数值分析-第五章-函数近似计算的插值法

合集下载

函数近似计算的插值法Hermite插值法PPT课件

函数近似计算的插值法Hermite插值法PPT课件

x x0 x1 x0
2
将以上结果代入
8
H3( x) f00( x) f11( x) f00( x) f11( x) 得两个节点的三次Hermite插值公式
H3( x) f00( x) f11( x) f00( x) f11( x)
f0 (1 2l1( x)) l02( x) f1(1 2l0( x)) l12( x)
x0 x1
以上分析都能成立吗?
当f (4) (x)在[x0 , x1]上存在时, 上述余项公式成立
12
Hermite插值法定理1 满足插值条件:
Hn1( xi ) Hn1( xi )
yi yi
f f
( xi ) , ( xi )
i 0,1,
,n
Hermite值问题的解存在且唯一.
Hermite插值法定理2
P( xi ) f ( xi ) fi P( xi ) f (xi ) fi P( xi ) f ( xi ) fi
i 0,1,, n --------(2)
P(m) ( xi )
f (m) ( xi )
f (m) i
3
定义1. 称满足(1)或(2)式的插值问题为Hermite插值, 称满足(1)或(2)式的插值多项式P(x)为Hermite插值多项 式,记为 Hk (,x) 为k多项式次数.
f0( x x0 ) l02 ( x) f1( x x1) l12 ( x)
f0 1 2
x x0 x1 x0
x x1 x0 x1
2
f1
1
2
x x0
x1 x1
x x1
x0 x0
2
f0 x
x0
x x0

数值分析插值法

数值分析插值法

数值分析插值法插值法是数值分析中的一种方法,用于通过已知数据点的函数值来估计介于这些数据点之间的未知函数值。

插值法在科学计算、数据处理、图像处理等领域中得到广泛应用。

插值法的基本思想是通过已知数据点构造一个函数,使得该函数逼近未知函数,并在已知数据点处与未知函数值相等。

插值法的关键是选择适当的插值函数,以保证估计值在插值区间内具有良好的近似性质。

常用的插值法有拉格朗日插值法、牛顿插值法和埃尔米特插值法等。

以下将分别介绍这些插值法的原理及步骤:1. 拉格朗日插值法:拉格朗日插值法通过构造一个多项式函数来逼近未知函数。

假设已知n+1个数据点(x0, y0), (x1, y1), ..., (xn, yn),其中x0, x1, ..., xn为给定的节点,y0, y1, ..., yn为对应的函数值。

拉格朗日插值多项式的一般形式为:L(x) = y0 * l0(x) + y1 * l1(x) + ... + yn * ln(x)其中l0(x), l1(x), ..., ln(x)为拉格朗日基函数,定义为:li(x) = (x - x0)(x - x1)...(x - xi-1)(x - xi+1)...(x - xn) / (xi - x0)(xi - x1)...(xi - xi-1)(xi - xi+1)...(xi - xn)拉格朗日插值法的步骤为:a. 计算基函数li(xi)的值。

b.构造插值多项式L(x)。

c.计算L(x)在需要估计的插值点上的函数值f(x)。

2.牛顿插值法:牛顿插值法通过构造一个差商表来逼近未知函数。

差商表的第一列为已知数据点的函数值,第二列为相邻数据点的差商,第三列为相邻差商的差商,以此类推。

最终,根据差商表中的数值,构造一个差商表与未知函数值相等的多项式函数。

牛顿插值法的步骤为:a.计算差商表的第一列。

b.计算差商表的其他列,直至最后一列。

c.根据差商表构造插值多项式N(x)。

数值分析实验报告--实验2--插值法

数值分析实验报告--实验2--插值法

1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。

显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。

我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。

龙格(Runge )给出一个例子是极著名并富有启发性的。

设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。

实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。

(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。

(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。

1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。

1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。

Matlab 脚本文件为Experiment2_1_1fx.m 。

可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。

第五章插值法

第五章插值法
另一类方法在选定近似函数的形式后,不要求近似 函数过已知样点,只要求在某种意义下它在这些点
上的总偏差最小。这类方法称为曲线(数据)拟合 法,将在下一章介绍。
本章主要讨论构造插值多项式的几种常用的方法及 其误差 用插值法求函数的近似表达式时,首先要选定 函数的形式。可供选择的函数很多,常用的是多项式 函数。因为多项式函数计算简便,只需用加、减、乘 等运算,便于上机计算,而且其导数与积分仍为多项式。
返回
第5章 插值法
前进
如行星在太空中的定位问题:当行星在空间运行时, 可通过精密观测仪器在不同的时间ti(i = 1,2,…)观测到行 星所在位置S(ti),无论花费多少人力物力,所得到的只 是一批离散数据(ti,S(ti)),i=1,2,…),而行星是在作连续运 动,它在任一时间t(与ti不同)的位置S(t),我们只能再 去通过观测得到,插值逼近是利用这组离散数据(ti,S(ti)) 构造一个简单的便于计算的近似函数(解析表达式), 用它可求任何时间的函数值(称为插值),对这个近似 解析表达式也能求导,讨论其各种性质。
六十年期间任何一年(例如1965年)的人口总数,或者预
测2019年该地区的人口数量 。利用插值方法就可以解决
这一类问题。
另一方面,有些函数,虽然有解析表达式,但因其过于
复杂,不便于计算和分析,同样希望构造一个既能反映函
数的特性又便于计算的简单函数,近似代替原来的函数。
如在积分
I
b
f (x)dx
中,当f (x)很复杂,要计算
a
积分I是很困难的,构造都要用到插值逼近。
返回代数插值第5章 插值法
前进
解决上述问题的方法有两类:一类是对于一组离 散点(xi,f (xi)) (i = 0,1,2,…,n),选定一个便于计算的函

数值分析第五章插值法

数值分析第五章插值法

数值分析第五章插值法插值法是数值分析中常用的一种数值逼近方法,它的目的是通过已知数据点之间的插值多项式来逼近未知数据点的函数值。

插值法可以在信号处理、图像处理、计算机图形学等领域中广泛应用。

在插值法中,最常用的方法有拉格朗日插值法和牛顿插值法。

拉格朗日插值法是一种利用拉格朗日插值多项式来逼近函数的方法。

对于n个已知数据点(xi, yi),拉格朗日插值多项式L(x)可以表示为:L(x) = ∑(yi * li(x))其中,li(x)表示拉格朗日基函数,定义为:li(x) = ∏[(x - xj)/(xi - xj)] (j≠i)可以证明,在给定的n个数据点上,拉格朗日插值多项式L(x)满足:L(xi) = yi牛顿插值法是另一种常用的插值方法,它利用差商的概念来逼近函数。

对于n个已知数据点(xi, yi),差商可以定义为:f[xi] = yif[xi, xi+1] = (f[xi+1] - f[xi]) / (xi+1 - xi)f[xi, xi+1, ..., xi+k] = (f[xi+1, ..., xi+k] - f[xi, ...,xi+k-1]) / (xi+k - xi)通过差商的递归定义,可以得到牛顿插值多项式N(x)的表达式,其中:N(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...与拉格朗日插值法类似,牛顿插值多项式N(x)也满足:N(xi) = yi这两种插值方法都有自己的优点和缺点。

拉格朗日插值法简单易懂,计算量小,但当数据点较多时,多项式的次数会很高,容易出现龙格现象。

而牛顿插值法可以通过求差商一次次递推得到插值多项式,计算效率较高,且具备局部逼近性,不易出现龙格现象。

除了拉格朗日插值法和牛顿插值法,还有其他插值方法,如分段线性插值、样条插值等。

分段线性插值是利用线性多项式逼近函数,将数据点之间的区间分为若干段,每段内使用一条线性多项式进行插值。

数值分析常用的插值方法

数值分析常用的插值方法

数值分析报告班级:专业:流水号:学号:姓名:常用的插值方法序言在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。

插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。

早在6世纪,中国的刘焯已将等距二次插值用于天文计算。

17世纪之后,牛顿、拉格朗日分别讨论了等距和非等距的一般插值公式。

在近代,插值法仍然是数据处理和编制函数表的常用工具,又是数值积分、数值微分、非线性方程求根和微分方程数值解法的重要基础,许多求解计算公式都是以插值为基础导出的。

插值问题的提法是:假定区间[a,b〕上的实值函数f(x)在该区间上n+1个互不相同点x0,x1……x n处的值是f(x0),……f(x n),要求估算f(x)在[a,b〕中某点的值。

其做法是:在事先选定的一个由简单函数构成的有n+1个参数C0,C1,……C n的函数类Φ(C0,C1,……C n)中求出满足条件P(x i)=f(x i)(i=0,1,……n)的函数P(x),并以P(x)作为f(x)的估值。

此处f(x)称为被插值函数,x0,x1,……xn 称为插值结(节)点,Φ(C0,C1,……C n)称为插值函数类,上面等式称为插值条件,Φ(C0,……C n)中满足上式的函数称为插值函数,R(x)=f(x)-P(x)称为插值余项。

求解这类问题,它有很多种插值法,其中以拉格朗日(Lagrange)插值和牛顿(Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermit 插值,分段插值和样条插值。

一.拉格朗日插值1.问题提出:已知函数()y f x =在n+1个点01,,,n x x x 上的函数值01,,,n y y y ,求任意一点x '的函数值()f x '。

说明:函数()y f x =可能是未知的;也可能是已知的,但它比较复杂,很难计算其函数值()f x '。

数值分析第五章插值法精品PPT课件

数值分析第五章插值法精品PPT课件
证明 R n ( x i ) f ( x i ) n ( x i ) 0 ,
故 R n ( x ) K ( x ) x x ( 0 ) x x ( 1 ) ( x x n ).
其中 K (x)是与 x有关的待定函数.
如何求 K (x) ?
8
现把x看成是[a, b]上的固定点, 作辅助函数
x22
x2n
a2
f
(x2
)
1 xn xn2 xnnan f (xn)
系数矩阵A的行列式是Vandermonde行列式,其值为
n
deA t() (xj xi)
i,j0,ij
当插值节点xi (i=0, 1, 2, …, n)互不相同时,此行列
式不为0, 即系数矩阵A可逆. 因此ai (i=0, 1, 2, …, n),
11 2181.031 3 03.
抛物线插值. 取x0=11, x1=12, x1=13, 插值多项式为
L2(x)2.39((1 7x 1 91 1))2 21 x (( 111)3 )32.48((1 4x 2 91 1))1 11 x (( 211)3 )3 2.56(4x 91)1x (1)2 (1 31)11 ( 31)2
xx0xx11y0xx1xx00y1
x0
x1
l0 ( x)
xi x0 x1
1次多项式
10
l0 (x )y 0 l1 (x )y 1
l1( x)
xi x0 x1
1次多项式
01
13
➢ 二次插值多项式
已知
xi
x0 x1 x2
yi f(xi) y 0 y 1 y 2
求 L2(x)
(1) 至多2次多项式; (2) L 2 ( x i ) f ( x i ) y i ( i 0 , 1 , 2 ).

数值分析插值法范文

数值分析插值法范文

数值分析插值法范文数值分析是一门研究利用数值方法解决实际问题的学科,它涵盖了数值计算、数值逼近、数值解法等内容。

在数值分析中,插值方法是一种重要的数学技术,用于从给定的数据点集推断出函数的值。

本文将详细介绍插值法的基本原理、常用插值方法以及应用领域等内容。

一、插值法的基本原理插值法是利用已知的数据点集构造一个函数,使得这个函数在给定区间内与已知数据吻合较好。

插值法的基本原理是,假设已知数据点的函数值是连续变化的,我们可以通过构造一个满足这种连续性的函数,将数据点连接起来。

当得到这个函数后,我们可以通过输入任意的$x$值,得到相应的$y$值,从而实现对函数的近似。

插值法的基本步骤如下:1.给定数据点集$\{(x_0,y_0),(x_1,y_1),...,(x_n,y_n)\}$,其中$x_i$是已知的数据点的$x$值,$y_i$是对应的函数值。

2.构造一个函数$f(x)$,使得$f(x_i)=y_i$,即函数通过已知数据点。

3.根据实际需要选择合适的插值方法,使用已知数据点构造函数,得到一个满足插值要求的近似函数。

4.对于输入的任意$x$值,利用插值函数求出相应的$y$值,从而实现对函数的近似估计。

二、常用插值方法1.拉格朗日插值法拉格朗日插值法是一种使用拉格朗日多项式进行插值的方法。

给定数据点集$\{(x_0,y_0),(x_1,y_1),...,(x_n,y_n)\}$,拉格朗日插值多项式可以表示为:$$L(x) = \sum_{i=0}^{n} y_i \prod_{j=0, j \neq i}^{n} \frac{x - x_j}{x_i - x_j}$$其中$L(x)$为插值函数,利用这个函数可以求出任意输入$x$对应的$y$值。

2.牛顿插值法牛顿插值法是一种使用差商来表示插值多项式的方法。

给定数据点集$\{(x_0,y_0),(x_1,y_1),...,(x_n,y_n)\}$,牛顿插值多项式可以表示为:$$N(x) = y_0 + \sum_{i=1}^{n} f[x_0, x_1, ..., x_i]\prod_{j=0}^{i-1} (x - x_j)$$其中$N(x)$为插值函数,$f[x_0,x_1,...,x_i]$是差商,利用这个函数可以求出任意输入$x$对应的$y$值。

数值分析(计算方法)总结

数值分析(计算方法)总结

第一章绪论误差来源:模型误差、观测误差、截断误差(方法误差)、舍入误差是的绝对误差,是的误差,为的绝对误差限(或误差限)为的相对误差,当较小时,令相对误差绝对值得上限称为相对误差限记为:即:绝对误差有量纲,而相对误差无量纲若近似值的绝对误差限为某一位上的半个单位,且该位直到的第一位非零数字共有n位,则称近似值有n位有效数字,或说精确到该位。

例:设x==3。

1415926…那么,则有效数字为1位,即个位上的3,或说精确到个位.科学计数法:记有n位有效数字,精确到。

由有效数字求相对误差限:设近似值有n位有效数字,则其相对误差限为由相对误差限求有效数字:设近似值的相对误差限为为则它有n位有效数字令1.x+y近似值为和的误差(限)等于误差(限)的和2.x-y近似值为3.xy近似值为4.1.避免两相近数相减2.避免用绝对值很小的数作除数3.避免大数吃小数4.尽量减少计算工作量第二章非线性方程求根1。

逐步搜索法设f (a) <0, f (b)〉 0,有根区间为 (a, b),从x0=a出发,按某个预定步长(例如h=(b-a)/N)一步一步向右跨,每跨一步进行一次根的搜索,即判别f(x k)=f(a+kh)的符号,若f(x k)〉0(而f(x k-1)<0),则有根区间缩小为[x k-1,x k] (若f(x k)=0,x k即为所求根),然后从x k—1出发,把搜索步长再缩小,重复上面步骤,直到满足精度:|x k—x k-1|< 为止,此时取x*≈(x k+x k-1)/2作为近似根.2。

二分法设f(x)的有根区间为[a,b]= [a0,b0], f(a)<0,f(b)〉0。

将[a0,b0]对分,中点x0= ((a0+b0)/2),计算f(x0)。

3.比例法一般地,设 [a k,b k]为有根区间,过(a k,f(a k))、 (b k, f(b k))作直线,与x轴交于一点x k,则:1.试位法每次迭代比二分法多算一次乘法,而且不保证收敛.2。

数值分析课件-5.3Neton插值

数值分析课件-5.3Neton插值

第五章函数近似计算的插值法5.3 Newton插值法§均差(也称为差商)是数值方法中的一个重要概念,它可以反映出列表函数的性质,并能对Lagrange 插值公式给出新的表达形式,这就是Newton 插值 。

一、均差二、 Newton 插值公式三、等距节点的Newton 插值公式四、Newton 插值算法5.3 Newton 插值法§,1,0x x -),)((10x x x x --)())((110----n x x x x x x , 显然,多项式组线性无关,因此,可以作为插值基函数,i x 设插值节点为ni f i ,,1,0, =函数值为1,,2,1,0,1-=-=+n i x x h i i i iih h max =ni f x P i i ,,1,0,)( ==插值条件为)())(())(()()(110102010----++--+-+=n n x x x x x x a x x x x a x x a a x P具有如下形式设插值多项式)(x P一、差商(均差)定义1.n i f x x f i i ,,1,0,)( =处的函数值为在互异的节点设称)(],[j i x x f f x x f ji j i j i ≠--=(),()();i j f x x x 为关于节点一阶差商均差平均变化率)(],[],[],,[k j i x x x x f x x f x x x f jk j i k i k j i ≠≠--=(),,i j k f x x x x 为关于的二阶差商(均差), 它是由1阶均差再作一次差商所得;依此类推],,,,[110k k i i i i x x x x f - 阶差商的关于节点为k x x x x x f k k i i i i ,,,,)(110- ],,,,[110k k x x x x f - 差商具有如下性质(请同学们自证):且的线性组合表示可由函数值阶差商的,)(,),(),(],,,,[)()1(10110k k k x f x f x f x x x x f k x f -显然kk k k k i i i i i i i i i x x x x x x f x x x f --=---1210110],,,,[],,,[ kk k k k x x x x x x f x x x f --=---1210110],,,,[],,,[)()()()()()(4433221100x f x x f x x f x x f x x f x x f x k k 四阶差商三阶差商二阶差商一阶差商差商的计算方法(表格法):],[10x x f ],[21x x f ],[32x x f ],[43x x f ],,[210x x x f ],,[321x x x f ],,[432x x x f ],,,[3210x x x x f ],,,[4321x x x x f ],,,[410x x x f 规定函数值为零阶差商差商表二、Newton 基本插值公式)())(())(()()(110102010----++--+-+=n n x x x x x x a x x x x a x x a a x P设插值多项式满足插值条件ni f x P i i ,,1,0,)( ==则待定系数为0f a =],[101x x f a =],,[2102x x x f a =],,,[10n n x x x f a =()()[]()()n 1001N ,, n n n Newton x N x f x x x x x x Newton Lagrange --=+-- 由插值表达式,我们可以看出 这样,每增加一个节点,插值多项式只增加一项,克服了插值的缺点。

数值分析插值法

数值分析插值法

-
K
(
x)
n

(t
-
xi
)
推广:若 ( x0 ) = ( x1 ) = ( x2 ) = 0
0 ( x0 , x1 ), 1 i (=0x1 , x2 )
(x)有 n使+2得个不(同0 )的= 根(x10)…= 0xn x (0 ,1(n)使1) (得x ) =0(, )=x 0 (a, b)
有 余



多项式插值----polynomial interpolation
Problem I. 给定y=f(x)的函数表, xi[a,b]
Interpolation interval
Interpolation points
求 次数不超过 n 的多项式
Pn ( x) = a0 a1 x an x n
1 h4 max | 24 x0xx3
f
4(x) |
手 有 余 娜 原 创
证明
n
(1) xikli (x) = xk , k = 0,1, 2, n i=0
n
(2) (xi - x)k li (x) = 0,k = 0,1, 2, n i=0
(3) p(x)是任一最高次项系数为1的n+1次多项式,则
Interpolation polynomial
(2.1)
Interpolation condition
使得
P ( x ) = y , i = 0, ... , n
ni
i
(2.2)
条件:无重合节点,即 i j xi x j
手 有 余 娜 原 创多项式 Nhomakorabea值的几何意义 Pn(x) f(x)

数值分析 插值法

数值分析 插值法
系数行列式(n+1阶范德蒙行列式)
1 1 1
x0 x1 xn
2 x0 2 x1
n x0 n x1

0 i j n
2 xn n xn

( x j xi ) 0
, an .
由克莱默法则知,方程组有唯一解 a0 , a1 ,
§2 Lagrange Polynomial
唯一性的另一证明 满足 P( xi ) yi , i 0, ... , n 的 n 阶插 值多项式是唯一存在的。
f (x)
(x0 ,y0)
(x1 ,y1)
P1(x)
x0
x1
可见 P1(x) 是过 ( x0 , y0 ) 和 ( x1, y1 ) 两点的直线。
§2 Lagrange Polynomial
y1 y0 直线方程为: y y0 x x ( x x0 ) 1 0
记 P 1 ( x) L 1 ( x) ,上式等价变形为:
化简得到
L2 ( x ) l0 ( x ) y0 l1 ( x ) y1 l2 ( x ) y2 l i ( x ) yi .
i 3
成立:
l 0 ( x0 ) 1 l ( x ) 0 0 1 l 0 ( x 2 ) 0
l1 ( x 0 ) 0 l ( x ) 1 1 1 l1 ( x 2 ) 0
l 2 ( x0 ) 0 l ( x ) 0 2 1 l 2 ( x 2 ) 1
将以上思路推广到n+1个节点情形,即可得到类似的 插值基函数和插值多项式表示形式。
§2 Lagrange Polynomial
2-3 Lagrange插值多项式

数值分析中的(插值法)

数值分析中的(插值法)
与其他方法的结合
插值法可以与其他数值分析方法结合使用,以获得更准确和可靠的估计结果。例如,可以 考虑将插值法与回归分析、时间序列分析等方法结合,以提高数据分析的效率和精度。
THANKS
感谢观看
多项式的阶数
根据数据点的数量和分布情况,选择适当的多项式阶数,以确保多 项式能够更好地逼近真实数据。
计算多项式的系数
通过已知的数据点和多项式阶数,计算出多项式的系数,从而得到 完整的插值多项式。
计算插值多项式的导数
导数的计算
在某些应用中,需要计算插值多项式的导数,例如在 曲线拟合、数值微分等场景中。
总结词
牛顿插值法是一种基于差商的插值方法,通过构造差商表来逼近未知点的数值。
详细描述
牛顿插值法的基本思想是通过构造差商表来逼近未知点的数值,差商表中的每一 项都是根据前一项和后一项的差来计算的。该方法在数值分析中广泛应用于数据 拟合、函数逼近等领域。
样条插值法
总结词
样条插值法是一种通过已知的离散数据点来构造一个样条函 数,用于估计未知点的数值的方法。
常见的插值法
拉格朗日插值法
总结词
拉格朗日插值法是一种通过已知的离散数据点来构造一个多项式,用于估计未 知点的数值的方法。
详细描述
拉格朗日插值法的基本思想是通过构造一个多项式来逼近已知数据点,使得该 多项式在每个数据点的取值与实际值相等。该方法在数值分析中广泛应用于数 据拟合、函数逼近等领域。
牛顿插值法
增加采样点的数量可以减小离散化误差,提高插值结果的稳定
性。
选择合适的插值方法
02
根据具体情况选择适合的插值方法,如多项式插值、样条插值
等,以获得更好的逼近效果和稳定性。
引入阻尼项

数值分析中常用的插值方法

数值分析中常用的插值方法

数值分析中常用的插值方法在数值计算中,许多问题都可以用插值方法来近似求解,比如曲线拟合、函数逼近和图像重建等。

插值方法是指在已知数据点的情况下,通过一些数值计算技巧,在每个数据点处构造一个多项式函数,使得该函数在每个数据点处都能通过数据点。

在数据点之间计算函数值时,就可以使用这个多项式函数进行估算。

接下来,我们就来详细介绍一些常见的插值方法。

一、拉格朗日插值法拉格朗日插值法是一个经典的插值方法,它的思想是通过给定的数据点,构造一个经过这些点的多项式函数进行逼近。

具体来讲,拉格朗日插值法会首先构造一个基函数,该函数满足只在其对应的数据点处等于1,其余的数据点处等于0。

然后,根据基函数和数据点,构造一个多项式函数,使得该函数在每个数据点处都能通过数据点。

最终得到的多项式函数就是插值函数。

优点:简单易懂,使用较为广泛。

缺点:多项式次数较高时造成的误差会较大,且在数据点密集的区域可以出现龙格现象,使得插值函数在某些区间内呈现大幅度振荡。

二、牛顿插值法牛顿插值法是一种递推式的插值方法,它通过利用已知的数据点和前面已经计算出来的差商,得到一个逐步逼近的插值函数。

具体来讲,牛顿插值法会先将已知的数据点连成一条曲线,然后逐个向这条曲线添加新的数据点,每次添加一个新的数据点后,将差商计算出来并加入到之前的差商序列中,最终得到一个多项式函数,它在每个数据点处都能通过数据点。

牛顿插值法的优缺点与拉格朗日插值法相似,但是由于牛顿插值法是递推式的,可以方便的添加新的数据点,因此在数据点多变的情况下,牛顿插值法具有很大的优势。

三、分段插值法分段插值法是一种将插值区间划分为多个子区间的插值方法,在每个子区间内使用插值方法进行插值,然后将所有子区间内的插值函数拼接起来,得到最终的插值函数。

分段插值法主要分为两种:线性分段插值和三次样条插值。

1.线性分段插值线性分段插值的思路很简单,即在每个数据点处构造两条直线,在数据点之间的区间内使用一条直线作为插值函数。

数值分析-插值法的讲解

数值分析-插值法的讲解
y=P(X) y=f(x)
称P(x)为f(x)的插值函数,x为插值节 点,[a,b]为插值区间,求插值函数P(x)的 方法为插值法。
若P(x)=a0+a1x+▪▪▪+anxn,称 P(x)为插值多项式。 若P(x)为分段多项式,就称 之为分段插值。
若P(x)为三角多项式,就 称之为三角插值。
枪管膛线----→
1.插值多项式的存在唯一性 P(x)=a0+a1x+▪▪▪+anxn, P(x) ∈Hn a0+a1x0+…+anx0n=y0 a0+a1x1+…+anx1n=y1
. . .
a0+a1xn+…+anxnn=yn
1 x x ... x Vn(x0,x1,…,xn)= 1 x x ... x ... 1 x x ... x
k 1 k 1 k 1 k 1

y
( x xk 1)( x xk 1)
k
( xk xk 1)( xk xk 1)
T H A N K Y O U !
( x xk 1)( x xk ) ( xk 1 xk 1)( xk 1 xk )
k k k 1
l
l
2
k
k 1
( x xk )( x xk 1) ( x x )( x x ) y ( )( ) L ( x) yk 1 x x x x ( xk 1 xk )( xk 1 xk 1)
k 1
x
x xk
k 1
k ห้องสมุดไป่ตู้1
k
xk
L1(x)=
x x y x x y x x x x

数值分析-第五章-函数近似计算的插值法

数值分析-第五章-函数近似计算的插值法
27
节点x0 , x1,函数值f0 , f1
Lagrange线性插值基函数(一次插值)为
x x1 l0 ( x ) x0 x1
Lagrange线性插值多项式为
L1 ( x) l0 ( x) f0 l1( x) f1
x x0 l1 ( x ) x1 x0
x x1 x x0 f0 f1 x0 x1 x1 x0
且满足插值条件: pn ( xi ) fi
i 0,1, 2,
,n
其中 xi , i 0,1,2,, n为插值节点
f ( xi ) fi i 0,1,2, ,n
20
如果a x0 x1 x2 xn b为区间 [a, b]上的一组节点
我们作一组 n次多项式l j ( x), j 0,1,2,, n

f (175) L2 (175) 12l0 (175) 13l1 (175) 15l2 (175) 13.230 15873
在例1中,如果只给出两个节点169和225,也可以作插值 多项式,即1次Lagrange插值多项式,有两个插值基函数, 这种插值方法称为Lagrange线性插值,也可以在n+1个 节点中取相邻的两个节点作线性插值
19
显然0 ( x),1 ( x),,n ( x)线性无关 且任意n次多项式Pn ( x)可由0 ( x),1 ( x),,n ( x)线性表示
Pn ( x) a00 ( x) a11 ( x) ann ( x)
如果Pn ( x)为某个函数 f ( x)的插值函数 则称0 ( x),1 ( x),,n ( x)为插值基函数
7
二、代数插值多项式的存在唯一性

数值分析插值法

数值分析插值法

数值分析插值法数值分析是数学的一个分支,用于研究如何使用数值方法来近似和解决数学问题。

插值是数值分析的一个重要概念,它涉及到如何通过已知数据点的信息来估计未知数据点的值。

在本文中,我们将着重讨论插值法。

插值法是一种基于已知数据点的函数值,通过建立适当的插值函数来估计未知数据点的函数值的方法。

插值问题的目标是找到一个函数f(x),使得f(x_i)=y_i(i=0,1,2,...,n),其中x_i是已知的数据点,y_i是相应的函数值,n是已知数据点的数量。

然后,通过插值函数可以近似估计任意一个未知数据点的函数值。

常见的插值方法包括拉格朗日插值、牛顿插值和埃尔米特插值等。

下面我们将逐一介绍这些插值方法。

拉格朗日插值是一种利用拉格朗日多项式进行插值的方法。

拉格朗日多项式是一个多项式函数,满足通过已知数据点的函数值。

具体地说,设给定的已知数据点为(x_i,y_i),我们需要找到一个多项式P(x)=y,使得P(x_i)=y_i。

拉格朗日插值多项式的形式如下:P(x)=Σ(y_i*l_i(x))其中l_i(x)是拉格朗日基函数,它定义为:l_i(x)=Π((x-x_j)/(x_i-x_j))(j≠i)牛顿插值是另一种常用的插值方法。

它通过使用差商来递归地计算插值多项式。

差商是一个递归定义的函数,用于计算多项式的系数。

设给定的已知数据点为(x_i,y_i),我们需要找到一个多项式P(x)=y,使得P(x_i)=y_i。

牛顿插值多项式的形式如下:P(x)=y_0+(x-x_0)*f[x_0,x_1]+(x-x_0)*(x-x_1)*f[x_0,x_1,x_2]+...其中,f[x_i,x_j,...,x_k]是差商的定义,它可以通过递归公式计算得到:f[x_i,x_j,...,x_k]=(f[x_j,...,x_k]-f[x_i,...,x_{k-1}])/(x_k-x_i)埃尔米特插值是一种利用已知数据点及其导数信息进行插值的方法。

数值分析-插值法

数值分析-插值法

数值分析-插值法我们能得到⼀个函数f在区间[a,b]上某些点的值或者这些点上的⾼阶导数我们就能通过插值法去得到⼀个函数g,g与f是⾮常相近的⼀般来说g分为三类,⼀类是n次多项式 a n*x n +a n-1*x n-1 + .......+a0,⼀类是三⾓多项式,最后⼀类是分段n次多项式多项式插值这个可以说是最简单的插值了对于a n*x n +a n-1*x n-1 + .......+a0,我们有n+1个未知数,我只需要知道n+1个点的函数值就可以解出这n+1个未知数将解出的值带⼊即可优点:简单粗暴缺点:要解n+1个⽅程,时间复杂度较⾼,n不好确定,若n过⼤,容易过拟合,若n过⼩,容易⽋拟合拉格朗⽇插值先说⼀阶多项式我们有两点式f(x) = y k*(x k+1 - x) / (x k-x k+1) + y k+1*(x-x k) / (x k+1 - x k)此两点式可以看做∂ * y k + (1-∂) * y k+1那么⾃然的在x=x k的时候 ∂=0 在x=x k+1的时候∂=1这⾥的∂其实是与x相关的⼀阶多项式再说⼆阶多项式对于⼀个⼆次函数,我们有三个点(x k-1,y k-1) ,(x k,y k) ,(x k+1,y k+1)我们有l k-1,l k,l k+1f(x) = l k-1*y k-1 + l k*y k + l k+1*y k+1其中l是与x相关的⼆次多项式我们可以把l当作基函数这样的话就有x = x k-1 时l k-1 = 1, l k=0, l k+1 = 0x = x k时 l k-1 = 0, l k=1, l k+1 = 0x = x k+1时l k-1 = 0, l k=0, l k+1 = 1那么这个插值基函数是很好求的因为每个插值函数都有两个零点对于l k-1来说有零点x k,x k+1那么lk-1就可以表⽰为l k-1 = A*(x-x k)*(x-x k+1)因为x=xk-1时l k-1 = 1所以A = 1 / ((x k-1 - x k)* (x k-1 - x k+1) )那么同理l k和l k+1也能求出来了那我们得到⼆阶的拉格朗⽇插值多项式现在将⼆阶推⼴到n阶得到n接的拉格朗⽇插值多项式余项:R n(x) = f(x) - L n(x) R n(x)表⽰n次拉格朗⽇多项式的插值余项R n(x) = f n+1(e)/(n+1)! * w n+1(x) e属于[a,b]且依赖与x w n+1(x) = (x-x0)(x-x1).......(x-x n)优点:算法较为简单缺点:⽆法处理动态增加节点的情况⽜顿插值还是先从⼀阶到⼆阶进⾏说明我先得到了⼀阶差值多项式P1(x),P1(x) 满⾜过点(x1, f(x1)), (x2,f(x2))假设现在有第三个点(x3,f(x3))我们要通过这个点去得到⼆阶差值多项式P2(x) 使得P2(x)过这三个点可以设P2(x) = P1(x) + a2*(x-x0)*(x-x1)通过第三个点解出a2就⾏了推⼴到多阶那么可以得到P n(x) = a0 + a1(x-x0) + a2(x-x0)(x-x1) + a3(x-x0)(x-x1)(x-x2) + ......求这个插值多项式的值可以通过递推⼀步⼀步的求这样就实现了动态增删可以看到计算a k需要计算(k-1)2次,那么⽜顿插值法就是⼀个快速的计算⽅法均差⼀阶均差 f[x0, x k] = ( f(x k) - f(x0) ) / (x k - x0)⼆阶均差 f[x0, x1, x2] = (f[x0, x2] -f[x0, x1] ) / (x2 - x1)可以看到⼀阶均差就是简单的求斜率⼆阶均差就是对⼀阶均差求斜率那么k阶均差就是f[x0, x1,,,,,,x k] = (f[x0,,,,,x k-2, x k] -f[x0, ,,,,,,,x k-2,x k-1] ) / (x k - x k-1)f[x0, x1,,,,,,x k] = f n(ε) / n!均差的性质k阶均差可表⽰为f(x0),f(x1), f(x2),,,,,,,,, f(x k)的线性组合⽜顿插值中的a就是均差,可以从⼀阶开始推,然后使⽤数学归纳法证明那么⽜顿插值多项式就是:在计算f[x0,x1,,,,,,,,,,x n]时,⼀般使⽤均差表均差表的计算⽅式为a[i,j] = ( a[i-1][j] - a[i-1][j-1] ) / (末尾的x - 最开始的x)误差:误差为最后⼀阶的均差 * w(x)优点:可动态增删节点缺点:⽆法处理要求导数相同的情况埃尔⽶特插值法实验报告⼀个点,多个导数:⽜顿插值中的均差在xi->x0时其实分别是i阶导数,这样就是我们熟悉的泰勒多项式此时的插值函数就是泰勒多项式两个点,⼀个导数我们有三个条件,也就是说我们能求出三次插值多项式这时我们先写出过这两个点的⽜顿插值多项式在这个多项式的基础上我们再加上⼀个三次项搞定,可以观察到,这三个项数其实可以算是正交的,因为当x=x1或者x=x2时最后⼀项是0满⾜条件的两个点,两个导数这也是题⽬所要求的情况因为有两个导数,所以⽜顿插值法⽆法解决,这⾥只能使⽤基函数⽅法设插值函数为H(x), 点与导数分别为(x1,y1,m1),(x2,y2,m2)H(x)满⾜:H(x1) =y1, H(x2) = y2, H(x1)’ = m1,H(x2)=m2H(x) = a1*x1 + a2*x2 + b1*m1 + b2*m2其中 a1, a2, b1, b2均为三层插值多项式X=x1时 a1(x1) = 1,a2(x1) = 0, b1(x1) = 0,b2(x1) = 0,a1’(x1) = 1,a2’(x1) = 0X=x2时 a1(x2) = 0,a2(x2) = 1, b1(x2) = 0,b2(x2) = 0,a1’(x2) = 1,a2’(x2) = 0X=x1时 b1’(x1) = 1,b2’(x1) = 0X=x2时b1’(x1) = 0,b2’(x1) = 1然后⽤了⼀个很巧妙的⽅法设基函数,解出来值和就是这样⼦的R3(x) = 1/4! * (x-x k)2(x-x k+1)2*f4(ε)两个点,两个导数2直接使⽤泰勒多项式,并把将余项改为未知数,使⽤多余的⼀个条件去求余项的值例如:求次数⼩于等于3的多项式P(x),使满⾜条件P(x0)=f(x0),P'(x0)=f'(x0),P"(x0)=f"(x0),P(x1)=f(x1)。

数值分析论文-几种插值方法的比较

数值分析论文-几种插值方法的比较

数值分析论文——几种插值方法的比较1.插值法概述插值法是函数逼近的重要方法之一,有着广泛的应用!在生产和实验中,函数()x f 或者其表达式不便于计算复杂或者无表达式而只有函数在给定点的函数值(或其导数值) ,此时我们希望建立一个简单的而便于计算的函数()x ϕ,使其近似的代替()x f ,有很多种插值法,其中以拉格朗日(Lagrange)插值和牛顿(Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermite 插值,分段插值和样条插值.这里主要介绍拉格朗日(Lagrange)插值和牛顿(Newton)插值和埃尔米特插值(Hermite 插值)。

2.插值方法的比较 2.1拉格朗日插值 2.1.1基本原理构造n 次多项式()()()()()x l y x l y x l y x l y x P n n k nk k n +⋅⋅⋅++==∑=11000,这是不超过n 次的多项式,其中基函数:()x l k =)...()()...()(()...()()...()(()1110)1110n k k k k k k k n k k x x x x x x x x x x x x x x x x x x x x ----------+-+-显然()x l k 满足()i k x l =⎩⎨⎧≠=)(0)(1k i k i此时()()x f x P n ≈,误差()()()=-=x P x f x R n n(x ))!1()(1)1(+++n n n f ωξ 其中ξ∈()b a ,且依赖于x ,()()()()n n x x x x x x x -⋅⋅⋅--=+101ω. 很显然,当1=n ,插值节点只有两个k x ,1+k x 时()()()x l y x l y x P k k k k i 11+++=其中基函数()x l k =11++--k k k x x x x , ()x l k 1+= kk kx x x x --+12.1.2优缺点可对插值函数选择多种不同的函数类型,由于代数多项式具有简单和一些良好的特性,故常选用代数多项式作为插值函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
称函数P( x)为函数f ( x)的 插值函数
如果P( x)为多项式函数 , 则称之为插值多项式
点 xi , i 0,1,2,, n, 称为插值节点
区间 [a, b]称为插值区间 如函数y sin x, 若给定 [0, ]上5个等分点
其插值函数的图象如图
4
sinxµ IJ å Öµ
1
yy
12
根据线性空间的理论,
所有次数不超过 n的多项式构成的线性空 间是 n 1 维的
这个n 1维线性空间的基也由n 1个多项式组成
并且形式不是唯一的
而任意一个n次多项式可由基线性表示
且在不同的基下有不同的形式
设0 ( x),1( x), ,n ( x)为上述n 1维线性空间的一个基
2 a a x a x 0 1 0 2 0 2 a0 a1x1 a2 x1 a a x a x2 0 1 n 2 n
, an满足线性方程组
n an x0 f0 n an x1 f1
--------(1)
n an xn fn
l j ( x)
( x x0 )( x x1 )( x x j 1 )(x x j 1 )( x xn ) ( x j x0 )(x j x1 )( x j x j 1 )(x j x j 1 )( x j xn )
上述方程组的系数行列式为n+1阶Vandermond行列式
1 x0
2 n x0 x0 2 1 n 1
xi x j 1 x1 x x ( x j xi ) 0 V i 0 j i 1
n 1
n
1 xn
2 n xn xn
9
由Cramer法则,线性方程组(1)有唯一解 定理1. 若插值节点 xi x j (i j ),
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
0
0.5
1
1.5 1.5
2 2
2.5 2.5
3 3
3.5 3.5
x x x
对于被插函数 f ( x) 和插值函数 P( x)
在节点 xi 处的函数值必然相等
但在节点外 P( x) 的值可能就会偏离 f ( x)
因此 P( x) 近似代替 f ( x) 必然存在着误差
10
第五章
§
函数近似计算的插值法
5.2 Lagrange插值多项式
11
Lagrange插值多项式
一、 代数多项式的构造: 若通过求解线性方程组(1)来求解插值多项式
Pn ( x) 系数 a i Pn ( x)
, 不但计算工作量较大, 且难于得到
的简单表达式.
通过找插值基函数的方法,得到插值多项式! 十八世纪法国数学家Lagrange对以往的插值算法进 行研究与整理,提出了易于掌握和计算的统一公式, 称为Lagrange插值公式。 它的特例是线性插值公式和抛物线插值公式。
2. 有的函数虽然有表达式,但比较复杂, 计算函数 f ( x ) 很 不经济且不利于在计算机上进行计算.
这两种情况下, 都希望用简单的函数 p( x) 来逼近原函数 f ( x).
2
一、插值问题的数学提法
插值:已知[a, b]上的函数y=f(x)在n+1个互异点处的函数值:
x
f(x)
x0
f0
x1
f1
求简单函数P(x),使得 计算f(x)可通过计算P(x)来近似代替。如下图所示。 y
f(x) P(x) f0 x0 f1 x1 f2 x2
P( xi ) fi
i 0,1, , n
(*)
fi
xi
fi+1
xi+1
fn-1 xn-1
fn
xn
x
3
这就是插值问题, (*)式为插值条件,
pn ( xi ) fi i 0,1,2, ,n
则满足插值条件
--------(2) --------(3)
的插值多项式 pn ( x) a0 a1x a2 x2 存在且唯一.
an xn
虽然线性方程组(1)推出的插值多项式存在且唯一,
但通过解线性方程组(1)求插值多项式却不是好方法.
第五章
函数近似计算的插值法
§ 5.1 插值问题的提出
1
插值问题的提出
1. 在工程实际问题中,某些变量之间的函数关系是存在的, 但通常不能用式子表示,只能由实验或观测得到y f ( x ) 在一系列离散点 xi 上的函数值 f i .
希望通过这些数据 ( xi , fi ) 计算函数y f ( x)在其他 指定点处的近似值或获取其他信息.
19
显然0 ( x),1 ( x),,n ( x)线性无关 且任意n次多项式Pn ( x)可由0 ( x),1 ( x),,n ( x)线性表示
Pn ( x) a00 ( x) a11 ( x) ann ( x)
如果Pn ( x)为某个函数 f ( x)的插值函数 则称0 ( x),1 ( x),,n ( x)为插值基函数
7
二、代数插值多项式的存在唯一性
设函数 y f ( x) 在区间 [a, b] 上的代数插值多项式为
pn ( x) a0 a1x a2 x
2
an x
n
且满足
pn ( xi ) fi
i 0,1,2,
, n,
其中ai是n+1个待定的系数.
8
即多项式Pn ( x)的系数a0 , a1, a2 ,
且满足插值条件: pn ( xi ) fi
i 0,1, 2,
,n
其中 xi , i 0,1,2,, n为插值节点
f ( xi ) fi i 0,1,2, ,n
20
如果a x0 x1 x2 xn b为区间 [a, b]上的一组节点
我们作一组 n次多项式l j ( x), j 0,1,2,, n
5
整体误差的大小反映了插值函数的好坏. 为了使插值函数更方便在计算机上运算,一般插值函 数都使用代数多项式或有理函数.
本章讨论的就是代数插值多项式.
6
对于多项式插值,我们主要讨论以下几个问题:
1. 满足插值条件的多项式 P(x)是否存在且唯一? 2. 若满足插值条件的P(x)存在,又如何构造出P(x); 即插值多项式的常用构造方法有哪些? 3. 用P(x)代替f(x)的误差估计,即截断误差的估计; 4. 当插值节点无限加密时,插值函数是否收敛于 f(x)。
相关文档
最新文档