(整理)彩色液晶屏接口及其驱动电路

合集下载

各种液晶屏接口定义TCON,TTL,LVDS

各种液晶屏接口定义TCON,TTL,LVDS

TTL电平TTL电平信号被利用的最多是因为通常数据表示采用二进制规定,+5V等价于逻辑“1”,0V等价于逻辑“0”,这被称做TTL(晶体管-晶体管逻辑电平)信号系统,这是计算机处理器控制的设备内部各部分之间通信的标准技术。

TTL电平信号对于计算机处理器控制的设备内部的数据传输是很理想的,首先计算机处理器控制的设备内部的数据传输对于电源的要求不高以及热损耗也较低,另外TTL电平信号直接与集成电路连接而不需要价格昂贵的线路驱动器以及接收器电路;再者,计算机处理器控制的设备内部的数据传输是在高速下进行的,而TTL接口的操作恰能满足这个要求。

TTL型通信大多数情况下,是采用并行数据传输方式,而并行数据传输对于超过10英尺的距离就不适合了。

这是由于可靠性和成本两面的原因。

因为在并行接口中存在着偏相和不对称的问题,这些问题对可靠性均有影响。

数字电路中,由TTL电子元器件组成电路使用的电平。

电平是个电压范围,规定输出高电平>2.4V,输出低电平<0.4V。

在室温下,一般输出高电平是3.5V,输出低电平是0.2V。

最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。

英文全称为:transistor transistor logic“TTL集成电路的全名是晶体管-晶体管逻辑集成电路(Transistor-Transistor Lo gic),主要有54/74系列标准TTL、高速型TTL(H-TTL)、低功耗型TTL(L-TTL)、肖特基型TTL(S-TTL)、低功耗肖特基型TTL(LS-TTL)五个系列。

标准TTL输入高电平最小2V,输出高电平最小2.4V,典型值3.4V,输入低电平最大0.8V,输出低电平最大0.4V,典型值0.2V。

S-TTL输入高电平最小2V,输出高电平最小Ⅰ类2.5 V,Ⅱ、Ⅲ类2.7V,典型值3.4V,输入低电平最大0.8V,输出低电平最大0.5V。

配合学习'液晶屏逻辑驱动电路原理、电路分析及故障检修'的预备知识: 郝铭博客–平板电视维修技术学习

配合学习'液晶屏逻辑驱动电路原理、电路分析及故障检修'的预备知识: 郝铭博客–平板电视维修技术学习

配合学习'液晶屏逻辑驱动电路原理、电路分析及故障检修'的预备知识:郝铭博客–平板电视维修技术学习学习液晶屏逻辑驱动电路原理的必备的预备知识:一、触发器:触发器是逻辑电路的基础,种类很多,用处也不同。

常见的触发器有:RS触发器、同步RS触发器、D触发器、单稳态触发器和施密特触发器等。

为了理解我们此文介绍的液晶屏逻辑电路原理,这里重点以框图的形式简单的介绍“D 触发器”。

D触发器:D触发器又称为延迟触发器,其输出状态的改变依赖于时钟脉冲的触发,即在时钟脉冲边沿的触发下,数据由输入端传递到输出端。

D触发器也是最常用的触发器之一。

图6.1图6.1所示;是一个 D 触发器简单的框图;它有两个输入端(左边和上面)和一个输出端(右边);左边的输入端是数据输入端;上面的输入端是触发脉冲输入端(控制端);右边是输出端。

D触发器的简单工作过程:图6.2及图6.3所示;图6.2图6.3在D触发器的“数据输入端”给一个数据信号STV,此时;当上面的“触发脉冲输入端”没有信号输入时;数据信号STV 就停留在“数据输入端”,图6.2所示。

如果此时,在上面的“触发脉冲输入端”输入一个脉冲信号CKV,则在脉冲信号CKV的前上升沿的触发下;数据信号STV由输入端迅速传递到输出端,图6.3所示。

电路的特点:(1)D触发器在“数据输入端”有数据信号STV输入;“触发脉冲输入端”无触发脉冲的状态下:D触发器没有传递信号的动作(D触发器没有“搬运”动作)“数据输出端”没有信号输出,此时输出端为零电平。

(2)D触发器在“数据输入端”无数据信号STV输入;“触发脉冲输入端”有触发脉冲触发的状态下:D触发器有传递信号的动作(D触发器工作;有“搬运”动作)但是“数据输出端”没有信号输出(因为输入端没有信号可以传递),此时输出端为零电平。

(3)D触发器在“数据输入端”有数据信号输入;“触发脉冲输入端”有触发脉冲触发的状态下:D触发器有传递信号的动作(D触发器工作;有“搬运”动作)“数据输出端”有信号输出(因为输入端有信号可以传递),此时原输入端的数据信号被传递到输出端。

彩色液晶接口电路设计及触摸屏的编程与调试

彩色液晶接口电路设计及触摸屏的编程与调试

第16卷 增刊3 广西工学院学报 V o l116 Sup3 2005年10月 JOU RNAL O F GUAN GX IUN I V ER S IT Y O F T ECHNOLO GY O ct12005文章编号:100426410(2005)S320046204彩色液晶接口电路设计及触摸屏的编程与调试自动化 012班 2001031220 文家燕指导教师:蔡启仲 郭毅锋摘 要:本文以单片机C8051F020为核心控制芯片,对由控制芯片T FT6448b控制NL6448A C33-18彩色显示屏和单片机C8051F020控制四线电阻式触摸屏组成的人机界面控制系统,作了较为深入的分析与研究。

介绍了C8051F020单片机的功能特点,端口配置方法和对它的编程具体操作方法;以及液晶芯片T FT6448b和触摸屏的管脚功能和工作原理。

描述了单片机C8051F020实现控制彩色液晶进行显示和控制触摸屏按要求正确工作的原理,给出了系统硬件设计原理图以及软件流程图,阐述了硬件设计框图和实现过程。

着重论述触摸屏硬件接口电路设计及软件编程与调试,实现了彩色液晶显示及触摸屏控制功能,实现了页面显示及页面切换功能。

为便于程序的扩展、修改和今后的应用,应用C语言编程,所有程序按功能采用模块化设计,程序设计的逻辑关系简洁明了。

关 键 词:C8051F020;彩色液晶;触摸屏;T FT6448b;C语言Abstract:T h is p ap er takes C8051F020M CU as the co re of Con tro l C M O S U n it,m ak ing a fu rther analysis and research on the m an2m ach ine in terface con tro l system w h ich is m ade up by the m odu les,w ith C M O S ch i p T FT6448b con tro ls NL6448A C33218co lo rfu l disp lay screen and C8051F020M CU con tro ls the fou r2w ired Touch Screen.F irst,in troducing the functi on and characteristic of C8051F020C M O S U n it,the w ays of in terface configu rati on s and the detailed p rogramm ing,the p in s functi on and the op erati onal p rinci p le of T FT6448b and Touch Screen;second,m ak ing a descri p ti on of p rinci p le w h ich is C8051F020con tro l L CD and the Touch Screen op erati on as desired,giving the system hardw are design p rinci p le and the softw are flow chart and elabo rating the hardw are design diagram and the realizati on p rocess;th ird,elabo rating em p hatically the Touch Screen hardw are connecti on circu it design and the softw are p rogramm ing and the debugging,realized the co lo red L CD and the Touch Screen con tro l functi on,and the p age dem on strating and the p age s w itch ing functi on;finally,u tilizing the C language p rogramm ing, all p rocedu res w ill be understood m o re easily and conven ien tly w ith the m odu lar design fo r the p rocedu re exp an si on,the revisi on and the later app licati on acco rding to the functi on and the related p rocedu re design.Key words:C8051F020;co lo rfu l;L CD;touch screen;T FT6448b;C language引言触摸屏是目前最简单、方便、自然的而且又适用于中国多媒体信息查询国情的输入设备,它具有坚固耐用、反应速度快、节省空间、易于交流等许多优点。

LCD驱动板连线图

LCD驱动板连线图

一、LCD 驱动板接口描述(顶层丝网图):AT080TN52 V1 LCD 屏接口(注:LCD 屏FPC 屏线的金属面[即导电面]朝上插入)4pin 电阻式1.00mm 间距触摸屏通用接口2(注:适合正视图时触摸屏FPC 引线的金属面朝上的型号)。

4pin 电阻式1.00mm 间距触摸屏通用接口1(注:适合正视图时触摸屏FPC 引线的金属面朝下的型号)。

与PV8900-FULL 主板的LCD 通用接口连接(注:FPC 线的金属面[即导电面]朝下插入)FPC 插座(上接触)FPC 插座(下接触)FPC 插座 (下接触)FPC 插座(上接触)FPC 插座(下接触)AT070TN83 V1 LCD 屏接口(注:LCD 屏FPC 屏线的金属面[即导电面]朝下插入)注:在PV8900-FULL 主板上也是把FPC 线另一端的金属面[即导电面]朝下插入PV8900-FULL 主AT080TN52 V1 LCD 屏背光接口(注:背光接口的插头、插座物理上是防插反的)二、LCD 驱动板与AT080TN52 V1 LCD 屏及正视图时FPC 引线的金属面朝下的触摸屏的连接方法:AT080TN52 V1 LCD 屏接口(注:LCD 屏FPC 屏线的金属面[即导电面]朝上插入)4pin 电阻式1.00mm 间距触摸屏通用接口1(注:适合正视图时触摸屏FPC 。

FPC 插座(上接触)FPC 插座(下接触)FPC 插座 (下接触)FPC 插座(上接触)FPC 插座(下接触)与PV8900-FULL 主板的LCD 通用接口连接(注:FPC 线的金属面[即导电面]朝下插入)注:在PV8900-FULL 主板上也是把FPC 线另一端的金属面[即导电面]朝下插入PV8900-FULL 主AT080TN52 V1 LCD 屏背光接口(注:背光接口的插头、插座物理上是防插反的)三、LCD 驱动板与AT080TN52 V1 LCD 屏及正视图时FPC 引线的金属面朝上的触摸屏的连接方法:AT080TN52 V1 LCD 屏接口(注:LCD 屏FPC 屏线的金属面[即导电面]朝上插入)4pin 电阻式1.00mm 间距触摸屏通用接口2(注:适合正视图时触摸屏FPC 引线的金属面朝上的型号)。

液晶屏电路工作原理

液晶屏电路工作原理

液晶屏电路工作原理
液晶屏电路是指用于驱动液晶显示器的电路,其工作原理主要分为两部分:显示驱动电路和背光驱动电路。

1. 显示驱动电路:液晶屏显示驱动电路主要负责控制液晶显示器中液晶分子的定向,从而实现图像的显示。

其工作原理如下: a. 对于每个像素点,显示驱动电路会给出相应的控制信号,
这些像素控制信号被送入液晶屏,引起液晶中对应的液晶分子定向。

b. 通过改变这些分子的定向,液晶可以通过光的偏振来调节
光的透过度,进而实现对图像的显示。

通过控制不同的像素点的液晶分子定向,可以显示出完整的图像。

2. 背光驱动电路:背光驱动电路用于提供足够的亮度和均匀的背光光源。

其工作原理如下:
a. 背光驱动电路通过直流电源提供给液晶显示器的背光光源,通常是利用冷阴极荧光灯(CCFL)或发光二极管(LED)来
提供背光。

b. 背光驱动电路中的逆变器部分将直流电源转换成所需的交
流高电压,用于激活冷阴极荧光灯。

对于LED背光,背光驱
动电路则根据LED的特性提供适当的直流电压和电流。

c. 通过调整背光驱动电路的输出电压和电流,可以控制背光
亮度的大小。

综上所述,液晶屏电路通过显示驱动电路控制液晶分子的定向,从而实现图像的显示,同时通过背光驱动电路提供合适的背光亮度,使图像在液晶屏上清晰可见。

lvds液晶屏幕接口详解

lvds液晶屏幕接口详解

1.LVDS输出接口概述液晶显示器驱动板输出的数字信号中,除了包括RGB数据信号外,还包括行同步、场同步、像素时钟等信号,其中像素时钟信号的最高频率可超过28MHz。

采用TTL接口,数据传输速率不高,传输距离较短,且抗电磁干扰(EMI)能力也比较差,会对RGB数据造成一定的影响;另外,TTL多路数据信号采用排线的方式来传送,整个排线数量达几十路,不但连接不便,而且不适合超薄化的趋势。

采用LVDS输出接口传输数据,可以使这些问题迎刃而解,实现数据的高速率、低噪声、远距离、高准确度的传输。

那么,什么是LVDS输出接口呢?LVDS,即Low Voltage Differential Signaling,是一种低压差分信号技术接口。

它是美国NS公司(美国国家半导体公司)为克服以TTL电平方式传输宽带高码率数据时功耗大、EMI电磁干扰大等缺点而研制的一种数字视频信号传输方式。

LVDS输出接口利用非常低的电压摆幅(约350mV)在两条PCB走线或一对平衡电缆上通过差分进行数据的传输,即低压差分信号传输。

采用LVDS输出接口,可以使得信号在差分PCB线或平衡电缆上以几百Mbit/s的速率传输,由于采用低压和低电流驱动方式,因此,实现了低噪声和低功耗。

目前,LVDS输出接口在17in及以上液晶显示器中得到了广泛的应用。

2.LVDS接口电路的组成在液晶显示器中,LVDS接口电路包括两部分,即驱动板侧的LVDS输出接口电路(LVDS发送器)和液晶面板侧的LVDS输入接口电路(LVDS接收器)。

LVDS发送器将驱动板主控芯片输出的17L电平并行RGB数据信号和控制信号转换成低电压串行LVDS信号,然后通过驱动板与液晶面板之间的柔性电缆(排线)将信号传送到液晶面板侧的LVDS接收器,LVDS接收器再将串行信号转换为TTL电平的并行信号,送往液晶屏时序控制与行列驱动电路。

图1所示为LVDS接口电路的组成示意图。

图1 LVDS接口电路的组成示意图在数据传输过程中,还必须有时钟信号的参与,LVDS接口无论传输数据还是传输时钟,都采用差分信号对的形式进行传输。

液晶显示器驱动板原理

液晶显示器驱动板原理

液晶显示器驱动板原理液晶显示器驱动板是一种电子设备,用于控制液晶显示器的工作和显示内容。

下面将介绍液晶显示器驱动板的原理及其工作过程。

液晶显示器驱动板主要由以下几个部分组成:输入接口、信号处理电路、驱动电路和背光控制电路。

输入接口是液晶显示器驱动板与外部设备连接的接口,它可以接收来自电脑、摄像头、机顶盒等设备的视频信号。

一般情况下,液晶显示器驱动板的输入接口包括VGA接口、DVI接口、HDMI接口等。

信号处理电路是液晶显示器驱动板的核心部分,它主要负责接收和处理输入的视频信号。

首先,信号处理电路会将输入的视频信号进行解码和转换,得到可用于显示的数据。

然后,它会根据显示需求对数据进行处理,如进行图像增强、色彩管理等。

最后,信号处理电路将处理后的数据发送给驱动电路,以控制液晶显示器的每个像素点的亮度和颜色。

驱动电路是液晶显示器驱动板的重要组成部分,它负责控制液晶显示器上的每个像素点的工作状态。

驱动电路通过对每个像素点的电压进行调节,控制其透光或不透光,从而实现显示效果。

驱动电路通常采用TFT(薄膜晶体管)技术,每个像素点都会配备一个薄膜晶体管,用于调节像素点的电压。

背光控制电路是液晶显示器驱动板的另一个重要组成部分,它主要负责控制液晶显示器的背光亮度。

背光控制电路通过对背光模组中的灯管或LED进行电压调节,来控制液晶显示器的亮度。

一般情况下,背光控制电路可以根据环境光强度的变化,自动调节背光的亮度,以提供更好的显示效果。

综上所述,液晶显示器驱动板通过输入接口接收外部设备的视频信号,信号处理电路对信号进行解码、转换和处理,驱动电路控制液晶显示器的每个像素点的工作状态,背光控制电路控制液晶显示器的背光亮度。

通过这些部分的协同工作,液晶显示器驱动板实现了液晶显示器的正常工作和内容显示。

1、AOC CM-312型彩色显示器的电源电路图

1、AOC CM-312型彩色显示器的电源电路图
30、COMPAQ TE-1420Q型VGA多频显示器的电源电路图
31、COMPAQ 1504型TTL彩色显示器的电源电路图
32、CTX C2型双频高分辨率彩色显示器的电源电路图
33、CTX-C15型VGA高分辨率彩色显示器的电源电路图
34、CTX-C146型EGA彩色显示器的电源电路图
35、CTX-C1435型TTL和VGA多频彩色显示器的电源电路图
20、CASPER 1489型单色显示器的电源电路图
21、CASPER CM-1489型双频单色显示器的电源电路图
22、CASPER TM-5154H/Y型多频彩色显示器的电源电路图
23、CASPER TM-5154H型SVGA多频彩色显示器的电源电路图
24、CASPER TM-5158型VGA彩色显示器的电源电路图
36、CZX-14型显示器的电源电路图
37、CZX-18型显示器的电源电路图
38、DARAS CH-5403V型单色显示器的电源电路图
39、DATAS CH-5414型单色显示器的电源电路图
40、DATAS CH-7423型单显示器的电源电路图
41、DATAS HC-7423型彩色显示器的电源电路图
108、QUICK QM-1493型VGA彩色显示器的电源电路图
109、TOPCON CN-1402型SVGA彩色显示器的电源电路图
110、OPCON CN-1405型彩色显示器的电源电路图
111、TYSTAR TY-1411型彩色显示器的电源电路图
112、TYSTAR TY-1412型SVGA彩色显示器的电源电路图
90、SUPERSYNC MD-11III、SUPERSYNC PWB-1369、SUPERSYNC PWB-1505三种机型彩色显示器的电源电路图

LCD显示屏的器件选择和驱动电路设计说明

LCD显示屏的器件选择和驱动电路设计说明

LCD显示屏的器件选择和驱动电路设计如何实现LCD平板显示屏驱动电路的高性能设计是当前手持设备设计工程师面临的重要挑战。

本文分析了LCD显示面板的分类和性能特点,介绍了LCD显示屏设计中关键器件L DO和白光LED的选择要点,以及电荷泵LED驱动电路的设计方法。

STN-LCD彩屏模块的内部结构如图1所示,它的上部是一块由偏光片、玻璃、液晶组成的LCD屏,其下面是白光LED和背光板,还包括LCD驱动IC和给LCD驱动IC提供一个稳定电源的低压差稳压器(LDO),二到八颗白光LED以及LED驱动的升压稳压IC。

STN-LCD彩屏模块的电路结构如图2所示,外来电源Vcc经LDO降压稳压后,向LCD驱动IC如S6B33BOA提供工作电压,驱动彩色STN-LCD的液晶显示图形和文字;外部电源Vcc经电荷泵升压稳压,向白光LED如NACW215/NSCW335提供恒压、恒流电源,LED的白光经背光板反射,使LCD液晶的65K色彩充分表现出来,LED的亮度直接影响LCD色彩的靓丽程度。

LCD属于平板显示器的一种,按驱动方式可分为静态驱动(Static)、单纯矩阵驱动(Simple Matrix)以及有源矩阵驱动(Active Matrix)三种。

其中,单纯矩阵型又可分为扭转式向列型(Twisted Nematic,TN)、超扭转式向列型(Super Twisted Nematic,STN),以及其它无源矩阵驱动液晶显示器。

有源矩阵型大致可区分为薄膜式晶体管型(ThinFilmTr ansistor,TFT)及二端子二极管型(Metal/Insulator/Metal,MIM)两种。

TN、STN及TFT型液晶显示器因其利用液晶分子扭转原理的不同,在视角、彩色、对比度及动画显示品质上有优劣之分,使其在产品的应用范围分类亦有明显差异。

以目前液晶显示技术所应用的范围以及层次而言,有源矩阵驱动技术是以薄膜式晶体管型为主流,多应用于笔记本电脑及动画、影像处理产品;单纯矩阵驱动技术目前则以扭转向列以及STN为主,STN液晶显示器经由彩色滤光片(colorfilter),可以分别显示红、绿、蓝三原色,再经由三原色比例的调和,可以显示出全彩模式的真彩色。

lvds液晶屏幕接口详解

lvds液晶屏幕接口详解

1.LVDS输出接口概述液晶显示器驱动板输出的数字信号中,除了包括RGB数据信号外,还包括行同步、场同步、像素时钟等信号,其中像素时钟信号的最高频率可超过28MHz。

采用TTL接口,数据传输速率不高,传输距离较短,且抗电磁干扰(EMI)能力也比较差,会对RGB数据造成一定的影响;另外,TTL 多路数据信号采用排线的方式来传送,整个排线数量达几十路,不但连接不便,而且不适合超薄化的趋势。

采用LVDS输出接口传输数据,可以使这些问题迎刃而解,实现数据的高速率、低噪声、远距离、高准确度的传输。

那么,什么是LVDS输出接口呢?LVDS,即Low Voltage Differential Signaling,是一种低压差分信号技术接口。

它是美国NS公司(美国国家半导体公司)为克服以TTL电平方式传输宽带高码率数据时功耗大、EMI电磁干扰大等缺点而研制的一种数字视频信号传输方式。

LVDS输出接口利用非常低的电压摆幅(约350mV)在两条PCB走线或一对平衡电缆上通过差分进行数据的传输,即低压差分信号传输。

采用LVDS输出接口,可以使得信号在差分PCB线或平衡电缆上以几百Mbit/s的速率传输,由于采用低压和低电流驱动方式,因此,实现了低噪声和低功耗。

目前,LVDS输出接口在17in及以上液晶显示器中得到了广泛的应用。

2.LVDS接口电路的组成在液晶显示器中,LVDS接口电路包括两部分,即驱动板侧的LVDS输出接口电路(LVDS发送器)和液晶面板侧的LVDS输入接口电路(LVDS接收器)。

LVDS发送器将驱动板主控芯片输出的17L电平并行RGB数据信号和控制信号转换成低电压串行LVDS信号,然后通过驱动板与液晶面板之间的柔性电缆(排线)将信号传送到液晶面板侧的LVDS接收器,LVDS接收器再将串行信号转换为TTL电平的并行信号,送往液晶屏时序控制与行列驱动电路。

图1所示为LVDS接口电路的组成示意图。

图1 LVDS接口电路的组成示意图在数据传输过程中,还必须有时钟信号的参与,LVDS接口无论传输数据还是传输时钟,都采用差分信号对的形式进行传输。

AOC(冠捷)_G917型液晶彩色显示器电路原理图及维修数据

AOC(冠捷)_G917型液晶彩色显示器电路原理图及维修数据
要锁定 OSD,请在显示器关闭时按住 MENU 按钮,然后按电源按钮打开显示器。要解锁 OSD,请在显示 器关闭时按住 MENU 按钮,然后按电源按钮打开显示器。 注意
• 不要把显示器放在靠近热源的地方,如取暖器、气管或阳光直射的地方。 也不要放在灰尘过多或机械振动、冲击的地方。
• 保留原来的纸箱包装材料,如果您还要运输您的显示器,他们会给您带来便利。 • 为了得到最大的保护,要用原出厂的包装方式来包装显示器。 • 为保持液晶显示屏的清洁,要定期的用干净的软布掸拭它。任何的液体都可能会损伤显示屏。 • 为保持显示器崭新外观,要定期的用软布来清洁它,顽迹可用柔和的清洁剂去除,不要用强烈的清洁剂,
引脚号
9. 10. 11. 12. 13. 14. 15.
功能描述
+5V 检测电缆
接地 DDC-串行数据 水平同步信号 垂直同步信号 DDC-串行时钟
引脚号
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.
24 针彩色显示器信号线
功能描述
TMDS 数据2TMDS数据2+ TMDS数据2/4 屏蔽 TMDS数据4TMDS数据4+ DDC 时钟
SERVI维C修E手M册ANUAL
客户 Envision
机种名 G917
销售地区 中国大陆
T97AMLNDUWE2HN
首次发布日期: 12/2007
1
目录
1. 安全与注意事项------------------------------------------------------------------- 03 2. 技术规格------------------------------------------------------------------------- 05 3. 操作说明及工厂模式调整----------------------------------------------------------- 07 4. ISP 升级流程 --------------------------------------------------------------------- 13 5. 故障处理流程--------------------------------------------------------------------- 17 6. 电气方框图----------------------------------------------------------------------- 24 7. PCB 分布图 ----------------------------------------------------------------------- 26 8. 线路图--------------------------------------------------------------------------- 31 9. 爆炸图--------------------------------------------------------------------------- 38 10. BOM----------------------------------------------------------------------------- 39

液晶显示屏接口定义

液晶显示屏接口定义

液晶显示屏接口定义液晶屏常见接口样式与区别方法从屏的接口样式简单区分屏接口类型的方法很多初学者对于如何区分屏的接口类型很是头疼,是LVDS屏,TTL屏还是RSDS屏?总是很难搞清出。

如何快速识别出液晶屏的接口类型则需要一些经验的,下面从屏的屏线接口的样式来对接口类型做出分类的介绍,帮助大家快速识别屏的接口类型。

以下方法是个人认识,不足之处请大家谅解。

(1)TTL屏接口样式:D6T(单6位TTL):31扣针,41扣针。

对应屏的尺寸主要为笔记本液晶屏(8寸,10寸,11寸,12寸),还有部分台式机屏15寸为41扣针接口。

S6T(双6位TTL):30+45针软排线,60扣针,70扣针,80扣针。

主要为台式机的14寸,15寸液晶屏。

D8T(单8位TTL):很少见S8T(双8位TTL):有,很少见80扣针(14寸,15寸)2)LVDS屏接口样式:D6L(单6位LVDS):14插针,20插针,14片插,30片插(屏显基板100欧姆电阻的数量为4个)主要为笔记本液晶屏(12寸,13寸,14寸,15寸)D8L(单8位LVDS):20插针(5个100欧姆)(15寸)S6L(双6位LVDS):20插针,30插针,30片插(8个100欧姆)(14寸,15寸,17寸)S8L(双8位LVDS):30插针,30片插(10个100欧姆电阻)(17寸,18寸,19寸,20寸,21寸)3)RSDS屏接口样式:50排线,双40排线,30+50排线。

主要为台式机(15寸,17寸)液晶屏。

这是笔记本用的20针lvds接口这是普通用的液晶显示器用点屏线:左边接驱动板,右边接液晶屏(20针与30针lvds接口相似)这里面都是lvds接口:有30针、20针的这些是41扣针接口(双排)这是60扣针接口(80扣针接口与这个相似)本贴来自天极网群乐社区--/group/review-9288206.html液晶屏接口定义(2008-01-18 18:09:43)孤影清风的BLOG20PIN单6定义:3.3V 3.3V1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地 14:CLK- 15:CLK+ 16空 17空 18空 19 空 20空每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(4组相同阻值)20PIN双6定义:1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:R1- 8:R1+ 9:R2- 10:R2+ 11:CLK- 12:CLK+ 13:RO1- 14:RO1+ 15:RO2- 16:RO2+ 17:RO3- 18:RO3+19:CLK1- 20:CLK1+每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(8组相同阻值)20PIN单8定义:1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地 14:CLK- 15:CLK+ 16:R3- 17:R3+每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(5组相同阻值)30PIN单6定义:1:空2:电源3:电源 4:空 5:空 6:空 7:空 8:R0- 9:R0+ 10:地 11:R1- 12:R1+ 13:地 14:R2- 15:R2+ 16:地 17:CLK- 18:CLK+ 19:地 20:空- 21:空 22:空 23:空 24:空 25:空 26:空 27:空 28空 29空 30空每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(4组相同阻值)30PIN单8定义:1:空2:电源3:电源 4:空 5:空 6:空 7:空 8:R0- 9:R0+ 10:地 11:R1- 12:R1+ 13:地 14:R2- 15:R2+ 16:地 17:CLK- 18:CLK+ 19:地 20:R3- 21:R3+ 22:地 23:空 24:空 25:空 26:空 27:空 28空 29空 30空每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(5组相同阻值)30PIN双6定义:1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地 14:CLK- 15:CLK+ 16:地 17:RS0- 18:RS0+ 19:地 20:RS1- 21:RS1+ 22:地 23:RS2- 24:RS2+ 25:地 26:CLK2- 27:CLK2+30PIN双8定义:1:电源2:电源3:电源 4:空 5:空 6:空 7:地 8:R0- 9:R0+ 10:R1- 11:R1+ 12:R2- 13:R2+ 14:地 15:CLK- 16:CLK+ 17:地 18:R3- 19:R3+ 20:RB0- 21:RB0+ 22:RB1- 23:RB1+ 24:地 25:RB2- 26:RB2+ 27:CLK2-28:CLK2+ 29:RB3- 30:RB3+每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(10组相同阻值)一般14PIN、20PIN、30PIN为LVDS接口,25、31、40、41、60、70、75、80、100PIN接口为TTL接口,其中41PIN以下为单6位,60PIN以上为双六位屏50、80(50+30)PIN接口的为RSDS接口。

LCD驱动方式图解

LCD驱动方式图解

LCD驱动方式图解2006-4-10一、静态驱动基本思想:在相对应的一对电极间连续外加电场或不外加电场。

如图1所示;驱动电路原理:如图2所示:驱动波形:根据此电信号,笔段波形不是与公用波形同相就是反相。

同相时液晶上无电场,LCD处于非选通状态。

反相时,液晶上施加了一矩形波。

当矩形波的电压比液晶阈值高很多时,LCD处于选通状态。

二、多路驱动基本思想:电极沿X、Y方向排列成矩阵(如图4),按顺序给X电极施加选通波形,给Y电极施加与X电极同步的选通或非选通波形,如此周而复始。

通过此操作,X、Y电极交点的相素可以是独立的选态或非选态。

图4、电极阵列驱动X电极从第一行到最后一行所需时间为帧周期Tf(频率为帧频),驱动每一行所用时间Tr与帧周期的比值为占空比:Duty=Tr/Tf=1/N。

电压平均化:从多路驱动的基本思想可以看出,不仅选通相素上施加有电压,非选通相素上也施加了电压。

非选通时波形电压与选通时波形电压之比为偏压比Bias=1/a。

为了使选通相素之间及非选通相素之间显示状态一致,必须要求选点电压Von一致,非选点电压Voff一致。

为了使相素在选通电压作用下被选通;而在非选通电压作用下不选通,必须要求LCD的光电性能有阈值特性,且越陡越好。

但由于材料和模式的限制,LCD电光曲线陡度总是有限的。

因而反过来要求Von、Voff拉得越开越好,即Von/Voff 越大越好。

经理论计算,当Duty、Bias满足以下关系时,Von/Voff取极大值。

满足以下公式的a,即为驱动路数为N的最佳偏压值。

公式:。

LCD的动态驱动法2006-3-14摘要:本文以点阵式液晶显示器为例对其动态驱动法作以介绍,给出了一种克服交叉效应的办法。

最后,给出了一款利用动态驱动法驱动码段式液晶显示器的实例。

关键词:液晶显示器具动态驱动法交叉效应液晶的显示是由于在显示像素上施加了电场,这个电场是显示像素前后两电极上的电位信号的合成。

由于直流电场容易使液晶的寿命降低,因此,一般都只建立直流成分非常小的交流电场。

BL55080通用LCD驱动与控制电路说明书

BL55080通用LCD驱动与控制电路说明书

通用LCD驱动与控制电路BL55080BL55080是一款通用型液晶控制和驱动单芯片,具有8背极和35段极共280位元的输出能力,适用于常用低占空比的字符/图形式液晶屏幕,BL55080具有兼容多数微机系统的双向二线式串行总线通讯接口(I2C)。

特点●液晶驱动输出:Common输出8线,Segment输出35线●内置显示寄存器35*8=280bit●2线串行接口(SCL,SDA)●内置震荡电路●内置液晶驱动电源电路1/4 Bias 1/8 Duty内置Buffer AMP●不需要外部元件●低功耗设计●内置EVR(Electrical volume register)功能●VDD电压范围2.5V~5.5V●VLCD电压范围2.5V~5.5V●高抗EMC性能●TSSOP48,LQFP48,LQFP52封装应用领域∙电表、水表、汽表、电话、传真机∙玩具∙手持仪表∙闹钟管脚排列TSSOP48 LQFP52LQFP48图1功能框图图1BL55080框图COM0~7SEG0~34VSSSDA SCL图2功能描述1.功能电路BL55080内部集成了LCD驱动器所必需的所有功能电路。

这些电路包括:LCD偏置电压发生器、LCD电压选择器、内部时钟(OSC =25.6KHz)、显示寄存器、段/背极输出电路、I2C串行接口、上电复位电路和显示控制电路。

2.显示驱动原理:BL55080有35个段输出SEG0--SEG34和8个背极输出COM0—COM7,它们和LCD 直接相连,当少于35个段输出应用时,不用的段可空出。

BL55080采用1/8背极输出1/4偏置电压显示方式。

显示内容和寄存器地址之间的关系可见下表:表2当要显示的数据传送给BL55080后, BL55080将接收到的字节数据填充在显示寄存器中。

图2示出了1/4偏置电压驱动方式下7段显示器的显示填充顺序。

图33.二线-串行通信总线协议二线-串行通信总线如图4。

液晶显示屏背光灯及高压驱动电路原理与故障维修

液晶显示屏背光灯及高压驱动电路原理与故障维修

大屏幕液晶显示屏背光灯及高压驱动电路原理及电路分析(目前液晶电视的销量和社会保有量非常大,液晶电视的维修资料奇缺,而液晶电视的背光灯高压驱动电路又是液晶电视中极易发生故障的部位,它类似于CRT电视的行扫描电路,是高压大电流电路,其故障率不低于CRT电视的行扫描电路。

目前对于该部分的原理电路分析维修的资料很少,该文对于背光灯管及驱动电路的特性、构造、组成、要求、电路原理分析比较详尽,以帮助维修人员更加深刻的理解液晶电视背光灯驱动电路,为下一步维修打好基础)液晶电视的显示屏是属于被动发光型的显示器件,液晶屏自身不发光,它需要借助背光灯来实现屏的发光,即背光灯管发出光线通过液晶屏透射出来,利用液晶的分子在电场作用下控制通过的光线(对光进行调制)以形成图像,所以一块液晶屏工作成像必须配上背光源才能成为一个完整的显示屏,要显示色彩丰富的优质图像,要求背光灯的光谱范围要宽,接近日光色以便最大限度的展现自然界的各种色彩。

目前的液晶屏背光灯,一般采用的是光谱范围较好的冷阴极荧光灯(cold cathode fluorescent lamp;CCFL)作为背光光源。

大屏幕的液晶电视要保证有足够的亮度、对比度和整个屏幕亮度的均匀性,均采用多灯管系统,32寸屏一般采用16只灯管,47寸屏一般采用24只灯管。

耗电量每只灯管约为为8W计算,一台32寸屏的液晶电视背光灯耗电量达到130W,一台47寸的液晶电视背光灯的耗电量达到近200W(加上其它电路耗电,一台32寸屏的液晶电视耗电量在200W左右)冷阴极荧光灯的构造和工作原理冷阴极荧光灯CCFL是气体放电发光器件,其构造类似常用的日光灯,不同的是采用镍﹑钽和锆等金属做成的无需加热即可发射电子的电极——冷阴极来代替钨丝等热阴极,灯管内充有低气压汞气,在强电场的作用下,冷阴极发射电子使灯管内汞原子激发和电离,产生灯管电流并辐射出紫外线,紫外线再激发管壁上的荧光粉涂层而发光,图1。

TFTLCD显示驱动电路设计

TFTLCD显示驱动电路设计

TFTLCD显示驱动电路设计TFTLCD显示驱动电路设计是一种将数字信号转换为模拟信号并驱动液晶屏幕显示的电路设计。

TFTLCD显示屏是一种广泛应用于电子产品中的显示器,具有高分辨率、色彩鲜艳和快速响应的特点。

以下是关于TFTLCD显示驱动电路设计的一些关键内容。

首先,TFTLCD显示驱动电路设计需要选择适当的电源电压和电流。

通常,TFTLCD显示屏需要使用两种电源电压:逻辑电源电压和驱动电源电压。

逻辑电源电压一般为3.3V或5V,用于驱动显示屏的控制逻辑。

驱动电源电压一般为正负15V,用于驱动液晶屏显示像素。

电源的选取应该考虑到液晶屏的工作条件和驱动器的要求。

其次,TFTLCD显示驱动电路设计需要选择适当的驱动器芯片。

液晶屏的驱动器芯片是将数字信号转换为模拟信号并驱动液晶屏显示的核心部件。

驱动芯片的选取应该根据液晶屏的像素尺寸、分辨率和工作电压等参数进行匹配。

常见的TFTLCD显示驱动芯片有ILI9341、ILI9486、HX8357等。

第三,TFTLCD显示驱动电路设计需要实现像素点的控制和扫描。

像素的控制和扫描是通过驱动芯片的引脚与液晶屏的引脚进行连接来完成的。

通常,液晶屏的像素点是按行或按列扫描的方式进行显示。

在设计电路时,需要根据驱动芯片的扫描模式和引脚功能来确定像素点的控制和扫描方式。

第四,TFTLCD显示驱动电路设计还需要考虑接口协议和信号处理。

常见的接口协议有SPI、RGB、I2C等。

接口协议的选择应该基于具体的应用场景和驱动芯片的支持。

信号处理包括对输入信号进行滤波、放大、采样和控制等操作,以确保输入信号的质量和准确性。

第五,TFTLCD显示驱动电路设计还需要考虑电源管理和保护功能。

电源管理可以通过电源管理IC来实现,以提供电源的稳定性和效率。

保护功能包括过压保护、过流保护和短路保护等,以保护电路和液晶屏的安全性和稳定性。

最后,TFTLCD显示驱动电路设计需要进行模拟仿真和电路优化。

lvds液晶屏幕接口详解完整版

lvds液晶屏幕接口详解完整版

l v d s液晶屏幕接口详解标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]1.LVDS输出接口概述液晶显示器驱动板输出的数字信号中,除了包括RGB数据信号外,还包括行同步、场同步、像素时钟等信号,其中像素时钟信号的最高频率可超过28MHz。

采用TTL接口,数据传输速率不高,传输距离较短,且抗电磁干扰(EMI)能力也比较差,会对RGB 数据造成一定的影响;另外,TTL多路数据信号采用排线的方式来传送,整个排线数量达几十路,不但连接不便,而且不适合超薄化的趋势。

采用LVDS输出接口传输数据,可以使这些问题迎刃而解,实现数据的高速率、低噪声、远距离、高准确度的传输。

那么,什么是LVDS输出接口呢LVDS,即Low Voltage Differential Signaling,是一种低压差分信号技术接口。

它是美国NS公司(美国国家半导体公司)为克服以TTL电平方式传输宽带高码率数据时功耗大、EMI电磁干扰大等缺点而研制的一种数字视频信号传输方式。

LVDS输出接口利用非常低的电压摆幅(约350mV)在两条PCB走线或一对平衡电缆上通过差分进行数据的传输,即低压差分信号传输。

采用LVDS输出接口,可以使得信号在差分PCB线或平衡电缆上以几百Mbit/s的速率传输,由于采用低压和低电流驱动方式,因此,实现了低噪声和低功耗。

目前,LVDS输出接口在17in及以上液晶显示器中得到了广泛的应用。

2.LVDS接口电路的组成在液晶显示器中,LVDS接口电路包括两部分,即驱动板侧的LVDS输出接口电路(LVDS发送器)和液晶面板侧的LVDS输入接口电路(LVDS接收器)。

LVDS发送器将驱动板主控芯片输出的17L电平并行RGB数据信号和控制信号转换成低电压串行LVDS信号,然后通过驱动板与液晶面板之间的柔性电缆(排线)将信号传送到液晶面板侧的LVDS接收器,LVDS接收器再将串行信号转换为TTL电平的并行信号,送往液晶屏时序控制与行列驱动电路。

(整理)彩色液晶屏接口及其驱动电路

(整理)彩色液晶屏接口及其驱动电路

(整理)彩色液晶屏接口及其驱动电路彩色液晶屏接口及其驱动电路市场上有大批的各种型号的液晶屏,广大用户及电子爱好者都想利用二手屏开发液晶电视或制作投影机,但目前有关这方面的资料和书籍比较少,很多人拿到液晶屏却找不到相关资料,而束手无策。

本人从事彩色液晶行业多年,愿将相关资料和经验与广大电子爱好者共享。

一、市场流行二手屏简介目前市场上主要是STN 型彩色液晶屏(俗称伪彩屏)和TFT 型彩色液晶屏(俗称真彩屏)。

从接口方式上分有数字屏和模拟屏。

目前在我国市场上电子爱好者通常能买到的大部分是二手屏,一般以日本公司的产品为主,品种很多。

但由于此类液晶屏大都为日本的PACHINKO (俗称柏青哥,一种小钢珠的赌博游戏)机的拆机屏。

由于此类屏数量多,价格便宜,市场拥有量大,所以本文重点介绍此类液晶屏的接口及其驱动电路。

日本PACHINKO(柏青哥)游戏机用液晶屏一览表如附表所示。

需说明的是:关于液晶屏的图象分辨率,许多厂家的标注方法不同,象320×234,有的液晶屏资料上标注为960×234,这实际上是将R、G、B 三基色乘上了320。

即3×320=960。

同样地,7" 16:9 的屏有的标为480×234,有的标为1440×234,它也是将3×480=1440 而得出的。

图象的分辨率指标主要是看垂直方向的线数,比如,两个分别标有800×480 和1440×234的7"液晶屏,哪个像素点多,分辨率高呢?显然应该是800×480的分辨率高,它是数字屏,可以支持VGA输入。

那么是不是数字屏就分辨率高呢?也不尽然。

象附表中的夏普LM32C041,EPSON 4"、 5.6"、 6.5",ALPS LFUBK9111A/LFUBK3041A 虽然是数字屏,但其分辨率也只有320×234。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

彩色液晶屏接口及其驱动电路市场上有大批的各种型号的液晶屏,广大用户及电子爱好者都想利用二手屏开发液晶电视或制作投影机,但目前有关这方面的资料和书籍比较少,很多人拿到液晶屏却找不到相关资料,而束手无策。

本人从事彩色液晶行业多年,愿将相关资料和经验与广大电子爱好者共享。

一、市场流行二手屏简介目前市场上主要是STN 型彩色液晶屏(俗称伪彩屏)和TFT 型彩色液晶屏(俗称真彩屏)。

从接口方式上分有数字屏和模拟屏。

目前在我国市场上电子爱好者通常能买到的大部分是二手屏,一般以日本公司的产品为主,品种很多。

但由于此类液晶屏大都为日本的PACHINKO (俗称柏青哥,一种小钢珠的赌博游戏)机的拆机屏。

由于此类屏数量多,价格便宜,市场拥有量大,所以本文重点介绍此类液晶屏的接口及其驱动电路。

日本PACHINKO(柏青哥)游戏机用液晶屏一览表如附表所示。

需说明的是:关于液晶屏的图象分辨率,许多厂家的标注方法不同,象320×234,有的液晶屏资料上标注为960×234,这实际上是将R、G、B 三基色乘上了320。

即3×320=960。

同样地,7" 16:9 的屏有的标为480×234,有的标为1440×234,它也是将3×480=1440 而得出的。

图象的分辨率指标主要是看垂直方向的线数,比如,两个分别标有800×480 和1440×234的7"液晶屏,哪个像素点多,分辨率高呢?显然应该是800×480的分辨率高,它是数字屏,可以支持VGA输入。

那么是不是数字屏就分辨率高呢?也不尽然。

象附表中的夏普LM32C041,EPSON 4"、5.6"、6.5",ALPS LFUBK9111A/LFUBK3041A 虽然是数字屏,但其分辨率也只有320×234。

另外一个问题是:如何区分STN屏(伪彩屏)和TFT屏(真彩屏)呢?STN 由于工艺技术比较落后,其彩色鲜艳度,色彩还原性,图象响应速度,图象观看角度等与TFT屏相比,都有明显的差距,两种类型的屏放在一起,很容易区分出来。

早期的STN 屏响应速度很慢,在播放动态图象时,会有明显的拖尾现象,只适合显示静态图象。

但象卡西欧CMV54NT04P,CMW72NS46P,西铁城USC-501/504/610 和夏普LM6Q401,LM072QCAT50,虽然也是STN 屏,但由于采用了新的技术,提高了响应速度和色彩鲜艳度,使许多新手误把它看成了真彩屏。

另外,大多数液晶屏通过其型号也能看出是STN 还是TFT 屏,如夏普液晶屏"LQ"字头的一般是TFT 真彩屏,"LM"字头的是STN 伪彩屏。

近两年来,日本PACHINKO 游戏机市场也在变化,其显示器用的液晶屏以7"以上的为主,7"以下的液晶屏在新机种上已基本不采用了。

也就是说,今后7"以下的二手屏会越来越少了。

希望厂家开发时注意这个情况。

笔者曾听到许多爱好者问,可否用二手笔记本电脑的液晶屏改液晶电视?这个问题十分复杂,二手笔记本电脑的液晶屏的确比较便宜,但为了降低功耗,延长电池供电的时间,大都故意将液晶背光亮度降低,因背光灯管的功耗,占液晶功耗的一半以上。

另外这种屏响应速度较慢,且屏的品种太多,太复杂,有的还是STN 屏,除非屏的品种比较单一,数量较多,且有条件开发做视频显示器或液晶电视,驱动板供应商才愿意投入开发,否则,业余爱好者自己很难制作,改装成液晶电视。

如果有条件能换新的高亮度灯管,且是近几年出的液晶屏,同时还能找到屏的接口资料,也还是有机会改成液晶电视的。

二、液晶屏接口及驱动电路简介有关二手液晶屏的驱动电路,先说模拟屏。

其驱动电路一般由视频解码、伽玛校正(γ校正)、时序控制(TIMING CONTROL,也称T-CON IC)三大部分组成。

如要增加OSD显示、遥控、电视接收等功能则还要加上CPU。

一般二手液晶屏会带有一个电路板,其上绝大多数已有伽码矫正电路和时序控制电路。

板上一般可以找到IR3Y26、MM1288、TA8696等伽码校正IC,我们只需再加一个视频解码电路即可。

这种解码IC很多,如TDA8361,TDA8362,IR3Y29,IR3Y31,CXA1950,M52042,M52045,AN5372,NJM1300,NJM2529,TA8795,TA8819,TA8695等。

另外还有一部分液晶屏没带伽码矫正IC,这时就需要在驱动电路上采用IR3Y29,IR3Y31,TA8795,NJM2595等带伽码矫正功能的解码IC。

这些屏的时序控制IC ,一般不能在市场上买到,必须要利用原机上的时序控制IC。

如果是新屏象LG-PHILIPS,AU,三星等小尺寸液晶屏,供应商都会配套供应时序控制IC,如MN5814,UPS015,UPS017,TX8801,TX8806等。

特别注意,不同的屏要配不同的时序控制IC。

再说数字屏,数字屏除了在硬件上要开发外,还要开发相关的软件。

要得到屏的接口定义和屏的时序图资料才能开发驱动板。

一般电子爱好者自己不方便开发。

市场上今后7"以上的二手屏会很多,价格相对较便宜,而这些屏又大多数是数字屏。

象7" 松下、7"日立、7.8"东芝、8" 夏普和三洋、8.4"东芝和三菱(具体型号见附表)。

数字屏一般是4BIT ,6BIT ,8BIT R、G、B三基色分别驱动,比特数越高,图象效果越好。

但早期也有串行6BIT 的数字屏如:爱普生3.2"、4"、5.6"、6.5" (型号见附表)就是6BIT的串行数字屏。

数字屏的驱动相对比较复杂。

一般先将输入的视频信号进行A/D转换,然后进行数字解码,解码后的信号送入SCALING IC 进行图象的缩放处理,处理后还要进行时序控制处理,到液晶屏的接口之前还要经过接口电路,一般主要有TTL 和LVDS(低压差分信号low-voltage differential signaling)两种接口格式。

当然还有其它格式的接口,但市场上不太流行。

PACHINKO 用的二手数字屏以TTL接口为多。

以上介绍了液晶屏的接口和驱动电路的基本构造。

下面分别介绍这两类应用的驱动电路方案。

三、模拟屏驱动方案对模拟屏而言,驱动电路是大同小异,主要是屏的接口定义不同。

需注意的是,有些屏需要复合同步信号,有些需要行,场分离同步信号。

另外要注意同步信号的极性是正还是负,屏点亮有的需要几十伏的负压。

当然还有很重要的背光源的驱动电路,通常叫高压板(Inverter),它的作用是将12V的供电电压通过震荡电路升至几千伏的高压,用来驱动和点亮冷阴极荧光管CCFL (其工作原理与我们照明常用的日光灯基本一样)。

根据设计和应用不同、Inverter 又分为单灯管、双灯管、四灯、六灯、八灯等,但一般小尺寸液晶模组,最多用双灯管。

需说明的是在设计高压板的时候要注意灯管的工作电流。

一般液晶屏的规格书上都会标出其参数,通常管电流是6-8mA(不能用普通万用表直接量),电流太低了,液晶屏的亮度不够,太高了会降低灯管的使用寿命。

如使用原机的背光,发现液晶屏不够亮,可适当加大高压板的工作电流,可适当延长其寿命。

实在不行,就要更换灯管了。

在更换新灯管时,除了注意灯管尺寸、亮度等还要注意灯管的色温,不同的屏和驱动电路要配不同色温的灯管。

否则液晶显示会偏色,仅通过驱动电路很难调整。

一般而言,如果仅仅点亮液晶屏做显示器,对爱好者是不难做到的,只要找到液晶屏的接口资料及视频解码IC,自己都可开发制作。

但要做液晶电视或做功能齐全的车载显示器,就相对比较困难了。

本文介绍的SP633和SP634 是专门为小尺寸模拟屏液晶显示器/电视开发的,特别适用于车载和便携使用。

SP633 是专用控制IC (MCU),它与日本三菱公司(现三菱半导体与日立半导体合并成立了新的公司叫瑞萨公司)的新型电视解码芯片M61260FP/M61264FP 配合,可完成从中放、解码、伴音处理的所有工作。

两片IC 分别为SOP42 脚和QFP 64脚贴片封装,占线路板面积小,做电视时整机免调试,无中周。

所有陷波器、滤波器已全部集成到IC 里面,同时还有丰富的OSD 字符图标指示。

针对车载液晶电视,SP633还有4:3/16:9 显示模式切换,图象上/下、左/右翻转,FM 调制器控制,倒车后视自动控制,全功能遥控等功能。

支持全球彩电制式,采用低成本的电压合成高频头,可支持有线电视增补频道。

SP634 为最新开发的小尺寸液晶显示器/电视专用MCU,它可与任何模拟解码IC 配合,开发生产小尺寸显示器/电视,尤其是车载和便携产品。

除了基本具备SP633的功能之外,SP634还特别开发了FM 收音机控制,倒车雷达控制,单键选台,童锁等功能。

SP633适合开发液晶电视,SP633 适合要求功能多,厂家自选解码IC的液晶显示器。

用户可根据需要选择不同的方案。

因篇幅有限,有关SP633和SP634方案的详细应用,另文介绍。

四、数字屏驱动方案方案一:SP-DMVT01其方案基本构成是:TVP5150(数字解码)+SP621(LCD SCALING IC)+TDA7052 (音频放大)。

输入:复合视频1路,音频1路,VGA 1路。

RF (电视天线输入)1路可选。

直流供电12V。

可以看出,它是一个AV/PC/TV 三合一的方案。

它可对Inverter 进行开关控制,带OSD 和遥控功能。

方案二:SP-DMVT02其方案的基本构成是:SAA7114(数字解码)+SP621(LCD SCALING IC)+ TDA7496(音频放大)。

其余的输入接口与SP-DMVT01基本相同。

从方案配置来看,SP-DMVT01是经济型的低成本方案,适合小尺寸(10.4"以下)液晶屏做液晶显示器和电视。

SP-DMVT02是高画质、适合大尺寸10.4"-17"液晶屏及液晶投影机的方案。

目前已有国内几家液晶投影机采用SP-DMVT02 驱动板生产高分辨率的液晶投影机。

笔者推荐7"日立屏和8"三洋屏做投影,这两款屏可拆背光,尤其是三洋8"的分辨率可达800×600(SVGA),其色彩还原性和清晰度好,对比度高,与高亮度教学投影仪组合,可制作带VGA /AV 接口的投影机,用于电化教学,商务,培训等。

夏普8"做投影也不错,只是分辨率不如三洋8"。

这两个数字屏方案都可驱动目前的PACHINKO 二手数字液晶屏如:TX18D11VM1CAA 日立7",EDTCB18QCF/QDF/QEF 松下7",LTM07C383/LTM07C757 东芝7.77",LQ080V3DG01 夏普8",TM080SV-22L03 三洋8",LTM084P363 东芝8.4",LQ104V1DG51 夏普10.4",NL6448AC33-18(K) NEC 10.4"等。

相关文档
最新文档