卡尔曼滤波基础知识

合集下载

一句话讲明白 卡尔曼滤波

一句话讲明白 卡尔曼滤波

一句话讲明白卡尔曼滤波卡尔曼滤波是一种基于状态空间模型的估计算法,通过对系统状态进行预测和更新,从而提高对系统状态的估计精度。

它是一种递归滤波算法,能够有效地处理含有噪声的测量数据,广泛应用于航空航天、导航定位、无线通信等领域。

以下是对卡尔曼滤波的十个要点的介绍:1. 状态空间模型:卡尔曼滤波基于状态空间模型,将系统的状态表示为一个向量,通过状态转移矩阵描述系统状态的演化规律。

2. 预测步骤:卡尔曼滤波首先通过状态转移矩阵和控制输入预测系统的下一时刻状态,得到预测状态向量和预测误差协方差矩阵。

3. 更新步骤:卡尔曼滤波利用测量数据对预测状态进行修正,得到更新后的状态估计向量和更新后的误差协方差矩阵。

4. 估计误差:卡尔曼滤波通过误差协方差矩阵描述状态估计的精度,该矩阵可以通过预测和更新步骤进行递推计算。

5. 测量模型:卡尔曼滤波通过测量模型将系统状态和测量结果联系起来,测量模型可以是线性或非线性的。

6. 噪声模型:卡尔曼滤波假设系统和测量中存在随机噪声,通过噪声协方差矩阵描述噪声的统计特性。

7. 最小均方误差准则:卡尔曼滤波通过最小化均方误差准则,优化状态估计的精度,使得估计结果尽可能接近真实值。

8. 递归计算:卡尔曼滤波是一种递归算法,通过不断迭代更新状态估计,实现对系统状态的连续估计。

9. 初始条件:卡尔曼滤波需要给定初始状态估计和初始误差协方差矩阵,通常通过历史数据或先验知识进行初始化。

10. 优势和应用:卡尔曼滤波具有高效、精确、鲁棒的特点,被广泛应用于导航定位、目标跟踪、机器人定位与导航等领域,在实时性和稳定性要求较高的系统中得到了广泛应用和研究。

卡尔曼滤波是一种基于状态空间模型的递归滤波算法,通过预测和更新步骤对系统状态进行估计,以提高状态估计的精度。

它通过最小化均方误差准则和递归计算的方式,能够有效地处理含有噪声的测量数据,在航空航天、导航定位等领域得到了广泛应用。

卡尔曼滤波器分类及基本公式

卡尔曼滤波器分类及基本公式

以 时刻的最优估计 为准,预测 时刻的状态变量 ,同时又对该状态进行观测,得到观测变量 ,再在预测与观测之间进行分析,或者说是以观测量对预测量进行修正,从而得到 时刻的最优状态估计 。
卡尔曼滤波思想
卡尔曼滤波的由来
卡尔曼滤波的由来
卡尔曼滤波理论作为最优估计的一种,它的创立是科学技术和社会需要发展到一定程度的必然结果。在1795年,高斯为测定行星运动轨道而提出最小二乘估计法。为了解决火力控制系统精度跟踪问题,维纳于1942年提出了维纳滤波理论,利用有用信号和干扰信号的功率谱确定线性滤波器的频率特性,首次将数理统计理论与线性理论有机的联系在一起,形成了对随机信号做平滑、估计或者预测的最优估计新理论。但是采用频域设计法是造成维纳滤波器设计困难的根本原因。于是,人们逐渐转向寻求在时域内直接设计最优滤波器的方法,而卡尔曼研究的卡尔曼滤波理论很好的解决了这个问题
卡尔曼滤波的基本方程
例子
卡尔曼滤波的基本方程
现在,我们用于估算K时刻房间的实际温度有两个温度值:估计值23度和测量值25度。究竟实际温度是多少呢?是相信自己还是相信温度计?究竟相信谁多一点?我们需要用他们的均方误差来判断。因为, (*公式三),所以我们可以估算出K时刻的最优温度值为: 度(*公式四)。 得到了K时刻的最优温度,下一步就是对K+1时刻的温度值进行最优估算,需要得到K时刻的最优温度(24.56)的偏差,算法如下: (*公式五) 就这样,卡尔曼滤波器就不断的把均方误差递归,从而估算出最优的温度值,运行速度快,且只保留上一时刻的协方差。
卡尔曼滤波的由来
卡尔曼,全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们在现代控制理论中要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。

卡尔曼滤波算法基本原理

卡尔曼滤波算法基本原理

卡尔曼滤波算法基本原理一、概述卡尔曼滤波算法是一种基于线性系统状态空间模型的递归滤波算法,主要用于估计含有噪声的测量数据,并能够有效地消除噪声对估计的影响,提高估计精度。

本篇文章将详细介绍卡尔曼滤波算法的基本原理。

二、基本原理1.状态方程:卡尔曼滤波算法基于线性系统状态空间模型,该模型可以用状态方程来表示。

状态方程通常包含系统的内部状态、输入和输出,可以用数学公式表示为:x(t+1)=Ax(t)+Bu(t)+w(t)。

其中,x(t)表示系统内部状态,u(t)表示输入,w(t)表示测量噪声。

2.测量方程:测量数据通常受到噪声的影响,卡尔曼滤波算法通过建立测量方程来处理噪声数据。

测量方程通常表示为:z(t)=h(x(t))+v(t),其中z(t)表示测量数据,h(x(t))表示系统输出,v(t)表示测量噪声。

3.卡尔曼滤波算法:卡尔曼滤波算法通过递归的方式,根据历史状态和测量数据来估计当前系统的内部状态。

算法的核心是利用过去的估计误差和测量误差来预测当前的状态,并不断更新估计值,以达到最优估计的效果。

卡尔曼滤波算法主要包括预测和更新两个步骤。

预测步骤根据状态方程和上一步的估计值,预测当前的状态;更新步骤则根据当前的测量数据和预测值,以及系统协方差矩阵,来更新当前状态的估计值和系统协方差矩阵。

4.滤波器的选择:在实际应用中,需要根据系统的特性和噪声的性质来选择合适的卡尔曼滤波器。

常见的滤波器有标准卡尔曼滤波器、扩展卡尔曼滤波器等。

选择合适的滤波器可以提高估计精度,降低误差。

三、应用场景卡尔曼滤波算法在许多领域都有应用,如航空航天、自动驾驶、机器人控制等。

在上述领域中,由于系统复杂、噪声干扰大,使用卡尔曼滤波算法可以有效地提高系统的估计精度和控制效果。

四、总结卡尔曼滤波算法是一种基于线性系统状态空间模型的递归滤波算法,通过预测和更新的方式,能够有效地消除噪声对估计的影响,提高估计精度。

本篇文章详细介绍了卡尔曼滤波算法的基本原理和应用场景,希望能对大家有所帮助。

控制系统卡尔曼滤波

控制系统卡尔曼滤波

控制系统卡尔曼滤波卡尔曼滤波(Kalman filter)是一种经典的状态估计技术,在控制系统中拥有广泛应用。

本文将介绍控制系统中卡尔曼滤波的基本原理、算法流程以及应用实例。

一、卡尔曼滤波的基本原理卡尔曼滤波是基于系统状态和测量数据之间的线性关系,通过递推的方式对系统的状态进行估计。

其基本原理包括两个方面:状态预测和测量更新。

1. 状态预测状态预测是指根据系统的状态方程和上一时刻的状态估计值,通过数学模型预测当前时刻的系统状态。

状态方程通常用线性动力学方程表示,可以描述系统在无外界干扰下的状态演化规律。

2. 测量更新测量更新是指根据系统的测量方程和当前时刻的测量数据,对系统的状态进行修正和更新。

测量方程通常用线性观测方程表示,可以将系统的状态转化为可观测的输出。

二、卡尔曼滤波的算法流程卡尔曼滤波的算法流程主要包括两个步骤:预测步骤和更新步骤。

1. 预测步骤在预测步骤中,通过系统状态方程和控制输入预测系统的状态。

预测的过程包括两个关键的计算:(1)状态预测:根据上一时刻的状态估计值和状态方程,计算当前时刻的状态预测值。

(2)状态协方差预测:根据上一时刻的状态协方差估计值、过程噪声协方差以及状态转移矩阵,计算当前时刻的状态协方差预测值。

2. 更新步骤在更新步骤中,通过测量方程和测量数据来修正和更新系统的状态。

更新的过程包括两个关键的计算:(1)卡尔曼增益计算:根据状态协方差预测值、测量噪声协方差以及测量矩阵,计算卡尔曼增益。

(2)状态估计更新:根据卡尔曼增益、状态预测值和测量残差,计算当前时刻的状态估计值和状态协方差估计值。

三、卡尔曼滤波的应用实例卡尔曼滤波在控制系统中具有广泛的应用,下面将通过一个实际的应用实例来说明其效果。

假设有一个飞行器,通过激光雷达测量距离来估计飞行器与目标之间的距离。

然而,由于环境噪声和测量误差的存在,测量数据会受到一定程度的扰动。

在这个实例中,我们可以使用卡尔曼滤波来对飞行器与目标之间的距离进行估计。

卡尔曼滤波参数 p

卡尔曼滤波参数 p

卡尔曼滤波参数 p(实用版)目录1.卡尔曼滤波的基本原理2.卡尔曼滤波的应用场景3.卡尔曼滤波的优缺点4.卡尔曼滤波参数 p 的作用正文卡尔曼滤波是一种线性高斯状态空间模型,主要用于估计系统状态和优化控制策略。

它通过将系统的观测值与预测值进行加权融合,得到一个更精确的估计值。

在这个过程中,卡尔曼增益是一个关键参数,决定了观测值和预测值的权重。

卡尔曼滤波广泛应用于航天、自动驾驶等领域,对提高系统精度和稳定性具有重要作用。

卡尔曼滤波的基本原理可以概括为以下几个步骤:1.初始化:设定初始状态的均值向量和协方差矩阵。

2.预测:根据系统动态模型和初始状态,预测未来状态的均值向量和协方差矩阵。

3.更新:将预测值和观测值进行加权融合,得到更精确的估计值。

卡尔曼增益决定了观测值和预测值的权重。

4.反馈:将估计值和观测值之间的误差作为新的观测值,进入下一轮预测和更新过程。

卡尔曼滤波的应用场景包括:1.导航定位:在导航定位系统中,卡尔曼滤波可以用于处理 GPS 信号的误差,提高定位精度。

2.机器人控制:在机器人控制中,卡尔曼滤波可以用于估计机器人的位姿,提高控制精度。

3.自动驾驶:在自动驾驶中,卡尔曼滤波可以用于处理传感器数据,提高车辆定位和控制精度。

卡尔曼滤波的优缺点如下:优点:1.适用于线性高斯系统,具有较好的鲁棒性。

2.可以处理带有噪声的观测值,提高估计精度。

3.可以优化控制策略,提高系统性能。

缺点:1.对非线性系统不适用。

2.计算复杂度较高,需要处理大量的矩阵运算。

卡尔曼滤波参数 p 的作用是决定观测值和预测值之间的权重。

当 p 较大时,观测值的权重较大,估计值更接近观测值;当 p 较小时,预测值的权重较大,估计值更接近预测值。

因此,合理选择卡尔曼增益 p 对于提高估计精度至关重要。

卡尔曼滤波 数学基

卡尔曼滤波 数学基

卡尔曼滤波(Kalman Filter)是一种强大的数学工具,它是一种线性二次调节器,可以用于估计状态变量。

其基本思想是:通过系统输入输出数据,对系统状态进行估计。

卡尔曼滤波算法可以分为两个部分:预测部分和更新部分。

在预测部分,算法根据上一时刻的状态变量和系统的输入,对当前时刻的状态进行预测。

具体来说,算法通过一个状态转移矩阵和一个输入矩阵,将上一时刻的状态变量和当前时刻的输入转化为当前时刻的预测状态变量。

在更新部分,算法将实际观测值与预测值进行比较,然后通过一个卡尔曼增益矩阵对预测值进行修正,得到当前时刻的最优估计值。

卡尔曼滤波算法需要满足以下假设:
1. 系统是线性的;
2. 系统的噪声是高斯分布的;
3. 初始状态变量是已知的。

在实现卡尔曼滤波时,需要定义状态转移矩阵、输入矩阵、观测矩阵和卡尔曼增益矩阵。

这些矩阵需要根据系统的具体情况进行定义和调整。

总的来说,卡尔曼滤波是一种基于数学模型的算法,它通过对系统输入输出数据的分析,实现对系统状态的估计。

它是控制理论中非常重要的工具之一,被广泛应用于各种实际应用领域,如航空航天、机器人、金融预测等。

卡尔曼滤波入门

卡尔曼滤波入门

卡尔曼滤波入门卡尔曼滤波是一种对采样数据进行滤波的方法,其基本假设是“被观测系统是线性的,采样数据存在噪声,而且噪声符合高斯分布”,其目的是尽可能排除掉噪声的影响,找到真实值。

要想理解卡尔曼滤波的基本思想,需要先从算术平均滤波和加权平均滤波说起。

算术平均滤波算法的核心思想是:假设误差是随机出现、均匀分布的,那么连续采样N 次,并取这N次采样值的平均值为有效值即可。

算术平均滤波适合于消除在某个值范围内随机波动的噪声,但是无法消除脉冲性噪声,而且N次采样才能确定一个有效值,对数据的利用率较低,而且算术平均滤波对观测量的变化反应较为迟钝。

算数平均滤波的滤波特性和N的取值关系比较大,当N较大时,平滑度高,灵敏度低;当N较小时,平滑度低,但灵敏度高。

加权平均滤波是对算术平均滤波的改进,其核心思想是:给队列中的数据赋权重,越靠近本次时刻的数据权重越大。

加权平均滤波和算术平均滤波相比,可以较快的反应观测量的变化(它减少了采样时刻较远的数据对本次采样数据的影响),它一定程度上协调了平滑度和灵敏度之间的矛盾。

算术平均滤波可以理解为一种特殊的加权平均滤波,即所有时刻的权值相同。

加权平均滤波存在一个核心缺陷,就是权重是非常粗暴的按时间序列给定的,是固定的,它可能在某些阶段表现很好,而在另外一些阶段表现很差,所以一种自然地想法就是能够动态的对权重进行调整,卡尔曼滤波就是一种可以动态调整权值的滤波方法,它的核心还是加权平均,但是它的权值是根据系统状态和噪声计算出来的最优权值,在线性系统中是最优的。

卡尔曼滤波的核心思想是:(假定观测的系统是线性的,噪声都满足高斯分布)这一刻系统的状态(最优估计)是这一刻的“预测量”和这一刻的“观测量”的加权平均,当得到最优估计之后,再将这一刻的最优估计和预测量进行对比,如果相差比较小,则说明“预测”比较准确,下次计算就加大“预测量”的权值,反之,则说明“预测”不准确,下次计算就加大“观测量”的权值,下一时刻重复该过程。

卡尔曼滤波方法资料课件

卡尔曼滤波方法资料课件
采用最小均方误差准则,通过最小化估计误 差的平方和实现状态估计。
线性最小方差估计方法的优 点
适用于线性系统状态估计,计算量较小,易于实现。
线性最小方差估计方法的 缺点
对非线性系统效果不佳,需要先验知识或模 型参数。
04
卡尔曼滤波方法的实现 和应用案例
卡尔曼滤波方法的软件实现
软件平台
可以使用Python、C、Matlab等编程语言实现卡尔曼滤波算法。
卡尔曼滤波方法在控制系统中的应用案例
应用场景
卡尔曼滤波方法在控制系统中主要用于估计系统的状态变量。
案例分析
通过实际控制系统的数据和实验,验证卡尔曼滤波方法在控制系统中的可行性和稳定性。
卡尔曼滤波方法在雷达系统中的应用案例
应用场景
卡尔曼滤波方法在雷达系统中主要用于 目标跟踪和运动参数估计。
VS
案例分析
卡尔曼滤波方法的基本概念和原理
基本概念
卡尔曼滤波方法是一种递归估计方法,通过建立状态方程和观测方程,对系统状态进行最优估计。
原理
卡尔曼滤波方法基于最小均方误差准则,通过不断更新估计值来逼近真实值,具有计算量小、实时性 强的优点。
卡尔曼滤波方法的应用领域
机器人
用于机器人的定位、路径规划、 避障等。
描述系统状态和观测之间的关系。
定义初始状态和误差协方差
02
确定系统初始状态和误差协方差的估计值,为后续的滤波过程
提供初始条件。
选择合适的模型参数
03
根据实际情况选择合适的模型参数,如系统动态参数、观测参
数等,以更好地描述系统特性。
预测步骤
01
根据上一时刻的状态和误差协方 差,预测当前时刻的系统状态和 误差协方差。

卡尔曼滤波基础知识

卡尔曼滤波基础知识

卡尔曼滤波基础知识卡尔曼滤波(Kalman filtering)是一种常用于估计被测量的物理系统状态的算法。

它最初在20世纪60年代由Rudolf Kalman发明,并被广泛应用于自动控制、导航、机器人、计算机视觉、信号处理等领域。

卡尔曼滤波的基本原理是通过测量系统中的输入和输出信号,得出最优的状态估计。

它利用数学模型来描述系统的动态行为,并从中预测未来状态。

此外,它还使用实际测量的数据来校正预测结果,从而提高估计的准确性。

卡尔曼滤波主要分为两个阶段:预测阶段和更新阶段。

预测阶段通过数学模型预测系统的状态,并计算出其协方差矩阵。

更新阶段则使用实际测量的数据进行校正,进一步提高估计的准确性。

卡尔曼滤波的数学模型通常以状态空间形式表示。

状态空间是一个向量空间,可以将系统的状态表示为该空间中的一个向量。

在状态空间中,系统状态和测量数据可以表示为向量和矩阵的形式,从而简化了卡尔曼滤波的计算。

卡尔曼滤波的估计过程涉及多个概率分布的计算,包括状态先验分布、状态后验分布、观测先验分布和观测后验分布等。

这些分布都可以通过贝叶斯公式进行计算,从而得出最优的状态估计。

卡尔曼滤波具有许多优点,最主要的是它可以通过测量数据自适应地调整估计的精度,因此可以很好地应用于动态和噪声环境下的系统。

此外,它还可以处理多个输入和输出,以及随时间变化的系统参数。

然而,卡尔曼滤波也有一些局限性。

例如,在高噪声环境下,其精度可能会受到限制。

此外,它对测量数据的特性和系统参数的行为做了一些假设,因此可能不适用于某些特殊情况。

在实际应用中,卡尔曼滤波通常需要与其他算法一起使用。

例如,它可以与模糊逻辑、神经网络等算法相结合,以提高估计的精度和鲁棒性。

此外,它还可以与传感器融合技术一起使用,以利用多个传感器的信息,进一步提高估计的准确性。

总之,卡尔曼滤波是一种强大的估计算法,可以应用于各种物理系统,并在自动控制、导航、机器人、计算机视觉、信号处理等领域取得了广泛应用。

《卡尔曼滤波介绍》课件

《卡尔曼滤波介绍》课件
卡尔曼滤波的背景可追溯到20世纪60年代,由工程师Rudolf E. Kálmán提出。 它最初用于阿波罗登月计划,用于跟踪宇宙飞船状态。
卡尔曼滤波的原理和基本公式
卡尔曼滤波基于贝叶斯推理,通过使用状态方程和测量方程来递归地更新状态估计。 核心公式包括预测步骤的状态预测和协方差预测,以及更新步骤的卡尔曼增益、状态更新和协方差更新。
针对非线性系统,设计扩展卡尔 曼滤波、粒子滤波等非线性滤波 算法。
传感器融合
结合多个传感器信息,使用卡尔 曼滤波进行融合估计,提高系统 性能。
结论和总结
卡尔曼滤波是一种强大而灵活的状态估计算法,应用广泛且效果显著。通过 深入理解其原理和应用,我们能更好地运用卡尔曼滤波解决实际问题。
希望本课件能够帮助您更好地理解和应用卡尔曼滤波,提升您的技术和研究 能力。
《卡尔曼滤波介绍》PPT 课件
卡尔曼滤波是一种用于估计线性动态系统状态的优秀算法。本课件将深入介 绍卡尔曼滤波的定义、原理和应用领域,以及其优缺点和改进方法。
卡尔曼滤波的定义和背景
卡尔曼滤波是一种基于数学模型的状态估计方法,用于预测和跟踪系统状态。 它通过融合传感器测量和系统模型,对系统状态进行优化估计。
1 优点
高效准确:卡尔曼滤波在噪声环境下具有很 好的估计性能。
3 缺点
对线性系统假设:卡尔曼滤波假设系统和观 测模型为线性,不适用于非线性系统。
2
适用范围广:卡尔曼滤波可应用于多个领域 的状态估计问题。
4
对初始条件敏感:卡尔曼滤波对初始状态估 计的准确性较为敏感。
卡尔曼滤波的实际案例和效果评估
1
案例1:目标跟踪
将卡尔曼滤波应用于视频中的目标跟踪,
案例2:机器人导航

卡尔曼滤波器分类及基本公式概要课件

卡尔曼滤波器分类及基本公式概要课件

精确地描述系统的非线性特性。
无迹卡尔曼滤波器的计算较为复杂,但具有更高的估计精度和
03
稳定性,适用于一些高精度要求的非线性系统状态估计。
03
卡尔曼滤波器的基本公 式
状态方程
描述系统状态变化的数学表达式。
状态方程是描述系统状态变化的数学表达式,它基于系统的动态模型和当前状态 ,计算未来状态。在卡尔曼滤波器中,状态方程用于预测系统的下一个状态。
详细描述
卡尔曼增益矩阵的计算基于状态向量和误差 协方差矩阵,通过一系列数学运算得到。它 反映了新获取的测量值对状态估计的贡献程 度,以及旧信息的保留程度。在计算过程中 ,通常采用递推或迭代的方式进行计算,以 降低计算复杂度。
更新状态向量和误差协方差矩阵
总结词
在得到卡尔曼增益矩阵后,需要利用它来更 新状态向量和误差协方差矩阵,以完成一次 滤波过程。0203 Nhomakorabea改进
针对不同应用场景和需求,卡尔曼滤 波器不断有新的改进和优化算法出现 。
滤波器的应用领域
航空航天
卡尔曼滤波器在航空航天领域 中用于导航、姿态估计和卫星
轨道计算等。
无人驾驶
卡尔曼滤波器在无人驾驶汽车 中用于传感器数据处理、路径 规划和障碍物检测等。
机器人
卡尔曼滤波器在机器人领域中 用于定位、地图构建和姿态控 制等。
02
扩展卡尔曼滤波器通过将非线性函数进行线性化处 理,将非线性问题转化为线性问题进行解决。
03
扩展卡尔曼滤波器的计算相对复杂,但适用范围较 广,适用于大多数非线性系统的状态估计。
无迹卡尔曼滤波器
01
无迹卡尔曼滤波器是另一种针对非线性系统的改进型卡尔曼滤 波器。
02
无迹卡尔曼滤波器采用无迹变换方法处理非线性函数,能够更

(完整)卡尔曼滤波介绍

(完整)卡尔曼滤波介绍

卡尔曼滤波一、卡尔曼滤波的起源谈到信号的分析与处理,就离不开滤波两个字。

通常,信号的频谱处于有限的频率范围内,而噪声的频谱则散布在很广的频率范围内,为了消除噪声,可以把FIR滤波器或者IIR滤波器设计成合适的频带滤波器,进行频域滤波。

但在许多应用场合,需要直接进行时域滤波,从带噪声的信号中提取有用信号。

虽然这样的过程其实也算是对信号的滤波,但其所依据的理论,即针对随机信号的估计理论,是自成体系的.人们对于随机信号干扰下的有用信号不能“确知”,只能“估计”.为了“估计",要事先确定某种准则以评定估计的好坏程度.最小均方误差是一种常用的比较简单的经典准则。

对于平稳时间序列的最小均方误差估计的第一个明确解是维纳在1942年2月首先给出的.当时美国的一个战争研究团体发表了一个秘密文件,其中就包括维纳关于滤波问题的研究工作,这项研究是用于防空火力控制系统的.维纳滤波器是基于最小均方误差准则的估计器。

为了寻求维纳滤波器的冲激响应,需要求解著名的维纳–霍夫方程。

这种滤波理论所求的是使均方误差最小的系统最佳冲激响应的明确表达式。

从维纳–霍夫方程来看,维纳滤波算法是十分低效的。

这种算法要求设置大量的存储器来保存过去的测量数据,一个新的数据到来后,要进行刷新,重新计算自相关和互相关序列。

再者,求解这个方程需要耗费大量时间对高阶矩阵求逆。

因此,维纳滤波算法难以运用于实时处理中,尤其是无法用于军事、航空航天等领域。

为此,许多科技工作者进行了多方探索,但在解决非平稳过程的滤波问题时,能给出的方法很少。

到20世纪50年代中期,随着空间技术的发展,要求对卫星轨道进行精确地测量,这种方法越来越不能满足实际应用的需要。

为此,人们将滤波问题以微分方程表示,提出了一系列适应空间技术应用的精炼算法。

1960年和1961年,卡尔曼(R. E. Kalman)和布西(R. S。

Bucy)提出了递推滤波算法,成功的将状态变量引入到滤波理论中来,用消息与干扰的状态空间模型代替了通常用来描述它们的协方差函数,将状态空间描述与离散数间刷新联系起来,适于计算机直接进行计算,而不是去寻求滤波器冲激响应的明确公式。

《卡尔曼滤波》课件

《卡尔曼滤波》课件

3
无迹卡尔曼滤波线性系统的 估计。
卡尔曼滤波的应用案例
飞行器姿态估计
卡尔曼滤波在航空领域中被广泛应用于飞行器姿态估计,用于提高飞行器的稳定性和导航准 确性。
目标跟踪
卡尔曼滤波可用于跟踪移动目标的位置和速度,常见于机器人导航和视频监控等领域。
3 卡尔曼滤波的应用领

卡尔曼滤波被广泛应用于 航空航天、机器人、金融 等领域,用于提高系统的 状态估计精度。
卡尔曼滤波的数学模型
状态空间模型
卡尔曼滤波使用状态 空间模型表示系统的 状态和观测值之间的 关系,包括状态方程 和测量方程。
测量方程
测量方程描述观测值 与系统状态之间的关 系,用于将观测值纳 入到状态估计中。
了解更多关于卡尔曼滤波的内容和应用,推荐文献、学术论文和在线课程等资源。
《卡尔曼滤波》PPT课件
卡尔曼滤波是一种优秀的状态估计方法,被广泛用于目标跟踪、姿态估计和 股票预测等领域。
介绍卡尔曼滤波
1 什么是卡尔曼滤波?
卡尔曼滤波是一种递归状 态估计算法,用于通过系 统模型和测量信息估计系 统状态。
2 卡尔曼滤波的基本原

卡尔曼滤波基于贝叶斯估 计理论,通过最小化估计 误差的均方差来优化状态 估计。
股票预测
卡尔曼滤波可以应用于股票市场,通过对历史数据进行分析和预测,提供股票价格的预测和 趋势分析。
卡尔曼滤波的优化算法
粒子滤波
粒子滤波是一种基于蒙特卡洛 方法的状态估计算法,适用于 非线性和非高斯系统,提供更 广泛的估计能力。
自适应滤波
自适应滤波是一种根据系统的 特点自动调整滤波参数的方法, 提供更好的适应性和鲁棒性。
非线性滤波
非线性滤波是对卡尔曼滤波算 法的改进,用于处理非线性系 统和测量模型,提供更准确的 状态估计。

卡尔曼滤波基础

卡尔曼滤波基础

R
1 m 1
7
1956
RLS原理框图
Z
ˆm x
1
ˆ m 1 x
~ y m 1
+

H
m 1
~ ˆ m 1 y m 1 y
+
K m 1
+

Pm
H
Z
1
m 1
R m 1
Pm 1 ( Pm H
1
R m 1 H m 1
T
1
) m 1
1
H
R m 1 m 1
a2
U e STC
Ax *
4
1956
WLS方法
与LS方法相比,不同之处体现在代价函数的改变
一般可取
~ ~ T ˆ) (Y Ax ˆ) W (Y Ax ˆ) J (x
W R
1

则估计值为
P var{ x} ( AR A )
1
T 1
~ ˆ PA R Y x
T 1
这里P1称为信息矩阵
U e STC
5
1956
RLS方法
状态转移方程
ˆm I ˆ x x x ~ ym1 H m1 nm1
新的观测量误差的协方差矩阵
Pm ˆ , nm 1} R cov{x 0
Rm 1 0
U e STC
1956
University of Electronic Science and Technology of China
卡尔曼滤波初步
定位组
Least Square基本原理
包含噪声的状态观测方程
Y Ax n

卡尔曼滤波详解

卡尔曼滤波详解

卡尔曼滤波详解卡尔曼滤波是一种常用的状态估计方法,它可以根据系统的动态模型和观测数据,对系统的状态进行估计。

卡尔曼滤波广泛应用于机器人导航、飞行控制、信号处理等领域。

本文将详细介绍卡尔曼滤波的原理、算法及应用。

一、卡尔曼滤波原理卡尔曼滤波的基本思想是利用系统的动态模型和观测数据,对系统的状态进行估计。

在卡尔曼滤波中,系统的状态被表示为一个向量,每个元素表示系统的某个特定状态量。

例如,一个机器人的状态向量可能包括机器人的位置、速度、方向等信息。

卡尔曼滤波的基本假设是系统的动态模型和观测数据都是线性的,而且存在噪声。

系统的动态模型可以表示为:x(t+1) = Ax(t) + Bu(t) + w(t)其中,x(t)表示系统在时刻t的状态向量,A是状态转移矩阵,B是控制矩阵,u(t)表示外部控制输入,w(t)表示系统的过程噪声。

观测数据可以表示为:z(t) = Hx(t) + v(t)其中,z(t)表示系统在时刻t的观测向量,H是观测矩阵,v(t)表示观测噪声。

卡尔曼滤波的目标是根据系统的动态模型和观测数据,估计系统的状态向量x(t)。

为了达到这个目标,卡尔曼滤波将状态估计分为两个阶段:预测和更新。

预测阶段:根据系统的动态模型,预测系统在下一个时刻的状态向量x(t+1)。

预测的过程可以表示为:x^(t+1|t) = Ax^(t|t) + Bu(t)其中,x^(t|t)表示在时刻t的状态向量的估计值,x^(t+1|t)表示在时刻t+1的状态向量的预测值。

卡尔曼滤波还需要对状态的不确定性进行估计,这个不确定性通常用协方差矩阵P(t)表示。

协方差矩阵P(t)表示状态向量估计值和真实值之间的差异程度。

预测阶段中,协方差矩阵也需要进行更新,更新的过程可以表示为:P(t+1|t) = AP(t|t)A' + Q其中,Q表示过程噪声的协方差矩阵。

更新阶段:根据观测数据,更新状态向量的估计值和协方差矩阵。

更新的过程可以表示为:K(t+1) = P(t+1|t)H'(HP(t+1|t)H' + R)^-1x^(t+1|t+1) = x^(t+1|t) + K(t+1)[z(t+1) - Hx^(t+1|t)]P(t+1|t+1) = (I - K(t+1)H)P(t+1|t)其中,K(t+1)表示卡尔曼增益,R表示观测噪声的协方差矩阵,I是单位矩阵。

卡尔曼滤波讲解

卡尔曼滤波讲解
EKF算法是一种近似方法,它将非线性模型在状 态估计值附近作泰勒级数展开,并在一阶截断, 用得到的一阶近似项作为原状态方程和测量方 程近似表达形式,从而实现线性化同时假定线 性化后的状态依然服从高斯分布,然后对线性 化后的系统采用标准卡尔曼滤波获得状态估计。 采用局部线性化技术,能得到问题局部最优解, 但它能否收敛于全局最优解,取决于函数的非 线性强度以及展开点的选择。
卡尔曼滤波器的简介
卡尔曼全名Rudolf Emil Kalman,匈牙利数学家, 1930年出生于匈牙利首都布达佩斯。1953, 1954年于麻省理工学院分别获得电机工程学士 及硕士学位。1957年于哥伦比亚大学获得博士 学位。我们现在要学习的卡尔曼滤波器,正是 源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。
y(k)是k时刻的测量值,
H是测量系统的参数,对于多测量系 统,H为矩阵。
系统噪声和测量噪声都是高斯分布的, q(k)和r(k)分别表示过程和测量的噪声。
协方差矩阵分别为Qk-1和Rk
他们被假设成高斯白噪声(White
Gaussian Noise),他们的covariance分
别是Q,R(这里我们假设他们不随
扩展Kalman滤波算法(EKF)
假定定位跟踪问题的非线性状态方程和测量方程如下:
X f (X ) W ...............(1)
k 1
k
k
Y h(X ) V ...................(.2)
k
k
k
在最近一次状态估计的时刻,对以上两式进行线性化处理,首先构造如 下2个矩阵:

自动控制原理卡尔曼滤波知识点总结

自动控制原理卡尔曼滤波知识点总结

自动控制原理卡尔曼滤波知识点总结自动控制原理是探讨如何自动地控制各种系统行为的学科。

而卡尔曼滤波则是自动控制领域中一种重要的估计算法,被广泛应用于信号处理、导航、机器人等领域。

本文将对卡尔曼滤波的基本原理、算法以及应用进行总结。

一、卡尔曼滤波的基本原理卡尔曼滤波是一种最优估计算法,通过融合系统的状态量和测量信息,对系统的状态进行估计。

其基本原理可以归纳为以下几个关键点:1. 观测模型卡尔曼滤波基于线性观测模型,即系统的测量值是系统状态的线性组合,再加上随机噪声。

观测模型可以用数学表达式表示为:z = Hx + v其中,z为测量值,H为观测矩阵,x为系统的状态量,v为观测噪声。

2. 状态预测卡尔曼滤波通过系统的动态模型对状态进行预测,预测值用数学表达式表示为:x^ = Fx + Bu其中,x^为状态的预测值,F为系统的状态转移矩阵,B为输入矩阵,u为输入量。

3. 误差协方差预测卡尔曼滤波还对状态的误差协方差进行预测,预测的误差协方差用数学表达式表示为:P^ = FPF^T + Q其中,P^为误差协方差的预测值,P为当前时刻的误差协方差,Q 为系统的过程噪声协方差。

4. 更新步骤根据观测值z和观测模型,通过状态预测和误差协方差预测,可以得到最优估计值和最优估计误差协方差。

利用这些信息,卡尔曼滤波进行状态的更新,更新的过程可以归纳为以下几个步骤:1) 计算卡尔曼增益K;2) 计算当前状态的估计值x;3) 计算当前误差协方差P。

二、卡尔曼滤波的算法卡尔曼滤波的具体算法分为两个步骤:预测步骤和更新步骤。

其算法流程如下:1. 预测步骤1) 计算状态预测值:x^ = Fx + Bu;2) 计算误差协方差预测值:P^ = FPF^T + Q。

2. 更新步骤1) 计算卡尔曼增益:K = P^H^T(HP^H^T + R)^-1;2) 计算当前状态的估计值:x = x^ + Ky;3) 计算当前误差协方差:P = (I - KH)P^。

7Kalman滤波基础01

7Kalman滤波基础01

7Kalman滤波基础01第⼀章1.1什么是随机模型,估计和控制考虑系统分析或者控制器设计的时候,⼯程师会处理很多内容,包括确定性的系统和控制理论。

有⼀点⾃然会问,为什么我们不直接考虑这些,⽽要提出随机系统模型,还有基于这些随机模型的估计和控制的概念呢?为了回答这个问题,让我们来研究确定性理论提供了什么,具有哪些缺点。

假设⼀个物理模型,是⼀个飞机,还是⼀个化学过程或者本国的经济发展,⼀个⼯程师⾸先必须确定⼀个数学模型,这个模型充分描述了该系统⾏为的某些⽅⾯。

通过物理观察、基本的法则和基于经验的测试,试着建⽴⼀些重要变量,系统输⼊和系统输出之间的相互关系。

系统控制理论提供了这样⼀个数学模型和⼯具,⼯程师能够研究系统结构和响应⽅式。

如果想要的话,他可以设计补偿器改变这些特性和控制器,这些控制器可以提供适当的输⼊产⽣想要的系统响应。

为了观察实际系统的⾏为,构造⼀个测量装置连接输出信号,这些信号成⽐例于与特定重要的变量。

这些系统的输出信号和已知的输⼊信号是直接辨别系统⾏为的唯⼀信息。

⽽且,如果设计⼀个反馈控制器,测量装置输出信号也是供输⼊控制器的唯⼀信号。

确定性系统和控制理论没有提供⾜够的⼿段去执⾏分析和设计,这有三个基本原因。

第⼀个原因:没有⼀个系统是完美的。

任何模型描述的只是直接关系到⼯程师⽬的⼀些特性。

例如:虽然有⽆穷的弯曲⽅式来精确描述车辆弯曲,但是只有有限的⽅式包括在⼀个有⽤的模型中。

模型的⽬的是描述系统响应的主要⽅式,还有很多结果没有被建模。

事实上,模型⽤于产⽣线上数据处理器和控制器,⽽这些处理器和控制器必须削减为基本元素,为了产⽣⼀种计算可⾏的算法。

甚⾄模型化后的效果必须是近似的数学模型。

⽜顿物理学的法则是恰当接近于实际观察到的,部分是由于我们不习惯于接近光速。

通常情况是这些法则提供了恰当的系统结构,但是各种参数在这⼀结构上不能完全确定。

因此,在⼀个系统的任何数学模型中,有许多的不确定来源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

卡尔曼滤波马尔可夫过程:在随机理论中,把在某时刻的事件受在这之前事件的影响,其影响范围有限的随机过程,称为马尔可夫过程。

一个事件受在它之前的事件的影响的深远程度,通常用在它之前的事件作为条件的概率来表达。

受前一个事件的影响,简称为马尔可夫过程;受前两个事件的影响,称为二阶马尔可夫过程;受前三个事件的影响,称为三阶马尔可夫过程!卡尔曼滤波简介+算法实现代码(转):最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。

从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。

为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。

卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。

它适合于实时处理和计算机运算。

现设线性时变系统的离散状态防城和观测方程为:X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1)Y(k) = H(k)·X(k)+N(k)其中X(k)和Y(k)分别是k时刻的状态矢量和观测矢量F(k,k-1)为状态转移矩阵U(k)为k时刻动态噪声T(k,k-1)为系统控制矩阵H(k)为k时刻观测矩阵N(k)为k时刻观测噪声则卡尔曼滤波的算法流程为:12预估计X(k)^= F(k,k-1)·X(k-1)3计算预估计协方差矩阵C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)' Q(k) = U(k)×U(k)'4计算卡尔曼增益矩阵K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1)R(k) = N(k)×N(k)'5更新估计X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^]6计算更新后估计协防差矩阵C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)'7X(k+1) = X(k)~C(k+1) = C(k)~重复以上步骤其c语言实现代码如下:#include "stdlib.h"#include "rinv.c"int lman(n,m,k,f,q,r,h,y,x,p,g)int n,m,k;double f[],q[],r[],h[],y[],x[],p[],g[];{ int i,j,kk,ii,l,jj,js;double *e,*a,*b;e=malloc(m*m*sizeof(double));l=m;if (l<n) l=n;a=malloc(l*l*sizeof(double));b=malloc(l*l*sizeof(double));for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ ii=i*l+j; a[ii]=0.0;for (kk=0; kk<=n-1; kk++)a[ii]=a[ii]+p[i*n+kk]*f[j*n+kk];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ ii=i*n+j; p[ii]=q[ii];for (kk=0; kk<=n-1; kk++)p[ii]=p[ii]+f[i*n+kk]*a[kk*l+j];}for (ii=2; ii<=k; ii++){ for (i=0; i<=n-1; i++)for (j=0; j<=m-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=n-1; kk++)a[jj]=a[jj]+p[i*n+kk]*h[j*n+kk];}for (i=0; i<=m-1; i++)for (j=0; j<=m-1; j++){ jj=i*m+j; e[jj]=r[jj];for (kk=0; kk<=n-1; kk++)e[jj]=e[jj]+h[i*n+kk]*a[kk*l+j];}js=rinv(e,m);if (js==0){ free(e); free(a); free(b); return(js);} for (i=0; i<=n-1; i++)for (j=0; j<=m-1; j++){ jj=i*m+j; g[jj]=0.0;for (kk=0; kk<=m-1; kk++)g[jj]=g[jj]+a[i*l+kk]*e[j*m+kk];}for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i; x[jj]=0.0;for (j=0; j<=n-1; j++)x[jj]=x[jj]+f[i*n+j]*x[(ii-2)*n+j];}for (i=0; i<=m-1; i++){ jj=i*l; b[jj]=y[(ii-1)*m+i];for (j=0; j<=n-1; j++)b[jj]=b[jj]-h[i*n+j]*x[(ii-1)*n+j];}for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i;for (j=0; j<=m-1; j++)x[jj]=x[jj]+g[i*m+j]*b[j*l];}if (ii<k){ for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=m-1; kk++)a[jj]=a[jj]-g[i*m+kk]*h[kk*n+j];if (i==j) a[jj]=1.0+a[jj];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; b[jj]=0.0;for (kk=0; kk<=n-1; kk++)b[jj]=b[jj]+a[i*l+kk]*p[kk*n+j];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=n-1; kk++)a[jj]=a[jj]+b[i*l+kk]*f[j*n+kk];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*n+j; p[jj]=q[jj];for (kk=0; kk<=n-1; kk++)p[jj]=p[jj]+f[i*n+kk]*a[j*l+kk];}}}free(e); free(a); free(b);return(js);}C++实现代码如下:============================kalman.h================================// kalman.h: interface for the kalman class.////////////////////////////////////////////////////////////////////////#if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_) #define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_#if _MSC_VER > 1000#pragma once#endif // _MSC_VER > 1000#include <math.h>#include "cv.h"class kalman{public:void init_kalman(int x,int xv,int y,int yv);CvKalman* cvkalman;CvMat* state;CvMat* process_noise;CvMat* measurement;const CvMat* prediction;CvPoint2D32f get_predict(float x, float y);kalman(int x=0,int xv=0,int y=0,int yv=0);//virtual ~kalman();};#endif // !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_) ============================kalman.cpp================================#include "kalman.h"#include <stdio.h>/* tester de printer toutes les valeurs des vecteurs*//* tester de changer les matrices du noises *//* replace state by cvkalman->state_post ??? */CvRandState rng;const double T = 0.1;kalman::kalman(int x,int xv,int y,int yv){cvkalman = cvCreateKalman( 4, 4, 0 );state = cvCreateMat( 4, 1, CV_32FC1 );process_noise = cvCreateMat( 4, 1, CV_32FC1 );measurement = cvCreateMat( 4, 1, CV_32FC1 );int code = -1;/* create matrix data */const float A[] = {1, T, 0, 0,0, 1, 0, 0,0, 0, 1, T,0, 0, 0, 1};const float H[] = {1, 0, 0, 0,0, 0, 0, 0,0, 0, 1, 0,0, 0, 0, 0};const float P[] = {pow(320,2), pow(320,2)/T, 0, 0,pow(320,2)/T, pow(320,2)/pow(T,2), 0, 0,0, 0, pow(240,2), pow(240,2)/T,0, 0, pow(240,2)/T, pow(240,2)/pow(T,2)};const float Q[] = {pow(T,3)/3, pow(T,2)/2, 0, 0,pow(T,2)/2, T, 0, 0,0, 0, pow(T,3)/3, pow(T,2)/2,0, 0, pow(T,2)/2, T};const float R[] = {1, 0, 0, 0,0, 0, 0, 0,0, 0, 1, 0,0, 0, 0, 0};cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI ); cvZero( measurement );cvRandSetRange( &rng, 0, 0.1, 0 );rng.disttype = CV_RAND_NORMAL;cvRand( &rng, state );memcpy( cvkalman->transition_matrix->data.fl, A, sizeof(A));memcpy( cvkalman->measurement_matrix->data.fl, H, sizeof(H));memcpy( cvkalman->process_noise_cov->data.fl, Q, sizeof(Q));memcpy( cvkalman->error_cov_post->data.fl, P, sizeof(P));memcpy( cvkalman->measurement_noise_cov->data.fl, R, sizeof(R));//cvSetIdentity( cvkalman->process_noise_cov, cvRealScalar(1e-5) );//cvSetIdentity( cvkalman->error_cov_post, cvRealScalar(1));//cvSetIdentity( cvkalman->measurement_noise_cov, cvRealScalar(1e-1) );/* choose initial state */state->data.fl[0]=x;state->data.fl[1]=xv;state->data.fl[2]=y;state->data.fl[3]=yv;cvkalman->state_post->data.fl[0]=x;cvkalman->state_post->data.fl[1]=xv;cvkalman->state_post->data.fl[2]=y;cvkalman->state_post->data.fl[3]=yv;cvRandSetRange( &rng, 0, sqrt(cvkalman->process_noise_cov->data.fl[0]), 0 );cvRand( &rng, process_noise );}CvPoint2D32f kalman::get_predict(float x, float y){/* update state with current position */state->data.fl[0]=x;state->data.fl[2]=y;/* predict point position *//* x'k=A鈥k+B鈥kP'k=A鈥k-1*AT + Q */cvRandSetRange( &rng, 0, sqrt(cvkalman->measurement_noise_cov->data.fl[0]), 0 );cvRand( &rng, measurement );/* xk=A?xk-1+B?uk+wk */cvMatMulAdd( cvkalman->transition_matrix, state, process_noise, cvkalman->state_post );/* zk=H?xk+vk */cvMatMulAdd( cvkalman->measurement_matrix, cvkalman->state_post, measurement, measurement );cvKalmanCorrect( cvkalman, measurement );float measured_value_x = measurement->data.fl[0];float measured_value_y = measurement->data.fl[2];const CvMat* prediction = cvKalmanPredict( cvkalman, 0 );float predict_value_x = prediction->data.fl[0];float predict_value_y = prediction->data.fl[2];return(cvPoint2D32f(predict_value_x,predict_value_y));}void kalman::init_kalman(int x,int xv,int y,int yv){state->data.fl[0]=x;state->data.fl[1]=xv;state->data.fl[2]=y;state->data.fl[3]=yv;cvkalman->state_post->data.fl[0]=x;cvkalman->state_post->data.fl[1]=xv;cvkalman->state_post->data.fl[2]=y;cvkalman->state_post->data.fl[3]=yv;}白噪声是的特点是功率谱为常数,也就是各个频率成分幅值相同,无法用传统的低通、高通、带通、带阻滤波器去除。

相关文档
最新文档