment B.initiative C.announcement D.interview2.A.hesitancy B.interest C.worry D.regret3.A.game B.show C.play D.line4.A.suddenly B.continuously C.originally D.generally5.A.advertised B.tested C.challenged D.polished6.A.demand B.credit C.dream D.chance7.A.traded B.posted C.questioned D.claimed8.A.well up B.roll in C.stand out D.go off9.A.whispering B.arguing C.clapping D.stretching10.A.funnier B.fairer C.cleverer D.braver【答案】1.C 2.B 3.D 4.A 5.B 6.D7.B8.A9.C10.D【导语】本文是一篇记叙文。
2023年高考语文全国乙卷真题及参考答案(含解析)
2023年高考语文全国乙卷真题及参考答案(含解析)绝密启用前2023年普通高等学校招生全国统一考试(新课标全国Ⅱ卷)语文参考答案注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)【1~5题答案】【答案】1. B 2. C 3. B4. “敲诈”“斗智”“拷问”在*中的特殊含义是调查研究的错误的立场、态度和方式,为了论证调查者搞社会调查不能与被调查者敌对,不能欺骗,不能居高临下,应该认清自己的立场和目的,从反面论证调查者应该站在被调查者的利益上,应尊重对方,目的是解答疑惑。
这三个词的运用,生动形象的说明了调查者错误的调查目的、方式和态度,使论证语言生动形象,深入浅出、易于理解。
5. ①实现调查研究“客观”的目的,必须要从群众中来、到群众中去,广泛听取群众意见;②调查研究必须坚持实事求是的原则,树立求真务实的作风,具有追求真理、修正错误的勇气。
③调查研究要实现“客观”的目的,就要控制他所要观察的现象,要与被观察者取得充分合作;④观察社会现象时,要能确知观察情境中各种因子对于被观察现象所起的作用,要认清自己的立场和目的,站在被调查者的利益上才能获得相对客观的信息和结论。
(二)现代文阅读II(本题共4小题,16分)【6~9题答案】【答案】6. D 7. C8. ①正面描写:如写开锣时磕头焚香、杀牲、烧申神黄表等祭拜仪式,体现社戏的仪式感;写社戏演出的固定内容、顺序、打赏等体现其仪式感。
②侧面烘托:写人们看戏时服饰打扮的隆重来表现对社戏的重视;写看社戏时各种卖吃食的热闹场景,和长顺家请客等内容体现其仪式感;写吕家坪的重要人物出场,还备办酒席款待这些人物来表现社戏的仪式感。
(含答案解析)2023年高考全国乙卷-理数
2023年普通高等学校招生全国统一考试理科数学一、选择题1.设z =2+i1+i 2+i5,则z =()A.1-2iB.1+2iC.2-iD.2+i【答案】B 【解析】【分析】由题意首先计算复数z 的值,然后利用共轭复数的定义确定其共轭复数即可.【详解】由题意可得z =2+i 1+i 2+i 5=2+i 1-1+i =i 2+i i2=2i -1-1=1-2i ,则z=1+2i.故选:B .2.设集合U =R ,集合M =x x <1 ,N =x -1<x <2 ,则x x ≥2=()A.∁U M ∪NB.N ∪∁U MC.∁U M ∩ND.M ∪∁U N【答案】A 【解析】【分析】由题意逐一考查所给的选项运算结果是否为x |x ≥2 即可.【详解】由题意可得M ∪N =x |x <2 ,则∁U M ∪N =x |x ≥2 ,选项A 正确;∁U M =x |x ≥1 ,则N ∪∁U M =x |x >-1 ,选项B 错误;M ∩N =x |-1<x <1 ,则∁U M ∩N =x |x ≤-1 或x ≥1 ,选项C 错误;∁U N =x |x ≤-1 或x ≥2 ,则M ∪∁U N =x |x <1 或x ≥2 ,选项D 错误;故选:A .3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.30【答案】D 【解析】【分析】由题意首先由三视图还原空间几何体,然后由所得的空间几何体的结构特征求解其表面积即可.【详解】如图所示,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=3,点H ,I ,J ,K 为所在棱上靠近点B 1,C 1,D 1,A 1的三等分点,O ,L ,M ,N 为所在棱的中点,则三视图所对应的几何体为长方体ABCD -A 1B 1C 1D 1去掉长方体ONIC 1-LMHB 1之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形,其表面积为:2×2×2 +4×2×3 -2×1×1 =30.故选:D .4.已知f (x )=xe xe ax -1是偶函数,则a =()A.-2B.-1C.1D.2【答案】D 【解析】【分析】根据偶函数的定义运算求解.【详解】因为f x =xe x e ax-1为偶函数,则f x -f -x =xexe ax -1--x e-xe -ax -1=x e x -e a -1xe ax -1=0,又因为x 不恒为0,可得e x -e a -1 x=0,即e x =e a -1x,则x =a -1 x ,即1=a -1,解得a =2.故选:D .5.设O 为平面坐标系的坐标原点,在区域x ,y 1≤x 2+y 2≤4 内随机取一点,记该点为A ,则直线OA 的倾斜角不大于π4的概率为()A.18B.16C.14D.12【解析】【分析】根据题意分析区域的几何意义,结合几何概型运算求解.【详解】因为区域x ,y |1≤x 2+y 2≤4 表示以O 0,0 圆心,外圆半径R =2,内圆半径r =1的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角∠MON =π4,结合对称性可得所求概率P =2×π42π=14.故选:C .6.已知函数f (x )=sin (ωx +φ)在区间π6,2π3 单调递增,直线x =π6和x =2π3为函数y =f x 的图像的两条对称轴,则f -5π12 =()A.-32B.-12C.12D.32【答案】D 【解析】【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入x =-5π12即可得到答案.【详解】因为f (x )=sin (ωx +φ)在区间π6,2π3单调递增,所以T 2=2π3-π6=π2,且ω>0,则T =π,w =2πT =2,当x =π6时,f x 取得最小值,则2⋅π6+φ=2k π-π2,k ∈Z ,则φ=2k π-5π6,k ∈Z ,不妨取k =0,则f x =sin 2x -5π6 ,则f -5π12 =sin -5π3 =32,7.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A.30种B.60种C.120种D.240种【答案】C 【解析】【分析】相同读物有6种情况,剩余两种读物的选择再进行排列,最后根据分步乘法公式即可得到答案.【详解】首先确定相同得读物,共有C 16种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有A 25种,根据分步乘法公式则共有C 16⋅A 25=120种,故选:C .8.已知圆锥PO 的底面半径为3,O 为底面圆心,PA ,PB 为圆锥的母线,∠AOB =120°,若△PAB 的面积等于934,则该圆锥的体积为()A.πB.6πC.3πD.36π【答案】B 【解析】【分析】根据给定条件,利用三角形面积公式求出圆锥的母线长,进而求出圆锥的高,求出体积作答.【详解】在△AOB 中,∠AOB =120°,而OA =OB =3,取AC 中点C ,连接OC ,PC ,有OC ⊥AB ,PC ⊥AB ,如图,∠ABO =30°,OC =32,AB =2BC =3,由△PAB 的面积为934,得12×3×PC =934,解得PC =332,于是PO =PC 2-OC 2=332 2-32 2=6,所以圆锥的体积V =13π×OA 2×PO =13π×(3)2×6=6π.9.已知△ABC 为等腰直角三角形,AB 为斜边,△ABD 为等边三角形,若二面角C -AB -D 为150°,则直线CD 与平面ABC 所成角的正切值为()A.15B.25C.35D.25【答案】C 【解析】【分析】根据给定条件,推导确定线面角,再利用余弦定理、正弦定理求解作答.【详解】取AB 的中点E ,连接CE ,DE ,因为△ABC 是等腰直角三角形,且AB 为斜边,则有CE ⊥AB ,又△ABD 是等边三角形,则DE ⊥AB ,从而∠CED 为二面角C -AB -D 的平面角,即∠CED =150°,显然CE ∩DE =E ,CE ,DE ⊂平面CDE ,于是AB ⊥平面CDE ,又AB ⊂平面ABC ,因此平面CDE ⊥平面ABC ,显然平面CDE ∩平面ABC =CE ,直线CD ⊂平面CDE ,则直线CD 在平面ABC 内的射影为直线CE ,从而∠DCE 为直线CD 与平面ABC 所成的角,令AB =2,则CE =1,DE =3,在△CDE 中,由余弦定理得:CD =CE 2+DE 2-2CE ⋅DE cos ∠CED =1+3-2×1×3×-32=7,由正弦定理得DE sin ∠DCE =CDsin ∠CED,即sin ∠DCE =3sin150°7=327,显然∠DCE 是锐角,cos ∠DCE =1-sin 2∠DCE =1-3272=527,所以直线CD 与平面ABC 所成的角的正切为35.故选:C10.已知等差数列a n 的公差为2π3,集合S =cos a n n ∈N * ,若S =a ,b ,则ab =()A.-1B.-12C.0D.12【解析】【分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素分析、推理作答.【详解】依题意,等差数列{a n }中,a n =a 1+(n -1)⋅2π3=2π3n +a 1-2π3,显然函数y =cos 2π3n +a 1-2π3的周期为3,而n ∈N ∗,即cos a n 最多3个不同取值,又{cos a n |n ∈N ∗}={a ,b },则在cos a 1,cos a 2,cos a 3中,cos a 1=cos a 2≠cos a 3或cos a 1≠cos a 2=cos a 3,于是有cos θ=cos θ+2π3 ,即有θ+θ+2π3 =2k π,k ∈Z ,解得θ=k π-π3,k ∈Z ,所以k ∈Z ,ab =cos k π-π3 cos k π-π3 +4π3 =-cos k π-π3 cos k π=-cos 2k πcos π3=-12.故选:B11.设A ,B 为双曲线x 2-y 29=1上两点,下列四个点中,可为线段AB 中点的是()A.1,1B.-1,2C.1,3D.-1,-4【答案】D 【解析】【分析】根据点差法分析可得k AB ⋅k =9,对于A 、B 、D :通过联立方程判断交点个数,逐项分析判断;对于C :结合双曲线的渐近线分析判断.【详解】设A x 1,y 1 ,B x 2,y 2 ,则AB 的中点M x 1+x 22,y 1+y 22,可得k AB =y 1-y 2x 1-x 2,k =y 1+y 22x 1+x 22=y 1+y 2x 1+x 2,因为A ,B 在双曲线上,则x 21-y 219=1x 22-y 229=1,两式相减得x 21-x 22-y 21-y 229=0,所以k AB ⋅k =y 21-y 22x 21-x 22=9.对于选项A :可得k =1,k AB =9,则AB :y =9x -8,联立方程y =9x -8x 2-y 29=1 ,消去y 得72x 2-2×72x +73=0,此时Δ=-2×72 2-4×72×73=-288<0,所以直线AB 与双曲线没有交点,故A 错误;对于选项B :可得k =-2,k AB =-92,则AB :y =-92x -52,联立方程y =-92x -52x 2-y 29=1,消去y 得45x 2+2×45x +61=0,此时Δ=2×45 2-4×45×61=-4×45×16<0,所以直线AB 与双曲线没有交点,故B 错误;对于选项C :可得k =3,k AB =3,则AB :y =3x由双曲线方程可得a =1,b =3,则AB :y =3x 为双曲线的渐近线,所以直线AB 与双曲线没有交点,故C 错误;对于选项D :k =4,k AB =94,则AB :y =94x -74,联立方程y =94x -74x 2-y 29=1,消去y 得63x 2+126x -193=0,此时Δ=1262+4×63×193>0,故直线AB 与双曲线有交两个交点,故D 正确;故选:D .12.已知⊙O 的半径为1,直线PA 与⊙O 相切于点A ,直线PB 与⊙O 交于B ,C 两点,D 为BC 的中点,若PO =2,则PA ⋅PD的最大值为()A.1+22B.1+222C.1+2D.2+2【答案】A 【解析】【分析】由题意作出示意图,然后分类讨论,利用平面向量的数量积定义可得PA ⋅PD =12-22sin 2α-π4 ,或PA ⋅PD =12+22sin 2α+π4 然后结合三角函数的性质即可确定PA ⋅PD的最大值.【详解】如图所示,OA =1,OP =2,则由题意可知:∠APO =45°,由勾股定理可得PA =OP 2-OA 2=1当点A ,D 位于直线PO 异侧时,设∠OPC =α,0≤α≤π4,则:PA ⋅PD =|PA |⋅|PD |cos α+π4=1×2cos αcos α+π4=2cos α22cos α-22sin α =cos 2α-sin αcos α=1+cos2α2-12sin2α=12-22sin 2α-π4 0≤α≤π4,则-π4≤2α-π4≤π4∴当2α-π4=-π4时,PA ⋅PD 有最大值1.当点A ,D 位于直线PO 同侧时,设∠OPC =α,0≤α≤π4,则:PA ⋅PD =|PA |⋅|PD |cos α-π4=1×2cos αcos α-π4=2cos α22cos α+22sin α =cos 2α+sin αcos α=1+cos2α2+12sin2α=12+22sin 2α+π40≤α≤π4,则π4≤2α+π4≤π2∴当2α+π4=π2时,PA ⋅PD 有最大值1+22.综上可得,PA ⋅PD 的最大值为1+22.13.已知点A 1,5【点睛】本题的核心在于能够正确作出示意图,然后将数量积的问题转化为三角函数求最值的问题,考查了学生对于知识的综合掌握程度和灵活处理问题的能力.二、填空题在抛物线C :y 2=2px 上,则A 到C 的准线的距离为.【答案】94【解析】【分析】由题意首先求得抛物线的标准方程,然后由抛物线方程可得抛物线的准线方程为x =-54,最后利用点的坐标和准线方程计算点A 到C 的准线的距离即可.【详解】由题意可得:5 2=2p ×1,则2p =5,抛物线的方程为y 2=5x ,准线方程为x =-54,点A 到C 的准线的距离为1--54 =94.故答案为:94.14.若x ,y 满足约束条件x-3y ≤-1x +2y ≤93x +y ≥7,则z =2x -y 的最大值为.【答案】8【解析】【分析】作出可行域,转化为截距最值讨论即可.详解】作出可行域如下图所示:z =2x -y ,移项得y =2x -z ,联立有x -3y =-1x +2y =9,解得x =5y =2 ,设A 5,2 ,显然平移直线y =2x 使其经过点A ,此时截距-z 最小,则z 最大,代入得z =8,故答案为:8.15.已知a n 为等比数列,a 2a 4a 5=a 3a 6,a 9a 10=-8,则a 7=.【解析】【分析】根据等比数列公式对a 2a 4a 5=a 3a 6化简得a 1q =1,联立a 9a 10=-8求出q 3=-2,最后得a 7=a 1q ⋅q 5=q 5=-2.【详解】设a n 的公比为q q ≠0 ,则a 2a 4a 5=a 3a 6=a 2q ⋅a 5q ,显然a n ≠0,则a 4=q 2,即a 1q 3=q 2,则a 1q =1,因为a 9a 10=-8,则a 1q 8⋅a 1q 9=-8,则q 15=q 5 3=-8=-2 3,则q 3=-2,则a 7=a 1q ⋅q 5=q 5=-2,故答案为:-2.16.设a ∈0,1 ,若函数f x =a x +1+a x 在0,+∞ 上单调递增,则a 的取值范围是.【答案】5-12,1 【解析】【分析】原问题等价于f x =a x ln a +1+a x ln 1+a ≥0恒成立,据此将所得的不等式进行恒等变形,可得1+a a x ≥-ln aln 1+a ,由右侧函数的单调性可得实数a 的二次不等式,求解二次不等式后可确定实数a 的取值范围.【详解】由函数的解析式可得f x =a x ln a +1+a x ln 1+a ≥0在区间0,+∞ 上恒成立,则1+a x ln 1+a ≥-a x ln a ,即1+a a x ≥-ln aln 1+a在区间0,+∞ 上恒成立,故1+a a 0=1≥-ln aln 1+a,而a +1∈1,2 ,故ln 1+a >0,故ln a +1 ≥-ln a 0<a <1即a a +1 ≥10<a <1 ,故5-12≤a <1,结合题意可得实数a 的取值范围是5-12,1.故答案为:5-12,1.三、解答题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为x i ,y i (i =1,2,⋅⋅⋅10),试验结果如下试验序号i 12345678910伸缩率x i545355525754545659545312541868伸缩率y i536527543530560533522550576536记z i =x i -y i (i =1,2,⋯,10),记z 1,z 2,⋯,z 10的样本平均数为z,样本方差为s 2,(1)求z ,s 2;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥2s 210,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).【答案】(1)z =11,s 2=61;(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.【解析】【分析】(1)直接利用平均数公式即可计算出x ,y ,再得到所有的z i 值,最后计算出方差即可;(2)根据公式计算出2s 210的值,和z 比较大小即可.【小问1详解】x =545+533+551+522+575+544+541+568+596+54810=552.3,y =536+527+543+530+560+533+522+550+576+53610=541.3,z =x -y=552.3-541.3=11,z i =x i -y i 的值分别为:9,6,8,-8,15,11,19,18,20,12,故s 2=(9-11)2+(6-11)2+(8-11)2+(-8-11)2+(15-11)2+0+(19-11)2+(18-11)2+(20-11)2+(12-110=61【小问2详解】由(1)知:z=11,2s 210=2 6.1=24.4,故有z ≥2s 210,所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.18.在△ABC 中,已知∠BAC =120°,AB =2,AC =1.(1)求sin ∠ABC ;(2)若D 为BC 上一点,且∠BAD =90°,求△ADC 的面积.【答案】(1)21 14;(2)310.【解析】【分析】(1)首先由余弦定理求得边长BC的值为BC=7,然后由余弦定理可得cos B=5714,最后由同角三角函数基本关系可得sin B=21 14;(2)由题意可得S△ABDS△ACD=4,则S△ACD=15S△ABC,据此即可求得△ADC的面积.【小问1详解】由余弦定理可得:BC2=a2=b2+c2-2bc cos A=4+1-2×2×1×cos120°=7,则BC=7,cos B=a2+c2-b22ac=7+4-12×2×7=5714,sin B=1-cos2B=1-2528=2114.【小问2详解】由三角形面积公式可得S△ABDS△ACD=12×AB×AD×sin90°12×AC×AD×sin30°=4,则S△ACD=15S△ABC=15×12×2×1×sin120°=310.19.如图,在三棱锥P-ABC中,AB⊥BC,AB=2,BC=22,PB=PC=6,BP,AP,BC的中点分别为D,E,O,AD=5DO,点F在AC上,BF⊥AO.(1)证明:EF⎳平面ADO;(2)证明:平面ADO⊥平面BEF;(3)求二面角D-AO-C的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)22.【解析】【分析】(1)根据给定条件,证明四边形ODEF 为平行四边形,再利用线面平行判定推理作答.(2)由(1)的信息,结合勾股定理的逆定理及线面垂直、面面垂直的判定推理作答.(3)由(2)的信息作出并证明二面角的平面角,再结合三角形重心及余弦定理求解作答.【小问1详解】连接DE ,OF ,设AF =tAC ,则BF =BA +AF =(1-t )BA +tBC ,AO =-BA +12BC ,BF ⊥AO ,则BF ⋅AO =[(1-t )BA +tBC ]⋅-BA +12BC =(t -1)BA 2+12tBC 2=4(t -1)+4t =0,解得t =12,则F 为AC 的中点,由D ,E ,O ,F 分别为PB ,PA ,BC ,AC 的中点,于是DE ⎳AB ,DE =12AB ,OF ⎳AB ,OF =12AB ,即DE ⎳OF ,DE =OF ,则四边形ODEF 为平行四边形,EF ⎳DO ,EF =DO ,又EF ⊄平面ADO ,DO ⊂平面ADO ,所以EF ⎳平面ADO .ABCDEO P【小问2详解】由(1)可知EF ⎳OD ,则AO =6,DO =62,得AD =5DO =302,因此OD 2+AO 2=AD 2=152,则OD ⊥AO ,有EF ⊥AO ,又AO ⊥BF ,BF ∩EF =F ,BF ,EF ⊂平面BEF ,则有AO ⊥平面BEF ,又AO ⊂平面ADO ,所以平面ADO ⊥平面BEF .【小问3详解】过点O 作OH ⎳BF 交AC 于点H ,设AD ∩BE =G ,由AO ⊥BF ,得HO ⊥AO ,且FH =13AH ,又由(2)知,OD ⊥AO ,则∠DOH 为二面角D -AO -C 的平面角,因为D ,E 分别为PB ,PA 的中点,因此G 为△PAB 的重心,即有DG =13AD ,GE =13BE ,又FH =13 AH ,即有DH =32GF ,cos ∠ABD =4+32-1522×2×62=4+6-PA 22×2×6,解得PA =14,同理得BE =62,于是BE 2+EF 2=BF 2=3,即有BE ⊥EF ,则GF 2=13×622+622=53,从而GF =153,DH =32×153=152,在△DOH 中,OH =12BF =32,OD =62,DH =152,于是cos ∠DOH =64+34-1542×62×32=-22,sin ∠DOH =1--222=22,所以二面角D -AO -C 的正弦值为22.ABCD EFGH OP20.已知椭圆C :y 2a 2+x 2b 2=1a >b >0 的离心率为53,点A -2,0 在C 上.(1)求C 的方程;(2)过点-2,3 的直线交C 于点P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)y 29+x 24=1(2)证明见详解【解析】【分析】(1)根据题意列式求解a ,b ,c ,进而可得结果;(2)设直线PQ 的方程,进而可求点M ,N 的坐标,结合韦达定理验证y M +y N2为定值即可.【小问1详解】由题意可得b =2a 2=b 2+c 2e =c a =53,解得a =3b =2c =5,所以椭圆方程为y 29+x 24=1.【小问2详解】由题意可知:直线PQ 的斜率存在,设PQ :y =k x +2 +3,P x 1,y 1 ,Q x 2,y 2 ,联立方程y =k x +2 +3y 29+x 24=1,消去y 得:4k 2+9 x 2+8k 2k +3 x +16k 2+3k =0,则Δ=64k 22k +3 2-644k 2+9 k 2+3k =-1728k >0,解得k <0,可得x 1+x 2=-8k 2k +34k 2+9,x 1x 2=16k 2+3k 4k 2+9,因为A -2,0 ,则直线AP :y =y 1x 1+2x +2 ,令x =0,解得y =2y 1x 1+2,即M 0,2y 1x 1+2,同理可得N 0,2y 2x 2+2,则2y 1x 1+2+2y 2x 2+22=k x 1+2 +3x 1+2+k x 2+2 +3x 2+2=kx 1+2k +3 x 2+2 +kx 2+2k +3 x 1+2 x 1+2 x 2+2=2kx 1x 2+4k +3 x 1+x 2 +42k +3x 1x 2+2x 1+x 2 +4=32k k 2+3k 4k 2+9-8k 4k +3 2k +34k 2+9+42k +316k 2+3k 4k 2+9-16k 2k +34k 2+9+4=10836=3,所以线段PQ 的中点是定点0,3 .【点睛】方法点睛:求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值;(3)得出结论.21.已知函数f(x)=1x +aln(1+x).(1)当a=-1时,求曲线y=f x 在点1,f1处的切线方程;(2)是否存在a,b,使得曲线y=f1x关于直线x=b对称,若存在,求a,b的值,若不存在,说明理由.(3)若f x 在0,+∞存在极值,求a的取值范围.【答案】(1)ln2x+y-ln2=0;(2)存在a=12,b=-12满足题意,理由见解析.(3)0,12.【解析】【分析】(1)由题意首先求得导函数的解析式,然后由导数的几何意义确定切线的斜率和切点坐标,最后求解切线方程即可;(2)首先求得函数的定义域,由函数的定义域可确定实数b的值,进一步结合函数的对称性利用特殊值法可得关于实数a的方程,解方程可得实数a的值,最后检验所得的a,b是否正确即可;(3)原问题等价于导函数有变号的零点,据此构造新函数g x =ax2+x-x+1ln x+1,然后对函数求导,利用切线放缩研究导函数的性质,分类讨论a≤0,a≥12和0<a<12三中情况即可求得实数a的取值范围.【小问1详解】当a=-1时,f x =1x-1ln x+1,则f x =-1x2×ln x+1+1x-1×1x+1,据此可得f1 =0,f 1 =-ln2,函数在1,f1处的切线方程为y-0=-ln2x-1,即ln2x+y-ln2=0.【小问2详解】由函数的解析式可得f1x=x+aln1x+1,函数的定义域满足1x+1=x+1x>0,即函数的定义域为-∞,-1∪0,+∞,定义域关于直线x=-12对称,由题意可得b=-12,由对称性可知f-12+m=f-12-mm>12,取m=32可得f1 =f-2,即a+1ln2=a-2ln 12,则a+1=2-a,解得a=12,经检验a=12,b=-12满足题意,故a=12,b=-12.即存在a=12,b=-12满足题意.【小问3详解】由函数的解析式可得f x =-1 x2ln x+1+1x+a1x+1,由f x 在区间0,+∞存在极值点,则f x 在区间0,+∞上存在变号零点;令-1 x2ln x+1+1x+a1x+1=0,则-x+1ln x+1+x+ax2=0,令g x =ax2+x-x+1ln x+1,f x 在区间0,+∞存在极值点,等价于g x 在区间0,+∞上存在变号零点,g x =2ax-ln x+1,g x =2a-1 x+1当a≤0时,g x <0,g x 在区间0,+∞上单调递减,此时g x <g0 =0,g x 在区间0,+∞上无零点,不合题意;当a≥12,2a≥1时,由于1x+1<1,所以g x >0,g x 在区间0,+∞上单调递增,所以g x >g 0 =0,g x 在区间0,+∞上单调递增,g x >g0 =0,所以g x 在区间0,+∞上无零点,不符合题意;当0<a<12时,由gx =2a-1x+1=0可得x=12a-1,当x∈0,12a-1时,g x <0,g x 单调递减,当x∈12a-1,+∞时,g x >0,g x 单调递增,故g x 的最小值为g12a-1=1-2a+ln2a,令m x =1-x+ln x0<x<1,则m x =-x+1x>0,函数m x 在定义域内单调递增,m x <m1 =0,据此可得1-x+ln x<0恒成立,则g 12a-1=1-2a +ln2a <0,令h x =ln x -x 2+x x >0 ,则hx =-2x 2+x +1x ,当x ∈0,1 时,h x >0,h x 单调递增,当x ∈1,+∞ 时,h x <0,h x 单调递减,故h x ≤h 1 =0,即ln x ≤x 2-x (取等条件为x =1),所以g x =2ax -ln x +1 >2ax -x +1 2-x +1 =2ax -x 2+x ,g 2a -1 >2a 2a -1 -2a -1 2+2a -1 =0,且注意到g 0 =0,根据零点存在性定理可知:g x 在区间0,+∞ 上存在唯一零点x 0.当x ∈0,x 0 时,g x <0,g x 单调减,当x ∈x 0,+∞ 时,g x >0,g x 单调递增,所以g x 0 <g 0 =0.令n x =ln x -12x -1x ,则n x =1x -121+1x 2=-x -1 22x2≤0,则n x 单调递减,注意到n 1 =0,故当x ∈1,+∞ 时,ln x -12x -1x <0,从而有ln x <12x -1x,所以g x =ax 2+x -x +1 ln x +1 >ax 2+x -x +1 ×12x +1 -1x +1=a -12 x 2+12,令a -12 x 2+12=0得x 2=11-2a,所以g 11-2a>0,所以函数g x区间0,+∞ 上存在变号零点,符合题意.综合上面可知:实数a 得取值范围是0,12.【点睛】(1)求切线方程的核心是利用导函数求切线的斜率,求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导,合函数求导,应由外到内逐层求导,必要时要进行换元.(2)根据函数的极值(点)求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;②验证:求解后验证根的合理性.本题中第二问利用对称性求参数值之后也需要进行验证.四、选做题【选修4-4】(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρ=2sin θπ4≤θ≤π2,曲线C 2:x =2cos αy =2sin α (α为参数,π2<α<π).(1)写出C 1的直角坐标方程;(2)若直线y =x +m 既与C 1没有公共点,也与C 2没有公共点,求m 的取值范围.【答案】(1)x 2+y -1 2=1,x ∈0,1 ,y ∈1,2 (2)-∞,0 ∪22,+∞ 【解析】【分析】(1)根据极坐标与直角坐标之间的转化运算求解,注意x ,y 的取值范围;(2)根据曲线C 1,C 2的方程,结合图形通过平移直线y =x +m 分析相应的临界位置,结合点到直线的距离公式运算求解即可.【小问1详解】因为ρ=2sin θ,即ρ2=2ρsin θ,可得x 2+y 2=2y ,整理得x 2+y -1 2=1,表示以0,1 为圆心,半径为1的圆,又因为x =ρcos θ=2sin θcos θ=sin2θ,y =ρsin θ=2sin 2θ=1-cos2θ,且π4≤θ≤π2,则π2≤2θ≤π,则x =sin2θ∈0,1 ,y =1-cos2θ∈1,2 ,故C 1:x 2+y -1 2=1,x ∈0,1 ,y ∈1,2 .【小问2详解】因为C 2:x =2cos αy =2sin α(α为参数,π2<α<π),整理得x 2+y 2=4,表示圆心为O 0,0 ,半径为2,且位于第二象限的圆弧,如图所示,若直线y =x +m 过1,1 ,则1=1+m ,解得m =0;若直线y =x +m ,即x -y +m =0与C 2相切,则m2=2m >0 ,解得m =22,若直线y=x +m 与C 1,C 2均没有公共点,则m >22或m <0,即实数m 的取值范围-∞,0 ∪22,+∞ .【选修4-5】(10分)23.已知f x =2x +x -2 .(1)求不等式f x ≤6-x 的解集;(2)在直角坐标系xOy 中,求不等式组f (x )≤yx +y -6≤0所确定的平面区域的面积.【答案】(1)[-2,2];(2)6.【解析】【分析】(1)分段去绝对值符号求解不等式作答.(2)作出不等式组表示的平面区域,再求出面积作答.【小问1详解】依题意,f (x )=3x -2,x >2x +2,0≤x ≤2-3x +2,x <0,不等式f (x )≤6-x 化为:x >23x -2≤6-x或0≤x ≤2x +2≤6-x 或x <0-3x +2≤6-x ,解x >23x -2≤6-x,得无解;解0≤x ≤2x +2≤6-x ,得0≤x ≤2,解x <0-3x +2≤6-x ,得-2≤x <0,因此-2≤x ≤2,所以原不等式的解集为:[-2,2]小问2详解】作出不等式组f (x )≤yx +y -6≤0表示的平面区域,如图中阴影△ABC,由y =-3x +2x +y =6,解得A (-2,8),由y =x +2x +y =6 , 解得C (2,4),又B (0,2),D (0,6),所以△ABC 的面积S △ABC =12|BD |×x C -x A =12|6-2|×|2-(-2)|=8.。
2024年全国甲卷理科综合高考真题卷(含答案与解析)_3386
机密★启用前2024年普通高等学校招生全国统一考试(全国甲卷)理科综合注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单选题(每小题6分,共78分)1. 细胞是生物体结构和功能的基本单位。
下列叙述正确的是()A. 病毒通常是由蛋白质外壳和核酸构成的单细胞生物B. 原核生物因为没有线粒体所以都不能进行有氧呼吸C. 哺乳动物同一个体中细胞的染色体数目有可能不同D. 小麦根细胞吸收离子消耗的ATP主要由叶绿体产生2. ATP可为代谢提供能量,也参与RNA的合成,ATP结构如图所示,图中~表示高能磷酸键,下列叙述错误的是()A. ATP转化为ADP可为离子的主动运输提供能量B. 用α位32P标记的ATP可以合成带有32P的RNAC. β和γ位磷酸基团之间的高能磷酸键不能在细胞核中断裂D. 光合作用可将光能转化为化学能储存于β和γ位磷酸基团之间的高能磷酸键3. 植物生长发育受植物激素的调控。
下列叙述错误的是()A. 赤霉素可以诱导某些酶的合成促进种子萌发B. 单侧光下生长素的极性运输不需要载体蛋白C. 植物激素可与特异性受体结合调节基因表达D. 一种激素可通过诱导其他激素的合成发挥作用4. 甲状腺激素在人体生命活动的调节中发挥重要作用。
下列叙述错误的是()A. 甲状腺激素受体分布于人体内几乎所有细胞B. 甲状腺激素可以提高机体神经系统的兴奋性C. 甲状腺激素分泌增加可使细胞代谢速率加快D. 甲状腺激素分泌不足会使血中TSH含量减少5. 某生态系统中捕食者与被捕食者种群数量变化的关系如图所示,图中→表示种群之间数量变化的关系,如甲数量增加导致乙数量增加。
下列叙述正确的是()A. 甲数量的变化不会对丙数量产生影响B. 乙在该生态系统中既是捕食者又是被捕食者C. 丙可能是初级消费者,也可能是次级消费者D. 能量流动方向可能是甲→乙→丙,也可能是丙→乙→甲6. 果蝇翅型、体色和眼色性状各由1对独立遗传的等位基因控制,其中弯翅、黄体和紫眼均为隐性性状,控制灰体、黄体性状的基因位于X染色体上。
2024年高考全国甲卷数学(理)真题卷(含答案与解析).
绝密★启用前2024年普通高等学校招生全国统一考试理科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上. 4.所有题目必须在答题卡上作答,在试题卷上答题无效. 5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设5i z =+,则()i z z +=( )A 10iB. 2iC. 10D. 2-2. 集合{}}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð( )A. {}1,4,9B. {}3,4,9C. {}1,2,3D. {}2,3,53. 若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( )A. 5B.12C. 2-D. 72-4. 等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =( ) A. 2-B.73C. 1D. 25. 已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为( ) A. 4B. 3C. 2D.6. 设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为( ) .A.16B.13C.12D.237. 函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A. B.C. D.8.已知cos cos sin ααα=-,则πtan 4α⎛⎫+= ⎪⎝⎭( )A. 1+B. 1-C.D. 19. 已知向量()()1,,,2a x x b x =+=r r,则( )A. “3x =-”是“a b ⊥r r”的必要条件 B. “3x =-”是“//a b r r”的必要条件 C. “0x =”是“a b ⊥r r ”充分条件D. “1x =-”是“//a b r r”的充分条件10. 设αβ、两个平面,m n 、是两条直线,且m αβ=I .下列四个命题: ①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n ⊥其中所有真命题的编号是( ) A. ①③B. ②④C. ①②③D. ①③④11. 在ABC V 中内角,,A B C 所对边分别,,a b c ,若π3B =,294b ac =,则sin sin A C +=( ) A.32B.C.D.12. 已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为( )的是为A. 2B. 3C. 4D. 二、填空题:本题共4小题,每小题5分,共20分.13. 1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______. 14. 已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙______. 15. 已知1a >,8115log log 42a a -=-,则=a ______. 16. 有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17. 某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品 合格品 不合格品总计 甲车间 26 24 0 50 乙车间 70 28 2 100 总计96522150(1)填写如下列联表:优级品非优级品甲车间 乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p =,设p 为升级改造后抽取的n 件产品的优级品率.如果p p >+150件产品的数据,能否认12.247≈)附:22()()()()()n ad bc K a b c d a c b d -=++++ ()2P K k ≥0.050 0.010 0.001 k3.8416.63510.82818. 记n S 为数列{}n a 的前n 项和,且434n n S a =+. (1)求{}n a 的通项公式; (2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和为n T .19. 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值.20. 设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.21 已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.(二)选考题:共10分,请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分. [选修4-4:坐标系与参数方程]22. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+. (1)写出C 的直角坐标方程; (2)设直线l :x ty t a=⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.[选修4-5:不等式选讲]23. 实数,a b 满足3a b +≥. (1)证明:2222a b a b +>+; (2)证明:22226a b b a -+-≥.参考答案一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设5i z =+,则()i z z +=( )A. 10iB. 2iC. 10D. 2-【答案】A 【解析】【分析】结合共轭复数与复数的基本运算直接求解.【详解】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=. 故选:A2. 集合{}}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð( )A. {}1,4,9B. {}3,4,9C. {}1,2,3D. {}2,3,5.【答案】D 【解析】【分析】由集合B 的定义求出B ,结合交集与补集运算即可求解. 【详解】因为{}}1,2,3,4,5,9,A B A ==,所以{}1,4,9,16,25,81B =,则{}1,4,9A B =I ,(){}2,3,5A A B =I ð 故选:D3. 若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( )A. 5B.12C. 2-D. 72-【答案】D 【解析】【分析】画出可行域后,利用z 的几何意义计算即可得.【详解】实数,x y 满足43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图:由5z x y =-可得1155y x z =-, 即z 的几何意义为1155y x z =-的截距的15-,则该直线截距取最大值时,z 有最小值, 此时直线1155y x z =-过点A , 联立43302690x y x y --=⎧⎨+-=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫ ⎪⎝⎭,则min 375122z =-⨯=-. 故选:D.4. 等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =( ) A. 2- B.73C. 1D. 2【答案】B 【解析】【分析】由510S S =结合等差中项的性质可得80a =,即可计算出公差,即可得1a 的值. 【详解】由105678910850S S a a a a a a -=++++==,则80a =, 则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭. 故选:B.5. 已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为( ) A. 4 B. 3C. 2D.【答案】C 【解析】【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率. 【详解】设()10,4F -、()20,4F 、()6,4-P , 则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =-=-=,则28224c e a ===. 故选:C.6. 设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为( ) A.16B.13C.12D.23【答案】A 【解析】【分析】借助导数的几何意义计算可得其在点()0,1处的切线方程,即可得其与坐标轴交点坐标,即可得其面积.【详解】()()()()()222e 2cos 1e 2sin 21xx x x x xf x x ++-+⋅'=+,则()()()()()02e 2cos 010e 2sin 000310f ++-+⨯'==+,即该切线方程为13y x -=,即31y x =+, 令0x =,则1y =,令0y =,则13x =-, 故该切线与两坐标轴所围成的三角形面积1111236S =⨯⨯-=. 故选:A.7. 函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A. B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D. 【详解】()()()()()22ee sin e e sin xx x x f x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭, 故可排除D.故选:B. 8. 已知cos cos sin ααα=-,则πtan 4α⎛⎫+= ⎪⎝⎭()A.1+B. 1-C.D. 1【答案】B 【解析】 【分析】先将cos cos sin αα-α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos cos sin ααα=-,所以11tan =-α,tan 1⇒α=-,所以tan 1tan 11tan 4α+π⎛⎫==-α+ ⎪-α⎝⎭, 故选:B .9. 已知向量()()1,,,2a x x b x =+=r r,则( )A. “3x =-”是“a b ⊥r r”的必要条件B. “3x =-”是“//a b r r”的必要条件C. “0x =”是“a b ⊥r r”的充分条件D. “1x =-”是“//a b r r”的充分条件【答案】C 【解析】【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【详解】对A ,当a b ⊥r r 时,则0a b ⋅=r r,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b ==r r ,故0a b ⋅=r r,所以a b ⊥r r,即充分性成立,故C 正确;对B ,当//a b r r时,则22(1)x x +=,解得1x =,即必要性不成立,故B 错误;对D ,当1x =-+时,不满足22(1)x x +=,所以//a b r r不成立,即充分性不立,故D 错误. 故选:C.10. 设αβ、是两个平面,m n 、是两条直线,且m αβ=I .下列四个命题: ①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n④若n 与α和β所成的角相等,则m n ⊥其中所有真命题的编号是( ) A. ①③ B. ②④C. ①②③D. ①③④【答案】A 【解析】【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③. 【详解】对①,当n ⊂α,因为//m n ,m β⊂,则//n β, 当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确; 对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s , 同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β, 因为s ⊂平面α,m αβ=I ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误; 综上只有①③正确, 故选:A.11. 在ABC V 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A.32B.C.D.【答案】C 【解析】【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==. 由余弦定理可得:22294b ac ac ac =+-=, 即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==, 所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin A C +=. 故选:C.12. 已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为( )A. 2B. 3C. 4D. 【答案】C 【解析】【分析】结合等差数列性质将c 代换,求出直线恒过的定点,采用数形结合法即可求解. 【详解】因为,,a b c 成等差数列,所以2b a c =+,2c b a =-,代入直线方程0ax by c ++=得20ax by b a ++-=,即()()120a x b y -++=,令1020x y -=⎧⎨+=⎩得12x y =⎧⎨=-⎩,故直线恒过()1,2-,设()1,2P -,圆化为标准方程得:()22:25C x y ++=,设圆心为C ,画出直线与圆的图形,由图可知,当PC AB ⊥时,AB 最小,1,PC AC r ===,此时24AB AP ====.故选:C二、填空题:本题共4小题,每小题5分,共20分.13. 1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______. 【答案】5 【解析】【分析】先设展开式中第1r +项系数最大,则根据通项公式有1091101010111101011C C 3311C C 33rrr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,进而求出r 即可求解.【详解】由题展开式通项公式为101101C 3rr r r T x -+⎛⎫= ⎪⎝⎭,010r ≤≤且r ∈Z ,设展开式中第1r +项系数最大,则1091101010111101011C C 3311C C 33r rr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩, 294334r r ⎧≥⎪⎪⇒⎨⎪≤⎪⎩,即293344r ≤≤,又r ∈Z ,故8r =, 所以展开式中系数最大的项是第9项,且该项系数为28101C 53⎛⎫= ⎪⎝⎭. 故答案为:5.14. 已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙______.【解析】【分析】先根据已知条件和圆台结构特征分别求出两圆台的高,再根据圆台的体积公式直接代入计算即可得解.【详解】由题可得两个圆台高分别为)12h r r==-甲,)12h r r==-乙,所以V hV h====甲甲乙乙.15. 已知1a>,8115log log42aa-=-,则=a______.【答案】64【解析】【分析】将8log,log4aa利用换底公式转化成2log a来表示即可求解.【详解】由题28211315loglog log4log22aaa a-=-=-,整理得()2225log60log aa--=,2log1a⇒=-或2log6a=,又1a>,所以622log6log2a==,故6264a==故答案为:64.16. 有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n为取出的三个球上数字的平均值,则m与n差的绝对值不超过12的概率是______.【答案】715【解析】【分析】根据排列可求基本事件的总数,设前两个球的号码为,a b,第三个球的号码为c,则的323a b c a b +-≤≤++,就c 的不同取值分类讨论后可求随机事件的概率.【详解】从6个不同的球中不放回地抽取3次,共有36A 120=种, 设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b +++-≤, 故2()3c a b -+≤,故32()3c a b -≤-+≤, 故323a b c a b +-≤≤++,若1c =,则5a b +≤,则(),a b 为:()()2,3,3,2,故有2种,若2c =,则17a b ≤+≤,则(),a b 为:()()()()()1,3,1,4,1,5,1,6,3,4,()()()()()3,1,4,1,5,1,6,1,4,3,故有10种,当3c =,则39a b ≤+≤,则(),a b 为:()()()()()()()()1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5, ()()()()()()()()2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4,故有16种,当4c =,则511a b ≤+≤,同理有16种, 当5c =,则713a b ≤+≤,同理有10种, 当6c =,则915a b ≤+≤,同理有2种, 共m 与n 的差的绝对值不超过12时不同的抽取方法总数为()22101656++=, 故所求概率为56712015=. 故答案为:715三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17. 某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品 合格品 不合格品总计 甲车间262450乙车间 70 28 2 100 总计96522150(1)填写如下列联表:优级品非优级品甲车间 乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p =,设p 为升级改造后抽取的n 件产品的优级品率.如果p p >+150件产品的数据,能否认12.247≈)附:22()()()()()n ad bc K a b c d a c b d -=++++ ()2P K k ≥0.050 0.010 0.001 k3.841 6.63510828【答案】(1)答案见详解(2)答案见详解 【解析】【分析】(1)根据题中数据完善列联表,计算2K ,并与临界值对比分析; (2)用频率估计概率可得0.64p =,根据题意计算p +. 【小问1详解】 根据题意可得列联表:.优级品非优级品甲车间 26 24 乙车间7030可得()2215026302470754.687550100965416K ⨯-⨯===⨯⨯⨯, 因为3.841 4.6875 6.635<<,所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异. 【小问2详解】由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64150=, 用频率估计概率可得0.64p =,又因为升级改造前该工厂产品的优级品率0.5p =,则0.50.50.5 1.650.56812.247p +=+≈+⨯≈,可知p p >+ 所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了. 18. 记n S 为数列{}n a 的前n 项和,且434n n S a =+. (1)求{}n a 的通项公式; (2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和为n T .【答案】(1)14(3)n n a -=⋅-(2)(21)31nn T n =-⋅+ 【解析】【分析】(1)利用退位法可求{}n a 的通项公式. (2)利用错位相减法可求n T.【小问1详解】当1n =时,1114434S a a ==+,解得14a =.当2n ≥时,11434n n S a --=+,所以1144433n n n n n S S a a a ---==-即13n n a a -=-,而140a =≠,故0n a ≠,故13nn a a -=-, ∴数列{}n a 是以4为首项,3-为公比的等比数列, 所以()143n n a -=⋅-.【小问2详解】111(1)4(3)43n n n n b n n ---=-⋅⋅⋅-=⋅,所以123n n T b b b b =++++L 0211438312343n n -=⋅+⋅+⋅++⋅L 故1233438312343nn T n =⋅+⋅+⋅++⋅L 所以1212443434343n n n T n --=+⋅+⋅++⋅-⋅L()1313444313n nn --=+⋅-⋅-()14233143n n n -=+⋅⋅--⋅(24)32n n =-⋅-,(21)31n n T n ∴=-⋅+.19. 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值. 【答案】(1)证明见详解;(2【解析】【分析】(1)结合已知易证四边形BCDM 为平行四边形,可证//BM CD ,进而得证;(2)作BO AD ⊥交AD 于O ,连接OF ,易证,,OB OD OF 三垂直,采用建系法结合二面角夹角余弦公式即可求解. 【小问1详解】因为//,2,4,BC AD EF AD M ==为AD 的中点,所以//,BC MD BC MD =, 四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ;【小问2详解】如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =, 结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =, 所以ABM V 为等边三角形,O 为AM中点,所以OB =,又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =, 四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM V 与AFM △底边上中点O 重合,OF AM ⊥,3OF ==,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,以OB 方向为x 轴,OD 方向为y 轴,OF 方向为z 轴,建立O xyz -空间直角坐标系,()0,0,3F,)()(),0,1,0,0,2,3BM E,()(),BM BF ==u u u u r u u u r,()2,3BE =u u u r ,设平面BFM 的法向量为()111,,m x y z =r,平面EMB 的法向量为()222,,n x y z =r,则00m BM m BF ⎧⋅=⎪⎨⋅=⎪⎩u u u u r r u u u r r,即1111030y z ⎧+=⎪⎨+=⎪⎩,令1x =113,1y z ==,即)m =r ,则00n BM n BE ⎧⋅=⎪⎨⋅=⎪⎩u u u u r r u u u r r,即222220230y y z ⎧+=⎪⎨++=⎪⎩,令2x =,得223,1y z ==-,即)1n =-r,11cos ,13m n m n m n ⋅===⋅r r r r r r,则sin ,m n =r r , 故二面角F BM E --20. 设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.【答案】(1)22143x y +=(2)证明见解析 【解析】【分析】(1)设(),0F c ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程.(2)设:(4)AB y k x =-,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y -,结合韦达定理化简前者可得10Q y y -=,故可证AQ y ⊥轴.【小问1详解】设(),0F c ,由题设有1c =且232b a =,故2132a a -=,故2a =,故b =故椭圆方程为22143x y +=.【小问2详解】直线AB 的斜率必定存在,设:(4)AB y k x =-,()11,A x y ,()22,B x y ,由223412(4)x y y k x ⎧+=⎨=-⎩可得()2222343264120k x k x k +-+-=, 故()()422Δ102443464120k kk=-+->,故1122k -<<, 又22121222326412,3434k k x x x x k k -+==++, 而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=- ⎪⎝⎭-,故22223325252Qy y y x x --==--, 所以()1222112225332525Q y x y y y y y x x ⨯-+-=+=--()()()12224253425k x x k x x -⨯-+-=-()222212122264123225825834342525k k x x x x k k k kx x -⨯-⨯+-++++==-- 2222212824160243234025k k k k k x --+++==-, 故1Q y y =,即AQ y ⊥轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.21. 已知函数()()()1ln 1f x ax x x =-+-. (1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围. 【答案】(1)极小值为0,无极大值.(2)12a ≤- 【解析】【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值. (2)求出函数的二阶导数,就12a ≤-、102a -<<、0a ≥分类讨论后可得参数的取值范围. 【小问1详解】当2a =-时,()(12)ln(1)f x x x x =++-, 故121()2ln(1)12ln(1)111x f x x x x x +'=++-=+-+++, 因为12ln(1),11y x y x=+=-++在()1,∞-+上为增函数, 故()f x '在()1,∞-+上为增函数,而(0)0f '=,故当10x -<<时,()0f x '<,当0x >时,()0f x '>, 故()f x 在0x =处取极小值且极小值为()00f =,无极大值. 【小问2详解】()()()()11ln 11ln 1,011a x axf x a x a x x x x +-=-+'+-=-+->++, 设()()()1ln 1,01a x s x a x x x+=-+->+,则()()()()()()222111211111a a x a aax a s x x x x x ++++-++=-=-=-+++'+, 当12a ≤-时,()0s x '>,故()s x 在()0,∞+上为增函数, 故()()00s x s >=,即()0f x '>,所以()f x 在[)0,∞+上为增函数,故()()00f x f ≥=. 当102a -<<时,当210a x a+<<-时,()0s x '<, 故()s x 在210,a a +⎛⎫-⎪⎝⎭上为减函数,故在210,a a +⎛⎫- ⎪⎝⎭上()()0s x s <,即在210,a a +⎛⎫-⎪⎝⎭上()0f x '<即()f x 为减函数, 故在210,a a +⎛⎫-⎪⎝⎭上()()00f x f <=,不合题意,舍. 当0a ≥,此时()0s x '<在()0,∞+上恒成立,同理可得()0,∞+上()()00f x f <=恒成立,不合题意,舍; 综上,12a ≤-. 【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.(二)选考题:共10分,请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分. [选修4-4:坐标系与参数方程]22. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+. (1)写出C 的直角坐标方程;(2)设直线l :x ty t a=⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.【答案】(1)221y x =+(2)34a = 【解析】【分析】(1)根据cos xρρθ⎧⎪=⎨=⎪⎩可得C 的直角方程.(2)将直线的新的参数方程代入C 的直角方程,法1:结合参数s 的几何意义可得关于a 的方程,从而可求参数a 的值;在法2:将直线的直角方程与曲线的直角方程联立,结合弦长公式可求a 的值. 【小问1详解】由cos 1ρρθ=+,将cos xρρθ⎧⎪=⎨=⎪⎩cos 1ρρθ=+,1x =+,两边平方后可得曲线的直角坐标方程为221y x =+.【小问2详解】对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+. 法1:直线l 的斜率为1,故倾斜角为π4,故直线的参数方程可设为x y a s ⎧=⎪⎪⎨⎪=+⎪⎩,s ∈R .将其代入221y x =+中得()221)210s a s a +-+-=设,A B 两点对应的参数分别为12,s s,则)()212121,21s s a s s a +=--=-,且()()22Δ818116160a a a =---=->,故1a <,12AB s s ∴=-=2==,解得34a =法2:联立221y x ay x =+⎧⎨=+⎩,得22(22)10x a x a +-+-=,()22Δ(22)41880a a a =---=-+>,解得1a <,设()()1122,,,A x y B x y ,2121222,1x x a x x a ∴+=-=-,则AB ==2=,解得34a =[选修4-5:不等式选讲]23. 实数,a b 满足3a b +≥. (1)证明:2222a b a b +>+; (2)证明:22226a b b a -+-≥. 【答案】(1)证明见解析.(2)证明见解析 【解析】【分析】(1)直接利用22222()a b a b +≥+即可证明. (2)根据绝对值不等式并结合(1)中结论即可证明. 【小问1详解】因为()()2222222022a b a ab b a b b a -+=--++=≥, 当a b =时等号成立,则22222()a b a b +≥+, 因为3a b +≥,所以22222()a b a b a b +≥+>+; 【小问2详解】222222222222()a b b a a b b a a b a b -+-≥-+-=+-+22222()()()()(1)326a b a b a b a b a b a b =+-+≥+-+=++-≥⨯=绝密★启用前2024年普通高等学校招生全国统一考试文科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上. 4.所有题目必须在答题卡上作答,在试题卷上答题无效. 5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B =I ( )A. {}1,2,3,4B. {}1,2,3C. {}3,4D. {}1,2,92.设z =,则z z ⋅=( )A. -iB. 1C. -1D. 23. 若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( )A. 5B.12C. 2-D. 72-4. 等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A. 2-B.73C. 1D.295. 甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A.14B.13C.12D.236. 已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为( )A. 4B. 3C. 2D.7. 曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为( ) A.16B.C.12D. 8. 函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-大致图像为()A. B.C. D.9.已知cos cos sin ααα=-,则πtan 4α⎛⎫+= ⎪⎝⎭( )A. 1+B. 1-C.D. 1原10题略10. 设αβ、是两个平面,m n 、是两条直线,且m αβ=I .下列四个命题: ①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成角相等,则m n ⊥其中所有真命题的编号是( ) A. ①③B. ②④C. ①②③D. ①③④11. 在ABC V 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( ) A.32B.C.D.二、填空题:本题共4小题,每小题5分,共20分.原13题略的的12. 函数()sin f x x x =在[]0,π上的最大值是______. 13. 已知1a >,8115log log 42a a -=-,则=a ______. 14. 曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.15. 已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-. (1)求{}n a 的通项公式; (2)求数列{}n S 的通项公式.16. 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ; (2)求点M 到ABF 的距离.17. 已知函数()()1ln 1f x a x x =--+. (1)求()f x 单调区间;(2)若2a ≤时,证明:当1x >时,()1e xf x -<恒成立.18. 设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.的的(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.19. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+. (1)写出C 直角坐标方程; (2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.20. 实数,a b 满足3a b +≥. (1)证明:2222a b a b +>+; (2)证明:22226a b b a -+-≥.参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B =I ( )A. {}1,2,3,4B. {}1,2,3C. {}3,4D. {}1,2,9【答案】A 【解析】【分析】根据集合B 的定义先算出具体含有的元素,然后根据交集的定义计算. 【详解】依题意得,对于集合B 中元素x ,满足11,2,3,4,5,9x +=, 则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =, 于是{1,2,3,4}A B ⋂=. 故选:A 2.设z =,则z z ⋅=( )A. -iB. 1C. -1D. 2【答案】D 【解析】的的【分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【详解】依题意得,z =,故22i 2zz =-=. 故选:D3. 若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( )A. 5B.12C. 2-D. 72-【答案】D 【解析】【分析】画出可行域后,利用z 的几何意义计算即可得.【详解】实数,x y 满足43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图:由5z x y =-可得1155y x z =-, 即z 的几何意义为1155y x z =-的截距的15-,则该直线截距取最大值时,z 有最小值, 此时直线1155y x z =-过点A , 联立43302690x y x y --=⎧⎨+-=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫⎪⎝⎭,则min 375122z =-⨯=-. 故选:D.4. 等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A. 2- B.73C. 1D.29【答案】D【解析】【分析】可以根据等差数列基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【详解】方法一:利用等差数列的基本量由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=, 又371111222628(936)99a a a d a d a d a d +=+++=+=+=.故选:D方法二:利用等差数列的性质 根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式,193799()9()122a a a a S ++===,故3729a a +=. 故选:D方法三:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==. 故选:D5. 甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A.14B.13C.12D.23【答案】B 【解析】【分析】分类讨论甲乙的位置,得到符合条件的情况,然后根据古典概型计算公式进行求解. 【详解】当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种; 当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意; 基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=. 故选:B6. 已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为( )的A. 4B. 3C. 2D.【答案】C【解析】 【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.【详解】设()10,4F -、()20,4F 、()6,4-P ,则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =-=-=,则28224c e a ===. 故选:C.7. 曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为( )A. 16B.C. 12 D. 【答案】A【解析】【分析】先求出切线方程,再求出切线的截距,从而可求面积.【详解】()563f x x ='+,所以()03f '=,故切线方程为3(0)131y x x =--=-, 故切线的横截距为13,纵截距为1-,故切线与坐标轴围成的面积为1111236⨯⨯= 故选:A. 8. 函数()()2e e sin x x f x x x -=-+-在区间[ 2.8,2.8]-的大致图像为( )A. B.C. D. 【答案】B【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【详解】()()()()()22e e sin e e sin x x x x f x x x x x f x ---=-+--=-+-=, 又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭, 故可排除D.故选:B.9.已知cos cos sin ααα=-,则πtan 4α⎛⎫+= ⎪⎝⎭( )A. 1+B. 1-C.D. 1【答案】B【解析】 【分析】先将cos cos sin αα-α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos cos sin ααα=-,所以11tan =-α,tan 1⇒α=-,所以tan 1tan 11tan 4α+π⎛⎫==-α+⎪-α⎝⎭, 故选:B .原10题略10. 设αβ、是两个平面,m n 、是两条直线,且m αβ=I .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥ ③若//n α,且//n β,则//m n④若n 与α和β所成的角相等,则m n ⊥其中所有真命题编号是( )A. ①③B. ②④C. ①②③D. ①③④ 【答案】A 的【解析】【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③.【详解】对①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确;对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s , 同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ=I ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误;综上只有①③正确,故选:A.11. 在ABC V 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A. 32B.C.D. 【答案】C【解析】 【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A C B ==. 由余弦定理可得:22294b ac ac ac =+-=, 即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==, 所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=, 因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin A C +=. 故选:C. 二、填空题:本题共4小题,每小题5分,共20分.原13题略12. 函数()sin f x x x =在[]0,π上的最大值是______.【答案】2【解析】【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】()πsin 2sin 3f x x x x ⎛⎫==- ⎪⎝⎭,当[]0,πx ∈时,ππ2π,333x ⎡⎤-∈-⎢⎥⎣⎦, 当ππ32x -=时,即5π6x =时,()max 2f x =. 故答案为:213. 已知1a >,8115log log 42a a -=-,则=a ______. 【答案】64【解析】【分析】将8log ,log 4a a 利用换底公式转化成2log a 来表示即可求解. 【详解】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=, 2log 1a ⇒=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案为:64.14. 曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为______. 【答案】()2,1-【解析】【分析】将函数转化为方程,令()2331x x x a -=--+,分离参数a ,构造新函数()3251,g x x x x =+-+结合导数求得()g x 单调区间,画出大致图形数形结合即可求解.【详解】令()2331x x x a -=--+,即3251a x x x =+-+,令()()32510,g x x x x x =+-+> 则()()()2325351g x x x x x =+-=+-',令()()00g x x '=>得1x =, 当()0,1x ∈时,()0g x '<,()g x 单调递减,当()1,x ∞∈+时,()0g x '>,()g x 单调递增,()()01,12g g ==-,因为曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点, 所以等价于y a =与()g x 有两个交点,所以()2,1a ∈-.故答案为:()2,1-三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.15. 已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的通项公式.。
(2024年高考真题)2024年普通高等学校招生全国统一考试数学试卷 新课标Ⅰ卷(含部分解析)
2024年普通高等学校招生全国统一考试 新课标Ⅰ卷数学试卷养成良好的答题习惯,是决定成败的决定性因素之一。
做题前,要认真阅读题目要求、题干和选项,并对答案内容作出合理预测;答题时,切忌跟着感觉走,最好按照题目序号来做,不会的或存在疑问的,要做好标记,要善于发现,找到题目的题眼所在,规范答题,书写工整;答题完毕时,要认真检查,查漏补缺,纠正错误。
1.已知集合{}355A x x =-<<∣,{3,1,0,2,3}B =--,则A B =( ).A.{1,0}-B.{2,3}C.{3,1,0}--D.{1,0,2}- 2.若1i 1z z =+-,则z =( ). A.1i -- B.1i -+ C.1i - D.1i +3.已知向量(0,1)a =,(2,)b x =,若(4)b b a ⊥-,则x =( ).A.-2B.-1C.1D.24.已知cos()m αβ+=,tan tan 2αβ=,则cos()αβ-=( ).A.3m -B.3m -C.3mD.3m5.( ).A. B. C. D.6.已知函数22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩在R 上单调递增,则a 的取值范围是( ). A.(,0]-∞ B.[1,0]- C.[1,1]- D.[0,)+∞7.当[0,2π]x ∈时,曲线sin y x =与π2sin 36y x ⎛⎫=- ⎪⎝⎭的交点个数为( ). A.3 B.4 C.6 D.88.已知函数()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时,()f x x =,则下列结论中一定正确的是( ).A.(10)100f >B.(20)1000f >C.(10)1000f <D.(20)10000f <9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1X =,样本方差20.01S =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设失去出口后的亩收入Y 服从正态分布()2,N X S ,则( ).(若随机变量Z 服从正态分布()2,N μσ,则()0.8413P Z μμ<+≈)A.(2)0.2P X >>B.()0.5P X Z ><C.()0.5P Y Z >>D.()0.8P Y Z ><10.设函数2()(1)(4)f x x x =--,则( ).A.3x =是()f x 的极小值点B.当01x <<时,()2()f x f x <C.当12x <<时,4(21)0f x -<-<D.当110x -<<时,(2)()f x f x -> 11.造型可以看作图中的曲线C 的一部分,已知C 过坐标原点O ,且C 上的点满足横坐标大于-2,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( ).A.2a =-B.点0)在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点()00,x y 在C 上时,0042y x ≤+ 12.设双曲线2222:1x y C a b-=(0a >,0b >)的左右焦点分別为1F ,2F ,过2F 作平行于y 轴的直线交C 于A ,B 两点,若113F A =,||10AB =,则C 的离心率为_________.13.若曲线e x y x =+在点(0,1)处的切线也是曲线ln(1)y x a =++的切线,则a =_________.14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两个各自从自己持有的卡片中随机选一张,并比较所选卡片的数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛比赛后,甲的总得分小于2的概率为_________.15.记ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=.(1)求B ;(2)若ABC △的面积为3+,求c .16.已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x y C a b a b +=>>上两点. (1)求C 的率心率;(2)若过P 的直线l 交C 于另一点B ,且ABP △的面积为9,求l 的方程.17.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA PC ==,1BC =,AB =(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --,求AD . 18.已知函数3()ln (1)2x f x ax b x x =++--.(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-,当且仅当12x <<,求b 的取值范围.19.设m 为正整数,数列1a ,2a ,…,42m a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1a ,2a ,…,42m a +是(,)i j ——可分数列.(1)写出所有的(,)i j ,16i j ≤<≤,使数列1a ,2a ,…,6a 是(,)i j ——可分数列;(2)当3m ≥时,证明:数列1a ,2a ,…,42m a +足(2,13)——可分数列;(3)从1,2,…,42m +中一次任取两个数i 和()j i j <,记数列1a ,2a ,…,42m a +足(,)i j ——可分数列的概率为m P ,证明:18m P >.参考答案1.A解析:{1,0}A B =-,选A.2.C解析:3.D解析:4(2,4)b a x -=-,(4)b b a ⊥-,(4)0b b a ∴-=,4(4)0x x ∴+-=,2x ∴=,选D.4.A 解析:cos cos sin sin sin sin 2cos cos m αβαβαβαβ-=⎧⎪⎨=⎪⎩,sin sin 2cos cos m m αβαβ=-⎧∴⎨=-⎩,cos()cos cos sin sin 23m m m αβαβαβ-=+=--=-,选A.5.B解析:设它们底面半径为r ,圆锥母线l,2ππrl ∴=,l ∴==,3r ∴=,1π93V =⋅⋅=,选B.6.B解析:()f x 在R 上↗,00e ln1a a -≥⎧⎨-≤+⎩,10a ∴-≤≤,选B. 7.C解析:6个交点,选C.8.B解析:(1)1f =,(2)2f =,(3)(2)(1)3f f f >+=,(4)(3)(2)5f f f >+>,(5)(4)(3)8f f f >+>,(6)(5)(4)13f f f >+>,(7)(6)(5)21f f f >+>,(8)(7)(6)34f f f >+>,(9)(8)(7)55f f f >+>,(10)(9)(8)89f f f >+>,(11)(10)(9)144f f f >+>,(12)(11)(10)233f f f >+>,(13)(12)(11)377f f f >+>,(14)(13)(12)610f f f >+>,(15)(14)(13)987f f f >+>,(16)1000f >,(20)1000f ∴>,选B.9.BC解析:()2~ 1.8,0.1X N ,()2~ 2.1,0.1Y N ,2 1.820.12μσ=+⨯=+,(2)(2)()10.84130.1587P X P X P X μσμσ>=>+<>+=-=,A 错.(2)( 1.8)0.5P X P X ><>=,B 对.2 2.10.1μσ=-=-,(2)( 2.1)0.5P Y P Y >>>=,C 对.(2)()()0.84130.8P Y P Y P Y μσμσ>=>-=<+=>,D 错,所以选BC.10.ACD解析:A 对,因为()3(1)(3)f x x x '=--;B 错,因为当01x <<时()0f x '>且201x x <<<,所以()2()f x f x <;C 对,因为2(21)4(1)(25)0f x x x -=--<,2(21)44(2)(21)0f x x x -+=-->,2223(2)()(1)(2)(1)(4)(1)(22)2(1)f x f x x x x x x x x --=------=--+=--,11x -<<时,(2)()0f x f x -->,(2)()f x f x ->,D 对.11.ABD解析:A 对,因为O 在曲线上,所以O 到x a =的距离为a -,而2OF =,所以有242a a -⋅=⇒=-,那么曲线的方程为(4x +=.B对,因为代入0)知满足方程;C 错,因为2224(2)()2y x f x x ⎛⎫=--= ⎪+⎝⎭,求导得332()2(2)(2)f x x x '=---+,那么有(2)1f =,1(2)02f '=-<,于是在2x =的左侧必存在一小区间(2,2)ε-上满足()1f x >,因此最大值一定大于1; D 对,因为()22220000004442222y x y x x x ⎛⎫⎛⎫=--≤⇒≤ ⎪ ⎪+++⎝⎭⎝⎭. 12.32解析:由||10AB =知25F A =,即2225b c a a a-==,而121F F F A ⊥,所以1212F F =,即6c =,代回去解得4a =,所以32e =. 13.ln 2解析: 14.12 解析:甲出1一定输,所以最多3分,要得3分,就只有一种组合18-、32-、54-、76-.得2分有三类,分别列举如下:(1)出3和出5的赢,其余输:16-,32-,54-,78-(2)出3和出7的赢,其余输:14-,32-,58-,76-;18-,32-,56-,74-,16-,32-,58-,74-(3)出5和出7的赢,其余输:12-,38-,54-,76-;14-,38-,52-,76-;18-,34-,52-,76-;16-,38-,52-,74-;18-,36-,52-,74-;16-,38-,54-,72-;18-,36-,54-,72-共12种组合满足要求,而所有组合为24,所以甲得分不小于2的概率为1215.(1)π3B = (2)c =解析:(1)已知222a b c +-=,根据余弦定理222cos 2a b c C ab +-=,可得:cos 22C ab ==. 因为(0,π)C ∈,所以π4C =.又因为sin C B =,即πsin4B =,2B =,解得1cos 2B =. 因为(0,π)B ∈,所以π3B =. (2)由(1)知π3B =,π4C =,则ππ5πππ3412A B C =--=--=. 已知ABC △的面积为3+,且1sin 2ABC S ab C =△,则1πsin 324ab =1322ab ⨯=,2(3ab =+. 又由正弦定理sin sin sin a b c A B C ==,可得sin sin sin sin a C b C c A B==. 则π5πsin sin 412c a =,5πsin 12πsin 4c a =,同理πsin 3πsin 4c b =.所以2225ππsin sin 1232(3π1sin 42c c ab ⎝⎭===+解得c =16.(1)12(2)见解析解析:(1)将(0,3)A 、33,2P ⎛⎫ ⎪⎝⎭代入椭圆22220919941a b a b⎧+=⎪⎪⎨⎪+=⎪⎩,则22129a b ⎧=⎨=⎩c =12c e a ∴===.(2)①当L 的斜率不存在时,:3L x =,33,2B ⎛⎫- ⎪⎝⎭,3PB =,A 到PB 距离3d =, 此时1933922ABP S =⨯⨯=≠△不满足条件. ②当L 的斜率存在时,设3:(3)2PB y k x -=-,令()11,P x y 、()22,B x y , 223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消y 可得()()22224324123636270k x k k x k k +--+--= 2122212224124336362743k k x x k k k x x k ⎧-+=⎪⎪+⎨--⎪=⎪+⎩,PB = 17.(1)证明见解析(2)AD =解析:(1)PA ⊥面ABCD ,AD ⊂平面ABCD ,PA AD ∴⊥又AD PB ⊥,PB PA P =,,PB PA ⊂平面P ABAD ∴⊥面PAB ,AB ∴⊂平面PAB ,AD AB ∴⊥ABC △中,222AB BC AC +=,AB BC ∴⊥ A ,B ,C ,D 四点共面,//AD BC ∴又BC ⊂平面PBC ,AD ⊄平面PBC//AD ∴平面PBC .(2)以DA ,DC 为x ,y 轴过D 作与平面ABCD 垂直的线为z 轴建立如图所示空间直角坐标系D xyz -令AD t =,则(,0,0)A t ,(,0,2)P t ,(0,0,0)D,DC =()C设平面ACP 的法向量()1111,,n x y z =不妨设1x =1y t =,10z =,()14,0n t =- 设平面CPD 的法向量为()2222,,n x y z =2200n DP n DC ⎧⋅=⎪⎨⋅=⎪⎩222200tx z +=⎧⎪∴=不妨设2z t =,则22x =-,20y =,2(2,0,)n t =-二面角A CP D --的正弦值7,则余弦值为7 1212122cos ,2n nn n n n t ⋅===t ∴=AD ∴=.18.(1)-2(2)证明见解析(3)23b ≥-解析:(1)0b =时,()ln 2x f x ax x =+-,11()02f x a x x'=++≥-对02x ∀<<恒成立 而11222(2)a a a x x x x ++=+≥+--, 当且仅当1x =时取“=”,故只需202a a +≥⇒≥-,即a 的最小值为-2.(2)方法一:(0,2)x ∈,(2)()f x f x -+332ln (2)(1)ln (1)22x x a x b x ax b x a x x-=+-+-+++-=- ()f x ∴关于(1,)a 中心对称.方法二:将()f x 向左平移一个单位31(1)ln(1)1x f x a x bx x +⇒+=+++-关于(0,)a 中心对称平移回去()f x ⇒关于(1,)a 中心对称.(3)()2f x >-当且仅当12x <<,(1)22f a ∴=-⇒=-3()ln 2(1)22x f x x b x x∴=-+->--对12x ∀<<恒成立 222112(1)2()23(1)3(1)(1)32(2)(2)x f x b x b x x b x x x x x x ⎡⎤-'=+-+-=+-=-+⎢⎥---⎣⎦令2()3(2)g x b x x =+-,∴必有2(1)2303g b b =+≥⇒≥-(必要性) 当23b ≥-时,对(1,2)x ∀∈,32()ln 2(1)()23x f x x x h x x ≥---=- 2222(1)1()2(1)2(1)10(2)(2)x h x x x x x x x ⎡⎤-'=--=-->⎢⎥--⎣⎦对(1,2)x ∀∈恒成立,()(1)2h x h ∴>=-符合条件, 综上:23b ≥-. 19.(1)(1,2),(1,6),(5,6)(2)证明见解析(3)证明见解析解析:(1)以下(,)i j 满足:(1,2),(1,6),(5,6)(2)易知:p a ,q a ,r a ,s a 等差,,,p q r s ⇔等差故只需证明:1,3,4,5,6,7,8,9,10,11,12,14可分分组为(1,4,7,10),(3,6,9,12),(5,8,11,14)即可其余k a ,1542k m ≤≤+,按连续4个为一组即可(3)由第(2)问易发现:1a ,2a ,…,42m a +是(,)i j 可分的1,2,42m ⇔+是(,)i j 可分的.易知:1,2,…,42m +是(41,42)k r ++可分的(0)k r m ≤≤≤因为可分为(1,2,3,4),…,(43,42,41,4)k k k k ---与(4(1)1,4(1),4(1)1,4(1)2)r r r r +-+++++,…,(41,4,41,42)m m m m -++ 此时共211C (1)(1)(2)2m m m m +++=++种 再证:1,2,…,42m +是(42,41)k r ++可分的(0)k r m ≤<≤易知1~4k 与42~42r m ++是可分的只需考虑41k +,43k +,44k +,…,41r -,4r ,42r +记*N p r k =-∈,只需证:1,3,5,…,41p -,4p ,42p +可分1~42p +去掉2与41p +观察:1p =时,1,3,4,6无法做到;2p =时,1,3,4,5,6,7,8,10,可以做到;3p =时,1,3,4,5,6,7,8,9,10,11,12,144p =时,1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18(1,5,9,13),(3,7,11,15),(4,8,12,16),(6,10,14,18)满足故2p ∀≥,可划分为:(1,1,21,31)p p p +++,(3,3,23,33)p p p +++,(4,4,24,34)p p p +++,(5,5,25,35)p p p +++,…,(,2,3,4)p p p p ,(2,22,32,42)p p p p ++++,共p 组事实上,就是(,,2,3)i p i p i p i +++,1,2,3,,i p =,且把2换成42p +此时(,)k k p +,2p ≥均可行,共211C (1)2m m m m +-=-组 (0,1),(1,2),…,(1,)m m -不可行 综上,可行的(42,41)k r ++与(41,42)k r ++至少11(1)(1)(2)22m m m m -+++组 故()222224212221112C (21)(41)8618m m m m m m m m P m m m m +++++++≥==>++++,得证!。
2024届河南省普通高中招生全国统一考试青桐鸣大联考语文及答案
2024届普通高等学校招生全国统一考试语文全卷满分150分,考试时间150分钟。
注意事项:1.答卷前,考生务必将自己的姓名、班级、考场号、座位号、考生号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1~5题。
材料一:为何中华文明五千多年来一脉相承、从未中断,一直延续到今天?这涉及许多方面的原因。
古往今来,中国人民为维护中华文明的连续发展付出了艰辛努力,其中蕴含的中国智慧对于人类文明发展有着重要借鉴意义。
比如,中国古代政治人物关于创与守、得与失、安与危、兴与亡等关系的讨论,大多蕴含着辩证的思想,反映出对于国家治理的谨慎态度,虽然其根本目的在于维护自身统治,但其中包含着一些不可违背的历史法则。
对这些历史法则的遵循,是中华文明连续发展的一个重要原因。
中国古代的许多政治人物都十分重视总结历史经验并提出一些理念,形成独有的政治文化和政治哲学,这种政治文化和政治哲学反过来又推动政治发展和文明发展,这对于中华文明的连续发展有着十分重要的意义。
西周统治者从商朝衰亡中汲取经验教训,强调“我不可不监于有夏,亦不可不监于有殷”,把“天命”搁在一边,倡导以“德”治国,这是中华文明发展史上较早的对历史经验的总结和借鉴。
汉高祖要求陆贾“试为我著秦所以失天下,吾所以得之者何,及古成败之国”。
唐太宗君臣经常以短祚的秦、隋两朝为例,讨论历史借鉴问题。
中国古代政治人物注重总结和借鉴历史经验,这对于维护中华文明突出的连续性具有重要意义。
与汲取历史经验教训紧密联系的,是一些政治人物对国家治理所面临的艰难常怀深深的忧虑,所以都十分重视思考“创业”难还是“守成”难的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年普通高等学校招生全国统一考试(全国I卷)理科综合能力测试注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
可能用到的相对原子质量:H l C12N14O16S32C135.5K39H48Fe56I127一、选择题(本题共13小题,每小题6分,共78分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.细胞间信息交流的方式有多种,在动物卵巢细胞分泌的雌激素作用于乳腺细胞的过程中,以及精子进入卵细胞的过程中,细胞间信息交流的实现分别依赖于()A.血液运输,突触传递B.淋巴运输,突触传递C.淋巴运输,胞间连丝传送D.血液运输,细胞间直接接触【答案】D【解析】激素是通过体液运输到各组织器官的,起主要作用的是组织液和血浆,精卵结合的过程是精子和卵细胞接触后完成结合的,属于细胞间的直接接触。
2.下列关于细胞结构与成分的叙述,错误的是()A.细胞膜的完整性可用台盼蓝染色法进行检测B.检测氨基酸的含量可用双缩脲试剂进行显色C.若要观察处于细胞分裂中期的染色体可用醋酸洋红液染色D.斐林试剂是含有2Cu+的碱性溶液,可被葡萄糖还原成砖红色【答案】B【解析】A选项,台盼蓝是细胞活性染料,常用于检测细胞膜的完整性。
还常用于检测细胞是否有活性。
活细胞不会被染成蓝色,而死细胞会被染成淡蓝色。
A正确。
B选项,双缩脲是用来检测蛋白质的,可以和肽键发生作用,氨基酸当中没有肽键,不能和双缩脲发生反应。
B错误。
C选项,醋酸洋红是碱性染料,可以将染色体染成红色,用于观察分裂中期染色体的形态。
C正确。
D选项,斐林试剂含有Cu2+,可以和还原性糖作用产生砖红色沉淀。
D正确。
3.通常,叶片中叶绿素含量下降可作为其衰老的检测指标。
为研究激素对叶片衰老的影响,将某植物离体叶片分组,并分别置于蒸馏水、细胞分裂素()ABA、CTK、脱落酸() +溶液中再将各组置于阳光下。
一段时间内叶片中叶绿素含量变化趋势如图所CTK ABA示,据图判断,下列叙述错误的是()A.细胞分裂素能延缓该植物离体叶片的衰老B.本实验中CTK对该植物离体叶片的作用可被ABA削弱C.可推测ABA组叶绿体中NADPH合成速率大于CTK组D.可推测ABA能加速秋天银杏树的叶由绿变黄的过程【答案】C【解析】由图可以看出,置于蒸馏水的叶片是对照组,72h内叶绿素含量下降明显,细胞分裂素(CTK)对叶绿素含量的下降有明显的减缓作用,所以细胞分裂素能延缓该植物离题叶片的衰老。
A正确。
CTK+ABA也可以减缓叶绿素含量的下降,但是作用效果比CTK单独作用弱。
B正确。
ABA组叶绿素含量比CTK组低,光合作用光反应更弱,NADPH(还原性氢)的合成速率更慢。
C错误。
ABA可以使叶绿素含量下降的更加明显,叶绿素含量的下降会导致叶片变黄。
D正确。
4.某同学将一定量的某种动物的提取液()A注射到实验小鼠体内,注射后若干天,未见小鼠出现明显的异常表现。
将小鼠分成两组,一组注射少量的A,小鼠很快发生了呼吸困难等症状;另一组注射生理盐水,未见小鼠有异常表现。
对实验小鼠在第二次注射A后的表现,下列解释合理的是()A.提取液中含有胰岛素,导致小鼠血糖浓度降低B.提取液中含有乙酰胆碱,使小鼠骨骼肌活动减弱C.提取液中含有过敏源,引起小鼠发生了过敏反应D.提取液中含有呼吸抑制剂,可快速作用于小鼠呼吸系统【答案】C【解析】第一次注射提取液A,小鼠无异常反应,但第二次注射提取液A,小鼠出现不良症状,这与过敏反应第二次接触过敏原出现症状的特征相符,故解释合理的是提取液A中含有过敏原,引起小鼠发生过敏反应,C选项正确。
5.假设某草原上散养某种家畜种群呈S型增长,该种群的增长率随种群数量的变化趋势如图所示。
若要持续尽可能多地收获该种家畜,则应在种群数量合适时开始捕获,下列四个种群数量中合适的是()A.甲点对应的种群数量B.乙点对应的种群数量C.丙点对应的种群数量D.丁点对应的种群数量【答案】D【解析】要持续尽可能多地收获家畜,则需要让该家畜种群保持增长速率的最大值。
选择丁点可以使每次捕捉后,家畜种群数量降低到增长速率最大的横坐标点,保持最大增长速率,故选D。
6.果蝇的红眼基因()R对白眼基因()r为显性,位于X染色体上:长翅基因()B对残翅基因()b为显性,位于常染色体上。
现有一只红眼长翅果蝇与一只白眼长翅果蝇交配,F雄蝇1中有1/8为白眼残翅。
下列叙述错误的是()A.亲本雌蝇的基因型是R rBbX XB.F中出现长翅雄蝇的概率为3/161C.雌、雄亲本产生含r X配子的比例相同D.白眼残翅雌蝇可形成基因型为rbX的极体【答案】B【解析】A选项,长翅由常染色体显性基因控制,两只长翅果蝇杂交,产生残翅个体,故亲本中与翅型相关的基因型均为Bb,则F1中残翅比例为1/4,在雄蝇中残翅比例也为1/4,F1雄果蝇中1/8为白眼残翅,故F1雄蝇中白眼比例为1/2,则推出亲本基因型分别为BbX R X r与BbX r Y,故A正确。
B选项,F1中长翅雄蝇概率应为3/4×1/2=3/8,故B错误。
C选项,亲本中产生X r配子概率都是1/2,故C正确。
D选项,白眼残翅雌蝇基因型为bbX r X r,可通过减数分裂形成基因型bX r的极体,故D 正确。
7.下列生活用品中主要由合成纤维制造的是()A. 尼龙绳B. 宣纸C. 羊绒衫D. 棉衬衣【答案】A【解析】A.尼龙是聚酰胺,故它是合成纤维,故A正确;【解析】B.宣纸原料为木浆,主要成分为天然纤维(纤维素),故B错误【解析】C.羊毛的主要成分为蛋白质,故C错误【解析】D.棉花的主要成分为天然纤维,故D错误8.《本草衍义》中对精制砒霜过程有如下叙述:“取砒之法,将生砒就置火上,以器覆之,令砒烟上飞着覆器,遂凝结累然下垂如针,尖长者为胜,平短者次之”,文中涉及的操作方法是()A. 蒸馏B. 升华C. 干馏D. 萃取【答案】B【解析】蒸馏即将液体转化为气体,再冷凝为液体。
升华是将固体直接转化为气体,再通过凝华转为固体。
结合生砒原本为固态及题意中的“如针”,题目中的状态转化为固-气-固,故选B升华。
9.化合物(b)、(d)、(p)的分子式均为66C H,下列说法正确的是()A. b的同分异构体只有d和p两种B. b、d、p的二氯代物均只有三种C. b 、d 、p 均可与酸性高锰酸钾溶液反应D. b 、d 、p 中只有b 的所有原子处于同一平面【答案】D【解析】A.(b )的同分异构体不止两种,如,故A 错误【解析】B.(d )的二氯化物有、、、、、,故B 错误【解析】C.(b )与(p )不与酸性4KMnO 溶液反应,故C 错误【解析】D.(d )2与5号碳为饱和碳,故1,2,3不在同一平面,4,5,6亦不在同一平面,(p )为立体结构,故D 正确。
10. 实验室用2H 还原3WO 制备金属W 的装置如图所示(Zn 粒中往往含有硫等杂质,焦性没食子酸溶液用于吸收少量氧气)。
下列说法正确的是( )A. ①、②、③中依次盛装4KMnO 溶液、浓24H SO 、焦性没食子酸溶液B. 管式炉加热前,用试管在④处收集气体并点燃,通过声音判断气体纯度C. 结束反应时,先关闭活塞K ,再停止加热D. 装置Q (启普发生器)也可用于二氧化锰与浓盐酸反应制备氯气【答案】B【解析】A.浓硫酸起干燥作用,应盛装在③号管中,故A 错误;【解析】B.加热前需对2H 进行验纯,故B 正确;【解析】C.应先停止加热,再停止通气,故C错误;【解析】D.二氧化锰和浓盐酸的反应需要加热,装置Q无法加热,故D错误。
11.支撑海港码头基础的钢管桩,常用外加电流的阴极保护法进行防腐,工作原理如图所示,其中高硅铸铁为惰性辅助阳极。
下列有关表述不正确的是()A. 通入保护电流使钢管桩表面腐蚀电流接近于零B. 通电后外电路电子被强制从高硅铸铁流向钢管桩C. 高硅铸铁的作用是作为损耗阳极材料和传递电流D. 通入的保护电流应该根据环境条件变化进行调整【答案】C【解析】A.钢管表面不失电子,几乎无腐蚀电流,故A正确。
【解析】B.外电路中,电子从高硅铸铁流向电源正极,从电源负极流向钢管桩,故B正确。
【解析】C.高硅铸铁作为惰性辅助电极,不被损耗,故C错误。
【解析】D.保护电流应根据环境(pH值,离子浓度,温度)变化,故D正确。
、、、的原子序数依次增大,W的简单氢化物可用作制冷剂,Y的12.短周期主族元素W X Y Z原子半径是所有短周期主族元素中最大的。
由X、Y和Z三种元素形成的一种盐溶于水后,加入稀盐酸,有黄色沉淀析出,同时有刺激性气体产生。
下列说法不正确的是()A. X的简单氢化物的热稳定性比W的强B. Y的简单离子与X的具有相同的电子层结构C. Y与Z形成化合物的水溶液可使蓝色石蕊试纸变红D. Z与X属于同一主族,与Y属于同一周期【答案】C【解析】由题意可推断,简单氢化物能用作制冷剂的应为液氨,故W 是N 。
短周期中Na 原子半径最大,故Y 为Na 。
X Y Z 、、 形成的盐与稀盐酸反应,生成黄色沉淀与刺激性气体,推测该沉淀为S ,刺激性气体为2SO ,则该盐为223Na S O 。
反应方程式为:【解析】22322Na S O 2HCl ===2NaCl SSO H O ++++↓↑。
【解析】所以X 是O ,Z 是S 。
【解析】A.因为O 的非金属性强于N ,所以稳定性23H O NH >,故A 正确.【解析】B.Na +:、2O -:,故B 正确.【解析】C.2Na S 溶液水解呈碱性,而使蓝色石蕊试纸变红应为酸性水溶液,故C 错误【解析】与O 同为第VIA 族,与Na 同为第三周期,故D 正确.13. 常温下将NaOH 溶液滴加到己二酸(2H X )溶液中,混合溶液的pH 与离子浓度变化的关系如图所示。
下列叙述错误的是( )A.a 22(H X)K 的数量级为610- B. 曲线N 表示pH 与2(HX )lg (H X)c c -的变化关系C. N aHX 溶液中(H )(OH )c c +->D. 当混合溶液呈中性时,2(Na )(HX )(X )(OH )(H )c c c c c +---+>>>=【答案】D【解析】由图像可知,当2(HX )lg0(H X)c c -=时,则2(HX )(H X)c c -= 2H XH HX +-+, 4.4a122(H )(HX )(H X)(H )10(H X)c c K c c +-+-⋅=== 当2(X )lg 0(HX )c c --=时,则2(X )(HX )c c --= 2HXH X -+-+,2 5.4a22(H )(X )(H X)(H )10(HX )c c K c c +-+--⋅=== A 选项,由上述计算可知, 5.46a210410K --=≈⨯,即数量级为610-,故A 正确; B选项,由曲线M 可得a22(H X)K ,即M 对应2(X )lg (HX )c c --,由曲线N 可得a12(H X)K ,即N 对应2(HX )lg (H X)c c -,故B 正确;C 选项,在NaHX 溶液中,HX -既存在电离,也存在水解; 电离平衡为:2HX H X -+-+;水解平衡为:22HX H OOH H X --++,214962w w h a2+44a1(H X)(X )(OH )1010(HX )(HX )(H )10..c K K c c K K c c c K -------⋅⋅=====<⋅, NaHX 溶液中,电离程度大于水解程度,溶液呈酸性,故+(H )(OH )c c ->,故C 正确;D选项,当溶液呈中性,+71(H )(OH )10 mol L c c ---==⋅,而+54(H )(HX )10(HX ).c c c ---⋅=,254167(X )1010(HX )10..c c ----==,即2(X )(HX )c c -->,故D 错误。