初中数学 分式二次根式知识点归纳

合集下载

分式与二次根式的知识点

分式与二次根式的知识点

分式与二次根式的知识点分式与二次根式是数学中的重要知识点,它们在代数运算、方程求解、函数图像等方面都有应用。

本文将逐步介绍分式与二次根式的基本概念、运算规则以及解题思路。

1.分式的基本概念分式是由两个整数或多项式构成的比值形式,通常表示为a/b,其中a为分子,b为分母。

分子和分母可以是整数、多项式或含有变量的表达式。

分式可以表示实数、有理数、无理数等不同类型的数。

2.分式的化简与运算(1)分式的化简:当分式的分子和分母有公约数时,可以通过约分的方式化简分式。

即找到分子和分母的最大公约数,将其约去,使得分子和分母互质。

(2)分式的加减乘除:分式的加减运算可以通过通分的方式进行。

即将两个分式的分母化为相同的数,然后将分子进行加减运算。

分式的乘除运算可以直接对分子和分母进行相应的运算。

3.二次根式的基本概念二次根式是形如√a的表达式,其中a为非负实数。

当a为正实数时,二次根式的值为正实数;当a为零时,二次根式的值为零;当a为负实数时,二次根式的值为虚数。

4.二次根式的化简与运算(1)二次根式的化简:当二次根式内部存在完全平方数因子时,可以将其化简为有理数的形式。

即将完全平方数因子提取出来,使得根号内只剩下非完全平方数。

(2)二次根式的加减乘除:二次根式的加减运算可以通过化简后的形式进行。

即先将二次根式化简为有理数形式,然后进行加减运算。

二次根式的乘除运算可以直接对根号内的数进行相应的运算。

5.解题思路在解题时,我们需要根据具体的问题,灵活运用分式与二次根式的知识。

常见的解题思路包括:(1)化简分式与二次根式,使得问题更加简化。

(2)通过分式与二次根式的运算规则,将复杂的表达式转化为简单的形式。

(3)注意分式与二次根式在方程求解、函数图像等问题中的应用。

分式与二次根式是数学中的重要知识点,掌握了它们的基本概念、运算规则和解题思路,可以帮助我们更好地理解和应用数学知识。

在学习过程中,我们应该多进行练习,加深对分式与二次根式的理解和掌握。

初三数学知识点归纳整理

初三数学知识点归纳整理

初三数学知识点归纳整理最全初三数学知识点归纳篇一一、二次根式1、二次根式:一般地,式子叫做二次根式。

注意:(1)若这个条件不成立,则不是二次根式。

(2)是一个重要的非负数,即;≥0。

2、积的算术平方根:积的算术平方根等于积中各因式的算术平方根的积。

3、二次根式比较大小的方法:(1)利用近似值比大小。

(2)把二次根式的系数移入二次根号内,然后比大小。

(3)分别平方,然后比大小。

4、商的算术平方根:商的算术平方根等于被除式的算术平方根除以除式的算术平方根。

5、二次根式的除法法则:(1)分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。

6、最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式。

①被开方数的因数是整数,因式是整式。

②被开方数中不含能开的尽的因数或因式。

(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母。

(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式。

(4)二次根式计算的最后结果必须化为最简二次根式。

7、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。

8、二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用。

(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等。

二、一元二次方程1、一元二次方程的一般形式:a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c;其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式。

2、一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少。

数学知识点二次根式与分式的运算

数学知识点二次根式与分式的运算

数学知识点二次根式与分式的运算数学知识点:二次根式与分式的运算在数学中,二次根式与分式是常见的运算形式。

二次根式表示被开方数的平方根,而分式则表示数之间的比值。

正确地运用二次根式与分式的运算规则,能够更高效地解决问题。

本文将详细介绍二次根式与分式的运算方法和规则。

一、二次根式的运算二次根式是形如√a的表达式,其中a为非负实数。

在运算二次根式时,常见的操作有合并同类项、分解因式、有理化等。

1. 合并同类项合并同类项是将同一根号内的数合并,然后再进行开方。

例如:√9 + √4 = √(9+4) = √132. 分解因式分解因式是将根号内的数按照倍数的形式分解,以便于提取出根号外的因式。

例如:√12 = √(4×3) = √4 × √3 = 2√33. 有理化有理化是将二次根式中含有根号的分母进行处理,使其变为分母不含根号的形式。

例如:1/√2 = (1/√2) × (√2/√2) = √2/2二、分式的运算分式是形如a/b的表达式,其中a为分子,b为分母。

分式的运算包括四则运算、化简、通分、约分等。

1. 四则运算分式的四则运算与整数的四则运算类似,根据需要进行加、减、乘、除的操作。

例如:(1/2) + (1/3) = (3/6) + (2/6) = 5/62. 化简化简是将分式的分子与分母进行约分,使其达到最简形式。

例如:4/8 = (4÷4) / (8÷4) = 1/23. 通分通分是将分式的分母化为相同的公共分母,以便于进行加减运算。

例如:(1/2) + (1/3) = (3/6) + (2/6) = 5/64. 约分约分是将分数的分子与分母进行化简,使其达到最简形式。

例如:4/8 = (4÷4) / (8÷4) = 1/2三、综合运算在实际问题中,常常需要综合运用二次根式与分式的运算。

例如:例1:计算√(5+2√6) × √(5-2√6) 的值。

(完整版)八年级下册数学--二次根式知识点整理

(完整版)八年级下册数学--二次根式知识点整理

二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。

2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。

如:-2x>4,不等式两边同除以-2得x<-2。

不等式组的解集是两个不等式解集的公共部分。

如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。

★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。

如25 可以写作 5 。

(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。

(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。

其中a≥0是 a 有意义的前提条件。

(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。

(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。

要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。

练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。

二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。

(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。

八年级二次根式知识点归纳

八年级二次根式知识点归纳

八年级二次根式知识点归纳一、概念简述二次根式是一种由一个根号和一个二次式组成的算式,其形式为√a + b或√a - b,其中a为非负实数,b为实数。

二、基本性质1. 满足乘方运算律和分配律,即(√a + b)² = a + 2b√a + b²,(√a -b)² = a - 2b√a + b²。

2. 当a>0且b≠0时,有√a + b = √a - b当且仅当b² = a。

3. 二次根式可以化简为整数根式或分式根式,如:√12 = 2√3,√(4/9) = 2/3。

三、运算方法1. 二次根式的加减法:(1) 若√a + b = √c + d,则b = d和a = c或a + c = 2b√a。

(2) 若√a + b ≠ √c + d,则可将它们通分,然后进行加减运算。

2. 二次根式的乘除法:(1) 二次根式相乘,可以利用公式(√a + b)(√c + d) = (ac + bd) + (ad + bc)√ac得到。

(2) 二次根式相除,一般先将分式根式化为分数形式,然后将分母有关的项合并,最后分别将根式合并即可。

四、练习题1. √27 + √12 = ?解:√27 + √12 = 3√3 + 2√3 = 5√32. 2√3 - √75 = ?解:2√3 - √75 = 2√3 - 5√3 = -3√33. (2√6 - 3)(√6 + 1) = ?解:(2√6 - 3)(√6 + 1) = 2√6√6 + 2√6 - 3√6 - 3 = 15 - √64. (√12 - √3)/(√2 + 1) = ?解:(√12 - √3)/(√2 + 1) = (√4√3 - √3)/(√2 + 1) = √3 - √6五、总结归纳二次根式作为数学中的一种重要概念,在八年级的数学教学中占据着重要的地位。

通过对二次根式的概念、基本性质和运算方法的学习,能够更好地理解和掌握二次根式的运用,提高数学解题能力。

二次根式知识点总结

二次根式知识点总结

二次根式知识点总结二次根式知识点总结上海初中数学二次根式知识点知识要领:正数a的正的平方根和零的平方根统称为算术平方根,用√ā(a≥0)来表示。

二次根式1、如果一个数的平方等于a,那么这个数叫做a的平方根。

即,如果一个数x=a,那么这个数x是a的平方根。

二次根式的定义和概念:1、定义:一般形如√ā(a≥0)的代数式叫做二次根式。

当a≥0时,表示a的算术平方根;当a小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根)被开方数必须大于等于0。

2、概念:式子√ā(a≥0)叫二次根式。

√ā(a≥0)是一个非负数。

其中,a叫做被开方数。

√a的性质和几何意义1)a≥0 ; √a≥0 [ 双重非负性 ]2)(√a)^2=a (a≥0)[任何一个非负数都可以写成一个数的平方的形式]3) c=√a^2+b^2表示直角三角形内,斜边等于两直角边的平方和的根号,即勾股定理推论。

4) √a^2 = |a|化最简二次根式如:不含有可化为平方数或平方式的因数或因式的有√2、√3、√6、√7、√a(a≥0)、√x+y 等;含有可化为平方数或平方式的因数或因式的有√4、√9、√16、√25、√a^2、√(x+y)^2、√x^2+2xy+y^2等最简二次根式同时满足下列三个条件:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含有能开的尽的因式;(3)被开方数不含分母。

知识点总结:一般形如√ā(a≥0)的代数式叫做二次根式。

初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

数学中的二次根式与分式

数学中的二次根式与分式

数学中的二次根式与分式在数学中,二次根式和分式是我们经常会遇到的两个概念。

它们在解决方程、计算和简化表达式等方面都具有重要的作用。

本文将详细介绍二次根式和分式的定义、性质以及它们在数学中的应用。

一、二次根式的定义与性质二次根式是指根号下包含二次项的表达式。

具体地说,对于一个非负实数a和正整数n,我们定义二次根式√a为满足以下条件的实数x:x的n次方等于a,即x^n = a。

其中,n称为根式的指数,而a则是根式的被开方数。

二次根式的性质如下:1. 非负性质:二次根式的值不会小于0,即根号下的被开方数必须为非负实数。

2. 分解性质:对于一个二次根式√ab,可以将其分解为√a * √b。

3. 合并性质:对于两个同类项的二次根式√a和√b,可以合并为√(a+b)。

4. 化简性质:如果被开方数能够整除完全平方数,那么二次根式就可以化简为一个有理数。

二、分式的定义与性质分式是数学中的一种表达形式,通常由分子和分母组成,中间用分数线分隔。

分式可以表示两个数之间的关系,其中分子表示被除数,分母表示除数。

分式的定义如下:对于两个整数a和b(其中b≠0),我们定义分式a/b为两个整数a和b的比值。

在分式中,a被称为分子,b被称为分母。

分式的性质如下:1. 除法性质:分式表示的是除法运算,即a/b = a÷b。

2. 分子和分母的性质:在一个分式中,如果分子和分母乘(或除)以同一个非零实数k,则分式的值不变。

3. 分式的简化:如果分子和分母有一个公因数,那么可以进行约分,将分式化简为最简形式。

4. 分式的加减乘除:两个分式的加减可以通过通分和化简的方法进行,两个分式的乘除可以通过分子乘分子、分母乘分母的方法进行。

三、二次根式与分式的联系与应用二次根式和分式在数学中经常会有联系,并在解决问题中应用到一起。

1. 化简分式时可以利用二次根式的性质进行转化。

比如,在分式中出现二次根式时,可以将其转化为最简形式,使得分母中不存在二次根式。

最新人教版八年级数学下册 二次根式知识点归纳及题型总结

最新人教版八年级数学下册 二次根式知识点归纳及题型总结

最新人教版八年级数学下册二次根式知识点归纳及题型总结二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.二次根式的定义:形如$\sqrt{a}$($a\geq 0$)的式子叫做二次根式。

2.二次根式的双重非负性:$\sqrt{a}\geq 0$,即一个非负数的算术平方根是一个非负数。

3.二次根式的同底同指数相加减:$\sqrt{a}+\sqrt{b}=\sqrt{a+b}$,$\sqrt{a}-\sqrt{b}=\sqrt{a-b}$。

4.积的算术平方根的性质:$\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}$。

5.商的算术平方根的性质:$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$($b\neq 0$)。

6.若$a\geq 0$,则$\sqrt{a^2}=|a|$。

知识点二、二次根式的运算1.二次根式的乘除运算1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。

2) 注意每一步运算的算理。

3) 乘法公式的推广:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm2\sqrt{ab}$。

2.二次根式的加减运算:先化简,再运算。

3.二次根式的混合运算1) 明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里。

2) 整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。

例题:1.下列各式中一定是二次根式的是()。

A。

$-3$;B。

$x$;C。

$x^2+1$;D。

$x-1$2.$x$取何值时,下列各式在实数范围内有意义。

1)$\sqrt{-15+x}$;(2)$\frac{1}{\sqrt{x+4}}$3)$\sqrt{x+4}+\sqrt{2x+1}$;(4)$\sqrt{x+1}-\sqrt{x}$5)$3-\sqrt{x+1}$;(6)$\frac{2x}{\sqrt{x+1}}$7)若$x(x-1)=\frac{1}{4}$,则$x$的取值范围是()。

八年级数学二次根式知识点

八年级数学二次根式知识点

八年级数学二次根式知识点在八年级数学中,二次根式是比较基础的一个知识点,也是初学者需要特别掌握的内容之一。

本文将详细介绍二次根式的定义、性质、运算方法和解题技巧,希望能够帮助大家更好地掌握这个知识点。

1. 二次根式的定义二次根式是指如下形式的算式:$\sqrt{a}$其中,a是一个非负实数,$\sqrt{a}$表示a的平方根。

例如,$\sqrt{4}$等于2,$\sqrt{9}$等于3。

2. 二次根式的性质(1)二次根式的值不超过其被开方数的值。

即,对于任意非负实数a和b,当a≥b时,有$\sqrt{a}≥\sqrt{b}$。

这是因为,平方根函数$\sqrt{x}$在x≥0的范围内是单调递增的。

(2)二次根式的值域为非负实数。

即,对于任意非负实数a,有$\sqrt{a}≥0$。

这是因为,平方根函数$\sqrt{x}$在x≥0的范围内是非负的。

(3)二次根式可以转化为分数形式。

即,对于任意非负实数a和正整数b,有$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$。

这是因为,分子、分母分别乘以$\sqrt{b}$,可以得到等式右边的形式。

3. 二次根式的运算方法(1)二次根式的加减法对于相同根式$\sqrt{a}$和$\sqrt{b}$,有:$\sqrt{a}±\sqrt{b}=\sqrt{a±b}$例如,$\sqrt{2}+\sqrt{8}=\sqrt{2}+2\sqrt{2}=3\sqrt{2}$。

(2)二次根式的乘法对于非负实数a和b,有:$\sqrt{a}·\sqrt{b}=\sqrt{ab}$例如,$\sqrt{2}·\sqrt{8}=\sqrt{16}=4$。

(3)二次根式的除法对于非负实数a和b(b≠0),有:$\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$例如,$\frac{\sqrt{8}}{\sqrt{2}}=\sqrt{4}=2$。

二次根式知识点

二次根式知识点

二次根式知识点1. 二次根式的定义二次根式指的是形如√a的数,其中a为非负实数。

a被称为被开方数,√a被称为二次根式,也可以叫做平方根。

2. 二次根式的基本性质① 非负性:二次根式必须为非负实数。

② 同根式的加减法:同一指数的二次根式可以进行加减法运算,结果等于指数不变时各自运算后相加减。

③ 同根式的乘法:同一指数的二次根式可以进行乘法运算,结果等于指数不变时各自运算后相乘。

④ 同底数的指数运算:同一被开方数的不同指数的二次根式,可以进行指数运算,结果等于底数相同时指数相加或相减后的二次根式。

⑤ 合并同类项:不同被开方数的二次根式不能进行加减运算,必须化为同一被开方数才能进行操作。

3. 二次根式的化简① 化简含有平方数的二次根式例如:√36 = √(6²)= 6② 化简含有分数的二次根式例如:√(1/4)= 1/√4= 1/2③ 化简含有根号的二次根式例如:√(128)= √(2*64)= 8√2④ 去除被开方数中的平方因子例如:√(80)= √(16*5)= 4√54. 二次根式的应用由于二次根式代表着平方根,所以在一些实际问题中,经常出现二次根式的应用。

例1:计算正方形对角线的长度设正方形边长为a,则对角线长度d = √(a²+a²)=a√2例2:炮弹落地问题假设炮弹以初速度v以角度α斜抛,落地时的水平距离为x,求炮弹所需的最小速度v。

根据物理学上的知识,可以得到:x = v²sin2α/g其中g为重力加速度,有g = 9.8m/s²,化简可得:v = √(gx/ sin2α)在实际问题中,二次根式的应用还有很多,比如在建筑设计中计算楼梯踏步和踏板的长度,计算圆周率的近似值等等。

5. 二次根式的拓展除了√a这种形式的二次根式外,还可以拓展为含有多个根号的形式。

例如:√(a±√b)化简时,可以拆分成两个二次根式相加或相减的形式:当加号为正号时,可拆分为:√(a+√b)+√(a-√b)当减号为负号时,可拆分为:√(a-√b)-√(a+√b)在拓展的形式中,二次根式的化简变得更为复杂,需要运用其他方法进行化简。

初二数学二次根式知识点大全

初二数学二次根式知识点大全

初二数学二次根式知识点大全知识点1 二次根式1.二次根式的定义一般地,我们把形如 $\sqrt{a}$($a\geq0$)的式子叫做二次根式。

其中,$\sqrt{}$ 称为二次根号,$a$($a\geq0$)是一个非负数。

2.二次根式有意义的条件二次根式的概念是形如 $\sqrt{a}$($a\geq0$)的式子叫做二次根式。

二次根式中被开方数是非负数,且具有非负性,即 $a\geq0$。

3.二次根式的双重非负性二次根式的双重非负性包括被开方数的非负性和算数平方根的非负性,即 $a\geq0$ 和 $\sqrt{a}\geq0$。

4.二次根式化简化简二次根式的方法包括把被开方数分解因式,利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来,化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数 2.题型1 二次根式定义例1】在式子 $\pi$,$a^2+b^2$,$a+5$,$-3y(y\geq0)$,$m^2-1$ 和 $ab$($a<0,b<0$)中,是二次根式的有()A。

3个B。

4个C。

5个D。

5个解答】解:式子 $\pi$,$a^2+b^2$,$-3y(y\geq0)$,$ab$($a<0,b<0$)是二次根式,共 4 个,故选 B。

点评】此题主要考查了二次根式定义,关键是注意被开方数为非负数。

题型2 二次根式有意义的条件例2】若 $\frac{\sqrt{2x}}{\sqrt{y}}$ 是二次根式,则下列说法正确的是()A。

$x<y$B。

$x$ 且 $y>\frac{2x^2}{y^2}$C。

$x$、$y$ 同号D。

$x,y>0$ 或 $x,y<0$解答】解:依题意有 $\frac{\sqrt{2x}}{\sqrt{y}}$,即$\sqrt{\frac{2x}{y}}$,是二次根式。

则 $\frac{2x}{y}>0$,即$x,y$ 同号且 $y\neq0$。

二次根式知识点总结

二次根式知识点总结

二次根式知识点总结1. 二次根式的定义二次根式是指形如√a的数式,其中a是一个非负实数。

在二次根式中,a被称为被开方数,√a被称为二次根号。

二次根式可以是完全平方数,也可以是非完全平方数。

2. 二次根式的化简化简二次根式的目的是将其写成最简形式。

对于完全平方数,化简的过程比较简单,只需要将√a的值直接提取出来即可。

而对于非完全平方数,需要用到分解质因数的方法来化简。

比如对于√18,可以分解质因数得到√(2×3×3),然后将成对的质因数提取出来得到3√2。

3. 二次根式的运算(1)二次根式的加减法二次根式的加减法遵循着类似项相加的原则。

即对于同一次幂的二次根式,可以进行加减运算。

比如√8 + √32,可以将8和32分解质因数得到√(2×2×2) + √(2×2×2×2×2),然后将相同的项加在一起得到2√2 + 4√2,再进行合并得到6√2。

(2)二次根式的乘法二次根式的乘法用到了平方根的性质,即√a×√b=√(a×b)。

对于二次根式的乘法,可以直接将被开方数相乘再提取出来即可。

比如(√5 + √3)×(√5 - √3),可以将其展开得到√5×√5 - √5×√3 +√3×√5 - √3×√3,再合并得到5 - 3=2。

(3)二次根式的除法二次根式的除法也用到了平方根的性质,即√a/√b=√(a/b)。

对于二次根式的除法,可以直接将被开方数相除再提取出来即可。

比如(√12 + √3)/(√3),可以将其展开得到√12/√3 + √3/√3,再化简得到2√3 + 1。

4. 二次根式的化简与支配数在二次根式的运算中,有时候会出现需要化简的情况。

这就需要用到支配数的概念。

支配数是指对于一个二次根式,可以找到一个更小的数,使得原二次根式是这个数的倍数。

比如对于√75,可以找到√25×3,这里25就是√75的支配数。

八年级二次根式知识点梳理

八年级二次根式知识点梳理

八年级二次根式知识点梳理在初中数学学习中,二次根式是一个重要的知识点,掌握好二次根式的运算和化简方法,对于后续的数学学习和应用都有着非常重要的作用。

本文将从基础概念、运算法则、化简方法和解题思路四个方面来进行二次根式知识点的梳理。

一、基础概念1. 二次根式的定义二次根式是指形如“a√b”的式子,其中a和b都是实数,a为系数,b为被开方数,√为根号符号。

2. 根式的运算符号根式的运算符号有加号、减号、乘号、除号,分别表示根式的加减、乘和除。

二、运算法则1. 二次根式的加减对于同类项,即被开方数相同的二次根式,其系数相加减即可,例如:3√2 + 5√2 = 8√24√3 - 2√3 = 2√3对于不同类项,则需要先化简为同类项后再进行加减运算,例如:2√3 + 5√2 - 3√3 = -√3 + 5√22. 二次根式的乘法二次根式的乘法可以使用分配律进行运算,例如:(3√2)(2√3) = 6√(2×3) = 6√63. 二次根式的除法二次根式的除法可以将被除数和除数同时乘以并分别化简为整数或同类项的二次根式,然后将化简后的结果进行相除,例如:(6√5) ÷ (2√5) = (6÷2)√(5÷5) = 34. 二次根式的混合运算二次根式的混合运算可以按照运算法则的顺序进行,先进行括号内的运算,然后进行乘除运算,最后进行加减运算,例如:(5√2 - 2√3) × 2√6 = 10√12 - 4√18 = 10√4√3 - 4√9√2 = 20√3 - 12√2三、化简方法1. 化简平方数根如√4、√9、√16等都是平方数根,可以直接化为整数,例如:√4 = 2√9 = 3√16 = 42. 分解因数将被开方数分解成若干个因子的积,然后再进行化简,例如:√32 = √16×2 = 4√2√75 = √25×3 = 5√33. 有理化分母二次根式的有理化分母可以将分母乘以分母的共轭形式,即将分母的加减号改为相反数的加减号,例如:(2+√3)÷(1-√3) = (2+√3)(1+√3)÷(1-√3)(1+√3) = 2√3 + 5四、解题思路1. 直观感受对于不确定的二次根式,可以通过估算其大小来判断其范围,例如:1 < √2 < 22 < √5 < 33 < √10 < 42. 转化为同类项将不同类项的二次根式转化为同类项后再进行加减运算,例如:√48 + √75 - √27 = 4√3 + 5√3 - 3√3 = 6√33. 有理化分母和化简将二次根式中的分母有理化并将其化简为整数或同类项的二次根式,然后再进行计算,例如:(1+√7)÷(1-√7) + √28 = (1+√7)(1+√7) ÷ (1-√7)(1+√7) +2√7 =8+2√7以上就是本文对八年级二次根式知识点的梳理,希望能够对大家的数学学习有所帮助。

分式和二次根式知识总结

分式和二次根式知识总结

分式与二次根式-知识讲解【知识网络】知识点一、分式的有关概念及性质1.分式设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义.2.分式的基本性质(M为不等于零的整式)。

3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简。

要点诠释:分式的概念需注意的问题:(1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;(2)分式中,A和B均为整式,A可含字母,也可不含字母,但B中必须含有字母且不为0;(3)判断一个代数式是否是分式,不要把原式约分变形,只根据它的原有形式进行判断.(4)分式有无意义的条件:在分式中,①当B≠0时,分式有意义;当分式有意义时,B≠0.②当B=0时,分式无意义;当分式无意义时,B=0.③当B≠0且A = 0时,分式的值为零.知识点二、分式的运算1.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算±=同分母的分式相加减,分母不变,把分子相加减。

;异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.(2)乘法运算两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(4)乘方运算(分式乘方)分式的乘方,把分子分母分别乘方.2.零指数。

3.负整数指数4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.5.约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.6.通分根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.要点诠释:约分需明确的问题:(1)对于一个分式来说,约分就是要把分子与分母都除以同一个因式,使约分前后分式的值相等;(2)约分的关键是确定分式的分子和分母的公因式,其思考过程与分解因式中提取公因式时确定公因式的思考过程相似;在此,公因式是分子、分母系数的最大公约数和相同字母最低次幂的积.通分注意事项:(1)通分的关键是确定最简公分母;最简公分母应为各分母系数的最小公倍数与所有因式的最高次幂的积.(2)不要把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.(3)确定最简公分母的方法:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母因式的最高次幂的积.知识点三、分式方程及其应用1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题验根:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.4.分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.要点诠释:解分式方程注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.列分式方程解应用题的基本步骤: (1)审——仔细审题,找出等量关系; (2)设—-合理设未知数;(3)列——根据等量关系列出方程; (4)解——解出方程; (5)验-—检验增根; (6)答——答题.知识点四、二次根式的主要性质1。

初中数学二次根式知识点总结

初中数学二次根式知识点总结

初中数学二次根式知识点总结一、二次根式的定义和性质1.二次根式:形如√a(其中a≥0)的数叫做二次根式,其中a叫做被开方数。

2.平方数:一些数的平方的结果叫做平方数,如1、4、9等。

平方数的平方根是有理数。

3.二次根式化简:将二次根式中含有相同因式的项合并,并将二次根式的指数化简为最简整数。

4.二次根式的乘除法:二次根式的乘除法可以通过对被开方数和指数进行运算和化简来进行。

二、二次根式的运算1.二次根式的加减法:a)加法:将两个二次根式的被开方数相加,并将其指数化简。

b)减法:将两个二次根式的被开方数相减,并将其指数化简。

2.二次根式的乘法:a)二次根式的乘法使用分配律,将被开方数和指数分别相乘,并将结果进行化简。

b)若二次根式与实数相乘,则可将实数与二次根式的被开方数相乘,并将指数进行化简。

3.二次根式的除法:a)二次根式的除法可以通过将分子和分母的被开方数相除,并将指数进行化简来进行。

b)若二次根式除以实数,可以将实数除以二次根式的被开方数,并将指数进行化简。

三、二次根式的化简1.二次根式化简的基本方法:a)将被开方数分解成素数的乘积。

b)将二次根式的指数约分为最简整数。

c)将二次根式的含有相同因式的项合并。

2.平方根的化简:a)平方根下的分数:将分子和分母分别进行开方,然后化简。

b)分数的平方根:将分子和分母分别进行开方,然后化简。

c)同解式的平方根:可以适用平方根的基本性质将二次根式进行化简。

四、二次根式的应用1.几何意义:二次根式可以表示一些图形的边长或斜边的长度。

a)两点间的距离:利用两点间的距离公式可以将二次根式化简为实数。

b)直角三角形的斜边:利用勾股定理可以将二次根式化简为实数。

2.分数的运算:在分数运算中,往往会出现二次根式,需要将二次根式进行化简并进行运算。

3.实际问题的应用:解决实际问题时,需利用已知条件建立方程,通过方程的求解,将二次根式进行化简。

综上所述,初中数学二次根式是重要的基础知识点,掌握二次根式的运算和化简方法,了解二次根式的几何意义和实际应用,在解决问题中能熟练运用二次根式的相关知识,将有助于提高数学解题能力。

八年级二次根式知识点总结

八年级二次根式知识点总结

八年级二次根式知识点总结在八年级数学教学中,二次根式是一个非常重要的知识点。

本文将对八年级二次根式的相关内容做出总结。

一、二次根式的定义二次根式是指形如√a(其中a≥0)的数学表达式。

其中,a被称为二次根式的被开方数,√a被称为二次根式的根号。

二次根式可以被写成分数形式,如a/b。

二、二次根式的简化二次根式可以通过简化变成更简单的形式。

简化二次根式的方法有以下两种:1. 化简平方因数法。

通过分解因数,将被开方数分解成平方数与非平方数的积,再把非平方因数提出根号,最后简化出来。

例如:√48=√16×3=4√3。

2. 分离根式法。

对于含有有理数和根号的表达式,可以将其中根式部分提出来进行简化。

例如:√128+√32=√64×2+√16×2=8√2+4√2=12√2。

三、二次根式的计算在二次根式计算中,需要掌握以下几种运算法则:1. 二次根式的加减运算。

在进行二次根式的加减运算时,必须要保证分母相同。

如果分母不同,则需要通过乘以一个适当的有理数将分母进行化简,使得分母相同。

例如:√5+√20=√5+√4×5=√5+2√5=3√5。

2. 二次根式的乘法。

二次根式的乘法运算可以使用分配律进行转化,乘号两边的数分别做乘法,最后化简即可。

例如:(√2-√3)(√2+√3)=2-3= -1。

3. 二次根式的除法。

二次根式的除法运算可以转化为乘法运算。

即如下式:例如:(√18/√2)×(1/√3)=√9=3。

四、二次根式的应用1. 几何意义:二次根式可以用于计算正方形、长方形等几何图形的对角线长。

例如:正方形的对角线长为√2l,其中l为正方形边长。

2. 物理意义:二次根式可以应用于运动学、波动学等方面的物理问题的求解中。

例如:自由落体运动中下落高度h与时间t的关系式为h=gt²/2,其中g为重力加速度,t为时间。

如果我们希望计算自由落体运动中1秒后物体下落的高度,可以使用二次根式进行计算。

分式、二次根式知识点(中考复习专用)

分式、二次根式知识点(中考复习专用)

分式、二次根式知识点 1、形如A B 的式子,其中A 、B 为整式,除式B 中 且 叫做分式。

分式A B 有意义: 分式A B 无意义: 分式A B 值为零: 分式A B 值为正数: 分式A B 值为负数:
2、分式的基本性质:
分式的分子与分母同乘(除以) 分式的值不变。

3、分式的符号法则:分式的 、 及 三个符号,任意两项同时变号,分式的值不变。

4、最简公分母确定:先分解因式,再系数找 ,字母找 , 字母的指数取 。

5、若分式的分子与分母是多项式,须把分子与分母 ,再进行约分通分等运算。

6、科学记数法:a ╳10n ,其中a 的取值范围是
7、分式的拆分:1n(n+1)= 1n(n+3)=
8、二次根式:式子√a 叫做二次根式。

9、最简二次根式:必须同时满足下列条件:
⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含 ; ⑶分母中不含 。

10、同类二次根式:二次根式化成 后,若 相同,则这几个二次根式就是同类二次根式。

11、二次根式的性质:
(1)(√a )2= ( ); (2)√a 2= ={ ( )
( ) ( )
(3)双重非负性: ,
12、二次根式的运算:
⑴加减运算:先把二次根式化成 ,然后 即可。

⑵乘除运算:√ab = ( ); √a b = (
)。

初二二次根式所有知识点总结和常考题提高难题压轴题练习含答案解析)

初二二次根式所有知识点总结和常考题提高难题压轴题练习含答案解析)

初二二次根式所有知识点总结和常考题知识点:1、二次根式: 形如)0(≥a a 的式子。

①二次根式必须满足:含有二次根号“”;被开方数a 必须是非负数。

②非负性2、最简二次根式:满足:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式的二次根式。

3、化最简二次根式的方法和步骤:(1)如果被开方数含分母,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

(2)如果被开方数含能开得尽方的因数或因式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

3、二次根式有关公式(1))0()(2≥=a a a (2)a a =2(3)乘法公式)0,0(≥≥∙=b a b a ab(4)除法公式)0,0( b a ba b a ≥= 4、二次根式的加减法则:先将二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并。

5、二次根式混合运算顺序:先乘方,再乘除,最后加减,有括号的先算括号里的。

常考题:一.选择题(共14小题)1.下列二次根式中属于最简二次根式的是( ) A .B .C .D .2.式子有意义的x 的取值范围是( )A .x ≥﹣且x ≠1B .x ≠1C .D .3.下列计算错误的是( )A .B .C .D .4.估计的运算结果应在( )A .6到7之间B .7到8之间C .8到9之间D .9到10之间5.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥6.若=(x+y)2,则x﹣y的值为()A.﹣1 B.1 C.2 D.37.是整数,则正整数n的最小值是()A.4 B.5 C.6 D.78.化简的结果是()A.B.C.D.9.k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n10.实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定11.把根号外的因式移入根号内得()A.B.C.D.12.已知是正整数,则实数n的最大值为()A.12 B.11 C.8 D.313.若式子有意义,则点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限14.已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.5二.填空题(共13小题)15.实数a在数轴上的位置如图所示,则|a﹣1|+= .16.计算:的结果是.17.化简:(﹣)﹣﹣|﹣3|= .18.如果最简二次根式与是同类二次根式,则a= .19.定义运算“@”的运算法则为:x@y=,则(2@6)@8= .20.化简×﹣4××(1﹣)0的结果是.21.计算:﹣﹣= .22.三角形的三边长分别为,,,则这个三角形的周长为cm.23.如果最简二次根式与能合并,那么a= .24.如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是.(结果保留根号)25.实数p在数轴上的位置如图所示,化简= .26.计算:= .27.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= .三.解答题(共13小题)28.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.29.计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.30.先化简,再求值:,其中.31.先化简,再求值:,其中x=1+,y=1﹣.32.先化简,再求值:,其中.33.已知a=,求的值.34.对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答:+=+=+﹣a=﹣a=;乙的解答:+=+=+a﹣=a=.请你判断谁的答案是错误的,为什么?35.一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.36.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.37.已知:,,求代数式x2﹣xy+y2值.38.计算或化简:(1);(2)(a>0,b>0).39.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.40.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若a+4=,且a、m、n均为正整数,求a的值?初二二次根式所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2005•岳阳)下列二次根式中属于最简二次根式的是()A.B.C. D.【分析】B、D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:因为:B、=4;C、=;D、=2;所以这三项都不是最简二次根式.故选A.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.2.(2013•娄底)式子有意义的x的取值范围是()A.x≥﹣且x≠1 B.x≠1 C.D.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故选A.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.(2007•荆州)下列计算错误的是()A.B.C.D.【分析】根据二次根式的运算法则分别计算,再作判断.【解答】解:A、==7,正确;B、==2,正确;C、+=3+5=8,正确;D、,故错误.故选D.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.4.(2008•芜湖)估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间【分析】先进行二次根式的运算,然后再进行估算.【解答】解:∵=4+,而4<<5,∴原式运算的结果在8到9之间;故选C.【点评】本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.5.(2011•烟台)如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥【分析】由已知得1﹣2a≥0,从而得出a的取值范围即可.【解答】解:∵,∴1﹣2a≥0,解得a≤.故选:B.【点评】本题考查了二次根式的化简与求值,是基础知识要熟练掌握.6.(2009•荆门)若=(x+y)2,则x﹣y的值为()A.﹣1 B.1 C.2 D.3【分析】先根据二次根式的性质,被开方数大于或等于0,可求出x、y的值,再代入代数式即可.【解答】解:∵=(x+y)2有意义,∴x﹣1≥0且1﹣x≥0,∴x=1,y=﹣1,∴x﹣y=1﹣(﹣1)=2.故选:C.【点评】本题主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.7.(2012秋•麻城市校级期末)是整数,则正整数n的最小值是()A.4 B.5 C.6 D.7【分析】本题可将24拆成4×6,先把化简为2,所以只要乘以6得出62即可得出整数,由此可得出n的值.【解答】解:∵==2,∴当n=6时,=6,∴原式=2=12,∴n的最小值为6.故选:C.【点评】本题考查的是二次根式的性质.本题还可将选项代入根式中看是否能开得尽方,若能则为答案.8.(2013•佛山)化简的结果是()A.B.C.D.【分析】分子、分母同时乘以(+1)即可.【解答】解:原式===2+.故选:D.【点评】本题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.9.(2013•台湾)k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n【分析】根据二次根式的化简公式得到k,m及n的值,即可作出判断.【解答】解:=3,=15,=6,可得:k=3,m=2,n=5,则m<k<n.故选:D【点评】此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.10.(2011•菏泽)实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定【分析】先从实数a在数轴上的位置,得出a的取值范围,然后求出(a﹣4)和(a﹣11)的取值范围,再开方化简.【解答】解:从实数a在数轴上的位置可得,5<a<10,所以a﹣4>0,a﹣11<0,则,=a﹣4+11﹣a,=7.故选A.【点评】本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.11.(2013秋•五莲县期末)把根号外的因式移入根号内得()A.B.C.D.【分析】根据二次根式的性质及二次根式成立的条件解答.【解答】解:∵成立,∴﹣>0,即m<0,原式=﹣=﹣.故选:D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.二次根式成立的条件:被开方数大于等于0,含分母的分母不为0.12.(2009•绵阳)已知是正整数,则实数n的最大值为()A.12 B.11 C.8 D.3【分析】如果实数n取最大值,那么12﹣n有最小值;又知是正整数,而最小的正整数是1,则等于1,从而得出结果.【解答】解:当等于最小的正整数1时,n取最大值,则n=11.故选B.【点评】此题的关键是分析当等于最小的正整数1时,n取最大值.13.(2005•辽宁)若式子有意义,则点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据二次根式的被开方数为非负数和分母不为0,对a、b的取值范围进行判断.【解答】解:要使这个式子有意义,必须有﹣a≥0,ab>0,∴a<0,b<0,∴点(a,b)在第三象限.故选C.【点评】本题考查二次根式有意义的条件,以及各象限内点的坐标的符号.14.(2013•上城区一模)已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.5【分析】原式变形为,由已知易得m+n=2,mn=(1+)(1﹣)=﹣1,然后整体代入计算即可.【解答】解:m+n=2,mn=(1+)(1﹣)=﹣1,原式====3.故选:C.【点评】本题考查了二次根式的化简求值:先把被开方数变形,用两个数的和与积表示,然后利用整体代入的思想代入计算.二.填空题(共13小题)15.(2004•山西)实数a在数轴上的位置如图所示,则|a﹣1|+= 1 .【分析】根据数轴上表示的两个数,右边的数总比左边的大,分别得出a﹣1与0,a﹣2与0的关系,然后根据绝对值的意义和二次根式的意义化简.【解答】解:根据数轴上显示的数据可知:1<a<2,∴a﹣1>0,a﹣2<0,∴|a﹣1|+=a﹣1+2﹣a=1.故答案为:1.【点评】本题主要考查了数轴,绝对值的意义和根据二次根式的意义化简.二次根式的化简规律总结:当a≥0时,=a;当a≤0时,=﹣a.16.(2013•南京)计算:的结果是.【分析】先进行二次根式的化简,然后合并同类二次根式即可.【解答】解:原式=﹣=.故答案为:.【点评】本题考查了二次根式的加减运算,属于基础题,关键是掌握二次根式的化简及同类二次根式的合并.17.(2013•泰安)化简:(﹣)﹣﹣|﹣3|= ﹣6 .【分析】根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可.【解答】解:(﹣)﹣﹣|﹣3|=﹣3﹣2﹣(3﹣),=﹣6.故答案为:﹣6.【点评】此题主要考查了二次根式的化简与混合运算,正确化简二次根式是解题关键.18.(2006•广安)如果最简二次根式与是同类二次根式,则a= 5 .【分析】根据最简二次根式和同类二次根式的定义,列方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a﹣8=17﹣2a,解得:a=5.【点评】此题主要考查最简二次根式和同类二次根式的定义.19.(2007•芜湖)定义运算“@”的运算法则为:x@y=,则(2@6)@8= 6 .【分析】认真观察新运算法则的特点,找出其中的规律,再计算.【解答】解:∵x@y=,∴(2@6)@8=@8=4@8==6,故答案为:6.【点评】解答此类题目的关键是认真观察新运算法则的特点,找出其中的规律,再计算.20.(2014•荆州)化简×﹣4××(1﹣)0的结果是.【分析】先把各二次根式化为最简二次根式,再根据二次根式的乘法法则和零指数幂的意义计算得到原式=2﹣,然后合并即可.【解答】解:原式=2×﹣4××1=2﹣=.故答案为:.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.21.(2014•广元)计算:﹣﹣= ﹣2 .【分析】分别进行分母有理化、二次根式的化简,然后合并求解.【解答】解:==﹣2.故答案为:﹣2.【点评】本题考查了二次根式的加减法,本题涉及了分母有理化、二次根式的化简等运算,属于基础题.22.(2013•宜城市模拟)三角形的三边长分别为,,,则这个三角形的周长为5cm.【分析】三角形的三边长的和为三角形的周长,所以这个三角形的周长为++,化简合并同类二次根式.【解答】解:这个三角形的周长为++=2+2+3=5+2(cm).故答案为:5+2(cm).【点评】本题考查了运用二次根式的加减解决实际问题.23.(2012秋•浏阳市校级期中)如果最简二次根式与能合并,那么a= 1 .【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【解答】解:根据题意得,1+a=4a﹣2,移项合并,得3a=3,系数化为1,得a=1.故答案为:1.【点评】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.24.(2006•宿迁)如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是2﹣2 .(结果保留根号)【分析】根据题意可知,两相邻正方形的边长分别是和,由图知,矩形的长和宽分别为+、,所以矩形的面积是为(+)•=2+6,即可求得矩形内阴影部分的面积.【解答】解:矩形内阴影部分的面积是(+)•﹣2﹣6=2+6﹣2﹣6=2﹣2.【点评】本题要运用数形结合的思想,注意观察各图形间的联系,是解决问题的关键.25.(2003•河南)实数p在数轴上的位置如图所示,化简=1 .【分析】根据数轴确定p的取值范围,再利用二次根式的性质化简.【解答】解:由数轴可得,1<p<2,∴p﹣1>0,p﹣2<0,∴=p﹣1+2﹣p=1.【点评】此题从数轴读取p的取值范围是关键.26.(2009•泸州)计算:= 2 .【分析】运用二次根式的性质:=|a|,由于2>,故=2﹣.【解答】解:原式=2﹣+=2.【点评】合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.27.(2011•凉山州)已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5 .【分析】只需首先对估算出大小,从而求出其整数部分a,其小数部分用﹣a表示.再分别代入amn+bn2=1进行计算.【解答】解:因为2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把m=2,n=3﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得(6a+16b)﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以2a+b=3﹣0.5=2.5.故答案为:2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.三.解答题(共13小题)28.(2009•邵阳)阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.【分析】(1)中,通过观察,发现:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到约分的目的;(2)中,注意找规律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出现抵消的情况.【解答】解:(1)=,=;(2)原式=+…+=++…+=.【点评】学会分母有理化的两种方法.29.(2014•张家界)计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.【分析】根据零指数幂、负整数指数幂和平方差公式得到原式=5﹣1﹣9+﹣1﹣1+2,然后合并即可.【解答】解:原式=5﹣1﹣9+﹣1﹣1+2=﹣7+3.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂.30.(2009•广州)先化简,再求值:,其中.【分析】本题的关键是对整式化简,然后把给定的值代入求值.【解答】解:原式=a2﹣3﹣a2+6a=6a﹣3,当a=时,原式=6+3﹣3=6.【点评】本题主要考查整式的运算、平方差公式等基本知识,考查基本的代数计算能力.注意先化简,再代入求值.31.(2005•沈阳)先化简,再求值:,其中x=1+,y=1﹣.【分析】这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.【解答】解:原式===;当x=1+,y=1﹣时,原式=.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.32.(2010•莱芜)先化简,再求值:,其中.【分析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式去括号,把除法转换为乘法化简,然后再代入求值.本题注意x﹣2看作一个整体.【解答】解:原式====﹣(x+4),当时,原式===.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.33.(2008•余姚市校级自主招生)已知a=,求的值.【分析】先化简,再代入求值即可.【解答】解:∵a=,∴a=2﹣<1,∴原式=﹣=a﹣1﹣=a﹣1+=2﹣﹣1+2+=4﹣1=3.【点评】本题考查了二次根式的化简与求值,将二次根式的化简是解此题的关键.34.(2002•辽宁)对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答:+=+=+﹣a=﹣a=;乙的解答:+=+=+a﹣=a=.请你判断谁的答案是错误的,为什么?【分析】因为a=时,a﹣=﹣5=﹣4<0,所以≠a﹣,故错误的是乙.【解答】解:甲的解答:a=时,﹣a=5﹣=4>0,所以=﹣a,正确;乙的解答:因为a=时,a﹣=﹣5=﹣4<0,所以≠a﹣,错误;因此,我们可以判断乙的解答是错误的.【点评】应熟练掌握二次根式的性质:=﹣a(a≤0).35.(2011•上城区二模)一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.【分析】把三角形的三边长相加,即为三角形的周长.再运用运用二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:(1)周长=++==,(2)当x=20时,周长=,(或当x=时,周长=等)【点评】对于第(2)答案不唯一,但要注意必须符合题意.36.(2005•台州)我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.【分析】(1)代入计算即可;(2)需要在括号内都乘以4,括号外再乘,保持等式不变,构成完全平方公式,再进行计算.【解答】解:(1)s=,=;p=(5+7+8)=10,又s=;(2)=(﹣)=,=(c+a﹣b)(c﹣a+b)(a+b+c)(a+b﹣c),=(2p﹣2a)(2p﹣2b)•2p•(2p﹣2c),=p(p﹣a)(p﹣b)(p﹣c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)【点评】考查了三角形面积的海伦公式的用法,也培养了学生的推理和计算能力.37.(2009秋•金口河区期末)已知:,,求代数式x2﹣xy+y2值.【分析】观察,显然,要求的代数式可以变成x,y的差与积的形式,从而简便计算.【解答】解:∵,,∴xy=×2=,x﹣y=∴原式=(x﹣y)2+xy=5+=.【点评】此类题注意变成字母的和、差或积的形式,然后整体代值计算.38.(2010秋•灌云县校级期末)计算或化简:(1);(2)(a>0,b>0).【分析】(1)先化简,再运用分配律计算;(2)先化简,再根据乘除法的法则计算.【解答】解:(1)原式==6﹣12﹣6=6﹣18;(2)原式=﹣×=﹣3a2b2×=﹣a2b.【点评】熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.39.(2013秋•故城县期末)先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【解答】解:根据,可得m=13,n=42,∵6+7=13,6×7=42,∴==.【点评】解题关键是把根号内的式子整理为完全平方的形式.40.(2013•黔西南州)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= m2+3n2,b= 2mn ;(2)利用所探索的结论,找一组正整数a、b、m、n填空: 4 + 2 =( 1+ 1 )2;(3)若a+4=,且a、m、n均为正整数,求a的值?【分析】(1)根据完全平方公式运算法则,即可得出a、b的表达式;(2)首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;(3)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.【解答】解:(1)∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为:m2+3n2,2mn.(2)设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4、2、1、1.(3)由题意,得:a=m2+3n2,b=2mn∵4=2mn,且m、n为正整数,∴m=2,n=1或者m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.【点评】本题主要考查二次根式的混合运算,完全平方公式,解题的关键在于熟练运算完全平方公式和二次根式的运算法则.。

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型二次根式知识点总结及常见题型一、二次根式的定义形如$a\sqrt{a}$的式子叫做二次根式。

其中$\sqrt{a}$叫做二次根号,$a$叫做被开方数。

1) 二次根式有意义的条件是被开方数为非负数。

据此可以确定字母的取值范围。

2) 判断一个式子是否为二次根式,应根据以下两个标准判断:①是否含有二次根号“$\sqrt{}$”;②被开方数是否为非负数。

若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式。

3) 形如$m\sqrt{a}$的式子也是二次根式,其中$m$叫做二次根式的系数,它表示的是:$m\sqrt{a}=m\cdot\sqrt{a}$。

4) 根据二次根式有意义的条件,若二次根式$A-B$与$B-A$都有意义,则有$A=B$。

二、二次根式的性质二次根式具有以下性质:1) 双重非负性:$a\geq0$,$\sqrt{a}\geq0$。

(主要用于字母的求值)2) 回归性:$(\sqrt{a})^2=a$,其中$a\geq0$。

(主要用于二次根式的计算)begin{cases}sqrt{a}(a\geq0)\\sqrt{a}(a\leq0)end{cases}$(主要用于二次根式的化简)重要结论:1) 若几个非负数的和为0,则每个非负数分别等于0.若$A+B^2+C=0$,则$A=0$,$B=0$,$C=0$。

应用与书写规范:$\because A+B^2+C=0$,$A\geq0$,$B^2\geq0$,$C\geq0$,$\therefore A=0$,$B=0$,$C=0$。

该性质常与配方法结合求字母的值。

2) $\begin{cases}A-B(A\geq B)\\frac{(A-B)^2}{A+B}\end{cases}$(主要用于二次根式的化简)3) $AB=\begin{cases}A\cdot B(A>0)\\A\cdot B(A<0)\end{cases}$,其中$B\geq0$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四节 分式与二次根式
考点一:分式的概念
分式:两个整式相除,且除式中含有字母,这样的代数式叫做分式。

分式中字幕的取值不能使分母为零,当分母为零时,分式就没有意义。

<分式为零的条件>
分式为零的条件:当分子为零时,分式的值为零。

<分式有意义的条件>
分式有意义的条件:当分母不为零时,分式有意义。

考点二:分式的基本性质与运算
<分式的基本性质>
分式的分子与分母都乘以(或除以)一个不等于零的整式,粉饰的值不变。

A A×X A A÷M
= =
B B×X , B B÷M , (其中M 是不等于零的整式)
<约分>
分式的约分:把一个分式的分子和分母的公因式约去,叫做分式的约分,约分要约去分子、分母的所有公因式。

分子、分母没有公因式的分式叫做最简分式。

利用分式的约分,可以进行多项式的除法。

把两个多项式相除先表示成分式,然后通过分解因式、约分等把分式简化,用整式或最简分式表示所求的商。

<分式的运算>
分式的乘除:分式乘分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

a c = ac
a c a d ad
b d bd , b d b
c bc
分式的加减:同分母的分式相加减,分式的分母不变,把分子相加减。

a b = a b c c c 通分:把分母不相同的几个分式化成分母相同的分式,叫做痛分,一分母分式的加减就转化为同分母分式的加减,然后按同分母分式的加减法则进行计算。

通分时,一般取各分母的系数的最小公倍数与各分母所有字母的最高词目的积为公分母。

分式方程:只含分式,或分式和整式,并且分母里含有未知数的方程叫做分式方程。

考点三:二次根式
<二次根式有意义的条件>
二次根式:表示算术平方根的代数式叫做二次根式。

一般地,式子a ( a≥0)叫做二次根式,a 叫做被开方数。

当a≥0时,二次根式有意义。

二次根式的性质:
a (a≥0)
-a (a≥0)
<二次根式的运算>
积的算术平方根的性质:)0,0(≥≥⋅=b a b a ab ,
二次根式乘法法则:__________=⋅b a (a≥0,b≥0)
商的算术平方根的性质: b a b a =).0,0(>≥b a
= + + ÷ . . = = =
二次根式除法法则:)0,0(>≥=b a b
a b a 最简二次根式:在根号内不含分母,不含开的金纺的因数或因式,这样的二次根式我们就说它是最简二次根式,二次根式化简的结果为最简二次根式。

相关文档
最新文档