卡尔曼滤波基础知识
一句话讲明白 卡尔曼滤波

一句话讲明白卡尔曼滤波卡尔曼滤波是一种基于状态空间模型的估计算法,通过对系统状态进行预测和更新,从而提高对系统状态的估计精度。
它是一种递归滤波算法,能够有效地处理含有噪声的测量数据,广泛应用于航空航天、导航定位、无线通信等领域。
以下是对卡尔曼滤波的十个要点的介绍:1. 状态空间模型:卡尔曼滤波基于状态空间模型,将系统的状态表示为一个向量,通过状态转移矩阵描述系统状态的演化规律。
2. 预测步骤:卡尔曼滤波首先通过状态转移矩阵和控制输入预测系统的下一时刻状态,得到预测状态向量和预测误差协方差矩阵。
3. 更新步骤:卡尔曼滤波利用测量数据对预测状态进行修正,得到更新后的状态估计向量和更新后的误差协方差矩阵。
4. 估计误差:卡尔曼滤波通过误差协方差矩阵描述状态估计的精度,该矩阵可以通过预测和更新步骤进行递推计算。
5. 测量模型:卡尔曼滤波通过测量模型将系统状态和测量结果联系起来,测量模型可以是线性或非线性的。
6. 噪声模型:卡尔曼滤波假设系统和测量中存在随机噪声,通过噪声协方差矩阵描述噪声的统计特性。
7. 最小均方误差准则:卡尔曼滤波通过最小化均方误差准则,优化状态估计的精度,使得估计结果尽可能接近真实值。
8. 递归计算:卡尔曼滤波是一种递归算法,通过不断迭代更新状态估计,实现对系统状态的连续估计。
9. 初始条件:卡尔曼滤波需要给定初始状态估计和初始误差协方差矩阵,通常通过历史数据或先验知识进行初始化。
10. 优势和应用:卡尔曼滤波具有高效、精确、鲁棒的特点,被广泛应用于导航定位、目标跟踪、机器人定位与导航等领域,在实时性和稳定性要求较高的系统中得到了广泛应用和研究。
卡尔曼滤波是一种基于状态空间模型的递归滤波算法,通过预测和更新步骤对系统状态进行估计,以提高状态估计的精度。
它通过最小化均方误差准则和递归计算的方式,能够有效地处理含有噪声的测量数据,在航空航天、导航定位等领域得到了广泛应用。
卡尔曼滤波器分类及基本公式

以 时刻的最优估计 为准,预测 时刻的状态变量 ,同时又对该状态进行观测,得到观测变量 ,再在预测与观测之间进行分析,或者说是以观测量对预测量进行修正,从而得到 时刻的最优状态估计 。
卡尔曼滤波思想
卡尔曼滤波的由来
卡尔曼滤波的由来
卡尔曼滤波理论作为最优估计的一种,它的创立是科学技术和社会需要发展到一定程度的必然结果。在1795年,高斯为测定行星运动轨道而提出最小二乘估计法。为了解决火力控制系统精度跟踪问题,维纳于1942年提出了维纳滤波理论,利用有用信号和干扰信号的功率谱确定线性滤波器的频率特性,首次将数理统计理论与线性理论有机的联系在一起,形成了对随机信号做平滑、估计或者预测的最优估计新理论。但是采用频域设计法是造成维纳滤波器设计困难的根本原因。于是,人们逐渐转向寻求在时域内直接设计最优滤波器的方法,而卡尔曼研究的卡尔曼滤波理论很好的解决了这个问题
卡尔曼滤波的基本方程
例子
卡尔曼滤波的基本方程
现在,我们用于估算K时刻房间的实际温度有两个温度值:估计值23度和测量值25度。究竟实际温度是多少呢?是相信自己还是相信温度计?究竟相信谁多一点?我们需要用他们的均方误差来判断。因为, (*公式三),所以我们可以估算出K时刻的最优温度值为: 度(*公式四)。 得到了K时刻的最优温度,下一步就是对K+1时刻的温度值进行最优估算,需要得到K时刻的最优温度(24.56)的偏差,算法如下: (*公式五) 就这样,卡尔曼滤波器就不断的把均方误差递归,从而估算出最优的温度值,运行速度快,且只保留上一时刻的协方差。
卡尔曼滤波的由来
卡尔曼,全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们在现代控制理论中要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。
卡尔曼滤波算法基本原理

卡尔曼滤波算法基本原理一、概述卡尔曼滤波算法是一种基于线性系统状态空间模型的递归滤波算法,主要用于估计含有噪声的测量数据,并能够有效地消除噪声对估计的影响,提高估计精度。
本篇文章将详细介绍卡尔曼滤波算法的基本原理。
二、基本原理1.状态方程:卡尔曼滤波算法基于线性系统状态空间模型,该模型可以用状态方程来表示。
状态方程通常包含系统的内部状态、输入和输出,可以用数学公式表示为:x(t+1)=Ax(t)+Bu(t)+w(t)。
其中,x(t)表示系统内部状态,u(t)表示输入,w(t)表示测量噪声。
2.测量方程:测量数据通常受到噪声的影响,卡尔曼滤波算法通过建立测量方程来处理噪声数据。
测量方程通常表示为:z(t)=h(x(t))+v(t),其中z(t)表示测量数据,h(x(t))表示系统输出,v(t)表示测量噪声。
3.卡尔曼滤波算法:卡尔曼滤波算法通过递归的方式,根据历史状态和测量数据来估计当前系统的内部状态。
算法的核心是利用过去的估计误差和测量误差来预测当前的状态,并不断更新估计值,以达到最优估计的效果。
卡尔曼滤波算法主要包括预测和更新两个步骤。
预测步骤根据状态方程和上一步的估计值,预测当前的状态;更新步骤则根据当前的测量数据和预测值,以及系统协方差矩阵,来更新当前状态的估计值和系统协方差矩阵。
4.滤波器的选择:在实际应用中,需要根据系统的特性和噪声的性质来选择合适的卡尔曼滤波器。
常见的滤波器有标准卡尔曼滤波器、扩展卡尔曼滤波器等。
选择合适的滤波器可以提高估计精度,降低误差。
三、应用场景卡尔曼滤波算法在许多领域都有应用,如航空航天、自动驾驶、机器人控制等。
在上述领域中,由于系统复杂、噪声干扰大,使用卡尔曼滤波算法可以有效地提高系统的估计精度和控制效果。
四、总结卡尔曼滤波算法是一种基于线性系统状态空间模型的递归滤波算法,通过预测和更新的方式,能够有效地消除噪声对估计的影响,提高估计精度。
本篇文章详细介绍了卡尔曼滤波算法的基本原理和应用场景,希望能对大家有所帮助。
控制系统卡尔曼滤波

控制系统卡尔曼滤波卡尔曼滤波(Kalman filter)是一种经典的状态估计技术,在控制系统中拥有广泛应用。
本文将介绍控制系统中卡尔曼滤波的基本原理、算法流程以及应用实例。
一、卡尔曼滤波的基本原理卡尔曼滤波是基于系统状态和测量数据之间的线性关系,通过递推的方式对系统的状态进行估计。
其基本原理包括两个方面:状态预测和测量更新。
1. 状态预测状态预测是指根据系统的状态方程和上一时刻的状态估计值,通过数学模型预测当前时刻的系统状态。
状态方程通常用线性动力学方程表示,可以描述系统在无外界干扰下的状态演化规律。
2. 测量更新测量更新是指根据系统的测量方程和当前时刻的测量数据,对系统的状态进行修正和更新。
测量方程通常用线性观测方程表示,可以将系统的状态转化为可观测的输出。
二、卡尔曼滤波的算法流程卡尔曼滤波的算法流程主要包括两个步骤:预测步骤和更新步骤。
1. 预测步骤在预测步骤中,通过系统状态方程和控制输入预测系统的状态。
预测的过程包括两个关键的计算:(1)状态预测:根据上一时刻的状态估计值和状态方程,计算当前时刻的状态预测值。
(2)状态协方差预测:根据上一时刻的状态协方差估计值、过程噪声协方差以及状态转移矩阵,计算当前时刻的状态协方差预测值。
2. 更新步骤在更新步骤中,通过测量方程和测量数据来修正和更新系统的状态。
更新的过程包括两个关键的计算:(1)卡尔曼增益计算:根据状态协方差预测值、测量噪声协方差以及测量矩阵,计算卡尔曼增益。
(2)状态估计更新:根据卡尔曼增益、状态预测值和测量残差,计算当前时刻的状态估计值和状态协方差估计值。
三、卡尔曼滤波的应用实例卡尔曼滤波在控制系统中具有广泛的应用,下面将通过一个实际的应用实例来说明其效果。
假设有一个飞行器,通过激光雷达测量距离来估计飞行器与目标之间的距离。
然而,由于环境噪声和测量误差的存在,测量数据会受到一定程度的扰动。
在这个实例中,我们可以使用卡尔曼滤波来对飞行器与目标之间的距离进行估计。
卡尔曼滤波参数 p

卡尔曼滤波参数 p(实用版)目录1.卡尔曼滤波的基本原理2.卡尔曼滤波的应用场景3.卡尔曼滤波的优缺点4.卡尔曼滤波参数 p 的作用正文卡尔曼滤波是一种线性高斯状态空间模型,主要用于估计系统状态和优化控制策略。
它通过将系统的观测值与预测值进行加权融合,得到一个更精确的估计值。
在这个过程中,卡尔曼增益是一个关键参数,决定了观测值和预测值的权重。
卡尔曼滤波广泛应用于航天、自动驾驶等领域,对提高系统精度和稳定性具有重要作用。
卡尔曼滤波的基本原理可以概括为以下几个步骤:1.初始化:设定初始状态的均值向量和协方差矩阵。
2.预测:根据系统动态模型和初始状态,预测未来状态的均值向量和协方差矩阵。
3.更新:将预测值和观测值进行加权融合,得到更精确的估计值。
卡尔曼增益决定了观测值和预测值的权重。
4.反馈:将估计值和观测值之间的误差作为新的观测值,进入下一轮预测和更新过程。
卡尔曼滤波的应用场景包括:1.导航定位:在导航定位系统中,卡尔曼滤波可以用于处理 GPS 信号的误差,提高定位精度。
2.机器人控制:在机器人控制中,卡尔曼滤波可以用于估计机器人的位姿,提高控制精度。
3.自动驾驶:在自动驾驶中,卡尔曼滤波可以用于处理传感器数据,提高车辆定位和控制精度。
卡尔曼滤波的优缺点如下:优点:1.适用于线性高斯系统,具有较好的鲁棒性。
2.可以处理带有噪声的观测值,提高估计精度。
3.可以优化控制策略,提高系统性能。
缺点:1.对非线性系统不适用。
2.计算复杂度较高,需要处理大量的矩阵运算。
卡尔曼滤波参数 p 的作用是决定观测值和预测值之间的权重。
当 p 较大时,观测值的权重较大,估计值更接近观测值;当 p 较小时,预测值的权重较大,估计值更接近预测值。
因此,合理选择卡尔曼增益 p 对于提高估计精度至关重要。
卡尔曼滤波 数学基

卡尔曼滤波(Kalman Filter)是一种强大的数学工具,它是一种线性二次调节器,可以用于估计状态变量。
其基本思想是:通过系统输入输出数据,对系统状态进行估计。
卡尔曼滤波算法可以分为两个部分:预测部分和更新部分。
在预测部分,算法根据上一时刻的状态变量和系统的输入,对当前时刻的状态进行预测。
具体来说,算法通过一个状态转移矩阵和一个输入矩阵,将上一时刻的状态变量和当前时刻的输入转化为当前时刻的预测状态变量。
在更新部分,算法将实际观测值与预测值进行比较,然后通过一个卡尔曼增益矩阵对预测值进行修正,得到当前时刻的最优估计值。
卡尔曼滤波算法需要满足以下假设:
1. 系统是线性的;
2. 系统的噪声是高斯分布的;
3. 初始状态变量是已知的。
在实现卡尔曼滤波时,需要定义状态转移矩阵、输入矩阵、观测矩阵和卡尔曼增益矩阵。
这些矩阵需要根据系统的具体情况进行定义和调整。
总的来说,卡尔曼滤波是一种基于数学模型的算法,它通过对系统输入输出数据的分析,实现对系统状态的估计。
它是控制理论中非常重要的工具之一,被广泛应用于各种实际应用领域,如航空航天、机器人、金融预测等。
卡尔曼滤波入门

卡尔曼滤波入门卡尔曼滤波是一种对采样数据进行滤波的方法,其基本假设是“被观测系统是线性的,采样数据存在噪声,而且噪声符合高斯分布”,其目的是尽可能排除掉噪声的影响,找到真实值。
要想理解卡尔曼滤波的基本思想,需要先从算术平均滤波和加权平均滤波说起。
算术平均滤波算法的核心思想是:假设误差是随机出现、均匀分布的,那么连续采样N 次,并取这N次采样值的平均值为有效值即可。
算术平均滤波适合于消除在某个值范围内随机波动的噪声,但是无法消除脉冲性噪声,而且N次采样才能确定一个有效值,对数据的利用率较低,而且算术平均滤波对观测量的变化反应较为迟钝。
算数平均滤波的滤波特性和N的取值关系比较大,当N较大时,平滑度高,灵敏度低;当N较小时,平滑度低,但灵敏度高。
加权平均滤波是对算术平均滤波的改进,其核心思想是:给队列中的数据赋权重,越靠近本次时刻的数据权重越大。
加权平均滤波和算术平均滤波相比,可以较快的反应观测量的变化(它减少了采样时刻较远的数据对本次采样数据的影响),它一定程度上协调了平滑度和灵敏度之间的矛盾。
算术平均滤波可以理解为一种特殊的加权平均滤波,即所有时刻的权值相同。
加权平均滤波存在一个核心缺陷,就是权重是非常粗暴的按时间序列给定的,是固定的,它可能在某些阶段表现很好,而在另外一些阶段表现很差,所以一种自然地想法就是能够动态的对权重进行调整,卡尔曼滤波就是一种可以动态调整权值的滤波方法,它的核心还是加权平均,但是它的权值是根据系统状态和噪声计算出来的最优权值,在线性系统中是最优的。
卡尔曼滤波的核心思想是:(假定观测的系统是线性的,噪声都满足高斯分布)这一刻系统的状态(最优估计)是这一刻的“预测量”和这一刻的“观测量”的加权平均,当得到最优估计之后,再将这一刻的最优估计和预测量进行对比,如果相差比较小,则说明“预测”比较准确,下次计算就加大“预测量”的权值,反之,则说明“预测”不准确,下次计算就加大“观测量”的权值,下一时刻重复该过程。
卡尔曼滤波方法资料课件

线性最小方差估计方法的优 点
适用于线性系统状态估计,计算量较小,易于实现。
线性最小方差估计方法的 缺点
对非线性系统效果不佳,需要先验知识或模 型参数。
04
卡尔曼滤波方法的实现 和应用案例
卡尔曼滤波方法的软件实现
软件平台
可以使用Python、C、Matlab等编程语言实现卡尔曼滤波算法。
卡尔曼滤波方法在控制系统中的应用案例
应用场景
卡尔曼滤波方法在控制系统中主要用于估计系统的状态变量。
案例分析
通过实际控制系统的数据和实验,验证卡尔曼滤波方法在控制系统中的可行性和稳定性。
卡尔曼滤波方法在雷达系统中的应用案例
应用场景
卡尔曼滤波方法在雷达系统中主要用于 目标跟踪和运动参数估计。
VS
案例分析
卡尔曼滤波方法的基本概念和原理
基本概念
卡尔曼滤波方法是一种递归估计方法,通过建立状态方程和观测方程,对系统状态进行最优估计。
原理
卡尔曼滤波方法基于最小均方误差准则,通过不断更新估计值来逼近真实值,具有计算量小、实时性 强的优点。
卡尔曼滤波方法的应用领域
机器人
用于机器人的定位、路径规划、 避障等。
描述系统状态和观测之间的关系。
定义初始状态和误差协方差
02
确定系统初始状态和误差协方差的估计值,为后续的滤波过程
提供初始条件。
选择合适的模型参数
03
根据实际情况选择合适的模型参数,如系统动态参数、观测参
数等,以更好地描述系统特性。
预测步骤
01
根据上一时刻的状态和误差协方 差,预测当前时刻的系统状态和 误差协方差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卡尔曼滤波马尔可夫过程:在随机理论中,把在某时刻的事件受在这之前事件的影响,其影响范围有限的随机过程,称为马尔可夫过程。
一个事件受在它之前的事件的影响的深远程度,通常用在它之前的事件作为条件的概率来表达。
受前一个事件的影响,简称为马尔可夫过程;受前两个事件的影响,称为二阶马尔可夫过程;受前三个事件的影响,称为三阶马尔可夫过程!卡尔曼滤波简介+算法实现代码(转):最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。
从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。
为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。
卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。
它适合于实时处理和计算机运算。
现设线性时变系统的离散状态防城和观测方程为:X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1)Y(k) = H(k)·X(k)+N(k)其中X(k)和Y(k)分别是k时刻的状态矢量和观测矢量F(k,k-1)为状态转移矩阵U(k)为k时刻动态噪声T(k,k-1)为系统控制矩阵H(k)为k时刻观测矩阵N(k)为k时刻观测噪声则卡尔曼滤波的算法流程为:12预估计X(k)^= F(k,k-1)·X(k-1)3计算预估计协方差矩阵C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)' Q(k) = U(k)×U(k)'4计算卡尔曼增益矩阵K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1)R(k) = N(k)×N(k)'5更新估计X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^]6计算更新后估计协防差矩阵C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)'7X(k+1) = X(k)~C(k+1) = C(k)~重复以上步骤其c语言实现代码如下:#include "stdlib.h"#include "rinv.c"int lman(n,m,k,f,q,r,h,y,x,p,g)int n,m,k;double f[],q[],r[],h[],y[],x[],p[],g[];{ int i,j,kk,ii,l,jj,js;double *e,*a,*b;e=malloc(m*m*sizeof(double));l=m;if (l<n) l=n;a=malloc(l*l*sizeof(double));b=malloc(l*l*sizeof(double));for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ ii=i*l+j; a[ii]=0.0;for (kk=0; kk<=n-1; kk++)a[ii]=a[ii]+p[i*n+kk]*f[j*n+kk];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ ii=i*n+j; p[ii]=q[ii];for (kk=0; kk<=n-1; kk++)p[ii]=p[ii]+f[i*n+kk]*a[kk*l+j];}for (ii=2; ii<=k; ii++){ for (i=0; i<=n-1; i++)for (j=0; j<=m-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=n-1; kk++)a[jj]=a[jj]+p[i*n+kk]*h[j*n+kk];}for (i=0; i<=m-1; i++)for (j=0; j<=m-1; j++){ jj=i*m+j; e[jj]=r[jj];for (kk=0; kk<=n-1; kk++)e[jj]=e[jj]+h[i*n+kk]*a[kk*l+j];}js=rinv(e,m);if (js==0){ free(e); free(a); free(b); return(js);} for (i=0; i<=n-1; i++)for (j=0; j<=m-1; j++){ jj=i*m+j; g[jj]=0.0;for (kk=0; kk<=m-1; kk++)g[jj]=g[jj]+a[i*l+kk]*e[j*m+kk];}for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i; x[jj]=0.0;for (j=0; j<=n-1; j++)x[jj]=x[jj]+f[i*n+j]*x[(ii-2)*n+j];}for (i=0; i<=m-1; i++){ jj=i*l; b[jj]=y[(ii-1)*m+i];for (j=0; j<=n-1; j++)b[jj]=b[jj]-h[i*n+j]*x[(ii-1)*n+j];}for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i;for (j=0; j<=m-1; j++)x[jj]=x[jj]+g[i*m+j]*b[j*l];}if (ii<k){ for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=m-1; kk++)a[jj]=a[jj]-g[i*m+kk]*h[kk*n+j];if (i==j) a[jj]=1.0+a[jj];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; b[jj]=0.0;for (kk=0; kk<=n-1; kk++)b[jj]=b[jj]+a[i*l+kk]*p[kk*n+j];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=n-1; kk++)a[jj]=a[jj]+b[i*l+kk]*f[j*n+kk];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*n+j; p[jj]=q[jj];for (kk=0; kk<=n-1; kk++)p[jj]=p[jj]+f[i*n+kk]*a[j*l+kk];}}}free(e); free(a); free(b);return(js);}C++实现代码如下:============================kalman.h================================// kalman.h: interface for the kalman class.////////////////////////////////////////////////////////////////////////#if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_) #define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_#if _MSC_VER > 1000#pragma once#endif // _MSC_VER > 1000#include <math.h>#include "cv.h"class kalman{public:void init_kalman(int x,int xv,int y,int yv);CvKalman* cvkalman;CvMat* state;CvMat* process_noise;CvMat* measurement;const CvMat* prediction;CvPoint2D32f get_predict(float x, float y);kalman(int x=0,int xv=0,int y=0,int yv=0);//virtual ~kalman();};#endif // !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_) ============================kalman.cpp================================#include "kalman.h"#include <stdio.h>/* tester de printer toutes les valeurs des vecteurs*//* tester de changer les matrices du noises *//* replace state by cvkalman->state_post ??? */CvRandState rng;const double T = 0.1;kalman::kalman(int x,int xv,int y,int yv){cvkalman = cvCreateKalman( 4, 4, 0 );state = cvCreateMat( 4, 1, CV_32FC1 );process_noise = cvCreateMat( 4, 1, CV_32FC1 );measurement = cvCreateMat( 4, 1, CV_32FC1 );int code = -1;/* create matrix data */const float A[] = {1, T, 0, 0,0, 1, 0, 0,0, 0, 1, T,0, 0, 0, 1};const float H[] = {1, 0, 0, 0,0, 0, 0, 0,0, 0, 1, 0,0, 0, 0, 0};const float P[] = {pow(320,2), pow(320,2)/T, 0, 0,pow(320,2)/T, pow(320,2)/pow(T,2), 0, 0,0, 0, pow(240,2), pow(240,2)/T,0, 0, pow(240,2)/T, pow(240,2)/pow(T,2)};const float Q[] = {pow(T,3)/3, pow(T,2)/2, 0, 0,pow(T,2)/2, T, 0, 0,0, 0, pow(T,3)/3, pow(T,2)/2,0, 0, pow(T,2)/2, T};const float R[] = {1, 0, 0, 0,0, 0, 0, 0,0, 0, 1, 0,0, 0, 0, 0};cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI ); cvZero( measurement );cvRandSetRange( &rng, 0, 0.1, 0 );rng.disttype = CV_RAND_NORMAL;cvRand( &rng, state );memcpy( cvkalman->transition_matrix->data.fl, A, sizeof(A));memcpy( cvkalman->measurement_matrix->data.fl, H, sizeof(H));memcpy( cvkalman->process_noise_cov->data.fl, Q, sizeof(Q));memcpy( cvkalman->error_cov_post->data.fl, P, sizeof(P));memcpy( cvkalman->measurement_noise_cov->data.fl, R, sizeof(R));//cvSetIdentity( cvkalman->process_noise_cov, cvRealScalar(1e-5) );//cvSetIdentity( cvkalman->error_cov_post, cvRealScalar(1));//cvSetIdentity( cvkalman->measurement_noise_cov, cvRealScalar(1e-1) );/* choose initial state */state->data.fl[0]=x;state->data.fl[1]=xv;state->data.fl[2]=y;state->data.fl[3]=yv;cvkalman->state_post->data.fl[0]=x;cvkalman->state_post->data.fl[1]=xv;cvkalman->state_post->data.fl[2]=y;cvkalman->state_post->data.fl[3]=yv;cvRandSetRange( &rng, 0, sqrt(cvkalman->process_noise_cov->data.fl[0]), 0 );cvRand( &rng, process_noise );}CvPoint2D32f kalman::get_predict(float x, float y){/* update state with current position */state->data.fl[0]=x;state->data.fl[2]=y;/* predict point position *//* x'k=A鈥k+B鈥kP'k=A鈥k-1*AT + Q */cvRandSetRange( &rng, 0, sqrt(cvkalman->measurement_noise_cov->data.fl[0]), 0 );cvRand( &rng, measurement );/* xk=A?xk-1+B?uk+wk */cvMatMulAdd( cvkalman->transition_matrix, state, process_noise, cvkalman->state_post );/* zk=H?xk+vk */cvMatMulAdd( cvkalman->measurement_matrix, cvkalman->state_post, measurement, measurement );cvKalmanCorrect( cvkalman, measurement );float measured_value_x = measurement->data.fl[0];float measured_value_y = measurement->data.fl[2];const CvMat* prediction = cvKalmanPredict( cvkalman, 0 );float predict_value_x = prediction->data.fl[0];float predict_value_y = prediction->data.fl[2];return(cvPoint2D32f(predict_value_x,predict_value_y));}void kalman::init_kalman(int x,int xv,int y,int yv){state->data.fl[0]=x;state->data.fl[1]=xv;state->data.fl[2]=y;state->data.fl[3]=yv;cvkalman->state_post->data.fl[0]=x;cvkalman->state_post->data.fl[1]=xv;cvkalman->state_post->data.fl[2]=y;cvkalman->state_post->data.fl[3]=yv;}白噪声是的特点是功率谱为常数,也就是各个频率成分幅值相同,无法用传统的低通、高通、带通、带阻滤波器去除。