无机材料物理性能题库(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

名词解释

1、包申格效应——金属材料经预先加载产生少量塑性变形(残余应变小于4%),而后再同向加载,规定残余伸长应为增加,反向加载,规定残余伸长应力降低的现象。

2、塑性——材料的微观结构的相邻部分产生永久性位移,并不引起材料破裂的现象。

3、硬度——材料表面上不大体积内抵抗变形或破裂的能力,是材料的一种重要力学性能。

4、应变硬化——材料在应力作用下进入塑性变形阶段后,随着变形量的增大,形变应力不断提高的现象。

5、弛豫——施加恒定应变,则应力将随时间而减小,弹性模量也随时间而降低。

6、蠕变——当对粘弹性体施加恒定应力,其应变随时间而增加,弹性模量也随时间而减小。

6、滞弹性——当应力作用于实际固体时,固体形变的产生与消除需要一定的时间,这种与时间有关的弹性称为滞弹性。

7、压电性——某些晶体材料按所施加的机械应力成比例地产生电荷的能力。

8、电解效应——离子的迁移伴随着一定的质量变化,离子在电极附近发生电子得失,产生新的物质。

9、逆压电效应——某些晶体在一定方向的电场作用下,则会产生外形尺寸的变化,在一定范围内,其形变与电场强度成正比。

10、压敏效应——指对电压变化敏感的非线性电阻效应,即在某一临界电压以下,电阻值非常高,几乎无电流通过;超过该临界电压(敏压电压),电阻迅速降低,让电流通过。

11、热释电效应——晶体因温度均匀变化而发生极化强度改变的现象。

12、光电导——光的照射使材料的电阻率下降的现象。

13、磁阻效应——半导体中,在与电流垂直的方向施加磁场后,使电流密度降低,即由于磁场的存在使半导体的电阻增大的现象。

14、光伏效应——指光照使不均匀半导体或半导体与金属组合的不同部位之间产生电位差的现象。

15、电介质——在外电场作用下,能产生极化的物质。

16、极化——介质在电场作用下产生感应电荷的现象。

16、自发极化——极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。

17、电介质极化——在外电场作用下,电介质中带电质点的弹性位移引起正负电荷中心分离或极性分子按电场方向转动的现象。

18、电子位移极化(也叫形变极化) ——在外电场作用下,原子外围的电子云相对于原子核发生位移形成的极化叫电子位移极化,也叫形变极化。

19、离子位移极化——离子晶体在电场作用下离子间的键合被拉长,导致电偶极矩的增加, 被称为离子位移极化。

20、松弛极化——当材料中存在着弱联系电子、离子和偶极子等松弛质点时,热运动使这些松弛质点分布混乱,而电场力图使这些质点按电场规律分布,最后在一定温度下,电场的作用占主导,发生极化。这种极化具有统计性质,叫作松驰极化。松驰极化是一种不可逆的过程,多发生在晶体缺陷处或玻璃体内。

21、电介质的击穿——电介质只能在一定的电场强度以内保持绝缘的特性。当电场强

度超过某一临界值时,电介质变成了导体,这种现象称为电介质的击穿,相应的临界电场强度称为介电强度或击穿电场强度。

22、偶极子(电偶极子)——正负电荷的平均中心不相重合的带电系统

23、介质损耗——将电介质在电场作用下,引起介质发热,单位时间消耗的电能叫介质损耗。

24、顺磁体——原子内部存在永久磁矩,无外磁场,材料无规则的热运动使得材料没有

磁性.当外磁场作用,每个原子的磁矩比较规则取向,物质显示弱磁场。25、铁磁体——主要特点:在较弱的磁场内,铁磁体也能够获得强的磁化强度,而且在外

磁场移去,材料保留强的磁性.原因:强的内部交换作用,材料内部有强的内

部交换场,原子的磁矩平行取向,在物质内部形成磁畴

26、机电耦合系数——压电材料中产生的电能和输入的机械总能量之比的平方。

27、铁电体——能够自己极化的非线性介电材料,其电滞回路和铁磁体的磁滞回路形

状相近似。

28、软磁材料——容易退磁和磁化(磁滞回线瘦长),具有磁导率高,饱和磁感应强度大,

矫顽力小,稳定型好等特性。

29、磁致伸缩——铁磁物质磁化时,沿磁化方向发生长度的伸长或缩短的现象。

30、霍尔效应——沿试样x轴方向通入电流I(电流密度JX),Z轴方向加一磁场HZ,那么在y轴方向上将产生一电场Ey。

31、固体电解质——固体电解质是具有离子导电性的固态物质。这些物质或因其晶体中的点缺陷或因其特殊结构而为离子提供快速迁移的通道,在某些温度下具有高的电导率(1~106西门子/厘米),故又称为快离子导体。

简答题

1、试述韧性断裂与脆性断裂的区别,为什么说脆性断裂最危险?(8分)

答:韧性断裂和脆性断裂的区别在于:前者在断裂前及断裂过程中产生明显宏观塑性变形,后者无宏观塑性变形;前者断裂过程缓慢,而后者为快速断裂过程;前者断口呈暗灰色,纤维状,后者齐平光亮,呈放射状或结晶状。(6分)

脆性断裂的危险性在于断裂前不产生明显的宏观塑性变形,无明显前兆。(2分)

2、根据不同材料应力应变曲线图分析其特点和对应材料。

受力情况下,绝大多数无机材料的变形行为如图中曲线(a)所示,即在弹性变形后没有塑性形变(或塑性形变很小),接着就是断裂,总弹性应变能非常小,这是所有脆性材料的特征,包括离子晶体和共价晶体等。在短期承受逐渐增加的外力时,有些固体的变形分为两个阶段,在屈服点以前是弹性变形阶段,在屈服点后是塑性变形阶段。包括大多数金属结构材料如图中曲线(b)所示。橡皮这类高分子材料具有极大的弹性形变,如图中曲线(c)所示,是没有残余形变的材料,称为弹性材料。

3、材料的弹性模数主要取决于什么因素?无机非金属材料的弹性模数受什么因素影响最严重?(5分)

答:材料的弹性模数主要取决于六个方面:a键合方式和原子结构(离子键共价键结合的晶体结合力强,E增大分子键结合力弱,原子排布紧密E增大);b晶体结构(缺陷少,结构紧密,E增大);c化学成分;d微观组织;e温度(温度升高,热膨胀变大,原子间距变小,E减小);f加载条件和负载持续时间(压力使原子间距减小,E 增大,拉应力会使E减小)。无机非金属材料的弹性模数主要受微观组织影响最严重。

4、为什么常温下大多数陶瓷材料不能产生塑性变形、而呈现脆性断裂?

相关文档
最新文档