普通物理学教程力学课后答案高等教育出版社第一章_物理学与力学及数学知识

合集下载

漆安慎《普通物理学教程:力学》第二版各单元课后习题思维方法分析

漆安慎《普通物理学教程:力学》第二版各单元课后习题思维方法分析
建模法、隔离法、演绎法、等效法、叠加法、图示法
1
[3.5.3]
6
非惯性系(转动参考系)中牛顿运动定律的运用:已知受力情况(包括离心惯性力或科里奥利力)及初始条件,求运动情况
建模法、隔离法、演绎法、等效法、叠加法、图示法
3
[3.5.4][3.5.5] [3.5.6]
7
已知受力情况(包括变力 )及时间,求冲量
[4.3.7]
5
已知保守力做功,求对应势能的变化
微元法、极限法、建模法、演绎法
1
[4.4.1]
6
质点系机械能守恒定律的应用:由质点系机械能守恒,已知势能变化,求动能变化(或动能)
建模法、隔离法、演绎法
3
[4.5.1][4.5.2] [4.5.3]
7
动量守恒定律、机械能守恒定律(或动能定理)与恢复系数在对心碰撞问题中的应用
建模法、隔离法、分析法、演绎法、综合法
9
[4.6.2][4.6.3][4.6.4]
[4.6.5] [4.6.6][4.6.7] [4.6.8][4.6.9]
分析法、叠加法、演绎法
2
[2.5.4][2.5.5]
12
相遇问题:已知两质点的加速度、初速度及开始时刻的位置关系,求何时或何地相遇
叠加法、比较法
3
[2.4.5][2.4.7] [2.5.2]
13
已知自然坐标系下的运动学方程(或切向速度),求切向速度(或切向加速度或合加速度)
类比法、微元法、极限法、叠加法
漆安慎《普通物理学教程:力学》第二版
各单元课后习题思维方法分析
《质点运动学》单元中的习题分析
序号
题型
思维方法
题目数
对应习题题号

108835-大学物理-普通物理学-Chap 1

108835-大学物理-普通物理学-Chap 1
加加 加速速 速度度 度的的 的大大 大小小 小为为 为
aaaτ ττddddddvtvvttbbb
aaa
a与
aaan2nn22aaaτ2ττ22 vvv0 00RRR2b22bbttt444bbb222R1RR11
切向轴的夹角为
arctg an aτ
arc
tg
v0 bt2 Rb
vvv0 00bbbttt444bbb2R22RR2 22
v0
dl dt
v ds ds dl 2l dl v0 h2 s2
dt dl dt 2 l 2 h2 dt
s
v v0 h2 s2 s
质 点
dv dv ds d
a
dt
ds dt
v0
( ds
h2 s2 ds
)
s
dt
运 动 学
v0 2
2 s2 h2 s2
s2
h2 s2 ds
(1) t = 2s时,该点的角速度和角加速度为多大?
(2) 若主轴直径D = 40 cm,求t = 1s时该点的速度和
加速度
解: (1)
t3 4t 3 (SI) d 3t 2 4
dt
d 6t
dt
t 2 s : (3 22 4)rad s-1 16 rad s-1
500 2π
vP
60 cos2 30
69.8 m s-1
船A
vp
h
x PP o
讨论
v AP h cos
vp vcos h
v
A
h
错在哪里?
vp
lim
t0
r t
x v p P o
lim
r1
lim

普通物理学教程 力学 高等教育出版社 最新 第二版 漆安慎、杜婵英主编 课后答案 习题解答

普通物理学教程 力学 高等教育出版社 最新 第二版 漆安慎、杜婵英主编 课后答案 习题解答

−1 / 2
⑷∫
1
e
1+ ln x x
dx
aw .c om
π /2
第 1 章物理学力学数学 微积分初步习题解答
课后答案网
2
第 1 章物理学力学数学 微积分初步习题解答
解:
∫ sin xdx = − cos x |
0
π
0
2
=1
y
⑸ ∫ (e x + 1 ⑹ ∫ cos 2 xdx ⑺ ∫ 1+1x 2 dx ⑻ ∫ (3 x + sin 2 x)dx x ) dx
6.计算由y=3x和y=x2所围成的平面图形的面积。 解:如图所示,令 3x=x2,得两 y 条曲线交点的 x 坐标:x=0,3. 面积
A = ∫ 3 xdx − ∫ x 2 dx
0 0 3 2 2 1 3
3
3
2 e x 1 ⑷ ∫ 1+ ln x dx = ∫ (1 + ln x ) d (1 + ln x ) = 2 (1 + ln x ) |1 = 1.5 1 1 x 2 2 ⑸ ∫ (e x + 1 x ) dx = (e + ln x ) |1 = e − e + ln 2 1 2
1 0 1/ 2 2 2 解:⑴ ( x |1 − x |1 = ∫ x − 1)dx = ∫ x dx − ∫ dx = 2 3 1 1 1 1 1 2 2 2
3 2
− /2
∫ sin xdx = −1 π∫ sin xdx = 0 π
− /2
0
π /2
-π/2 -
+ 0 π/2
x
4 2 3
−5 3

普通物理教程答案

普通物理教程答案

普通物理教程答案【篇一:普通物理学教程力学课后答案高等教育出版社第六章万有引力定律】>习题解答6.1.1设某行星绕中心天体以公转周期t沿圆轨道运行,试用开普勒第三定律证明:一个物体由此轨道自静止而自由下落至中心天体所需的时间为t?2?证明:物体自由下落的加速度就是在行星上绕中心天体公转的向心加速度:a?v2r?(2?rt)?21r?4?r/t 222由自由落体公式:r?(此题原来答案是:t?t4212at,t?2r/a?t2? ,这里的更正与解答仅供参考)的引力有多大?⑵设土星沿圆轨道运行,求它的轨道速度。

解:⑴据万有引力定律,太阳与土星之间的引力2⑵选择日心恒星参考系,对土星应用牛顿第二定律:f=mv/rv?fr/m?3.8?10222-11302612222?1.4?012/5.7?1026?9.7?10m/s 334?g4??6.51?102 14?11?1.3?10kg/m 3r?33?2?10330/(4?3.14?1.3?103014)?1.5?10km172⑶r?3?2?10/(4?3.14?1.2?10)?16km6.2.4 距银河系中心约25000光年的太阳约以170000000年的周期在一圆周上运动。

地球距太阳8光分。

设太阳受到的引力近似为银河系质量集中在其中心对太阳的引力。

试求以太阳质量为单位银河系的质量。

分别对地球和太阳应用万有引力定律和牛顿第二定律:?m?(?)(rr)m?(2311.7?10?10(1.318)m?1.53?108)26311m6.2.5某彗星围绕太阳运动,远日点的速度为10km/s,近日点的速度为80km/s。

若地球在半径为1.5解:角动量守恒mv1a?mv2b ⑴能量守恒 128mv1?gmmr22mma2?12mv2?g2mmb ⑵牛二定律 g?mvr⑶6.2.6 一匀质细杆长l,质量为m.求距其一端为d处单位质量质点受到的引力(亦称引力场强度)。

普通物理学 01运动学习题 答案

普通物理学 01运动学习题 答案

解: x = v t
L cos q = v t
y
=
1 2
gt2
L sinq =
1 2
gt2
2
L=
2 v 2sinq g cos 2q
=
2 ×30.6 sin 450 9.8×cos2450
= 270m
Lq
目录
1-15一个人扔石头的最大出手速率为 v=25m/s, 他能击中一个与他的手水平 距离为L = 50m而高h =13m的一个目标 吗在?这个距离上他能击中的最大高度是多少?
1-8 在质点运动中, 已知 x = aekt
dy/,dx = -bke-kt, 当 t = 0, y=y0=b
求: 质点的速度和轨道方程。
结束 目录
1-9一质点的运动方程为r = i + 4 j + tk
t2式中r、t分别以m、s为单位.试求:
它的速度与加速度;
它的轨迹方程。
解: v = d r = 8 tj +
(4)3s末的瞬时速度。?
结束 目录
解: x = 4t -
(1)2Δt3x = x 0 = 4t - 2t=3 4×2 2×23 = 8 m
v=
Δ Δ
x t
=
8 2=
4m
s
v=
dx dt
=
4
6 t2 = 4
6 ×22 =
20 m
s
(2) Δx = x3 x2
= (4×3 2×33 ) (4×1 2×13 )
k
dt
a
=
d d
v t
=
8j
x = 1 y =4 t2 z = t
轨迹方程: y = x = 1

普通物理学第1单元课后习题部分答案

普通物理学第1单元课后习题部分答案

习题2解析
总结词
掌握了力的合成与分解的方法。
详细描述
这道题考查了力的合成与分解,通过分析物体的受力情况,正确地进行了力的 合成与分解,并利用平行四边形定则求解合力。
习题3解析
总结词
理解了动量守恒定律的基本概念和应 用。
详细描述
这道题考查了动量守恒定律的基本概 念,通过分析系统的受力情况和运动 情况,正确地应用了动量守恒定律求 解速度。
习题3答案
01
习题3-1答案: 略
02
习题3-2答案: 略
习题3-3答案: 略
03
04
习题3-4答案: 略
习题4答案
01
习题4-1答案:略
02
习题4-2答案:略
03
习题4-3答案:略
04
习题4-4答案:略
03
答案解析
习题1解析
总结词
理解了牛顿第二定律的基本概念 和应用。
详细描述
这道题考查了牛顿第二定律的基 本概念,通过分析物体的受力情 况,正确地应用了牛顿第二定律 求解加速度。
练习题三及答案
练习题三
什么是动量?请给出其计算公式。
VS
答案
动量是描述物体运动状态的物理量,等于 物体的质量乘以速度。其计算公式为 p=mv,其中p表示动量,m表示质量,v 表示速度。
THANKS
感谢观看
单元目标
掌握物理学的基本概 念和原理。
培养观察、实验和逻 辑思维能力,提高科 学素养。
学会运用物理学原理 解决实际问题。
02
课后习题答案
习题1答案
01
习题1-1答案:略
02
习题1-2答案:略
03
习题1-3答案:略

普通物理学第七版第一章课后习题答案

普通物理学第七版第一章课后习题答案

普通物理学第七版第一章课后习题答案1. 描述运动的物理量1.1 什么是力学?力学是研究物体在外力作用下的运动规律和力学原理的科学。

1.2 什么是运动?运动是指物体在空间中位置随时间的变化。

1.3 描述运动的物理量有哪些?描述运动的主要物理量有位置、速度、加速度和时间。

1.4 什么是位移?位移是指物体从初位置到末位置的直线距离。

1.5 什么是速度?速度是指物体单位时间内位移的大小和方向。

1.6 什么是平均速度?平均速度是指物体在一段时间内位移的平均大小和方向。

1.7 什么是瞬时速度?瞬时速度是指物体在某一瞬间的速度。

1.8 什么是加速度?加速度是指物体单位时间内速度的增加量。

1.9 什么是匀速直线运动?匀速直线运动是指物体在一段时间内速度保持不变的运动。

1.10 什么是匀加速直线运动?匀加速直线运动是指物体在一段时间内加速度保持不变的运动。

2. 速度和位移的关系2.1 匀速直线运动中的速度和位移有什么关系?在匀速直线运动中,速度和位移成正比例关系,即速度等于位移除以时间。

2.2 匀加速直线运动中的速度和位移有什么关系?在匀加速直线运动中,速度和位移有一定的关系,即速度等于初始速度加上加速度乘以时间。

2.3 什么是初速度?初速度是指物体运动开始时的速度。

2.4 什么是末速度?末速度是指物体运动结束时的速度。

2.5 什么是加速度?加速度是指物体单位时间内速度的增加量。

2.6 匀加速直线运动中的位移方程是什么?匀加速直线运动中的位移方程为:位移 = 初速度 × 时间 +加速度 × 时间的平方的一半。

3. 速度和加速度的关系3.1 速度和加速度有什么关系?速度是加速度对时间的积分,即速度等于初始速度加上加速度乘以时间。

3.2 速度和位移有什么关系?速度是位移对时间的导数,即速度等于位移除以时间。

3.3 加速度和位移有什么关系?加速度是速度对时间的导数,即加速度等于速度除以时间。

3.4 加速度和位移的关系式是什么?加速度和位移的关系式为:位移 = 初速度 × 时间 + 加速度× 时间的平方的一半。

大学_大学物理教程上册(范仰才著)课后答案_1

大学_大学物理教程上册(范仰才著)课后答案_1

大学物理教程上册(范仰才著)课后答案大学物理教程上册(范仰才著)内容提要绪论第一篇力学第1章质点运动学1.1 参考系和坐标系质点1.2 质点运动的描述1.3 自然坐标系中的速度和加速度1.4 不同参考系中速度和加速度的变换关系思考题习题第2章质点动力学2.1 牛顿运动定律2.2 惯性系与非惯性系2.3 力的空间积累效应2.4 保守力的功势能机械能守恒定律2.5 力的时间积累效应动量守恒定律__2.6 质心质心运动定理阅读材料(1)混沌及其特征思考题习题第3章刚体的定轴转动3.1 刚体及刚体定轴转动的描述3.2 刚体定轴转动定律3.3 定轴转动的功和能3.4 角动量定理和角动量守恒定律__3.5 进动阅读材料(2)对称性与守恒律思考题习题第二篇热学第4章气体动理论4.1 平衡态态参量理想气体物态方程 4.2 理想气体的压强公式4.3 理想气体的`温度公式4.4 能量按自由度均分理想气体的内能 4.5 麦克斯韦速率分布律__4.6 玻耳兹曼分布律4.7 分子的平均碰撞频率和平均自由程__4.8 气体内的输运过程__4.9 范德瓦尔斯方程真实气体阅读材料(3)低温与超导思考题习题第5章热力学基础5.1 准静态过程功热量和内能5.2 热力学第一定律及其在理想气体等值过程的应用 5.3 绝热过程多方过程5.4 循环过程卡诺循环5.5 热力学第二定律5.6 热力学第二定律的统计意义熵阅读材料(4)热学熵与信息熵思考题习题第三篇振动和波动第6章振动学基础6.1 简谐振动的运动学旋转矢量表示法6.2 简谐振动的动力学特征6.3 简谐振动的能量6.4 简谐振动的合成6.5 阻尼振动受迫振动共振思考题习题第7章波动学基础7.1 机械波的形成和传播7.2 平简谐波的波函数7.3 波的能量声波大学物理教程上册(范仰才著)目录《21世纪高等学校规划教材:大学物理教程(上)》可作为本科院校理工科各专业的大学物理教材,也可作为各类普通高等学校非物理类专业、各类成人高校物理课程的教材或教学参考书。

大学物理教程课后习题解答第1章力学

大学物理教程课后习题解答第1章力学
由 有
140=10
1.6一根长为 的均质链条,放在摩擦系数为 的水平桌面上,其一端下垂,长度为 。如果链条自静止开始向下滑动,试求链条刚刚滑离桌面的速度 。
解:设链条质量为 ,单位长度的质量即线密度为 ;将势能零点选在光滑的桌面上,取坐标竖直向上为正方向。
开始时刻:链条的动能为0,末了时刻:链条的动能
(1)1kg水温度从273K升高到373K;
(2)把倔强系数为300N·m-1的健身弹簧拉长1米。(水的比热4.18X103焦尔/千克·升)
解:(1)此过程水增加的能量为:
J
由质能关系式:
∴ kg
(2) J
∴ k
1.14按照相对论的质速关系式,计算出当物体以光速的0.10、0.90倍运动时,物体的运动质量为静止质量的多少倍?速度达光速0.90倍时,按相对论力学算得的动能为按经典力学算得的动能的多少倍?
(3)加速度表达式为:
(4)t=0时,
t=120s时,
1.2一艘正在行驶的电艇,在发动机关闭后,有一个与它速度相反的加速度,其大小与它的速度平方成正比,即 。式中k为常量。试证明电艇在关闭发动机后又行驶x距离时速度为 。其中 是发动机关闭时的速度。
证明:
由: 及 可得:


得证
1.3在美国费米实验室的质子加速器中,质子沿一半径R=2.0 km的环形真空室作圆周运动,质子速率非常接近光速。试问:质子向心加速度是重力加速度的几倍?
解:设人的转动惯量为I,由角动量守恒定律得:
, ,
解得: 设拉近哑铃做的功为A,则由动能定理可得 =46.67 J
1.11一飞轮以转速 103转/分转动,受到制动后均匀的减速,经过50秒后静止。求:
(1)角加速度和从开始制动到静止飞轮转过的角位移;

普通物理学第二版习题答案

普通物理学第二版习题答案

普通物理学第二版习题答案普通物理学第二版习题答案普通物理学是一门研究物质运动规律的学科,它不仅是理工科学生的必修课,也是培养学生科学思维和解决问题能力的重要课程之一。

在学习普通物理学的过程中,习题是非常重要的一环,通过解习题可以帮助学生巩固知识、加深理解,并培养学生的分析和解决问题的能力。

本文将为大家提供《普通物理学第二版》习题的答案,帮助读者更好地掌握物理学知识。

第一章:运动的描述1. 一辆汽车以10 m/s的速度匀速行驶,经过5秒后,汽车的位移是多少?答案:位移等于速度乘以时间,即位移=速度×时间=10 m/s × 5 s = 50 m。

2. 一个物体以4 m/s的速度向东运动,经过2秒后,它的速度变为8 m/s,方向保持不变。

求物体的加速度。

答案:加速度等于速度的变化量除以时间,即加速度=(8 m/s - 4 m/s)/ 2 s = 2 m/s²。

第二章:牛顿定律和运动学1. 一个质量为2 kg的物体受到一个5 N的力,求物体的加速度。

答案:根据牛顿第二定律,加速度等于力除以质量,即加速度=5 N / 2 kg = 2.5 m/s²。

2. 一个质量为0.5 kg的物体受到一个10 N的力,求物体的加速度。

答案:加速度等于力除以质量,即加速度=10 N / 0.5 kg = 20 m/s²。

第三章:力和运动1. 一个物体受到一个10 N的向上的力和一个5 N的向下的力,求物体的净力和加速度。

答案:净力等于所有力的矢量和,即净力=10 N - 5 N = 5 N。

加速度等于净力除以质量,即加速度=5 N / 质量。

2. 一个物体受到一个20 N的向右的力和一个10 N的向左的力,求物体的净力和加速度。

答案:净力等于所有力的矢量和,即净力=20 N - 10 N = 10 N。

加速度等于净力除以质量,即加速度=10 N / 质量。

第四章:工作和能量1. 一个物体的质量为2 kg,高度为10 m,求物体的重力势能。

大学物理课后答案详解

大学物理课后答案详解

大学物理课后答案详解第一章:力学1.1 牛顿定律的三种形式第一种形式:惯性定律牛顿的第一定律,也被称为惯性定律。

它的表述为:一个物体如果没有外力作用,将保持静止或匀速直线运动的状态。

这意味着在没有外力作用时,物体的加速度为零,速度保持不变。

这个定律的重要性在于它说明了运动的惯性特性。

举个例子,当我们在车上紧急刹车时,我们的身体会有向前的惯性,因为车突然减速,而我们的身体仍保持原来的运动状态。

第二种形式:动量定律牛顿的第二定律,也被称为动量定律。

它的表述为:一个物体的加速度正比于作用在它上面的合外力,反比于物体的质量。

通过数学表达式可以得到 F = ma,其中 F表示物体所受合外力的大小,m表示物体的质量,a表示加速度。

这个定律说明了力是一种导致物体加速度变化的物理量。

第三种形式:作用与反作用定律牛顿的第三定律,也被称为作用与反作用定律。

它的表述为:如果物体A对物体B施加了一个力,那么物体B对物体A也会施加一个大小相等、方向相反的力。

这一个定律解释了为什么当我们敲击桌子时,手感到疼痛,因为我们的手会受到桌子的反作用力。

同样地,当我们踢足球时,脚球会受到我们脚的力的影响而向前踢出。

1.2 动力学动力学是力学的一个重要分支,它研究的是物体在受力作用下的运动规律。

其中最常见的运动学参数有位移、速度和加速度。

1.2.1 位移位移是一个矢量量,它表示物体从初始位置到最终位置的改变。

位移的大小等于物体在运动过程中实际移动的距离。

位移的方向由初始位置和最终位置的连线所决定。

1.2.2 速度速度是一个矢量量,它表示物体单位时间内移动的位移。

速度的大小等于单位时间内移动的位移,而速度的方向由位移的方向和时间的方向所决定。

1.2.3 加速度加速度是一个矢量量,它表示单位时间内速度的变化量。

加速度的大小等于单位时间内速度的改变量,而加速度的方向由速度的方向和时间的方向所决定。

1.3 弹力和重力1.3.1 弹力弹力是一种垂直于两个物体接触面的力,它是由于两个物体之间的接触而产生的。

《普通物理学教程 力学(第二版》电子教案目录精编版

《普通物理学教程 力学(第二版》电子教案目录精编版

第八章 弹性体的应力和应变
§8.1 弹性体的拉伸和压缩 §8.2 弹性体的剪切形变 §8.3 弯曲和扭转
第九章 振 动
§9.1简谐振动的动力学特征 §9.2简谐振动的运动学 §9.3简谐振动的能量转换 §9.4简谐振动的合成 §9.5 振动的分解 §9.6 阻尼振动 §9.7 受迫振动 §9.8“不守规矩”的摆 混沌行为 §9.9 参数振动自激振动
漆安慎 杜婵英 著
普通物理学教程 力学(第二版)
电子教案
何丽珠 研制
高 等 教 育 出版社 高等教育电子音像出版社
第一章 物理学和力学
§1.1 发展着的物理学 §1.2 物理学研究的方法 §1.3 时间和长度的测量 §1.4 单位制和量纲 §1.5 数量级估计 §1.6 参考系·坐标系与时间坐标轴 §1.7 力学——学习物理学的开始
第十章 波动和声
§10.1 波的基本概念 §10.2 平面简谐波方程 §10.3 波动方程与波速 §10.4 平均能流密度·声强与声压 §10.5 波的叠加和干涉·驻波 §10.6 多普勒效应
第十一章 流体力学
§11.1 理想流体 §11.2 静止流体内的压强 §11.3 流体运动学的基本概念 §11.4 伯努利方程 §11.5 流体的动量和角动量 §11.6 黏性流体的运动 §11.7 固体在流体中受到的阻力 §11.8 机翼的升力
第二章 质点运动学
§ 2.1 质点的运动学方程 §2.2 瞬时速度矢量与瞬时加速度矢量 §2.3 质点直线运动——从坐标到速度和加速度 §2.4质点直线运动——从加速度到速度和坐标 §2.5 平面直角坐标系·抛体运动 §2.6 自然坐标·切向和法向加速度 §2.7 极坐标系·径向速度与横向速度 §2.8 伽利略变换

大学物理第1章习题解答(全)ppt课件

大学物理第1章习题解答(全)ppt课件
2 t

23 23 t t 0 3 3
1-24 一质点在半径为0.10m 的圆周上运动, 3 2 4 t 其角位置为 ,式中 的单位为 rad , t的单位为s。求: (1)在 t=2.0s时质点的法向加速度和切向 加速度。 (2)当切向加速度的大小恰等于总加速度大 小的一半时, 值为多少? (3)t为多少时,法向加速度和切向加速度 相等? d 2 3 得: 12 t 2 4 t 解 (1)由 dt
(2)加速度的大小和方向。 解:(1)速度的分量式为 dx dy v 10 60 t v 15 40 t x y dt dt
v ( t ) v v 10 60 t 15 40 t
2 2 x y 2 2
v ( t ) v v 10 60 t 15 40 t
解 (1)由参数方程
x 2 . 0 t , y 19 . 0 2 . 0 t
2
消去t得质点的轨迹方程:
y 19 . 0 0 . 50 x
(2)
2
t1 1 .0 s
t2 2 .0 s
r r r 2 1 v 2 . 0 i 6 . 0 j t t t 2 1
dv d 2 2 2 a (v v ) 3 . 58 m s tt 1 x y dt dt
a a a 1 . 79 m s n
2 2 t
2
(4)
t 1 . 0 s时质点的速度大小为
2 2 1 v v v 4 . 47 m s x y
2
a a a 72 . 1 m s
设 a与 x 轴正向的夹角为

大学物理第一章课后习题答案

大学物理第一章课后习题答案

第一章质点运动学1.1一质点沿y 方向运动,它在任意时刻t 的位置由式1052+=t y 给出,式中t 以s 计,y 以m 计算下列各段时间内质点的平均速度大小:(1)2s 到3s (2)2s 到2.1s (3)2s 到2.001s (4)2s 到2.0001s 解:(1)令质点的始末时刻为s t 21=,s t 32=,则质点的平均速度大小为:{}sm sm t t y y /25)23(]10)2(5[10)3(5221212=−+−+=−−=υ(2)令质点的始末时刻为s t 21=,s t 1.22=,则质点的平均速度大小为:{}sm sm t t y y /5.20)21.2(]10)2(5[10)1.2(5221211=−+−+=−−=υ(3)令质点的始末时刻为s t 21=,s t 001.22=,则质点的平均速度大小为:{}sm smt t y y /005.20)2001.2(]10)2(5[10)001.2(5221212=−+−+=−−=υ(4)令质点的始末时刻为s t 21=,s t 0001.22=,则质点的平均速度大小为:sm smt t y y /0005.20)20001.2(]10)2(510)0001.2(5[221212=−−−+=−−=υ1.2一质点沿Ox 轴运动,其运动方程为2653t t x +−=;式中t 以s 计,x 以m 计,试求:(1)质点的初始位置和初始速度;(2)质点在任一时刻的速度和加速度;(3)质点做什么运动;(4)做出t x −图和t −υ图;(5)质点做匀加速直线运动吗?解:(1)设质点初始时刻00=t ,则质点的初始位置为:mm x 3]06053[20=×+×−=即质点的初始位置在Ox 轴正方向3m 处。

因为质点的速度为:tdt dx125+−==υ所以质点的初始速度为:220/5/)0125(s m s m dt dxt −=×+−===υ质点的初始速度大小为2/5s m ,方向沿Ox 轴负方向。

普通物理学第二版课后习题答案(全)

普通物理学第二版课后习题答案(全)

第一章 物理学和力学1.1国际单位制中的基本单位是那些?解答,基本量:长度、质量、时间、电流、温度、物质的量、光强度。

基本单位:米(m )、千克(kg )、时间(s )、安培(A )、温度(k )、摩尔(mol )、坎德拉(cd )。

力学中的基本量:长度、质量、时间。

力学中的基本单位:米(m )、千克(kg )、时间(s )。

1.2中学所学习的匀变速直线运动公式为,at 21t v s 20+= 各量单位为时间:s (秒),长度:m (米),若改为以h (小时)和km (公里)作为时间和长度的单位,上述公式如何?若仅时间单位改为h ,如何?若仅0v 单位改为km/h ,又如何?解答,(1)由量纲1LT v dim -=,2LT a dim -=,h/km 6.3h/km 360010h 36001/km 10s /m 33=⨯==--2223232h /km 36006.3h /km 360010)h 36001/(km 10s /m ⨯=⨯==--改为以h (小时)和km (公里)作为时间和长度的单位时,,at 36006.321t v 6.3s 20⨯⨯+=(速度、加速度仍为SI单位下的量值)验证一下:1.0h 3600s t ,4.0m/s a ,s /m 0.2v 20====利用,at 21t v s 20+=计算得:)m (2592720025920000720036004236002s 2=+=⨯⨯+⨯=利用,at 36006.321t v 6.3s 20⨯⨯+=计算得 )km (2.25927259202.71436006.321126.3s 2=+=⨯⨯⨯⨯+⨯⨯=(2). 仅时间单位改为h由量纲1LTv dim -=,2LTadim -=得h /m 3600h/m 3600h 36001/m s /m ===222222h /m 3600h /m 3600)h 36001/(m s /m ===若仅时间单位改为h ,得:,at 360021t v 3600s 220⨯+=验证一下:1.0h 3600s t ,4.0m/s a ,s /m 0.2v 20==== 利用,at 21t v s 20+=计算得:)m (2592720025920000720036004236002s 2=+=⨯⨯+⨯=利用,at 360021t v 3600s 220⨯+=计算得: )m (2592720025920000720014360021123600s 22=+=⨯⨯⨯+⨯⨯= (3). 若仅0v 单位改为km/h由量纲1LTv dim -=,得s/m 6.31h /km ,h /km 6.3)h 36001/(km 10s /m 3===-仅0v 单位改为km/h ,因长度和时间的单位不变,将km/h 换成m/s得,at 21t v 6.31s 20+=验证一下:1.0h 3600s t ,4.0m/s a ,s /m 0.2v 20====利用,at 21t v s 20+=计算得:)m (2592720025920000720036004236002s 2=+=⨯⨯+⨯=利用,at 21t v 6.31s 20+=计算得: )m (25927200259200007200360042136003600/11026.31s 23=+=⨯⨯+⨯⨯⨯=-1.3设汽车行驶时所受阻力f 与汽车的横截面积S 成正比,且与速率v 之平方成正比。

大学高等物理课后答案 第一章 力学基本定律

大学高等物理课后答案 第一章 力学基本定律

第1章习题答案1-1 解:竖直上抛运动 gH 2max20v = ()s m gH /849102008.1223max 0=⨯⨯⨯==v1-2 解:匀变速直线运动 ()()g s m t a t 259.24680.103600/1000160020<⋅=-⨯=∆-=-v v (不超过) ()()m t s t 4008.1036001000160021210=⨯⎪⎭⎫ ⎝⎛+⨯⨯=∆⨯+=v v 1-3 解:以喷嘴作为坐标原点,竖直向上作为y 轴的正向 竖直上抛运动 ()m g v H 5.348.92262220max=⨯== ()gy v y v 220-=连续性方程 ()()gyv qy v q y S 220-==任一瞬间空间上升的水流体积 ()()l gy v g q dy gy v qdy y S V H H 38.1222maxmax020020=⎥⎦⎤⎢⎣⎡--=-==⎰⎰上升下降上升V V =()l V V V 7.24=+=下降上升总1-4 解:()()bt u bt u btbt b u u dt dx v --=----⎪⎭⎫ ⎝⎛-+==1ln 1ln 11 ()()btub bt b u dt dv a -=---==11 ()00=v()()()s m v /1091.6120105.71ln 100.3120333⨯=⨯⨯-⨯-=-1-5 解:()2122212R R N rNdr s R R -==⎰ππ ()()()()m in 6939416364132256650222122==-⨯⨯=-==∆s v R R N v s t ππ()s rad r v /26.00.53.1===ω ()222/338.00.53.1s rad r v ===α1-6 解: ()s m v /37430344=+=东()s m v /31430344=-=西()s m v /3433034422=-=北N F μθ≥cos1-7 解: 因θs i nF mg N += 故 θμμθsin cos F mg F +≥ (1) θμθμs i n c o s s s mgF -≥静(2) θμθμs i n c o s k k mgF -≥动(3) 0s i n c o s ≤-θμθs sμθ1tan ≥1-8 解:()()()()()()()N a g m M F am M g m M F 676006.08.915005000=+⨯+=++=+=+-桨桨()()()N a g m F mamg F 156006.08.91500=+⨯=+==-桨绳1-9 解: r m rMm G22ω= ()()()Kg G r T G rM 261138232321069.51067.61036.136002.142/2⨯=⨯⨯⨯⎪⎭⎫ ⎝⎛⨯===-ππω1-10 解: ⎰⎰⎰-=-==ωπω20c o s td t kA kxdt Fdt I ωωωωπkAt kA -=⎥⎦⎤⎢⎣⎡-=20sin1-11 解: ()s m /500i v-=()()s m t /45sin 8045cos 800j i v +=()()s N m m t ⋅+=-=j i v v I92.778.140()215278.1492.7arctan 89.160'=-=⋅=πϕs N I ()6168.914.084584502.089.16=⨯===∆=mg F N t I F1-12 一辆停在直轨道上质量为m 1的平板车上站着两个人,当他们从车上沿同方向跳下后,车获得了一定的速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学知识习题解答微积分初步习题解答1.求下列函数的导数⑴10432+-=x x y ⑵100cos 8sin 7/1-++=x x x y⑶)/()(bx a b ax y ++= ⑷21sin x y += ⑸xey sin = ⑹x ey x100+=-xx x e e y xe y x x x x x x y bx a b a y x x x x y x y ----=+-==++=++=+-=-+-=-=100100)1('cos '1/1cos 2·)1(·)1cos(')/()('sin 8cos 7)2/(1'46'sin 222/12212/12222⑹⑸⑷⑶⑵解:⑴2.已知某地段地形的海拔高度h 因水平坐标x 而变,h=100-0.0001x 2(1-0.005x 2),度量x 和h 的单位为米。

问何处的高度将取极大值和极小值,在这些地方的高度为多少?解:先求出h(x)对x 的一阶导数和二阶导数:42643643647242102106)102102(102102)1051010(22--------⨯-⨯=⨯-⨯=⨯-⨯=⨯+-=x x x x x x x dxd dx h d dxd dxdh令dh/dx=0,解得在x=0,10,-10处可能有极值。

∵d 2h/dx 2|x=0<0,∴x=0是极大值点,h(0)=100;∵d 2h/dx 2|x=10>0,∴x=10是极小值点,h(10)=99.0005米;显然,x=-10亦是极小值点,h(-10)=h(10).3.求下列不定积分⎰⎰++-dx x dxx xx)2()13(23⑵⑴⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-+-++--+dxxdxdx xe xdx x dxe dxb ax dx dx x x dx e xx x b ax dx x x x xx xxln 222113)12(cos )11(cos sin )sin()cos (sin )2(222⑽⑼⑻⑺⑹⑸⑷⑶解:33423142(31)3x x dx x dx xdx dx x x x c-+=-+=-++⎰⎰⎰⎰⑴2x 2321ln 233/23(2)2(2323ln 2x x x x dx x x x x dx dx x dx x ce dx e dx xdx x e c-+=+=+++=+-=+++⎰⎰⎰⎰⎰⎰⎰⑵⑶ (sin cos )sin cos cos sin x x dx xdx xdx x x c -=-=--+⎰⎰⎰⑷22222111111122211221/2122313sin()sin()()cos()(2)()()sin cos sin (sin )sin x x dx x x x aax x xadx dx dx x arctgx c ax b dx ax b d ax b ax b ce dx e d x ec ax bd ax b c x xdx xd x x +-+++----==-=-++=++=-++=--=-+=++===+⎰⎰⎰⎰⎰⎰⎰⎰⎰⑸⑹⑺⑻⑼2222112221112242ln 12()(11)cos (1cos 2)sin 2(12)ln (ln )(ln )x x x x xc xe dx ed xe cxdx x dx x x c dx xd x x c---=--=-+=+=++==+⎰⎰⎰⎰⎰⎰⎰⎰⑽4. 求下列定积分2214101/21ln 1/12/411/61/221101)(1)()cos 2(3sin )x x exx x x x dxe e dxdx e dxxdxdxx x dx+-+-++⎰⎰⎰⎰⎰⎰⎰⎰πππ⑴⑵⑶⑷⑸⑹⑺⑻解:322221/22252113311111445151105501/21/21/231/1)||(1)(1)(1)(1)|(1)arcsin |60xxx x x dx x dx dx x x e e dx e d e e e x --=-=-=-=--=-=-===︒⎰⎰⎰⎰⎰⎰π⑴⑵⑶221ln 11211222111/4/4/4111/6222/6/6111010/2212(1ln )(1ln )(1ln )| 1.5()(ln )|ln 2cos 2cos 2(2)sin 2||/445(3sin )3(1cos e eex xx x xx dx x d x x e dx e x e e xdx xd x x dx arctgx x x dx xdx πππππ++=++=+=+=+=-+======︒+=+-⎰⎰⎰⎰⎰⎰⎰πππ⑷⑸⑹⑺⑻/2/22318402)x dx ππππ=+⎰⎰/20/2/2/25.sin sin sin ,()sin xdx xdx xdx f x x ππππ--=⎰⎰⎰计算、以及并在的函数图形上用面积表示这些定积分。

解:1|cos sin 22/0=-=⎰ππx xdx⎰⎰--=-=2/2/02/0sin 1sin πππxdx xdx6.计算由y=3x 和y=x 2所围成的平面图形的面积。

解:如图所示,令3x=x 2,得两条曲线交点的x 坐标:x=0,3. 面积3322333102303()| 4.5A xdx x dx x x =-=-=⎰⎰7.求曲线y=x 2+2,y=2x,x=0和x=2诸线所包围的面积。

解:面积A22232281033(2)2(2)|x dx xdx x x x =+-=+-=⎰⎰8.一物体沿直线运动的速度为v=v 0+at,v 0和a 为常量,求物体在t 1至t 2时间内的位移。

解:位移S ⎰+=21)(0t t dt at v)()(|)(212221120221021t t a t t v at t v t t -+-=+=矢量8.二矢量如图所示A=4,B=5,α=25º,β=36.87º,直接根据矢量标积定义和正交分解法求B A ⋅。

解:直接用矢量标积定义:4)90cos(-=+-︒=⋅βαAB B A用正交分解法:∵A x =4cos α=3.6A y =4sin α=1.7,B x =5cos(90º+β)= - 5sin β= -3,B y =5sin(90º+β)=5cos β=4∴447.1)3(6.3-=⨯+-⨯=+=⋅y y x x B A B A B A9.的夹角。

与求已知B ,ˆ2ˆ2ˆ,ˆˆA k j iB j i A +-=+-=解:由标积定义AB BA B A B A AB B A⋅=∴=⋅),cos(),cos(,而︒=-==∴-=⋅=+-+==+-=-135),,),cos(3,32)2(1,21)1(2223322222B A B A B A B A 两矢量夹角( 10.已B A k j i B A k j i B A与求,知,ˆˆ4ˆ4ˆˆ5ˆ3+-=--+=+的夹角。

解:将已知两式相加,可求得j iA ˆ5.0ˆ5.3+=;再将已知两式相减,可求得5.35.05.3.ˆˆ5.4ˆ5.022≈+=∴-+-=A kj i B,+-⨯=⋅≈-++-=)5.0(5.3,64.4)1(5.4)5.0(222B A B0.5×4.5=0.5。

︒≈≈=⋅24.88),(,0308.0),cos(B A B A ABB A夹角11.已知.,0A C C B B A C B A⨯=⨯=⨯=++求证证明:用已知等式分别叉乘=⨯+⨯+⨯A C A B A A C B A有,,,0 .0,0=⨯+⨯+⨯=⨯+⨯+⨯C C C B C A B C B B B A其中,A C CB B AC C B B A A ⨯=⨯=⨯∴⨯⨯⨯均为零,,,12.计算以P (3,0,8)、Q (5,10,7)、R (0,2,-1)为顶点的三角形的面积。

解:据矢积定义,△PRQ 的面积A -=⨯=|,|21= =-=-+-k j i ,ˆ9ˆ2ˆ3 kj i ˆˆ10ˆ2-+. kj i kj i ˆ34ˆ21ˆ881102923ˆˆˆ--=---=⨯ 3.48,6.96342188||26.96222==∆∴=++=⨯A PRQ 面积13. 化简下面诸式解:⑴B C B A A B A C C C B A⨯+-+⨯+++⨯-+)()()(0=⨯+⨯+⨯+⨯+⨯+⨯=B C B A A B A C C B C A⑵)ˆˆˆ(ˆ)ˆˆ(ˆ)ˆˆ(ˆk j i k k i j k j i ++⨯++⨯-+⨯ i k ij i k j k ˆ2ˆ2ˆˆˆˆˆˆ-=-+-+-= ⑶)()()()2(B A C B A C B A+⨯++-⨯+CA B C A C A B A B C B C A B A C B A B A C B A C A⨯=⨯+⨯+⨯+⨯-⨯+⨯=+⨯++⨯+-⨯+-⨯=2)()()()(214.计算下面诸式解:⑴)ˆˆ(ˆ)ˆˆ(ˆ)ˆˆ(ˆi k j j i k k j i⨯⋅+⨯⋅+⨯⋅ 3ˆˆˆˆˆˆ=⋅+⋅+⋅=j j k k i i⑵0)()(=⨯⋅=⨯⋅A A B A B A15.求证:)()])[()(C B A B C A B A⨯⋅-=⨯+⋅+ 证明:)])[()(B C A B A⨯+⋅+ji kji k)()()()()()()()()()()()(C B A B C A B B C B B A B C A A A B B C B B A B B C A B A A B C B A B B C B A A⨯⋅-=⨯⋅=⨯⋅+⨯⋅+⨯⋅+⨯⋅=⨯⋅+⨯⋅+⨯⋅+⨯⋅=⨯+⨯⋅+⨯+⨯⋅= 16..,ˆˆˆ)21(222dt A d dt A d t k j e i t A ,求已知-++=-解:j e i t k j e i t t t dt d dt A d ˆˆ4]ˆˆˆ)21[(2---=-++=j e i j e i t t t dtd dt A d ˆˆ4)ˆˆ4(22--+=-=17.已知j t i t B k t j t t ie A t ˆ3ˆ4,ˆˆ)4(ˆ323+=+--=-, )(B A dt d⋅求解:z z y y x x B A B A B A B A ++=⋅2423231212)4(343tt e t t t t t e t t +-=--=--)31212()(242t t e t B A t dtd dtd +-=⋅-t t e t t t648)2(1232+--=-。

相关文档
最新文档