冀教版初中数学知识点总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数知识归纳

1、数轴“三要素”是,,数轴上的点与实数之

间是关系

2、实数a的相反数可表示为。若a与b互为相反数,则a+b=

3、实数a(a≠0)的倒数可表示为若a与b互为相反数,则ab=

4、∣a∣=

()

()⎪⎩

⎧≥

a

a

∣a∣在数轴上表示实数a的点到的距离,∣a∣是一类重要的非负数,即不论a为何实数,总有∣a∣0

5、实数a(a≥0)的算术平方根表示为

a

(a)2= ,

()

()

⎪⎩

⎧≥

=

=

0 2

a

a

a

a

6、把一个实数记为a×10n的形式,其中a的范围是这样的记

数方法叫科学记数法

7、一个近似数,四舍五入到哪一位,就说这个近似数精确到那一位,从左

边第一个数字起,到精确的这位数字止,所有的数字都叫这个近似数的有效数字。

数轴、比较大小

1、数轴上表示的两个实数,右边的数总比左边的数

2、两个负数比较大小,绝对值大的反而

3、比较实数a与b的大小,可以做差比较:

(1)若a-b>0则a b

(2)若a-b=0则a b

(3)若a-b<0则a b

4、实数的加、减、乘、除、乘方、开方运算中,属于一级运算,属

于二级运算,属于三级运算。在运算过程中,先在

最后

5、若a≠0,则a0=

6、若a≠0则a-n= ;a-n与a n 互为

因式分解

1、把一个多项式化为几个的积的形式,叫做把这个多项式因式分

解,也叫把这个多项式分解因式。因式分解与整式乘法互为运算2、因式分解的基本方法:

(1)提公因式法:ma+mb+mc=

(2)运用公式法:

①平方差公式:a2-b2=

②完全平方公式:a2+2ab+b2=

a2-2ab+b2=

3、因式分解的一般步骤:

(1)先观察多项式的各项有没有,有公因式时先

(2)多项式没有公因式时,看能不能用来分解

(3)分解因式必须分解到每一个因式

整式及运算

1、单项式和多项式统称为。单项式中数字因数是单项式

的,单项式的次数是指

2、所含字母相同,并且相同字母的也分别相同的单项式叫做

同类项。合并同类项是把它们的相加作为系数,字母和字母的指数

3、+(a+b-c)= ,-(a-b+c)= ;

a+b-c=a+ (),a+b-c=a- ()

4、整式的加减实际上就是合并

5、幂的运算性质:

(1)同底数幂的乘法:a m·a n= (m、n均为整数)

(2)幂的乘方:(a m)n = (m、n为整数)

(3)积的乘方:(ab)n = (n为整数)

(4)同底数幂的除法:a m÷a n= (m、n为整数)

6、(1)单项式乘以单项式,把系数和同底数幂分别相乘,作为积的因式,

只在一个单项式中出现的字母,则连同它的 一起作为积的一个因式;

(2)m (a+b+c )= (3)(a+b )(m+n)= 7、(1)单项式除以单项式,把系数、同底数幂分别相除,所得的结果作为

商的因式,对于只在被除式中含有的字母,则连同它的 作为商的一个因式。

(2)多项式除以单项式,用多项式的每一 分别除以这个单项式,

然后再把所得的商

8、(1)平方差公式:(a+b )(a-b )=

(2)完全平方公式:(a+b )2

=

(a-b )2

= 分式及运算 1、(1)分式有意义的条件: (2)分式无意义的条件: (3)分式值为零的条件: (4)分式值为正的条件: (5)分式值为负的条件: 2、整式和分式统称 3、分式的基本性质:

a

b

= 4、最简分式是指分式的分子和分母除1外没有

5、(1)分式的乘法:c d

a b ⨯=

(2)分式的除法:c d

a b ÷=

(3)分式的加减法:=±a

c

a b

=±c d

a b (4)分式的乘方:(a

b )n

=

6、分式运算的结果一定要化为 二次根式及运算 1、(1)形如 的式子叫做二次根式 (2)a 有意义的条件是 (3)a (a ≥0)是一个 数 (4)(a )2

= (5)2a =

2、(1)=ab (a ≥0,b ≥0)

(2)

=b

a

(a ≥0,b >0) 3、(1)=⋅b a (a ≥0,b ≥0)

(2)

=b

a (a ≥0,

b >0)

4、最简二次根式必须满足两个条件:

(1)被开方数中不含 (2)被开方数中不含

5、二次根式相加减时,可以先将二次根式化成 ,再将 相同的二次根式进行合并

6、二次根式的结果必须化成 不等式

1、用“>”“<”“≥”“≤”或“≠”等表示大小关系的式子,叫做

2、使不等式成立的未知数的值叫做 ,不等式的所有解组成的集合叫做

求不等式解集的过程叫做

3、含有 个未知数,未知数的次数是 的不等式,叫做一元一次不等式。

4、不等式的两边同加(或同减)一个数(或式子),不等号方向 ;不等式的两边同乘(或同除)一个正数,不等号的方向 ;不等式的两边同乘(或同除)一个负数,不等号方向

5、三角形任意两边之和 第三边,任意两边之差 方程及等式的性质 1、列方程时,要先设字母表示未知数,然后根据问题中的 关系,写出含有未知数的

2、只含有 未知数,且未知数的指数是 的方程叫做一元一次方程。

3、解方程就是求出使方程中等号左右两边 的未知数的值的过程,这个值就是方程的

4、等式性质1:如果a=b 那么a ±c=

5、等式性质2:如果a=b ,那么ac= 。

c

a

= (c ≠0) 6、把等式一边的某项 后移到 叫做移项

7、括号外的因数是正数,去括号后各项的符号 ;括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号 8、(1)a+(b+c )= (2)a+(b-c )= (3)a+(-b+c )= (4)a+(-b-c )= (5)a-(b+c )=

(6)a-(b-c )= (7)a-(-b+c )= (8)a-(-b-c )= 二元一次方程组

1、含有 个未知数,并且未知数的指数都是 的方程叫二元一次方程

2、使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的 。一般地,一个二元一次方程有 组解

3、把两个二元一次方程合在一起,就组成

4、二元一次方程组中的两个方程的 ,叫做二元一次方程组的解

5、将未知数的个数由多化少,逐一解决的方法叫做

6、由二元一次方程组中的一个方程,将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做 法,简称

7、两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这

一元二次方程

1、含有_________个未知数,并且未知数的最高次数是___________的___________方程叫做一元二次方程。

2、一元二次方程的一般形式___________,其中___________叫做二次项,___________叫做二次项系数;___________叫做一次项,___________叫做一次项系数;___________叫做常数项。

3、一元二次方程)0(02

≠=++a c bx ax 的求根公式:___________

相关文档
最新文档