2020年北京市高考数学试卷(文科)

合集下载

2020年北京卷数学高考试题

2020年北京卷数学高考试题

2020年普通高等学校招生全国统一考试(北京卷)数学本试卷共5页,150分,考试时长120分钟.考试务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共40分)一、选择题10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B ⋂=( ).A .{1,0,1}-B .{0,1}C .{1,1,2}-D .{1,2} 2.在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=( ).A .12i +B .2i -+C .12i -D .2i --3.在52)-的展开式中,2x 的系数为( ).A .5-B .5C .10-D .10 4.某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ).A .6+B .6+C .12+D .12+5.已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ). A .4 B .5 C .6 D .7 6.已知函数()21xf x x =--,则不等式()0f x >的解集是( ). A .(1,1)- B .(,1)(1,)-∞-⋃+∞ C .(0,1) D .(,0)(1,)-∞⋃+∞7.设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ).A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP8.在等差数列{}n a 中,19a =-,31a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ). A .有最大项,有最小项 B .有最大项,无最小项 C .无最大项,有最小项 D .无最大项,无最小项 9.已知,R αβ∈,则“存在k Z ∈使得(1)kk απβ=+-”是“sin sin αβ=”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.2020年3月14日是全球首个国际圆周率日(π Day ).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是( ).A .30303sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭B .30306sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭ C .60603sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭ D .60606sintan n n n ︒︒⎛⎫+ ⎪⎝⎭ 第二部分(非选择题 共10分)二、填空题共5小题,每小题5分,共25分。

2020年北京市高考数学试卷及其详细解析

2020年北京市高考数学试卷及其详细解析

初高中数学学习资料的店第1页(共18页) 初高中数学学习资料的店2020年北京市高考数学试卷一、选择题:共10小题,每小题4分,共40分。

在每小题列出的的四个选项中,选出符合题目要求的一项。

1.已知集合{1A =-,0,1,2},{|03}B x x =<<,则(A B = )A .{1-,0,1}B .{0,1}C .{1-,1,2}D .{1,2} 2.在复平面内,复数z 对应的点的坐标是(1,2),则(i z = ) A .12i + B .2i -+ C .12i - D .2i -- 3.在5(2)x -的展开式中,2x 的系数为( )A .5-B .5C .10-D .104.某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( )A .63+B .623+C .123D .1223+ 5.已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ) A .4 B .5C .6D .76.已知函数()21x f x x =--,则不等式()0f x >的解集是( )A .(1,1)-B .(-∞,1)(1-⋃,)+∞C .(0,1)D .(-∞,0)(1⋃,)+∞7.设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ) A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP 9.已知α,R β∈,则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.2020年3月14日是全球首个国际圆周率日(π)Day .历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似,数学家阿尔卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔卡西的方法,π的近似值的表达式是( )。

2020学年普通高等学校招生全国统一考试(北京卷)数学文及答案解析

2020学年普通高等学校招生全国统一考试(北京卷)数学文及答案解析

2020年普通高等学校招生全国统一考试(北京卷)数学文一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项。

1.已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=( )A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}解析:∵集合A={x||x|<2}={x|-2<x<2},B={-2,0,1,2},∴A∩B={0,1}.答案:A2.在复平面内,复数11i-的共轭复数对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限解析:复数()()1111 11122iii i i+==+--+,共轭复数对应点的坐标(1122-,)在第四象限.答案:D3.执行如图所示的程序框图,输出的s值为( )A.1 2B.5 6C.7 6D.7 12解析:在执行第一次循环时,k=1,S=1.在执行第一次循环时,S=1-1122=.由于k=2≤3,所以执行下一次循环.S=115236+=,k=3,直接输出S=56.答案:B4.设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:若a,b,c,d成等比数列,则ad=bc,反之数列-1,-1,1,1.满足-1×1=-1×1,但数列-1,-1,1,1不是等比数列,即“ad=bc”是“a,b,c,d成等比数列”的必要不充分条件.答案:B5.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f,则第八个单音的频率为( )A.32fB.32 2fC.125 2fD.127 2f解析:从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f,则第八个单音的频率为:()7127 122?2f f=.答案:D6.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A.1B.2C.3D.4解析:四棱锥的三视图对应的直观图为:PA⊥底面ABCD,,,PC=3,PD=22,可得三角形PCD不是直角三角形.==AC CD55所以侧面中有3个直角三角形,分别为:△PAB,△PBC,△PAD.答案:C,,,是圆x2+y2=1上的四段弧(如图),点P其中一段上,7.在平面直角坐标系中,AB CD EF GH角α以Ox为始边,OP为终边.若tanα<cosα<sinα,则P所在的圆弧是( )A.ABB.CDC.EFD.GH解析:A、在AB段,正弦线小于余弦线,即cosα<sinα不成立,故A不满足条件.B、在CD段正切线最大,则cosα<sinα<tanα,故B不满足条件.C、在EF段,正切线,余弦线为负值,正弦线为正,满足tanα<cosα<sinα,D、在GH段,正切线为正值,正弦线和余弦线为负值,满足cosα<sinα<tanα不满足tanα<cosα<sinα.答案:C8.设集合A={(x,y)|x-y≥1,ax+y>4,x-ay≤2},则( )A.对任意实数a,(2,1)∈AB.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉AD.当且仅当a≤32时,(2,1)∉A解析:当a=-1时,集合A={(x,y)|x-y≥1,ax+y>4,x-ay≤2}={(x,y)|x-y≥1,-x+y>4,x+y≤2},显然(2,1)不满足,-x+y>4,x+y≤2,所以A,C不正确;当a=4,集合A={(x,y)|x-y≥1,ax+y>4,x-ay≤2}={(x,y)|x-y≥1,4x+y>4,x-4y≤2},显然(2,1)在可行域内,满足不等式,所以B不正确.答案:D二、填空题共6小题,每小题5分,共30分。

2020年普通高等学校招生全国统一考试文科数学(北京卷)(含解析)

2020年普通高等学校招生全国统一考试文科数学(北京卷)(含解析)

2020年普通高等学校招生全国统一考试(北京卷)文科数学一、选择题共8小题,每小题5分,共40分.1、(2020•北京)已知集合A={x|-1<x<2},B={x|x>1},则AUB=( ) A. (-1,1) B. (1,2) C. (-1,+∞) D. (1,+∞) 【答案】C【解析】【解答】因为{}{}12,1,A x x B x x =-<<=> 所以{}1,A B x x =>-U 故答案为:C.【分析】本题考查了集合的并运算,根据集合A 和B 直接求出交集即可. 2、(2020•北京)已知复数z=2+i ,则·z z =( )【答案】D【解析】【解答】根据2z i =+,得2z i =-, 所以(2)(2)415z z i i ⋅=+⋅-=+=, 故答案为:D.【分析】根据z 得到其共轭,结合复数的乘法运算即可求解.3、(2020•北京)下列函数中,在区间(0,+∞)上单调递增的是( )A. 12y x = B. y=2-xC.12log y x = D. 1y x= 【答案】A【解析】【解答】A :12y x =为幂函数,102α=>,所以该函数在()0,+∞上单调递增; B:指数函数x x1y 22-⎛⎫== ⎪⎝⎭,其底数大于0小于1,故在()0,+∞上单调递减; C :对数函数12log y x =,其底数大于0小于1,故在()0,+∞上单调递减; D :反比例函数1y x=,其k=1>0,故在()0,+∞上单调递减; 故答案为:A.【分析】根据幂函数、指数函数、对数函数及反比例函数的单调性逐一判断即可. 4、(2020•北京)执行如图所示的程序框图,输出的s 值为( )A. 1B. 2C. 3D. 4 【答案】B【解析】【解答】k=1,s=1, s=2212312⨯=⨯-,k<3,故执行循环体k=1+1=2,2222322s ⨯==⨯-; 此时k=2<3,故继续执行循环体k=3,2222322s ⨯==⨯-,此时k=3,结束循环,输出s=2. 故答案为:B.【分析】根据程序框图,依次执行循环体,直到k=3时结束循环,输出s=2即可.5、(2020•北京)已知双曲线2221x y a-=(a>05a=( )6 B. 4 C. 2 D. 12【答案】D【解析】【解答】双曲线的离心率215c a e a a+===, 故2251,a a =+解得211,42a a ==, 故答案为:D.【分析】根据双曲线的标准方程,表示离心率,解方程,即可求出a 的值.6、(2020•北京)设函数f (x )=cosx+bsinx (b 为常数),则“b=0”是“f (x )为偶函数”的( ) A. 充分而不必要条件 B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】C【解析】【解答】若b=0,则()cos f x x =为偶函数, 若()cos sin f x x b x =+为偶函数,则()()()cos sin cos sin ()cos sin f x x b x x b x f x x b x -=-+-=-==+, 所以2sin 0,b x =B=0,综上,b=0是f (x )为偶函数的充要条件. 故答案为:C.【分析】根据偶函数的定义,结合正弦函数和余弦函数的单调性,即可确定充分、必要性. 7、(2020•北京)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 1-m 2=125lg 2E E ,其中星等为m k 的星的亮度为E k (k=1,2).己知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )A. 1010.1B. 10.1C. lg10.1D. 10-10.1【答案】A【解析】【解答】解:设太阳的亮度为1E ,天狼星的亮度为2E , 根据题意1251.45(26.7)lg 2E E ---=, 故122g25.2510.15E l E =⨯=, 所以10.11210E E =; 故答案为:A.【分析】根据已知,结合指数式与对数式的转化即可求出相应的比值.8、(2020•北京)如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,∠APB 是锐角,大小为β.图中阴影区域的面积的最大值为( )A. 4β+4cos βB. 4β+4sin βC. 2β+2cos βD. 2β+2sin β 【答案】B【解析】【解答】设圆心为O ,根据,APB β∠=可知AB 所对圆心角2,AOB β∠=故扇形AOB 的面积为22242πββπ⋅⋅=,由题意,要使阴影部分面积最大,则P 到AB 的距离最大,此时PO 与AB 垂直,故阴影部分面积最大值4,AOB PAB S S S β=-+V V 而2sin 22cos 4sin cos 2AOB S ββββ⨯⨯==V ,()2sin 222cos 4sin 4sin cos 2PABS βββββ⨯⨯+==+V ,故阴影部分面积最大值444sin ,AOB PAB S S S βββ=-+=+V V 故答案为:B.【分析】根据圆周角得到圆心角,由题意,要使阴影部分面积最大,则P 到AB 的距离最大,此时PO 与AB 垂直,结合三角函数的定义,表示相应三角形的面积,即可求出阴影部分面积的最大值. 二、填空题共6小题,每小题5分,共30分,9、(2020•北京)已知向量a r =(-4.3),b r =(6,m ),且a b ⊥r r,则m= . 【答案】8【解析】【解答】根据两向量垂直,则数量积为0,得()4630,m -⨯+= 解得m=8. 故答案为8.【分析】根据两向量垂直,数量积为0,结合平面向量的数量积运算即可求解.10、(2020•北京)若x ,y 满足214310x y x y ≤⎧⎪≥-⎨⎪-+≥⎩.则y-x 的最小值为 ,最大值为 . 【答案】-3|1【解析】【解答】作出可行域及目标函数相应的直线,平移该直线,可知在经过(2,-1)时取最小值-3,过(2,3)时取最大值1. 故答案为-3;1.【分析】作出可行域和目标函数相应的直线,平移该直线,即可求出相应的最大值和最小值. 11、(2020•北京)设抛物线y 2=4x 的焦点为F ,准线为l.则以F 为圆心,且与l 相切的圆的方程为 .【答案】()2214x y -+=【解析】【解答】由题意,抛物线的焦点坐标F (1,0),准线方程:x=-1, 焦点F 到准线l 的距离为2, 故圆心为(1,0),半径为2, 所以圆的方程为()2214x y -+=;故答案为()2214x y -+=.【分析】根据抛物线方程求出焦点坐标和准线方程,即可得到圆心和半径,写出圆的标准方程即可. 12、(2020•北京)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为 .【答案】40【解析】【解答】根据三视图,可知正方体体积31464V ==,去掉的四棱柱体积()22424242V +⨯=⨯=,故该几何体的体积V=64-24=40. 故答案为40.【分析】根据三视图确定几何体的结构特征,求出相应的体积即可.13、(2020•北京)已知l ,m 是平面α外的两条不同直线.给出下列三个论断: ①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题: . 【答案】若②③,则①【解析】【解答】若l α⊥,则l 垂直于α内任意一条直线, 若m αP ,则l m ⊥; 故答案为若②③,则①.14、(2020•北京)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付 元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 . 【答案】130|15【解析】【解答】①草莓和西瓜各一盒,总价60+80=140元, 140>120,故顾客可少付10元,此时需要支付140-10=130元;②要保证每笔订单得到的金额均不低于促销前总价的七折,则最低消费满足条件即可, 根据题意,买草莓两盒,消费最低,此时消费120元, 故实际付款(120-x )元,此时李明得到()12080%x -⨯, 故()12080%1200.7x -⨯≥⨯,解得15x ≤; 故最大值为15. 故答案为①130;②15.【分析】①根据已知,直接计算即可;②根据题意,要保证每笔订单得到的金额均不低于促销前总价的七折,则最低消费满足条件即可,因此选最低消费求解,即可求出相应的最大值. 三、解答题共6小题,共80分.15、(2020•北京)在△ABC 中,a=3,b-c=2,cosB=-12. (I )求b ,c 的值:(II )求sin (B+C )的值.【答案】解:(I )根据余弦定理2222cos b a c ac B =+-, 故()22129232c c c ⎛⎫+=+-⨯⨯-⎪⎝⎭,解得c=5,B=7;(II )根据1cos 2B =-,得sin 2B =,根据正弦定理,sin sin b cB C=,5sin 2C=,解得sin 14C =,所以11cos 14C =,所以()111sin sin cos cos sin 21421414B c BC B C ⎛⎫+=+=+-⨯=⎪⎝⎭【解析】【分析】(I )根据余弦定理,解方程即可求出c 和b ;(II )根据同角三角函数的平方关系,求出sinB ,结合正弦定理,求出sinC 和cosC ,即可依据两角和的正弦公式,求出sin (B+C ).16、(2020•北京)设{a n }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列.(I )求{a n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求S n 的最小值. 【答案】解:(I )根据三者成等比数列, 可知()()()23248106a a a +=++,故()()()2102810101036d d d -++=-++-++, 解得d=2,故()1021212n a n n =-+-=-; (Ⅱ)由(I )知()210212112n n n S n n -+-⋅==-,该二次函数开口向上,对称轴为n=5.5, 故n=5或6时,n S 取最小值-30.【解析】【分析】(I )根据等比中项,结合等差数列的通项公式,求出d ,即可求出n a ;(Ⅱ)由(1),求出n S ,结合二次函数的性质,即可求出相应的最小值.17、(2020•北京)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用(I )估计该校学生中上个月A ,B 两种支付方式都使用的人数;(II )从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率; (III )已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中,随机抽查1人,发现他本月的支付金额大于2000元,结合(II )的结果,能否认为样本仅使用B 的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】解:(I )据估计,100人中上个月A 、B 两种支付方式都使用的人数为100-5-27-3-24-1=40人,故该校学生中上个月A 、B 两种支付方式都使用的人数为400人;(II )该校学生上个月仅使用B 支付的共25人,其中支付金额大于2000的有一人,故概率为125; (III )不能确定人数有变化,因为在抽取样本时,每个个体被抽到法机会是均等的,也许抽取的样本恰为上个月支付抄过2000的个体,因此不能从抽取的一个个体来确定本月的情况有变化. 【解析】【分析】(I )根据题意,结合支付方式的分类直接计算,再根据样本估计总体即可; (II )根据古典概型,求出基本事件总数和符合题意的基本事件数,即可求出相应的概率; (III )从统计的角度,对事件发生的不确定性进行分析即可.18、(2020•北京)如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,底面ABCD 为菱形,E 为CD 的中点.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若∠ABC=60°,求证:平面PAB ⊥平面PAE ;(Ⅲ)棱PB 上是否存在点F ,使得CF ∥平面PAE ?说明理由. 【答案】(Ⅰ)证明:因为ABCD 为菱形,所以BD AC ⊥, 又因为PA ABCD ⊥平面,所以BD PA ⊥,而PA AC A =I , 故BD PAC ⊥平面;(Ⅱ)因为60ABC ∠=︒,所以60ADC ∠=︒,故ADC V 为等边三角形, 而E 为CD 的中点,故AE CD ⊥,所以AE AB ⊥, 又因为PA ABCD ⊥平面,所以AB PA ⊥, 因为PA AE A =I ,所以AB PAE ⊥平面,又因为AB PAB ⊂平面,所以PAB PAE ⊥平面平面; (Ⅲ)存在这样的F ,当F 为PB 的中点时,CF PAE P 平面;取AB 的中点G ,连接CF 、CG 和FG ,因为G 为AB 中点,所以AE 与GC 平行且相等,故四边形AGCE 为平行四边形,所以AE GC P ,故GC PAE P 平面 在三角形BAP 中,F 、G 分别为BP 、BA 的中点,所以FG PA P , 故FG PAE P 平面,因为GC 和FG 均在平面CFG 内,且GC FG G =I , 所以CGF PAE P 平面平面,故CF PAE P 平面.【解析】【分析】(Ⅰ)根据线面垂直的判定定理,证明直线与平面内两条相交直线垂直即可; (Ⅱ)根据面面垂直的判定定理,证明直线与平面垂直,即可得到面面垂直;(Ⅲ)根据面面平行的判定定理,证明面面平行,即可说明两平面没有公共点,因此,一个平面内任意一条直线与另一平面均无公共点,即可说明线面平行.19、(2020•北京)已知椭圆C :22221x y a b+=的右焦点为(1.0),且经过点A (0,1).(I )求椭圆C 的方程;(II )设O 为原点,直线l :y=kx+t (t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,|OM|·|ON|=2,求证:直线l 经过定点. 【答案】解:(I )根据焦点为(1,0),可知c=1, 根据椭圆经过(0,1)可知b=1,故2222a b c =+=,所以椭圆的方程为2212x y +=; (II )设()()1122,,,P x y Q x y , 则直线111:1y AP y x x -=+,直线221:1y AQ y x x -=+, 解得1212,0,,011x x M N y y ⎛⎫⎛⎫⎪ ⎪--⎝⎭⎝⎭,故()1212121212111x x x x OM ON y y y y y y ⋅=⋅=---++, 将直线y=kx+t 与椭圆方程联立, 得()222124220kxktx t +++-=,故2121222422,1212kt t x x x x k k --+==++,所以22221212228282,1212k t t k t k t y y y y k k+-++==++, 故()2121t OM ON t +⋅==-,解得t=0,故直线方程为y=kx ,一定经过原点(0,0).【解析】【分析】(I )根据焦点坐标和A 点坐标,求出a 和b ,即可得到椭圆的标准方程; (II )设出P 和Q 的坐标,表示出M 和N 的坐标,将直线方程与椭圆方程联立,结合韦达定理,表示OM 与ON ,根据2OM ON ⋅=,解得t=0,即可确定直线恒过定点(0,0). 20、(2020•北京)已知函数f (x )=14x 3-x 2+x. (I )求曲线y=f (x )的斜率为1的切线方程; (II )当x ∈[-2,4]时,求证:x-6≤f (x )≤x ;(Ⅲ)设F (x )=|f (x )-(x+a )|(a ∈R ),记F (x )在区间[-2,4]上的最大值为M (a ).当M (a )最小时,求a 的值. 【答案】解(I )()23'214f x x x =-+,令()'1f x =, 则1280,3x x ==, 因为()8800,327f f ⎛⎫==⎪⎝⎭, 故斜率为1的直线为y=x 或88273y x -=-, 整理得,斜率为1的直线方程为x-y=0或64027x y --=; (II )构造函数g (x )=f (x )-x+6, 则()23'24g x x x =-,令()'0g x =,则1280,3x x ==, 故g (x )在[-2,0]上单调递增,在80,3⎡⎤⎢⎥⎣⎦上单调递减,在8,43⎡⎤⎢⎥⎣⎦上单调递增,故g (x )的最小值为g (-2)或83g ⎛⎫ ⎪⎝⎭,而g (-2)=0,8980327g ⎛⎫=> ⎪⎝⎭,故()min (2)0g x g =-=⎡⎤⎣⎦, 所以()0g x ≥,故在[-2,4]上,()6x f x -≤; 构造函数h (x )=f (x )-x , 则()23'24h x x x =-,令()'0h x =,则1280,3x x ==, 故h (x )在[-2,0]上单调递增,在80,3⎡⎤⎢⎥⎣⎦上单调递减,在8,43⎡⎤⎢⎥⎣⎦上单调递增,故h (x )的最大值为h (0)或h (4),因为h (0)=0,h (4)=0,所以()0h x ≤,故在[-2,4]上,()f x x ≤, 综上在[-2,4]上,()6x f x x -≤≤;(Ⅲ)令()()()3214x f x x a x x a ϕ=-+=--, 则()23'24x x x ϕ=-,令()'0x ϕ=,则1280,3x x ==, 故ϕ(x )在[-2,0]上单调递增,在80,3⎡⎤⎢⎥⎣⎦上单调递减,在8,43⎡⎤⎢⎥⎣⎦上单调递增, 所以ϕ(x )的最小值为ϕ(-2)=-6-a 或864327a ϕ⎛⎫=-- ⎪⎝⎭, 最大值为ϕ(0)=-a 或ϕ(4)=12-a ,故()()F x x ϕ=其最大值()12,36,3a a M a a a -≤⎧=⎨+>⎩, 故当a=3时,M (a )有最小值9.【解析】【分析】(I )求导数,根据导数的几何意义,结合斜率为1,求出切点坐标,利用点斜式,即可求出相应的切线方程;(II )构造函数,要证()6x f x x -≤≤,只需要证在[-2,4]上6()0f x x g x -≥+=()和()()0h x f x x =-≤即可,求导数,利用导数确定函数单调性,求出函数极值即可证明;(Ⅲ)求导数,利用导数确定函数单调性,求出函数的最值,确定M (a )的表达式,即可求出M (a )取最小值时相应的a 值.。

2020年北京市高考数学试卷-解析版

2020年北京市高考数学试卷-解析版

2020年北京市高考数学试卷-解析版2020年北京市高考数学试卷一、选择题(本大题共10小题,共40.0分)1.已知集合A={−1,1,2},A={A|0<A<3},则A∩A=()A.{−1,1}B.{0,1}C.{−1,1,2}D.{1,2}2.在复平面内,复数z对应的点的坐标是(1,2),则A⋅A=()A.1+2AB.−2+AC.1−2AD.−2−A3.在(√A−2)的5的展开式中,A²的系数为()A.−5B.5C.−10D.104.某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为()A.6+√3B.6+2√3C.12+√3D.12+2√35.已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为()A.4B.5C.6D.76.已知函数A(A)=2A−A−1,则不等式A(A)>的解集是()A.(−1,1)B.(−∞,−1)∪(1,+∞)C.(0,1)D.(−∞,0)∪(1,+∞)7.设抛物线的顶点为O,焦点为F,准线为A。

A是抛物线上异于O的一点,过P作AA⊥A于Q,则线段FQ的垂直平分线()A.经过点OB.经过点PC.平行于直线OPD.垂直于直线OP8.在等差数列{AA}中,A1=−9,A5=−1.记AA=A1A2…AA(A=1,2,…),则数列{AA}()A.有最大项,有最小项B.有最大项,无最小项C.无最大项,有最小项D.无最大项,无最小项9.已知A,A∈A,则“存在A∈A使得A=AA+(−1)AA”是“AAAA=AAAA”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10.2020年3月14日是全球首个国际圆周率日(AAAA)。

历史上,求圆周率A的方法有多种,与中国传统数学中的“割圆术”相似,数学家___的方法是:当正整数n充分大时,计算单位圆的内接正6n边形的周长和外切正6n边形(各边均与圆相切的正6n边形)的周长,将它们的算术平均数作为2A的近似值。

2020年高考数学北京卷 试题+答案详解

2020年高考数学北京卷 试题+答案详解

2020年普通高等学校招生全国统一考试(北京卷)数学本试卷共5页,150分,考试时长120分钟.考试务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题:10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B = ().A.{1,0,1}- B.{0,1} C.{1,1,2}- D.{1,2}2.在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=().A.12i +B.2i-+ C.12i- D.2i--3.在52)-的展开式中,2x 的系数为().A.5- B.5C.10- D.104.某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为().A.6+B.6+C.12+D.12+5.已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为().A.4B.5C.6D.76.已知函数()21x f x x =--,则不等式()0f x >的解集是().A.(1,1)- B.(,1)(1,)-∞-+∞ C.(0,1)D.(,0)(1,)-∞+∞ 7.设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线().A.经过点OB.经过点PC.平行于直线OPD.垂直于直线OP8.在等差数列{}n a 中,19a =-,31a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ().A.有最大项,有最小项B.有最大项,无最小项C.无最大项,有最小项D.无最大项,无最小项9.已知,R αβ∈,则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10.2020年3月14日是全球首个国际圆周率日(πDay ).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是().A.30303sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭ B.30306sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭C.60603sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭D.60606sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭第二部分(非选择题共110分)二、填空题:共5小题,每小题5分,共25分.11.函数1()ln 1f x x x =++的定义域是____________.12.已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________.13.已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+ ,则||PD =_________;PB PD ⋅=_________.14.若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________.15.为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改、设企业的污水摔放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强;②在2t 时刻,甲企业的污水治理能力比乙企业强;③在3t 时刻,甲、乙两企业的污水排放都已达标;④甲企业在[][][]112230,,,,,t t t t t 这三段时间中,在[]10,t 的污水治理能力最强.其中所有正确结论的序号是____________________.三、解答题:共6小题,共85分,解答应写出文字说明,演算步骤或证明过程.16.如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点.(Ⅰ)求证:1//BC 平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值.17.在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求:(Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:17,cos 7c A ==-;条件②:19cos ,cos 816A B ==.注:如果选择条件①和条件②分别解答,按第一个解答计分.18.某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:男生女生支持不支持支持不支持方案一200人400人300人100人方案二350人250人150人250人假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案的概率估计值记为0p ,假设该校年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p ,试比较0p 与1p 的大小.(结论不要求证明)19.已知函数2()12f x x =-.(Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值.20.已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.21.已知{}n a 是无穷数列.给出两个性质:①对于{}n a 中任意两项,()i j a a i j >,在{}n a 中都存在一项m a ,使2i m ja a a =;②对于{}n a 中任意项(3)n a n ,在{}n a 中都存在两项,()k l a a k l >.使得2k n la a a =.(Ⅰ)若(1,2,)n a n n == ,判断数列{}n a 是否满足性质①,说明理由;(Ⅱ)若12(1,2,)n n a n -== ,判断数列{}n a 是否同时满足性质①和性质②,说明理由;(Ⅲ)若{}n a 是递增数列,且同时满足性质①和性质②,证明:{}n a 为等比数列.参考答案一、选择题.1.【答案】D【解析】{1,0,1,2}(0,3){1,2}A B =-=I I ,故选D.2.【答案】B【解析】由题意得12z i =+,∴2iz i =-.故选B.3.【答案】C【解析】)52-展开式的通项公式为()()55215522r rrrr r r T CC x--+=-=-,令522r -=可得1r =,则2x 的系数为()()11522510C -=-⨯=-.故选C.4.【答案】D【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭D.5.【答案】A【解析】设圆心(),C x y 1=,化简得()()22341x y -+-=,∴圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,∴||1||OC OM +≥5==,∴||514OC ≥-=,当且仅当C 在线段OM 上时取得等号,故选A.6.【答案】D【解析】∵()21xf x x =--,∴()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.∴不等式()0f x >的解集为()(),01,-∞+∞ .故选D.7.【答案】B【解析】如图所示,线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P .故选B.8.【答案】B【解析】由题意可知,等差数列的公差511925151a a d --+===--,通项公式为()()11912211n a a n d n n =+-=-+-⨯=-,∵123456701a a a a a a a <<<<<<=<< ,50T <,∴()06,i T i i N <≥∈,由()117,ii i T a i i N T -=>≥∈可知数列{}n T 不存在最小项,由于1234569,7,5,3,1,1a a a a a a =-=-=-=-=-=,∴数列{}n T 中的正项只有有限项:263T =,46315945T =⨯=.∴数列{}n T 中存在最大项,且最大项为4T .故选B.9.【答案】C【解析】(1)当存在k Z ∈使得(1)k k απβ=+-时,若k 为偶数,则()sin sin sin k απββ=+=;若k 为奇数,则()()()sin sin sin 1sin sin k k απβππβπββ=-=-+-=-=⎡⎤⎣⎦(2)当sin sin αβ=时,2m αβπ=+或2m αβππ+=+,m Z ∈,即()()12kk k m απβ=+-=或()()121kk k m απβ=+-=+,∴存在k Z ∈使得(1)k k απβ=+-.∴“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的充要条件.故选C.10【答案】A【解析】单位圆内接正6n 边形的每条边所对应的圆周角为360606n n︒︒=⨯,每条边长为302sinn ︒,∴单位圆的内接正6n 边形的周长为3012sin n n︒,单位圆的外切正6n 边形的每条边长为302tan n ︒,其周长为3012tan n n︒,∴303012sin 12tan303026sin tan 2n n n n n n n π︒︒+︒︒⎛⎫==+ ⎪⎝⎭,则30303sin tan n n n π︒︒⎛⎫=+ ⎪⎝⎭.故选A.二、填空题.11【答案】(0,)+∞【解析】由题意得010x x >⎧⎨+≠⎩,∴0x >,故答案为(0,)+∞.12【答案】(1)()3,0.【解析】在双曲线C中,a =,b =,则3c ==,则双曲线C 的右焦点坐标为()3,0,双曲线C的渐近线方程为2y x =±,即0x ±=,∴双曲线C 的焦点到其渐近线的距离为23312=+.故答案为()3,0;3.13【答案】(1)5;(2)1-.【解析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴,建立如图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+= ,则点()2,1P ,()2,1PD ∴=-,()0,1PB =- ,∴()22215PD =-+= ,()021(1)1PB PD ⋅=⨯-+⨯-=- .故答案为5;1-.14【答案】2π(2,2k k Z ππ+∈均可)【解析】∵()()()()22cos sin sin 1cos cos sin 1sin f x x x x ϕϕϕϕθ=++=+++,∴()22cos sin 12ϕϕ++=,解得sin 1ϕ=,故可取2ϕπ=.故答案为2π(2,2k k Z ππ+∈均可).15【答案】①②③【解析】()()f b f a b a---表示区间端点连线斜率的负数,在[]12,t t 这段时间内,甲的斜率比乙的小,∴甲的斜率的相反数比乙的大,∴甲企业的污水治理能力比乙企业强;①正确;甲企业在[][][]112230,,,,,t t t t t 这三段时间中,当甲企业在[]12,t t 这段时间内时,甲的斜率最小,其相反数最大,即在[]12,t t 的污水治理能力最强.④错误;在2t 时刻,甲切线的斜率比乙的小,∴甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在3t 时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,都已达标;③正确;故答案为①②③.三、解答题16【答案】(Ⅰ)证明见解析;(Ⅱ)23.【解析】(Ⅰ)如图所示,在正方体1111ABCD A B C D -中,11//AB A B 且11AB A B =,1111//A B C D 且1111A B C D =,∴11//AB C D 且11AB C D =,∴四边形11ABC D 为平行四边形,则11//BC AD ,1BC ⊄ 平面1AD E ,1AD ⊂平面1AD E ,∴1//BC 平面1AD E ;(Ⅱ)以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴,建立如图所示的空间直角坐标系A xyz -,设正方体1111ABCD A B C D -的棱长为2,则()0,0,0A 、()10,0,2A 、()12,0,2D 、()0,2,1E ,()12,0,2AD =,()0,2,1AE = ,设平面1AD E 的法向量为(),,n x y z =,由100n AD n AE ⎧⋅=⎨⋅=⎩ ,得22020x z y z +=⎧⎨+=⎩,令2z =-,则2x =,1y =,则()2,1,2n =-.11142cos ,323n AA n AA n AA ⋅<>==-=-⨯⋅.∴直线1AA 与平面1AD E 所成角的正弦值为23.17【答案】选择条件①(Ⅰ)8(Ⅱ)3sin 2C =,63S =;选择条件②(Ⅰ)6(Ⅱ)7sin 4C =,1574S =.【解析】选择条件①(Ⅰ)17,cos 7c A ==- ,11a b +=2222cos a b c bc A =+- ,∴2221(11)72(11)7()7a a a =-+--⋅⋅-,∴8a =.(Ⅱ)2143cos (0,)sin 1cos 77A A A A π=-∈∴=-=,由正弦定理得873sin sin sin sin 2437a c C A C C=∴=∴=113sin (118)863222S ba C ==-⨯⨯=选择条件②(Ⅰ)19cos ,cos ,(0,)816A B A B π==∈ ,∴223757sin 1cos ,sin 1cos 816A AB B =-==-=,由正弦定理得:116sin sin 3757816a b a aa A B -=∴=∴=(Ⅱ)sin sin()sin cos sin cos C A B A B B A=+=+918161684=+=11sin (116)62244S ba C ==-⨯⨯=.18【答案】(Ⅰ)该校男生支持方案一的概率为13,该校女生支持方案一的概率为34;(Ⅱ)1336,(Ⅲ)01p p <.【解析】(Ⅰ)该校男生支持方案一的概率为2001200+4003=,该校女生支持方案一的概率为3003300+1004=;(Ⅱ)3人中恰有2人支持方案一分两种情况,(1)仅有两个男生支持方案一,(2)仅有一个男生支持方案一,一个女生支持方案一,∴3人中恰有2人支持方案一概率为2121311313((1()3433436C -+-=;(Ⅲ)01p p <19【答案】(Ⅰ)2130x y +-=,(Ⅱ)32.【解析】(Ⅰ)∵()212f x x =-,∴()2f x x '=-,设切点为()00,12x x -,则022x -=-,即01x =,∴切点为()1,11,由点斜式可得切线方程为:()1121y x -=--,即2130x y +-=.(Ⅱ)显然0t ≠,∵()y f x =在点()2,12t t-处的切线方程为()()2122y t t x t --=--,令0x =,得212y t =+,令0y =,得2122t x t+=,∴()S t =()221121222||t t t +⨯+⋅,不妨设0t >(0t <时,结果相同),则()423241441144(2444t t S t t t t t++==++,∴()S t '=4222211443(848)(324)44t t t t t +-+-=222223(4)(12)3(2)(2)(12)44t t t t t t t-+-++==,由()0S t '>,得2t >,由()0S t '<,得02t <<,∴()S t 在()0,2上递减,在()2,+∞上递增,∴2t =时,()S t 取得极小值,也是最小值为()16162328S ⨯==.20【答案】(Ⅰ)22182x y +=;(Ⅱ)1.【解析】(1)设椭圆方程为()222210x y a b a b+=>>,由题意可得224112ab a b⎧+=⎪⎨⎪=⎩,解得2282a b ⎧=⎨=⎩,∴椭圆方程为22182x y +=.(2)设()11,M x y ,()22,N x y ,直线MN 的方程为()4y k x =+,与椭圆方程22182x y +=联立可得()222448x k x ++=,即()()222241326480k x k x k +++-=,则2212122232648,4141k k x x x x k k --+==++.直线MA 的方程为:()111122y y x x ++=++,令4x =-,可得()()()1111111141214122122222P k x k x y x y x x x x ++-++++=-⨯-=-⨯-=++++,同理可得()()222142Q k x y x -++=+.显然0P Q y y <,且PQPB y PQy =,注意到()1212442122P Q x x y y k x x ⎛⎫+++=-++ ⎪++⎝⎭()()()()()()()12211242422122x x x x k x x +++++=-+⨯++,而()()()()()122112124242238x x x x x x x x +++++=+++⎡⎤⎣⎦2222648322384141k k k k ⎡⎤⎛⎫--=+⨯+⎢⎥ ⎪++⎝⎭⎣⎦()()()22226483328412041k k k k -+⨯-++=⨯=+,∴0,P Q P Q y y y y +==-.从而1PQPB y PQy ==.21【答案】(Ⅰ)详见解析;(Ⅱ)详解解析;(Ⅲ)证明详见解析.【解析】(Ⅰ){}2323292,3,2n a a a a Z a ===∉∴Q 不具有性质①;(Ⅱ)∵2*(2)1*,,,2,2i j i ja i j N i j i j N a --∀∈>=-∈,∴22i i j ja a a -=,∴{}n a 具有性质①;∵2*(2)11,3,1,2,22k l n k n la n N n k n l n a a ---∀∈≥∃=-=-===,∴{}n a 具有性质②;(Ⅲ)【解法一】首先,证明数列中的项数同号,不妨设恒为正数:显然()0*n a n N ≠∉,假设数列中存在负项,设{}0max |0n N n a =<,第一种情况:若01N =,即01230a a a a <<<<< ,由①可知存在1m ,满足12210m a a a =<,存在2m ,满足22310m a a a =<,由01N =可知223211a a a a =,从而23a a =,与数列的单调性矛盾,假设不成立.第二种情况:若02N ≥,由①知存在实数m ,满足0210Nm a a a =<,由0N 的定义可知:0m N ≤,另一方面,000221NNm N N a a a a a a =>=,由数列的单调性可知0m N >,这与0N 的定义矛盾,假设不成立.同理可证得数列中的项数恒为负数.综上可得,数列中的项数同号.其次,证明2231a a a =:利用性质②:取3n =,此时()23k la a k l a =>,由数列的单调性可知0k la a >>,而3kk k la a a a a =⋅>,故3k <,此时必有2,1k l ==,即2231a a a =,最后,用数学归纳法证明数列为等比数列:假设数列{}n a 的前()3k k ≥项成等比数列,不妨设()111s s a a q s k -=≤≤,其中10,1a q >>,(10,01a q <<<的情况类似)由①可得存在整数m ,满足211k k m k k a a a q a a -==>,且11k m k a a q a +=≥(*)由②得存在s t >,满足:21s s k s s t ta aa a a a a +==⋅>,由数列的单调性可知:1t s k <≤+,由()111s s a a q s k -=≤≤可得:2211111s t k s k k ta a a q a a q a ---+==>=(**)由(**)和(*)式可得:211111ks t k a q a qa q ---≥>,结合数列的单调性有:211k s t k ≥-->-,注意到,,s t k 均为整数,故21k s t =--,代入(**)式,从而11kk a a q +=.总上可得,数列{}n a 的通项公式为11n n a a q-=.即数列{}n a 为等比数列.【解法二】假设数列中的项数均为正数:首先利用性质②:取3n =,此时()23k la a k l a =>,由数列的单调性可知0k l a a >>,而3kkk la a a a a =⋅>,故3k <,此时必有2,1k l ==,即2231a a a =,即123,,a a a 成等比数列,不妨设()22131,1a a q a a qq ==>,利用性质①取3,2i j ==,则224331121m a a q a a q a a q===,即数列中必然存在一项的值为31a q ,下面证明341a a q =,否则,由数列的单调性可知341a a q <,在性质②中,取4n =,则24k k k k l l a aa a a a a ==>,从而4k <,与前面类似的可知则存在{}{}(),1,2,3k l k l ⊆>,满足24k l a a a =,若3,2k l ==,则:2341k la a a q a ==,与假设矛盾;若3,1k l ==,则:243411k la a a q a q a ==>,与假设矛盾;若2,1k l ==,则:22413k la a a q a a ===,与数列的单调性矛盾;即不存在满足题意的正整数,k l ,可见341a a q <不成立,从而341a a q =,同理可得:455161,,a a q a a q == ,从而数列{}n a 为等比数列,同理,当数列中的项数均为负数时亦可证得数列为等比数列.由推理过程易知数列中的项要么恒正要么恒负,不会同时出现正数和负数.从而题中的结论得证,数列{}n a 为等比数列.。

2020年北京市高考数学试卷【word版本试题;可编辑;含答案】

2020年北京市高考数学试卷【word版本试题;可编辑;含答案】

2020年北京市高考数学试卷一、选择题1.已知集合A={−1,0,1,2},B={x|0<x<3},则A∩B=()A.{−1,0,1}B.{0,1}C.{−1,1,2}D.{1,2}2.在复平面内,复数z对应的点的坐标是(1,2),则i⋅z=()A.1+2iB.−2+iC.1−2iD.−2−i3.在(√x−2)5的展开式中,x2的系数为()A.−5B.5C.−10D.104.某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为()A.6+√3B.6+2√3C.12+√3D.12+2√35.已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为()A.4B.5C.6D.76.已知函数f(x)=2x−x−1,则不等式f(x)>0的解集是()A.(−1,1)B.(−∞,−1)∪(1,+∞)C.(0,1)D.(−∞,0)∪(1,+∞)7.设抛物线的顶点为O,焦点为F,准线为l,P是抛物线异于O的一点,过P做PQ⊥l于Q,则线段FQ的垂直平分线()A.经过点OB.经过点PC.平行于直线OPD.垂直于直线OP8.在等差数列{a n}中,a1=−9,a5=−1,记T n=a1a2⋯a n(n=1,2,…),则数列{T n}()A.有最大项,有最小项B.有最大项,无最小项C.无最大项,有最小项D.无最大项,无最小项9.已知α,β∈R,则“存在k∈Z,使得α=kπ+(−1)kβ"是“sinα=sinβ”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10.2020年3月14日是全球首个国际圆周率日(πDay).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似,数学家阿尔·卡西的方法是:当正整数n充分大时,计算单位圆的内接正6n边形的周长和外切正6n边形(各边均与圆相切的正6n边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达方式是()A.3n(sin30∘n+tan30∘n) B.6n(sin30∘n+tan30∘n)C.3n(sin60∘n+tan60∘n) D.6n(sin60∘n+tan60∘n)二、填空题11.函数f(x)=1x+1+ln x的定义域是________.12.已知双曲线C:x26−y23=1,则C的右焦点的坐标为________;C的焦点到其渐近线的距离是________.13.已知正方形ABCD 的边长为2,点P 满足AP →=12(AB →+AC →),则|PD →|=________;PB →⋅PD →=________.14.若函数f(x)=sin (x +φ)+cos x 的最大值为2,则常数φ的一个取值为________.15.为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W 与时间t 的关系为W =f (t ),用−f (b )−f (a )b−a的大小评价在[a,b ]这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[t 1,t 2]这段时间内,甲企业的污水治理能力比乙企业强; ②在t 2时刻,甲企业的污水治理能力比乙企业强; ③在t 3时刻,甲、乙两企业的污水排放量都已达标;④甲企业在[0, t 1],[t 1, t 2],[t 2, t 3]这三段时间中,在[0, t 1]的污水治理能力最强.其中所有正确结论的序号是________.三、解答题16.如图,在正方体ABCD −A 1B 1C 1D 1中,E 为BB 1的中点. (1)求证:BC 1//平面AD 1E ;(2)求直线AA 1与平面AD 1E 所成角的正弦值.17.在△ABC 中,a +b =11,再从条件①、条件②这两个条件中选择一个作为已知,求: (1)a 的值;(2)sin C 和△ABC 的面积.条件①:c =7,cos A =−17;条件②:cos A =18,cos B =916.18.某校为举办甲乙两项不同活动,分别设计了相应的活动方案:方案一、方案二,为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:。

2020年北京市高考数学试卷(解析版)

2020年北京市高考数学试卷(解析版)

绝密★本科目考试启用前2020年普通高等学校招生全国统一考试(北京卷)数学本试卷共5页,150分,考试时长120分钟.考试务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共40分)一、选择题10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合,,则( ). A. B.C.D.【答案】D 【解析】 【分析】根据交集定义直接得结果.【详解】, 故选:D.【点睛】本题考查集合交集概念,考查基本分析求解能力,属基础题. 2.在复平面内,复数对应的点的坐标是,则( ). A. B.C.D.【答案】B 【解析】 【分析】先根据复数几何意义得,再根据复数乘法法则得结果. 【详解】由题意得,. 故选:B.【点睛】本题考查复数几何意义以及复数乘法法则,考查基本分析求解能力,属基础题. 3.在的展开式中,的系数为( ).{1,0,1,2}A =-{|03}B x x =<<A B = {1,0,1}-{0,1}{1,1,2}-{1,2}{1,0,1,2}(0,3){1,2}A B =-=I I z (1,2)i z ⋅=12i +2i -+12i -2i --z 12z i =+2iz i ∴=-52)-2xA. B. 5 C. D. 10【答案】C 【解析】 【分析】首先写出展开式的通项公式,然后结合通项公式确定的系数即可. 【详解】展开式的通项公式为:,令可得:,则的系数为:. 故选:C.【点睛】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项. 4.某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为().A. B.C.D.【答案】D 【解析】【分析】首先确定几何体的结构特征,然后求解其表面积即可.【详解】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,5-10-2x )52-()()55215522r rrrr r r T CC x--+=-=-522r -=1r =2x ()()11522510C -=-⨯=-6+6+12+12+则其表面积为:. 故选:D.【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.5.已知半径为1的圆经过点,则其圆心到原点的距离的最小值为( ). A. 4 B. 5 C. 6 D. 7【答案】A 【解析】 【分析】求出圆心的轨迹方程后,根据圆心到原点的距离减去半径1可得答案. 【详解】设圆心,化简得,所以圆心的轨迹是以为圆心,1为半径的圆,所以,所以,当且仅当在线段上时取得等号, 故选:A.【点睛】本题考查了圆的标准方程,属于基础题.的()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭(3,4)C M O (),C x y 1=()()22341x y -+-=C (3,4)M ||1||OC OM +≥5==||514OC ≥-=C OM6.已知函数,则不等式的解集是( ). A. B. C. D.【答案】D 【解析】 【分析】作出函数和的图象,观察图象可得结果.【详解】因为,所以等价于,在同一直角坐标系中作出和的图象如图:两函数图象的交点坐标为, 不等式的解为或.所以不等式的解集为:. 故选:D.【点睛】本题考查了图象法解不等式,属于基础题.7.设抛物线的顶点为,焦点为,准线为.是抛物线上异于的一点,过作于,则线段的垂直平分线( ).A. 经过点B. 经过点C. 平行于直线D. 垂直于直线【答案】B()21x f x x =--()0f x >(1,1)-(,1)(1,)-∞-+∞ (0,1)(,0)(1,)-∞⋃+∞2x y =1y x =+()21xf x x =--()0f x >21x x >+2x y =1y x =+(0,1),(1,2)21x x >+0x <1x >()0f x >()(),01,-∞⋃+∞O F l P O P PQ l ⊥Q FQ O P OP OP【解析】 【分析】依据题意不妨作出焦点在轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段的垂直平分线经过点,即求解.【详解】如图所示:.因为线段的垂直平分线上的点到的距离相等,又点在抛物线上,根据定义可知,,所以线段的垂直平分线经过点. 故选:B.【点睛】本题主要考查抛物线的定义的应用,属于基础题.8.在等差数列中,,.记,则数列( ). A. 有最大项,有最小项 B. 有最大项,无最小项 C. 无最大项,有最小项 D. 无最大项,无最小项【答案】B 【解析】 【分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在最大项和最小项.【详解】由题意可知,等差数列的公差, 则其通项公式为:, 注意到, 且由可知, 由可知数列不存在最小项, x FQ P FQ ,F Q P PQ PF =FQ P {}n a 19a =-31a =-12(1,2,)n n T a a a n ==……{}n T 511925151a a d --+===--()()11912211n a a n d n n =+-=-+-⨯=-123456701a a a a a a a <<<<<<=<< 50T <()06,i T i i N <≥∈()117,ii i T a i i N T -=>≥∈{}n T由于, 故数列中的正项只有有限项:,. 故数列中存在最大项,且最大项为. 故选:B.【点睛】本题主要考查等差数列通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.9.已知,则“存在使得”是“”的( ). A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】C 【解析】 【分析】根据充分条件,必要条件的定义,以及诱导公式分类讨论即可判断. 【详解】(1)当存在使得时,若为偶数,则;若为奇数,则; (2)当时,或,,即或,亦即存在使得.所以,“存在使得”是“”的充要条件.故选:C.【点睛】本题主要考查充分条件,必要条件的定义的应用,诱导公式的应用,涉及分类讨论思想的应用,属于基础题.10.2020年3月14日是全球首个国际圆周率日( Day ).历史上,求圆周率的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数充分大时,计算单位圆的内接正边形的周长和外切正边形(各边均与圆相切的正边形)的周长,将它们的算术平均数作为的近似值.按照阿尔·卡西的方法,的近似值的表达式是( ).的1234569,7,5,3,1,1a a a a a a =-=-=-=-=-={}n T 263T =46315945T =⨯={}n T 4T ,R αβ∈k Z ∈(1)k k απβ=+-sin sin αβ=k Z ∈(1)kk απβ=+-k ()sin sin sin k απββ=+=k ()()()sin sin sin 1sin sin k k απβππβπββ=-=-+-=-=⎡⎤⎣⎦sin sin αβ=2m αβπ=+2m αβππ+=+m Z ∈()()12kk k m απβ=+-=()()121kk k m απβ=+-=+k Z ∈(1)kk απβ=+-k Z ∈(1)kk απβ=+-sin sin αβ=ππn 6n 6n 6n 2ππA. B. C. D. 【答案】A 【解析】 【分析】计算出单位圆内接正边形和外切正边形的周长,利用它们的算术平均数作为的近似值可得出结果. 【详解】单位圆内接正边形的每条边所对应的圆周角为,每条边长为, 所以,单位圆的内接正边形的周长为, 单位圆的外切正边形的每条边长为,其周长为, ,则. 故选:A.【点睛】本题考查圆周率的近似值的计算,根据题意计算出单位圆内接正边形和外切正边形的周长是解答的关键,考查计算能力,属于中等题.第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分.11.函数的定义域是____________. 【答案】 【解析】 【分析】根据分母不为零、真数大于零列不等式组,解得结果.【详解】由题意得,故答案为:30303sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭30306sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭60603sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭60606sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭6n 6n 2π6n 360606n n ︒︒=⨯302sin n︒6n 3012sin n n︒6n 302tann ︒3012tan n n︒303012sin12tan 303026sin tan 2n n n n n n n π︒︒+︒︒⎛⎫∴==+ ⎪⎝⎭30303sin tan n n n π︒︒⎛⎫=+ ⎪⎝⎭π6n 6n 1()ln 1f x x x =++(0,)+∞010x x >⎧⎨+≠⎩0x ∴>(0,)+∞【点睛】本题考查函数定义域,考查基本分析求解能力,属基础题.12.已知双曲线,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________. 【答案】 (1).(2).【解析】 【分析】根据双曲线的标准方程可得出双曲线的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离. 【详解】在双曲线中,,,则,则双曲线的右焦点坐标为,双曲线的渐近线方程为,即, 所以,双曲线.故答案为:.【点睛】本题考查根据双曲线的标准方程求双曲线的焦点坐标以及焦点到渐近线的距离,考查计算能力,属于基础题.13.已知正方形的边长为2,点P 满足,则_________;_________.【答案】 (1).(2).【解析】 【分析】以点为坐标原点,、所在直线分别为、轴建立平面直角坐标系,求得点的坐标,利用平面向量数量积的坐标运算可求得以及的值.【详解】以点为坐标原点,、所在直线分别为、轴建立如下图所示的平面直角坐标系,22:163x y C -=()3,0C C a =b =3c ==C ()3,0C y x =0x ±=C =()3,0ABCD 1()2AP AB AC =+ ||PD =PB PD ⋅=1-A AB AD x y P PD PB PD ⋅A AB AD x y则点、、、,,则点,,,因此,..【点睛】本题考查平面向量的模和数量积的计算,建立平面直角坐标系,求出点的坐标是解答的关键,考查计算能力,属于基础题.14.若函数的最大值为2,则常数的一个取值为________. 【答案】(均可)【解析】 【分析】根据两角和的正弦公式以及辅助角公式即可求得,可得,即可解出.【详解】因为,,解得,故可取. 故答案为:(均可).【点睛】本题主要考查两角和的正弦公式,辅助角公式的应用,以及平方关系的应用,考查学生的数学运算能力,属于基础题.15.为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改、()0,0A ()2,0B ()2,2C ()0,2D ()()()()1112,02,22,1222AP AB AC =+=+= ()2,1P ()2,1PD ∴=- ()0,1PB =- PD ==()021(1)1PB PD ⋅=⨯-+⨯-=-1-P ()sin()cos f x x x ϕ=++ϕ2π2,2k k Z ππ+∈()()f x x θ=+2=()()()cos sin sin 1cos f x x x x ϕϕθ=++=+2=sin 1ϕ=2ϕπ=2π2,2k k Z ππ+∈设企业的污水摔放量W 与时间t 的关系为,用的大小评价在这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论: ①在这段时间内,甲企业的污水治理能力比乙企业强;②在时刻,甲企业的污水治理能力比乙企业强; ③在时刻,甲、乙两企业的污水排放都已达标;④甲企业在这三段时间中,在的污水治理能力最强. 其中所有正确结论的序号是____________________. 【答案】①②③ 【解析】 【分析】根据定义逐一判断,即可得到结果 【详解】表示区间端点连线斜率的负数,在这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在这三段时间中,甲企业在这段时间内,甲的斜率最小,其相反数最大,即在的污水治理能力最强.④错误;在时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确; 故答案为:①②③()W f t =()()f b f a b a---[,]a b []12,t t 2t 3t [][][]112230,,,,,t t t t t []10,t ()()f b f a b a---[]12,t t [][][]112230,,,,,t t t t t []12,t t []12,t t 2t 3t【点睛】本题考查斜率应用、切线斜率应用、函数图象应用,考查基本分析识别能力,属中档题.三、解答题共6小题,共85分,解答应写出文字说明,演算步骤或证明过程.16.如图,在正方体中,E 为的中点.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值. 【答案】(Ⅰ)证明见解析;(Ⅱ). 【解析】 【分析】(Ⅰ)证明出四边形为平行四边形,可得出,然后利用线面平行的判定定理可证得结论; (Ⅱ)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可计算出直线与平面所成角的正弦值. 【详解】(Ⅰ)如下图所示:1111ABCD A B C D -1BB 1//BC 1AD E 1AA 1AD E 2311ABC D 11//BC AD A AD AB 1AA x y z A xyz -1AA 1AD E在正方体中,且,且,且,所以,四边形为平行四边形,则, 平面,平面,平面;(Ⅱ)以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,设正方体的棱长为,则、、、,,,设平面的法向量为,由,得, 令,则,,则..因此,直线与平面所成角的正弦值为. 【点睛】本题考查线面平行的证明,同时也考查了利用空间向量法计算直线与平面所成角的正弦值,考查计算能力,属于基础题.17.在中,,再从条件①、条件②这两个条件中选择一个作为己知,求: (Ⅰ)a 的值:(Ⅱ)和的面积.1111ABCD A B C D -11//AB A B 11AB A B =1111//A B C D 1111A B C D =11//AB C D ∴11AB C D =11ABC D 11//BC AD 1BC ⊄ 1AD E 1AD ⊂1AD E 1//BC ∴1AD E A AD AB 1AA x y z A xyz -1111ABCD A B C D -2()0,0,0A ()10,0,2A ()12,0,2D ()0,2,1E ()12,0,2AD =()0,2,1AE = 1AD E (),,n x y z = 100n AD n AE ⎧⋅=⎨⋅=⎩22020x z y z +=⎧⎨+=⎩2z =-2x =1y =()2,1,2n =-11142cos ,323n AA n AA n AA ⋅<>==-=-⨯⋅1AA 1AD E 23ABC 11a b +=sin C ABC条件①:; 条件②:.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】选择条件①(Ⅰ)8(Ⅱ),选择条件②(Ⅰ)6(Ⅱ), . 【解析】【分析】选择条件①(Ⅰ)根据余弦定理直接求解,(Ⅱ)先根据三角函数同角关系求得,再根据正弦定理求,最后根据三角形面积公式求结果;选择条件②(Ⅰ)先根据三角函数同角关系求得,再根据正弦定理求结果,(Ⅱ)根据两角和正弦公式求,再根据三角形面积公式求结果.【详解】选择条件①(Ⅰ)(Ⅱ)由正弦定理得:选择条件②(Ⅰ)由正弦定理得: 17,cos 7cA ==-19cos ,cos 816A B ==sin C =S =sin C =S =sin A sin C sin ,sin A B sin C 17,cos 7c A ==- ,11a b +=22222212cos (11)72(11)7()7a b c bc A a a a =+-∴=-+--⋅⋅- 8a ∴=1cos (0,)sin 7A A A π=-∈∴==,7sin sin sin sin a c C A C C==∴=11sin (118)822S ba C ==-⨯=19cos ,cos ,(0,)816A B A B π==∈ ,sin A B ∴====6sin sin a b a A B ===(Ⅱ)【点睛】本题考查正弦定理、余弦定理,三角形面积公式,考查基本分析求解能力,属中档题.18.某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:男生女生支持不支持 支持 不支持 方案一 200人 400人 300人 100人 方案二 350人250人150人250人假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案的概率估计值记为,假设该校年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为,试比较与的大小.(结论不要求证明)【答案】(Ⅰ)该校男生支持方案一的概率为,该校女生支持方案一的概率为; (Ⅱ),(Ⅲ) 【解析】 【分析】(Ⅰ)根据频率估计概率,即得结果;(Ⅱ)先分类,再根据独立事件概率乘法公式以及分类计数加法公式求结果; (Ⅲ)先求,再根据频率估计概率,即得大小.【详解】(Ⅰ)该校男生支持方案一的概率为,91sin sin()sin cos sin cos 168C A B A B B A =+=+==11sin (116)622S ba C ==-⨯=0p 1p 0p 1p 1334133601p p <0p 1p 2001200+4003=该校女生支持方案一的概率为;(Ⅱ)3人中恰有2人支持方案一分两种情况,(1)仅有两个男生支持方案一,(2)仅有一个男生支持方案一,一个女生支持方案一,所以3人中恰有2人支持方案一概率为:; (Ⅲ)【点睛】本题考查利用频率估计概率、独立事件概率乘法公式,考查基本分析求解能力,属基础题. 19.已知函数.(Ⅰ)求曲线的斜率等于的切线方程;(Ⅱ)设曲线在点处的切线与坐标轴围成的三角形的面积为,求的最小值. 【答案】(Ⅰ),(Ⅱ). 【解析】 【分析】(Ⅰ)根据导数的几何意义可得切点的坐标,然后由点斜式可得结果;(Ⅱ)根据导数的几何意义求出切线方程,再得到切线在坐标轴上的截距,进一步得到三角形的面积,最后利用导数可求得最值.【详解】(Ⅰ)因为,所以,设切点为,则,即,所以切点为, 由点斜式可得切线方程:,即. (Ⅱ)显然, 因为在点处的切线方程为:,令,得,令,得,所以,不妨设时,结果一样,则,为3003300+1004=2121311313()(1()(13433436C -+-=01p p <2()12f x x =-()y f x =2-()y f x =(,())t f t ()S t ()S t 2130x y +-=32()212f x x =-()2f x x '=-()00,12x x -022x -=-01x =()1,11()1121y x -=--2130x y +-=0t ≠()y f x =()2,12t t-()()2122y t t x t --=--0x =212y t =+0y =2122t x t+=()S t =()221121222||t t t +⨯+⋅0t >(0t <)()423241441144(24)44t t S t t t t t++==++所以 , 由,得,由,得, 所以在上递减,在上递增, 所以时,取得极小值, 也是最小值为. 【点睛】本题考查了利用导数的几何意义求切线方程,考查了利用导数求函数的最值,属于中档题.20.已知椭圆过点,且.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点的直线l 交椭圆C 于点,直线分别交直线于点.求的值.【答案】(Ⅰ);(Ⅱ)1.【解析】 【分析】(Ⅰ)由题意得到关于a ,b 的方程组,求解方程组即可确定椭圆方程;(Ⅱ)首先联立直线与椭圆的方程,然后由直线MA ,NA 的方程确定点P ,Q 的纵坐标,将线段长度的比值转化为纵坐标比值的问题,进一步结合韦达定理可证得,从而可得两线段长度的比值.【详解】(1)设椭圆方程为:,由题意可得:,解得:, 故椭圆方程为:.()S t '=4222211443(848)(324)44t t t t t+-+-=222223(4)(12)3(2)(2)(12)44t t t t t t t-+-++==()0S t '>2t >()0S t '<02t <<()S t ()0,2()2,+∞2t =()S t ()16162328S ⨯==2222:1x y C a b+=(2,1)A --2a b =(4,0)B -,M N ,MA NA 4x =-,P Q ||||PB BQ 22182x y +=0P Q y y +=()222210x y a b a b +=>>224112a ba b⎧+=⎪⎨⎪=⎩2282a b ⎧=⎨=⎩22182x y +=(2)设,,直线的方程为:,与椭圆方程联立可得:,即:,则:. 直线MA 的方程为:, 令可得:, 同理可得:.很明显,且:,注意到: , 而:,故.从而. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.21.已知是无穷数列.给出两个性质:()11,M x y ()22,N x y MN ()4y k x =+22182x y +=()222448x k x ++=()()222241326480k x k x k +++-=2212122232648,4141k k x x x x k k --+==++()111122y y x x ++=++4x =-()()()1111111141214122122222P k x k x y x y x x x x ++-++++=-⨯-=-⨯-=++++()()222142Q k x y x -++=+0P Q y y <P QPB yPQ y =()()()()()()()()122112121242424421212222P Q x x x x x x y y k k x x x x +++++⎛⎫+++=-++=-+⨯ ⎪++++⎝⎭()()()()()122112124242238x x x x x x x x +++++=+++⎡⎤⎣⎦2222648322384141k k k k ⎡⎤⎛⎫--=+⨯+⎢⎥ ⎪++⎝⎭⎣⎦()()()22226483328412041k k k k -+⨯-++=⨯=+0,P Q P Q y y y y +==-1PQPB y PQy =={}n a①对于中任意两项,在中都存在一项,使; ②对于中任意项,在中都存在两项.使得.(Ⅰ)若,判断数列是否满足性质①,说明理由; (Ⅱ)若,判断数列是否同时满足性质①和性质②,说明理由;(Ⅲ)若是递增数列,且同时满足性质①和性质②,证明:为等比数列. 【答案】(Ⅰ)详见解析;(Ⅱ)详解解析;(Ⅲ)证明详见解析. 【解析】 【分析】(Ⅰ)根据定义验证,即可判断; (Ⅱ)根据定义逐一验证,即可判断;(Ⅲ)解法一:首先,证明数列中的项数同号,然后证明,最后,用数学归纳法证明数列为等比数列即可.解法二:首先假设数列中的项数均为正数,然后证得成等比数列,之后证得成等比数列,同理即可证得数列为等比数列,从而命题得证.【详解】(Ⅰ)不具有性质①; (Ⅱ)具有性质①; 具有性质②;(Ⅲ)【解法一】首先,证明数列中的项数同号,不妨设恒为正数:显然,假设数列中存在负项,设, 第一种情况:若,即,由①可知:存在,满足,存在,满足, {}n a ,()i j a a i j >{}n a m a 2i m ja a a ={}n a (3)n a n …{}n a ,()k l a a k l >2k n la a a =(1,2,)n a n n == {}n a 12(1,2,)n n a n -== {}n a {}n a {}n a 2231a a a =123,,a a a 1234,,,a a a a {}2323292,3,2n a a a a Z a ===∉∴Q {}22*(2)1*2,,,2,2i j i i i j n j ja a i j N i j i j N a a a a ---∀∈>=-∈∴=∴Q {}2*(2)11,3,1,2,22,k l n k n n la n N n k n l a n a a ---∀∈≥∃=-=-===∴Q ()0*n a n N ≠∉{}0max |0n N n a =<01N =01230a a a a <<<<< 1m 12210m a a a =<2m 22310m a a a =<由可知,从而,与数列的单调性矛盾,假设不成立. 第二种情况:若,由①知存在实数,满足,由的定义可知:,另一方面,,由数列单调性可知:,这与的定义矛盾,假设不成立. 同理可证得数列中的项数恒为负数. 综上可得,数列中的项数同号.其次,证明:利用性质②:取,此时,由数列的单调性可知, 而,故, 此时必有,即,最后,用数学归纳法证明数列为等比数列:假设数列的前项成等比数列,不妨设,其中,(情况类似)由①可得:存在整数,满足,且 (*) 由②得:存在,满足:,由数列的单调性可知:, 由可得: (**)由(**)和(*)式可得:,结合数列的单调性有:,的的01N =223211a a a a =23a a =02N ≥m 0210Nm a a a =<0N 0m N ≤000221NNm N N a a a a a a =>=0m N >0N 2231a a a =3n =()23k la a k l a =>0k l a a >>3kk k la a a a a =⋅>3k <2,1k l ==2231a a a ={}n a ()3k k ≥()111s s a a q s k -=≤≤10,1a q >>10,01a q <<<m 211k k m k k a a a q a a -==>11k m k a a q a +=≥s t >21s s k s s t ta aa a a a a +==⋅>1t s k <≤+()111s s a a qs k -=≤≤2211111s t k s k k ta a a q a a q a ---+==>=211111ks t k a q a q a q ---≥>211k s t k ≥-->-注意到均为整数,故, 代入(**)式,从而.总上可得,数列的通项公式为:.即数列为等比数列.【解法二】假设数列中的项数均为正数:首先利用性质②:取,此时,由数列的单调性可知, 而,故, 此时必有,即,即成等比数列,不妨设,然后利用性质①:取,则, 即数列中必然存在一项的值为,下面我们来证明, 否则,由数列的单调性可知,在性质②中,取,则,从而, 与前面类似的可知则存在,满足,若,则:,与假设矛盾; 若,则:,与假设矛盾; 若,则:,与数列的单调性矛盾; 即不存在满足题意的正整数,可见不成立,从而,,,s t k 21k s t =--11kk a a q +={}n a 11n n a a q -={}n a 3n =()23k la a k l a =>0k l a a >>3kk k la a a a a =⋅>3k <2,1k l ==2231a a a =123,,a a a ()22131,1a a q a a qq ==>3,2i j ==224331121m a a q a a q a a q===31a q 341a a q =341a a q <4n =24k k k k l l a aa a a a a ==>4k <{}{}(),1,2,3k l k l ⊆>24k l a a a =3,2k l ==2341k la a a q a ==3,1k l ==243411k la a a q a q a ==>2,1k l ==22413k la a a q a a ===,k l 341a a q <341a a q =同理可得:,从而数列为等比数列, 同理,当数列中的项数均为负数时亦可证得数列为等比数列.由推理过程易知数列中的项要么恒正要么恒负,不会同时出现正数和负数.从而题中的结论得证,数列为等比数列.【点睛】本题主要考查数列的综合运用,等比数列的证明,数列性质的应用,数学归纳法与推理方法、不等式的性质的综合运用等知识,意在考查学生的转化能力和推理能力. 455161,,a a q a a q == {}n a {}n a。

2020年北京市高考数学试卷(pdf详细解析版)

2020年北京市高考数学试卷(pdf详细解析版)

的“割圆术”相似,数学家阿尔卡西的方法是:当正整数 n 充分大时,计算单位圆的内接正 6n 边形的周长和外 切正 6n 边形(各边均与圆相切的正 6n 边形)的周长,将它们的算术平均数作为 2π的近似值。按照阿尔卡西的 方法, π 的近似值的表达方式是
(A) 3n(sin 30 tan 30)
n
n
答案: (0, )
解析:要使
x
1
1
有意义,则有
x
1
0
,即
x
1
,要使
ln
x
有意义,则
x
0
,所以函数的定义域是
(0,
)
(12)已知双曲线 C : x2 y2 1,则 C 的右焦点的坐标为________; C 的焦点到其渐近线的距离是________. 63
答案:(3,0), 3
解析:设双曲线的焦距为 2c,则有 c2 6 3 9 ,故 c=3,则 C 的右焦点的坐标为(3,0).易知 C 的焦点到其渐
(7)设抛物线的顶点为 O ,焦点为 F ,准线为 l ,P 是抛物线上异于 O 的一点,过 P 做 PQ ⊥ l 于 Q ,则线段 FQ
的垂直平分线
(A)经过点 O
(B)经过点 P
第 3页 / 共 17页
(C)平行于直线 OP
答案:B
(D)垂直于直线 OP
解析:如图,连接 PF,由抛物线的定义可知, PF PQ ,所以线段 FQ 的垂直平分线经过点 P,故选 B
(5)已知半径为 1 的圆经过点 (3,4) ,则其圆心到原点的距离的最小值为
(A)4 (C)6 答案:A
(B)5 (D)7
解析:由已知,圆心在以点 A(3, 4) 为圆心,1 为半径为圆上,当圆心在下图点 B 位置时,圆心到原点的距离最 小,所以圆心到原点的距离的最小值为 OB OA 1 32 42 1 5 1 4 ,选 A

2020年北京文科数学试卷

2020年北京文科数学试卷

2020年普通高等学校招生全国统一考试(北京卷)数学(文科)第I卷(选择题共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的)1.若集合 A={x |−5< x <2},B={x |−3< x <3},则 A∩B= ()A.{x |−3< x <2}B.{x |−5< x <2}C.{x |−3< x <3}D.{x |−5< x <3}2.圆心为(1,1)且过原点的圆的方程是()A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=23.下列函数中为偶函数的是()A.y=x²sinxB.y=x²cosxC.Y=|ln x|D.y=2x4.某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体情况,在抽取的样本中,青年教师有320人,则该样本的老年人数为()A.90B.100C.180D.300类别人数老年教师900中年教师1800青年教师1600合计43005.执行如图所示的程序框图,输出的k值为()A.3B.4C.5D.66.设a,b是非零向量,“a·b=|a||b|”是“a//b”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1B.错误!未找到引用源。

C.错误!未找到引用源。

D.28.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.注:“累计里程”指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为()A.6升B.8升C.10升D.12升第Ⅱ卷(非选择题共110分)二、填空题(本大题共6小题,每小题5分,共30分.把答案填在题中横线上)9.复数i(1+i)的实数为 .10.2-3,123,log25三个数中最大数的是 .11.在△ABC中,a=3,b=错误!未找到引用源。

2020年北京市高考数学试卷-解析版

2020年北京市高考数学试卷-解析版

2020年北京市⾼考数学试卷-解析版2020年北京市⾼考数学试卷⼀、选择题(本⼤题共10⼩题,共40.0分)1.已知集合A={?1,0,1,2},B={x|0A. {?1,0,1}B. {0,1}C. {?1,1,2}D. {1,2}2.在复平⾯内,复数z对应的点的坐标是(1,2),则i?z=()A. 1+2iB. ?2+iC. 1?2iD. ?2?i3.在(√x?2)5的展开式中,x2的系数为()A. ?5B. 5C. ?10D. 104.某三棱柱的底⾯为正三⾓形,其三视图如图所⽰,该三棱柱的表⾯积为()A. 6+√3B. 6+2√3C. 12+√3D. 12+2√35.已知半径为1的圆经过点(3,4),则其圆⼼到原点的距离的最⼩值为()A. 4B. 5C. 6D. 76.已知函数f(x)=2x?x?1,则不等式f(x)>0的解集是()A. (?1,1)B. (?∞,?1)∪(1,+∞)C. (0,1)D. (?∞,0)∪(1,+∞)7.设抛物线的顶点为O,焦点为F,准线为l.P是抛物线上异于O的⼀点,过P作PQ⊥l于Q,则线段FQ的垂直平分线()A. 经过点OB. 经过点PC. 平⾏于直线OPD. 垂直于直线OP8.在等差数列{a n}中,a1=?9,a5=?1.记T n=a1a2…a n(n=1,2,…),则数列{T n}()A. 有最⼤项,有最⼩项B. 有最⼤项,⽆最⼩项C. ⽆最⼤项,有最⼩项D. ⽆最⼤项,⽆最⼩项9.已知α,β∈R,则“存在k∈Z使得α=kπ+(?1)kβ”是“sinα=sinβ”的()A. 充分⽽不必要条件B. 必要⽽不充分条件C. 充分必要条件D. 既不充分也不必要条件10.2020年3⽉14⽇是全球⾸个国际圆周率⽇(πDay).历史上,求圆周率π的⽅法有多种,与中国传统数学中的“割圆术”相似,数学家阿尔?卡西的⽅法是:当正整数n 充分⼤时,计算单位圆的内接正6n边形的周长和外切正6n边形(各边均与圆相切的正6n边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔?卡西的⽅法,π的近似值的表达式是()A. 3n(sin30°n +tan30°n) B. 6n(sin30°n+tan30°n)C. 3n(sin60°n +tan60°n) D. 6n(sin60°n+tan60°n)⼆、填空题(本⼤题共5⼩题,共25.0分)11. 函数f(x)=1x+1+lnx 的定义域是______. 12. 已知双曲线C :x 26y 23=1,则C 的右焦点的坐标为______;C 的焦点到其渐近线的距离是______.13. 已知正⽅形ABCD 的边长为2,点P 满⾜AP =12(AB +AC ),则|PD |=______;PB ????? ?PD =______.14. 若函数f(x)=sin(x +φ)+cosx 的最⼤值为2,则常数φ的⼀个取值为______. 15. 为满⾜⼈民对美好⽣活的向往,环保部门要求相关企业加强污⽔治理,排放未达标的企业要限期整改.设企业的污⽔排放量W 与时间t 的关系为W =f(t),⽤f(b)?f(a)b?a的⼤⼩评价在[a,b]这段时间内企业污⽔治理能⼒的强弱.已知整改期内,甲、⼄两企业的污⽔排放量与时间的关系如图所⽰.给出下列四个结论:①在[t 1,t 2]这段时间内,甲企业的污⽔治理能⼒⽐⼄企业强;②在t 2时刻,甲企业的污⽔治理能⼒⽐⼄企业强;③在t 3时刻,甲,⼄两企业的污⽔排放都已达标;④甲企业在[0,t 1],[t 1,t 2],[t 2,t 3]这三段时间中,在[0,t 1]的污⽔治理能⼒最强.其中所有正确结论的序号是______.三、解答题(本⼤题共6⼩题,共85.0分)16. 如图,在正⽅体ABCD ?A 1B 1C 1D 1中,E 为BB 1的中点.(Ⅰ)求证:BC 1//平⾯AD 1E ;(Ⅱ)求直线AA 1与平⾯AD 1E 所成⾓的正弦值.17.在△ABC中,a+b=11,再从条件①、条件②这两个条件中选择⼀个作为已知,求:(Ⅰ)a的值;(Ⅱ)sinC和△ABC的⾯积.条件①:c=7,cosA=?17;条件②:cosA=18,cosB=916.注:如果选择条件①和条件②分别解答,按第⼀个解答计分.18.某校为举办甲、⼄两项不同活动,分别设计了相应的活动⽅案;⽅案⼀、⽅案⼆.为假设所有学⽣对活动⽅案是否⽀持相互独⽴.(Ⅰ)分别估计该校男⽣⽀持⽅案⼀的概率、该校⼥⽣⽀持⽅案⼀的概率;(Ⅱ)从该校全体男⽣中随机抽取2⼈,全体⼥⽣中随机抽取1⼈,估计这3⼈中恰有2⼈⽀持⽅案⼀的概率;(Ⅲ)将该校学⽣⽀持⽅案⼆的概率估计值记为p0.假设该校⼀年级有500名男⽣和300名⼥⽣,除⼀年级外其他年级学⽣⽀持⽅案⼆的概率估计值记为p1.试⽐较p0与p1的⼤⼩.(结论不要求证明)19.已知函数f(x)=12?x2.(1)求曲线y=f(x)的斜率等于?2的切线⽅程;(2)设曲线y=f(x)在点(t,f(t))处的切线与坐标轴围成的三⾓形的⾯积为S(t),求S(t)的最⼩值.20.已知椭圆C:x2a2+y2b2=1过点A(?2,?1),且a=2b.(Ⅰ)求椭圆C的⽅程;(Ⅱ)过点B(?4,0)的直线l交椭圆C于点M,N,直线MA,NA分别交直线x=?4于点P,Q.求|PB||BQ|的值.21.已知{a n}是⽆穷数列.给出两个性质:①对于{a n}中任意两项a i,a j(i>j),在{a n}中都存在⼀项a m,使得?a i2=a m;②对于{a n}中任意⼀项a n(n≥3),在{a n}中都存在两项a k,a l(k>l),使得a n=a k2a l.(Ⅰ)若a n=n(n=1,2,…),判断数列{a n}是否满⾜性质①,说明理由;(Ⅱ)若a n=2n?1(n=1,2,…),判断数列{a n}是否同时满⾜性质①和性质②,说明理由;(Ⅲ)若{a n}是递增数列,且同时满⾜性质①和性质②,证明:{a n}为等⽐数列.答案和解析1.【答案】D【解析】【分析】根据交集的定义写出A∩B即可.本题考查了交集的定义与运算问题,是基础题⽬.【解答】解:集合A={?1,0,1,2},B={x|0故选:D.2.【答案】B【解析】【分析】本题主要考查复数的运算,结合复数的⼏何意义求出复数的表达式是解决本题的关键.⽐较基础.根据复数的⼏何意义先求出z的表达式,结合复数的运算法则进⾏计算即可.【解答】解:∵复数z对应的点的坐标是(1,2),∴z=1+2i,则i?z=i(1+2i)=?2+i,故选:B.3.【答案】C【解析】【分析】本题主要考查⼆项式定理的应⽤,⼆项展开式的通项公式,⼆项式系数的性质,属于基础题.在⼆项展开式的通项公式中,令x的幂指数等于2,求出r的值,即可求得x2的系数.【解答】解:(√x?2)5的展开式中,通项公式为Tr+1=C5r?(?2)r?x5?r2,令5?r=2,求得r=1,可得x2的系数为C51?(?2)=?10,故选:C.4.【答案】D【解析】解:⼏何体的直观图如图:是三棱柱,底⾯边长与侧棱长都是2,⼏何体的表⾯积为:3×2×2+2×12×2×√32×2=12+2√3.故选:D.画出⼏何体的直观图,利⽤三视图的数据求解⼏何体的表⾯积即可.本题考查三视图求解⼏何体的表⾯积,判断⼏何体的形状是解题的关键,是基本知识的考查.5.【答案】A【解析】解:如图⽰:,半径为1的圆经过点(3,4),可得该圆的圆⼼轨迹为(3,4)为圆⼼,1为半径的圆,故当圆⼼到原点的距离的最⼩时,连结OB,A在OB上且AB=1,此时距离最⼩,由OB=5,得OA=4,即圆⼼到原点的距离的最⼩值是4,故选:A.结合题意画出满⾜条件的图象,结合图象求出答案即可.本题考查了圆的基础知识,考查数形结合思想,是⼀道常规题.6.【答案】D【解析】【分析】本题主要考查其它不等式的解法,函数的图象和性质,属于中档题.不等式即2x>x+1.由于函数y=2x和直线y=x+1的图象都经过点(0,1)、(1,2),数形结合可得结论.【解答】解:不等式f(x)>0,即2x>x+1.由于函数y=2x和直线y=x+1的图象都经过(1,2),如图所⽰:不等式f(x)>0的解集是(?∞,0)∪(1,+∞),故选:D.7.【答案】B【解析】解:不妨设抛物线的⽅程为y2=4x,则F(1,0),准线为l为x=?1,不妨设P(1,2),∴Q(?1,2),设准线为l与x轴交点为A,则A(?1,0),可得四边形QAFP为正⽅形,根据正⽅形的对⾓线互相垂直,故可得线段FQ的垂直平分线,经过点P,故选:B.本题属于选择题,不妨设抛物线的⽅程为y2=4x,不妨设P(1,2),可得可得四边形QAFP 为正⽅形,根据正⽅形的对⾓线互相垂直可得答案.本题考查了抛物线的性质和垂直平分线的性质,考查了转化思想,属于中档题.8.【答案】B【解析】【分析】本题考查等差数列的通项公式,考查数列的函数特性,考查分析问题与解决问题的能⼒,是中档题.由已知求出等差数列的通项公式,分析可知数列{a n}是单调递增数列,且前5项为负值,⾃第6项开始为正值,进⼀步分析得答案.【解答】解:设等差数列{a n}的⾸项为d,由a1=?9,a5=?1,得d=a5?a15?1=?1?(?9)4=2,∴a n=?9+2(n?1)=2n?11.由a n=2n?11=0,得n=112,⽽n∈N?,可知数列{a n}是单调递增数列,且前5项为负值,⾃第6项开始为正值.可知T1=?9<0,T2=63>0,T3=?315<0,T4=945>0为最⼤项,⾃T5起均⼩于0,且逐渐减⼩.∴数列{T n}有最⼤项,⽆最⼩项.故选:B.9.【答案】C【分析】本题主要考查充分条件和必要条件的判断,结合三⾓函数值的性质,利⽤分类讨论思想进⾏判断是解决本题的关键.难度不⼤.根据充分条件和必要条件的定义,分别讨论k为偶数和奇数时,是否成⽴即可.【解答】解:当k=2n,为偶数时,α=2nπ+β,此时sinα=sin(2nπ+β)=sinβ,当k=2n+1,为奇数时,α=2nπ+π?β,此时sinα=sin(π?β)=sinβ,即充分性成⽴,当sinα=sinβ,则α=2nπ+β,n∈Z或α=2nπ+π?β,n∈Z,即α=kπ+(?1)kβ,即必要性成⽴,则“存在k∈Z使得α=kπ+(?1)kβ”是“sinα=sinβ”的充要条件,故选:C.10.【答案】A【解析】【分析】本题考查数学中的⽂化,考查圆的内接和外切多边形的边长的求法,考查运算能⼒,属于基础题.设内接正6n 边形的边长为a ,外切正6n 边形的边长为b ,运⽤圆的性质,结合直⾓三⾓形的锐⾓三⾓函数的定义,可得所求值.【解答】解:如图,设内接正6n 边形的边长为a ,外切正6n 边形的边长为b ,可得a =2sin 360°12n =2sin 30°n,b =2tan 360°12n=2tan30°n,则2π≈6na+6nb2=6n(sin 30°n+tan30°n),即π≈3n(sin30°n+tan30°n),11.【答案】{x|x >0}【解析】【分析】本题主要考查函数定义域的求解,根据函数成⽴的条件建⽴不等式是解决本题的关键,属于基础题.根据函数成⽴的条件建⽴不等式组,解不等式即可.【解答】解:要使函数有意义,则{?x +1≠0x >0,得{?x ≠?1x >0,即x >0,即函数的定义域为{x|x >0},故答案为:{x|x >0}.12.【答案】(3,0); √3【解析】解:双曲线C :x 26?y 23=1,则c 2=a 2+b 2=6+3=9,则c =3,则C 的右焦点的坐标为(3,0),其渐近线⽅程为y =±√3√6x ,即x ±√2y =0,则点(3,0)到渐近线的距离d =3√1+2=√3,故答案为:(3,0),√3.根据双曲线的⽅程可得焦点,再根据点到直线的距离可得.本题考查了双曲线的⽅程和其性质,以及点到直线的距离公式,属于基础题.13.【答案】√5 ;?1【解析】【分析】本题考查了向量的⼏何意义和向量的数量积的运算,属于基础题.根据向量的⼏何意义可得P 为BC 的中点,再根据向量的数量积的运算和正⽅形的性质即可求出.【解答】解:由AP =12(AB +AC ),可得P 为BC 的中点,则|CP|=1,∴|PD|=√22+12=√5,∴PB ????? ?PD ????? =PB ????? ?(PC ????? +CD ????? )=?PC ????? ?(PC ????? +CD ????? )=?PC ????? 2 PC CD =1,故答案为:√5,?1.14.【答案】π2(答案不唯⼀)【解析】【分析】本题考查三⾓恒等变换,辅助⾓公式,三⾓函数最值,以及考查运算能⼒,属于中档题.由两⾓和差公式,及辅助⾓公式化简得f(x)=√cos 2φ+(1+sinφ)2sin(x +θ),其中cosθ=√cos 2φ+(1+sinφ)2,sinθ=√cos 2φ+(1+sinφ)2,结合题意可得√cos 2φ+(1+sinφ)2=2,解得φ,即可得出答案.【解答】解:f(x)=sin(x +φ)+cosx=sinxcosφ+cosxsinφ+cosx =sinxcosφ+(1+sinφ)cosx=√cos 2φ+(1+sinφ)2sin(x +θ),其中cosθ=√cos 2φ+(1+sinφ)2,sinθ=22,所以f(x)最⼤值为√cos 2φ+(1+sinφ)2=2,所以cos 2φ+(1+sinφ)2=4,即2+2sinφ=4,所以sinφ=1,所以φ=π2+2kπ,k ∈Z ,当k =0时,φ=π2.故答案为:π2(答案不唯⼀).15.【答案】①②③【解析】解:设甲企业的污⽔排放量W 与时间t 的关系为W =f(t),⼄企业的污⽔排放量W 与时间t 的关系为W =g(t).对于①,在[t 1,t 2]这段时间内,甲企业的污⽔治理能⼒为?f(t 2)?f(t 1)t 2?t 1,⼄企业的污⽔治理能⼒为?g(t 2)?g(t 1)t 2?t 1.由图可知,f(t 1)?f(t 2)>g(t 1)?g(t 2),∴?f(t 2)?f(t 1)t 2?t 1>?g(t 2)?g(t 1)t 2?t 1,即甲企业的污⽔治理能⼒⽐⼄企业强,故①正确;对于②,由图可知,f(t)在t 2时刻的切线的斜率⼩于g(t)在t 2时刻的切线的斜率,但两切线斜率均为负值,∴在t 2时刻,甲企业的污⽔治理能⼒⽐⼄企业强,故②正确;对于③,在t 3时刻,甲,⼄两企业的污⽔排放都⼩于污⽔达标排放量,∴在t 3时刻,甲,⼄两企业的污⽔排放都已达标,故③正确;对于④,由图可知,甲企业在[0,t 1],[t 1,t 2],[t 2,t 3]这三段时间中,在[t 1,t 2]的污⽔治理能⼒最强,故④错误.∴正确结论的序号是①②③.故答案为:①②③.由两个企业污⽔排放量W 与时间t 的关系图象结合平均变化率与瞬时变化率逐⼀分析四个命题得答案.本题考查利⽤数学解决实际⽣活问题,考查学⽣的读图视图能⼒,是中档题.16.【答案】解:(Ⅰ)由正⽅体的性质可知,AB//C 1D 1中,且AB =C 1D 1,∴四边形ABC 1D 1是平⾏四边形,∴BC 1//AD 1,⼜BC 1?平⾯AD 1E ,AD 1?平⾯AD 1E ,∴BC 1//平⾯AD 1E .(Ⅱ)以A 为原点,AD 、AB 、AA 1分别为x 、y 和z 轴建⽴如图所⽰的空间直⾓坐标系,设正⽅体的棱长为a ,则A(0,0,0),A 1(0,0,a),D 1(a,0,a),E(0,a ,12a),∴AA 1 =(0,0,a),AD 1 =(a,0,a),AE =(0,a,12a),设平⾯AD 1E 的法向量为m =(x,y,z),则{m ??? ?AD 1??? =0m ??? ?AE ? =0,即{a(x +z)=0a(y +12z)=0,令z =2,则x =?2,y =?1,∴m=(?2,?1,2),设直线AA 1与平⾯AD 1E 所成⾓为θ,则sinθ=|cos |=|m ??? ?AA 1|m ??? |?|AA 1||=2a a?3=23,故直线AA 1与平⾯AD 1E 所成⾓的正弦值为23.【解析】(Ⅰ)根据正⽅体的性质可证得BC 1//AD 1,再利⽤线⾯平⾏的判定定理即可得证;(Ⅱ)以A 为原点,AD 、AB 、AA 1分别为x 、y 和z 轴建⽴空间直⾓坐标系,设直线AA 1与平⾯AD 1E 所成⾓为θ,先求出平⾯AD 1E 的法向量m ,再利⽤sinθ=|cos |=|m ??? ?AA 1|m ??? |?|AA 1||以及空间向量数量积的坐标运算即可得解.本题考查空间中线⾯的位置关系和线⾯夹⾓问题,熟练掌握线⾯平⾏的判定定理和利⽤空间向量求线⾯夹⾓是解题的关键,考查学⽣的空间⽴体感和运算能⼒,属于基础题.17.【答案】解:选择条件①(Ⅰ)由余弦定理得a 2=b 2+c 2?2bccosA ,即a 2?b 2=49?14b ×(?17)=49+2b ,∴(a +b)(a ?b)=49+2b ,∵a +b =11,∴11a ?11b =49+2b ,即11a ?13b =49,联⽴{a +b =1111a ?13b =49,解得a =8,b =3,故a =8.(Ⅱ)在△ABC 中,sinA >0,∴sinA =√1?cos 2A =4√37,由正弦定理可得?asinA =csinC ,∴sinC =csinA a =7×4√378=√32,∴S △ABC =12absinC =12×8×3×√32=6√3.选择条件②(Ⅰ)在△ABC 中,sinA >0,sinB >0,C =π?(A +B),∵cosA =1 8,cosB =916,∴sinA =√1?cos 2A =3√78,sinB =2B =5√716,由正弦定理可得asinA =bsinB ,∴ab =sinAsinB =65,∵a +b =11,∴a =6,b =5,故a =6;(Ⅱ)在△ABC 中,C =π?(A +B),∴sinC =sin(A +B)=sinAcosB +cosAsinB =3√78×916+5√716×18=√74,∴S △ABC =12absinC =12×6×5×√74=15√74【解析】选择条件①(Ⅰ)由余弦定理求出(a +b)(a ?b)=49+2b ,再结合a +b =11,即可求出a 的值,(Ⅱ)由正弦定理可得sin C ,再根据三⾓形的⾯积公式即可求出,选择条件②(Ⅰ)根据同⾓的三⾓函数的关系和正弦定理可得ab =sinAsinB =65,再结合a +b =11,即可求出a 的值,(Ⅱ)由两⾓和的正弦公式求出sin C ,再根据三⾓形的⾯积公式即可求出.本题考查了同⾓的三⾓函数的关系,两⾓和的正弦公式,正余弦定理,三⾓形的⾯积公式等知识,考查了运算能⼒求解能⼒,转化与化归能⼒,属于中档题.18.【答案】解:(Ⅰ)设“该校男⽣⽀持⽅案⼀”为事件A ,“该校⼥⽣⽀持⽅案⼀”为事件B ,则P(A)=200200+400=13,P(B)=300300+100=34; (Ⅱ)由(Ⅰ)知,P(A)=13,P(B)=34,设“这3⼈中恰有2⼈⽀持⽅案⼀”为事件C ,则P(C)=C 22(13)2(1?34)+C 21?13?(1?13)?34=1336; (Ⅲ)p 0>p 1.【解析】(Ⅰ)根据古典概型的概率公式直接求解即可;(Ⅱ)结合(Ⅰ)及相互独⽴事件同时发⽣的概率直接求解即可; (Ⅲ)直接写出结论即可.本题考查古典概型及相互独⽴事件同时发⽣的概率求法,考查计算能⼒及推理能⼒,属于基础题.19.【答案】解:(1)f(x)=12?x 2的导函数f′(x)=?2x ,令切点为(m,n),可得切线的斜率为?2m =?2,∴m =1,∴n =12?1=11,∴切线的⽅程为y =?2x +13;(2)曲线y =f(x)在点(t,f(t))处的切线的斜率为k =?2t ,切线⽅程为y ?(12?t 2)=?2t(x ?t),令x =0,可得y =12+t 2,令y =0,可得x =12t +6t ,∴S(t)=12|12t +6t|?(12+t 2),由S(?t)=S(t),可知S(t)为偶函数,不妨设t >0,则S(t)=14(t +12t)(12+t 2),∴S′(t)=14(3t 2+24?144t )=34?(t 2?4)(t 2+12)t ,由S′(t)=0,得t =2,当t >2时,S′(t)>0,S(t)单调递增;当0【解析】本题考查导数的运⽤:求切线的⽅程和利⽤导数研究函数的单调性、极值和最值,考查⽅程思想和运算能⼒,属于较难题.(1)求得f(x)=12?x 2的导数,设切点为(m,n),可得切线的斜率,解⽅程可得m ,n ,进⽽得到切线的⽅程;(2)求得切线的斜率和⽅程,分别令x =0,y =0,求得切线的横截距和纵截距,可得三⾓形的⾯积,考虑t >0的情况,求得导数和单调区间、极值,然后求出S(t)的最⼩值.20.【答案】解:(Ⅰ)椭圆C :x 2a 2+y2b2=1过点A(?2,?1),且a =2b ,则{4a2+1b 2=1a =2b,解得b 2=2,a 2=8,∴椭圆⽅程为x 28+y 22=1,(Ⅱ)由题意可得直线l 的斜率存在,设直线⽅程为y =k(x +4),由{y =k(x +4)x 28+y 22=1,消y 整理可得(1+4k 2)x 2+32k 2x +64k 2?8=0,∴△=?32(4k 2?1)>0,解得?1 22,设M(x 1,y 1),N(x 2,y 2),∴x 1+x 2=?32?k 21+4k2,x 1x 2=64k 2?81+4k 2,则直线AM 的⽅程为y +1=?y 1+1x 1+2(x +2),直线AN 的⽅程为y +1=y 2+1x 2+2(x +2),分别令x =?4,可得y P =2(y 1+1)x 1+21=(1+2k)x 1+(8k+4)x 1+2,y Q =?(1+2k)x 2+(8k+4)x 2+2∴|PB|=|y P |=|(1+2k)x 1+(8k+4)x 1+2|,|QB|=|y Q |=|(1+2k)x 2+(8k+4)x 2+2|,∴|PB||BQ|=|[(2k +1)x 1+(8k +4)](x 2+2)[(2k +1)x 2+(8k +4)](x 1+2)|=|(2k +1)x 1x 2+(4k +2)(x 1+x 2)+8(2k +1)+(4k +2)x 2(2k +1)x 1x 2+(4k +2)(x 1+x 2)+8(2k +1)+(4k +2)x 1|∵(2k +1)x 1x 2+(4k +2)(x 1+x 2)+8(2k +1)=32k 2(2k+1)1+4k 2,∴|(2k+1)x 1x 2+(4k+2)(x 1+x 2)+8(2k+1)+(4k+2)x 2(2k+1)x1x 2+(4k+2)(x 1+x 2)+8(2k+1)+(4k+2)x 1|=|(2k+1)(32k 24k 2+1+2x 2)(2k+1)(32k24k 2+1+2x 1)|=|?(x 1+x 2)+2x2?(x 1+x 2)+2x 1|=1,故|PB||BQ|=1.【解析】(Ⅰ)由题意可得{4a 2+1b 2=1a =2b,解得b 2=2,a 2=8,即可求出椭圆⽅程;(Ⅱ)设直线⽅程为y =k(x +4),设M(x 1,y 1),N(x 2,y 2),可得直线AM 的⽅程为y +1=+2(x +2),直线AN 的⽅程为y +1=y 2+1x 2+2(x +2),分别令x =?4,求出y P =?(1+2k)x 1+(8k+4)x 1+2,y Q =?(1+2k)x 2+(8k+4)x 2+2,代⼊化简整理即可求出.本题考查了直线和椭圆的位置关系,考查了运算求解能⼒,转化与化归能⼒,分类与整合能⼒,属于难题.21.【答案】解:(Ⅰ)不满⾜,理由:a 32a 2=92?N ?,不存在⼀项a m 使得a 32a 2=a m .(Ⅱ)数列{a n }同时满⾜性质①和性质②,理由:对于任意的i 和j ,满⾜a i2a j =22i?j?1,因为i ∈N ?,j ∈N ?且i >j ,所以2i ?j ∈N ?,则必存在m =2i ?j ,此时,2m?1∈{a i }且满⾜a i2a j=22i?j?1=a m ,性质①成⽴,对于任意的n ,欲满⾜a n =2n?1=a k2a l=22k?l?1,满⾜n =2k ?l 即可,因为k ∈N ?,l ∈N ?,且k >l ,所以2k ?l 可表⽰所有正整数,所以必有⼀组k ,l 使n =2k ?l ,即满⾜a n =a k2a l②成⽴.(Ⅲ)⾸先,先证明数列恒正或恒负,反证法:假设这个递增数列先负后正,那么必有⼀项a l 绝对值最⼩或者有a l 与a l+1同时取得绝对值最⼩,如仅有⼀项a l 绝对值最⼩,此时必有⼀项a m =a l 2a j,此时|a m |<|a l |与前提⽭盾,如有两项a l 与a l+1 同时取得绝对值最⼩值,那么必有a m =a i 2a i+1,此时|a m |<|a l |,与前提条件⽭盾,所以数列必然恒正或恒负,在数列恒正的情况下,由②知,存在k ,l 使得a k2al =a 3,因为是递增数列,a 3>a k >a l ,即3>k >l ,所以a 22a 1=a 3,此时a 1,a 2,a 3成等⽐数列,数学归纳法:(1)已证n =3时,满⾜{a n }是等⽐数列,公⽐q =a2a 1,(2)假设n =k 时,也满⾜{a k }是等⽐数列,公⽐q =a2a 1,那么由①知a k 2a k?1=qa k 等于数列的某⼀项a m ,证明这⼀项为a k+1即可,反证法:假设这⼀项不是a k+1,因为是递增数列,所以该项a m =a l 2al?1=qa k >a k+1,那么a k2a la m2a l>a m >a l ,所以k +1>m >l ,所以a m ,a l 分别是等⽐数列{a k }中两项,即a m =a 1q m?1,a l =a 1q l?1,原式变为a 1q k?1所以k ?1<2m ?l ?1所以知a k 2ak?1=qa k =a k+1,前{a k+1}为等⽐数列,由数学归纳法知,{a n }是等⽐数列得证,同理,数列恒负,{a n }也是等⽐数列.【解析】(Ⅰ)由a 32a 2=92?N ?,即可知道不满⾜性质.(Ⅱ)对于任意的i 和j ,满⾜a i 2a j=22i?j?1,?2i ?j ∈N ?,必存在m =2i ?j ,可得满⾜性质①;对于任意的n ,欲满⾜a n =2n?1=a k2a l=22k?l?1,?n =2k ?l 即可,必存在有⼀组k ,l 使使得它成⽴,故满⾜性质②.(Ⅲ)先⽤反证法证明数列必然恒正或恒负,再⽤数学归纳法证明{a n }也是等⽐数列,即可.本题属于新定义题,考查等⽐数列的性质,数学归纳法等,考查逻辑思维能⼒,属于难题.。

2020年新高考北京卷数学试题(含解析)

2020年新高考北京卷数学试题(含解析)

2020年普通高等学校招生全国统一考试数学(北京卷)一、选择题1.已知集合{1,0,1,2},{|03}A B x x =-=<<,则A B ⋂=( ) A.{1,0,1}- B.{0,1} C.{1,1,2}- D.{1,2}【答案】D【解析】因为{1,0,1,2},{|03}A B x x =-=<<,所以}2,1{=⋂B A 2.在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=( ) A.12i + B.2i -+ C.12i - D.2i --【答案】B【解析】由题意知12z i =+,则2(12)22i z i i i i i ⋅=+=+=-.3.在52)的展开式中,2x 的系数为( ) A.5- B.5 C.10- D.10【答案】C【解析】由题意知:52)的通项为555215(2)(2)r r rr rrr T C C x--+=⋅⋅-=-,令522r -=得:1r =,故2x 的系数为15210C -=-. 4.某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( )A.6+B.6+C.12+D.12+【答案】D【解析】由题意可知,该三棱柱为直三棱柱,等边三角形边长为2,13222221222S =⨯⨯+⨯⨯⨯⨯=+5.已知半径为1的圆经过点)4,3(,则其圆心到原点的距离的最小值为( )A.4B.5C.6D.7【答案】A【解析】由题意可知,圆心的轨迹是以)4,3(为圆心,半径为1的圆,∴min 14d ==.6.已知函数12)(--=x x f x,则不等式()0f x >的解集是( )A.)1,1(-B.(,1)(1,)-∞-+∞C.(0,1)D.(,0)(1,)-∞+∞【答案】D【解析】()021xf x x >⇔>+,分别作出2xy =与1y x =+的图像,如下图所示,易知两图像交点为(0,1),(1,2),故可知()0f x >的解集为(,0)(1,)-∞+∞.7.设抛物线的顶点为O ,焦点为F ,准线为l ;P 是抛物线异于O 的一点,过P 做PQ l ⊥于Q ,则线段FQ 的垂直平分线( ) A.经过点O B.经过点P C.平行于直线OP D.垂直于直线OP【答案】B【解析】根据抛物线的定义PQ PF =,则QPF ∆是等腰三角形,且FQ 为底边,则线段FQ 的垂直平分线经过点P .8.在等差数列{n a }中,19a =-,51a =-,记12(1,2,)n n T a a a n =⋯=⋯,则数列{n T }( )A.有最大项,有最小项B.有最大项,无最小项C.无最大项,有最小项D.无最大项,无最小项 【答案】B【解析】数列{}n a 为等差数列,19a =-,51a =-, ∴211n a n =-,∴数列{}n a 为递增数列 ∴当5n ≤时,0n a <,当6n ≥时,0n a >.∴当5n ≤时,4n T T ≥,当6≥n 时,0≤n T , 且 <<=<<<<<<765432110a a a a a a a ∴数列{}n T 有最大项4T ,无最小项. ∴数列{}n T 有最大项,无最小项.9.已知,R αβ∈,则“存在k Z ∈,使得π(1)kk αβ=+-”是“βαsin sin =”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】sin sin 2k αβαβπ=⇔-=或2()(1)()k k k Z k k Z αβππαπβ+=+∈⇔=+-∈.10.2020年3月14日是全球首个国际圆周率日(ay)D π.历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似,数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正n 6边形的周长和外切正n 6边形(各边均与圆相切的正n 6边形)的周长,将它们的算术平均数作为π2的近似值.按照阿尔·卡西的方法,π的近似值的表达方式是( ) A.30303(sin tan )n n n ︒︒+ B.30306(sin tan )n n n ︒︒+ C.60603(sintan )n n n︒︒+ D.60606(sintan )n n n︒︒+ 【答案】A【解析】根据三角不等式,其中x 采用弧度制sin tan x x x <<,当角度x 很小时,可以近似的认为,sin tan x x x ≈≈,因此,当n 很大时,有3030303022sintan 3063n n n n n n nππ+≈+=⨯︒⨯︒︒=︒︒=, 对于选项A ,30303(sin tan )33n n n n nππ︒︒+≈⋅=,故选A. 二、填空题 11.函数1()=ln 1f x x x ++的定义域是________. 【答案】(0,)+∞【解析】由题意知:10x x +≠⎧⎨>⎩,得:0x >,故函数()f x 的定义域为(0,)+∞.12.已知双曲线22:163x y C -=,则C 的右焦点的坐标为________;C 的焦点到其渐近线的距离是________.【答案】(3,0)【解析】由题意知,令a =b =2229c a b =+=,则双曲线C 的右焦点坐标为(3,0),∵双曲线的渐近线方程为0x ±=,=13.已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+,则||PD = ;PB PD ⋅= .1-【解析】建立平面直角坐标系,以A 为坐标原点,已知正方形ABCD 的边长为2,则B 点坐标(2,0),C 点坐标(2,2),D 点坐标(0,2),则111()(2,0)(2,2)(2,1)222AP AB AC =+=+=,∴P 点坐标为(2,1)P ,∴(2,1)PD =-,则||5PD =,(0,1)PB =-,(2,1)PD =-,则1PB PD ⋅=-.14.若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________. 【答案】2π【解析】()sin()cos f x x x ϕ=++,∴()sin cos cos sin cos f x x x x ϕϕ=++,()(sin 1)cos cos sin f x x x ϕϕ=++,∵()f x 最大值为2,2=,整理得,sin 1ϕ=,∴ϕ可取2π.15.为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在12[,]t t 这段时间内,甲企业的污水治理能力比乙企业强; ②在2t 时刻,甲企业的污水治理能力比乙企业强; ③在3t 时刻,甲、乙两企业的污水排放量都已达标;④甲企业在1[0,]t ,12[,]t t ,23[,]t t 这三段时间中,在1[0,]t 的污水治理能力最强. 其中所有正确结论的序号是 . 【答案】①②③【解析】①在12[,]t t 这段时间内,根据图象,设2121()()f t f t k t t -=--甲甲甲,2121()()f t f t k t t -=--乙乙乙,显然k k >甲乙,∴①正确;②在2t 时刻,2222()()f t f t t t ->-甲乙,则甲企业的污水治理能力比乙企业强,故②正确; ③在3t 时刻,甲、乙两企业的污水排放量在污水达标排放量的下面,故甲、乙排放量都已达标;故③正确④甲企业在1[0,]t ,12[,]t t ,23[,]t t 这三段时间中,2121()()f t f t t t ---的值最大,则12[,]t t 的污水治理能力最强,故④不正确. 三、解析题16.如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点.(1)求证:1//BC 平面1AD E ;(2)求直线1AA 与平面1AD E 所成角的正弦值.【解析】(1)在正方体1111ABCD A B C D -中,∵11//AB C D ,11AB C D =,∴四边形11ABC D 为平行四边形,∴11//BC AD ,又1BC ⊄面1AD E ,1AD ⊂面1AD E ,∴1//BC 面1AD E . (2)分别以AD ,AB ,1AA 为x ,y ,z 轴,建立空间直角坐标系A xyz -,设正方体棱长为1,易知(0,0,0)A ,1(0,0,1)A ,1(1,0,1)D ,1(0,1,)2E ,则1(0,0,1)AA =,1(1,0,1)AD=,1(0,1,)2AE =,设平面1AD E 的法向量为(,,)n x y z =,则1001002x z n AD y z n AE +=⎧⎧⋅=⎪⎪⇒⎨⎨+=⋅=⎪⎪⎩⎩, 令1x =,则1(1,,1)2n =-,设直线1AA 与平面1AD E 所成的角为θ,则12sin |cos ,||3AA n θ=<>==, 即直线1AA 与平面1AD E 所成角的正弦值为23. 17.在ABC ∆中,11a b +=,再从条件①、条件②这两个条件中选择一个作为已知,求: (1)a 的值;(2)sin C 和ABC ∆的面积. 条件①:7c =,1cos 7A =- 条件②,1cos ,8A =9cos .16B = 注:如果选择条件①和条件②分别解析,按第一个解析计分. 【解析】选择条件①:(1)由余弦定理得:2222cos ab c bc A =+-,即2214914()7a b b -=-⨯-,()()492a b a b b +-=+,1111492a b b -=+,114913a b =+,∵11a b +=,11b a =-,∴111431349a a =-+,∴24192a =,∴8a = (2)在ABC ∆中,∴sin 0A >,∴sin 7A ==,由正弦定理得:sin sin a c A C=,∴7sin 7sin 8c A C a ===11sin 8322ABC S ab C ∆==⨯⨯=. 选择条件②(1)∵在ABC ∆中,∴sin 0A >,sin 0B >,∴sin A ===,∴sin B ==,由正弦定理得:sin sin a b A B =,∴sin 6sin 85a Ab B ===,∴6a =. (2)在ABC ∆中,()C A B π=-+,∴sin sin()C A B =+,sin sin cos sin cos C A B B A =+,91sin 168C =+=,∴11sin 6522ABC S ab C ∆==⨯⨯=18.某校为举办甲乙两项不同活动,分别设计了相应的活动方案:方案一、方案二、为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:假设所有学生对活动方案是否支持相互独立.(1)分别估计该校男生支持方案一的概率,该校女生支持方案一的概率:(2)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人恰有2人支持方案一的概率;(3)将该校学生支持方案二的中概率估计值记为0P ,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1P ,试比较0P 与1P 的大小.(结论不要求证明)【解析】(1)设该校男生支持方案一为事件A ,该校女生支持方案一为事件B , ∴2001()2004003P A ==+,∴3003()2004004P B ==+.(2)这3人恰有2人支持方案一为事件C ,∴221131131113()1134334363()()()36P C C =⋅-+⋅⋅-⋅=+=. (3)01P P >.19.已知函数()212f x x =-.(1)求曲线()y f x =的斜率等于2-的切线方程;(2)设曲线y f x =()在点()()t f t ,处的切线与坐标轴围成的三角形面积为()S t ,求()S t 的最小值.【解析】(1)设该切线方程的切点为00(,)x y , ∵()2f x x '=-,∴00()22f x x '=-=-,则01x =,故0(1)12111y f ==-=,则该切线方程为112(1)y x -=--, 即213y x =-+.(2)由题意可知:0t ≠,∵()2f x x '=-,∴()2f t t '=-,又2()12f t t =-, ∴曲线在(,())t f t 处的切线方程为2(12)2()y t t x t --=--,即2212y tx t =-++,令0x =,212y t =+;令0y =,2122t x t+=,故2222112(12)()(12)2|2|4||t t S t t t t ++=⋅+⋅=由二次函数的对称性,不妨令0t >,故2242()1224144()44t t t S t t t +++==, ∵223(12)(2)(2)()4t t t S t t++-'=, ∴当02t <<时,()0S t '<,()S t 单调递减, 当2t >时,()0S t '>,()S t 单调递增, ∴当2t =时,min ()(2)=32S t S =,∴由对称性知,当2t =±时,()S t 取得最小值32.20.已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(1)求椭圆C 的方程:(2)过点(4,0)B -的直线l 交椭圆C 于点M ,N 直线MA ,NA 分别交直线4x =-于点P ,Q ,求||||PQ BQ 的值. 【解析】(1)根据题意,(2,1)A --代入椭圆,则22411a b+=,又2a b =,所以28a =,22b =,故22182x y +=. (2) ①当斜率为0时,又当直线l 的斜率为0时,不妨设点(M -,N ,直线AM方程为1(2y x =-+,直线AN方程为1(2y x =-,令4x =-,则P y =,Q y =||1||PB QB =; ②当斜率不为0时,设直线:4MN x ty =-,将直线MN 与椭圆联立:22224(4)880182x ty t y ty x y =-⎧⎪⇒+-+=⎨+=⎪⎩,22(8)32(4)0t t ∆=--+>,∴2t >或2t <-.设直线111:1(2)2y AM y x x ++=++,令4x =-,11112(1)2(1)1122P y y y x ty -+-+=-=-+-;设221:1(2)2y AN y x x ++=++,令4x =-,22222(1)2(1)1122Q y y y x ty -+-+=-=-+-,则12122121212122(1)2(1)2[(1)(2)(1)(2)]22222()4P Q y y y ty y ty y y ty ty t y y t y y -+-+-+-++-+=--=-=--+++12122122112122212122282[2()2()5]2(2222)42882()42444t t y y y y ty y ty y ty y ty y t t y y t y y t t t t -⋅++-+--+--++--+-=+++⋅-⋅+++222222216882[24]444220816444t t t t t t t t t t t -+⋅-⋅-+++-=-=-+++,∴P Qy y =-,∴||1||PQ BQ =.综上所述,||1||PQ BQ =. 21.已知{}n a 是无穷数列,给出两个性质:①对于{}n a 中任意两项(),i j a a i j >,在{}n a 中都存在一项m a ,使得2i m ja a a =. ②对于{}n a 中任意一项(3)n a n ≥,在{}n a 都存在两项(),k l a a k l >,使得2kn la a a =(1)若()1,2,n a n n ==⋯,判断{}n a 是否满足性质①,说明理由: (2)若()121,2,n n a n -==⋯,判断数列{}n a 是否同时满足性质①和性质②,说明理由;(3)若{}n a 是递增数列,且同时满足性质①和性质②,证明:{}n a 为等比数列. 【解析】(1)若}{(1,2,...),n n a n n a ==不满足性质①,理由如下:若3,2i j ==,则由性质①,知“292i j a a =不是整数,故不在数列{}n a 中,不满足性质①。

精品解析:2020年北京市高考数学试卷(原卷版)

精品解析:2020年北京市高考数学试卷(原卷版)

ln
x
的定义域是____________.
12.已知双曲线 C : x2 y2 1 ,则 C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是 63
_________.
13.已知正方形
ABCD
的边长为
2,点
P
满足
AP
1
( AB
AC)
,则 |
PD
|
_________;
2
PB PD பைடு நூலகம்________.
A. {1, 0,1}
B. {0,1}
C. {1,1, 2}
D. {1, 2}
2.在复平面内,复数 z 对应的点的坐标是 (1, 2) ,则 i z ( ).
A. 1 2i
B. 2 i
C. 1 2i
D. 2 i
3.在 ( x 2)5 的展开式中, x2 的系数为( ).
A. 5
B. 5
C. 10
其中所有正确结论的序号是____________________.
三、解答题共 6 小题,共 85 分,解答应写出文字说明,演算步骤或证明过程. 16.如图,在正方体 ABCD A1B1C1D1 中,E 为 BB1 的中点.
(Ⅰ)求证: BC1 / / 平面 AD1E ;
(Ⅱ)求直线 AA1 与平面 AD1E 所成角的正弦值. 17.在 ABC 中, a b 11,再从条件①、条件②这两个条件中选择一个作为己知,求:
污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.
给出下列四个结论:
①在 t1,t2 这段时间内,甲企业的污水治理能力比乙企业强;
②在 t2 时刻,甲企业的污水治理能力比乙企业强; ③在 t3 时刻,甲、乙两企业的污水排放都已达标;

2020年北京卷数学高考试题文档版(含答案)

2020年北京卷数学高考试题文档版(含答案)

2020年北京市高考数学试卷一、选择题共10小题,每小题4分,共40分。

在每小题列出的的四个选项中,选出符合题目要求的一项。

1.(4分)已知集合{1A =-,0,1,2},{|03}B x x =<<,则(A B = )A .{1-,0,1}B .{0,1}C .{1-,1,2}D .{1,2}2.(4分)在复平面内,复数z 对应的点的坐标是(1,2),则(i z = ) A .12i +B .2i -+C .12i -D .2i --3.(4分)在5(2)x -的展开式中,2x 的系数为( ) A .5-B .5C .10-D .104.(4分)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( )A .63+B .623+C .123D .1223+5.(4分)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ) A .4B .5C .6D .76.(4分)已知函数()21x f x x =--,则不等式()0f x >的解集是( ) A .(1,1)- B .(-∞,1)(1-⋃,)+∞C .(0,1)D .(-∞,0)(1⋃,)+∞7.(4分)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ) A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP8.(4分)在等差数列{}n a 中,19a =-,51a =-.记12(1n n T a a a n =⋯=,2,)⋯,则数列{}(n T)A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项9.(4分)已知α,R β∈,则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.(4分)2020年3月14日是全球首个国际圆周率日(π)Day .历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似,数学家阿尔卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔卡西的方法,π的近似值的表达式是( ) A .30303(sin tan )n n n ︒︒+ B .30306(sin tan )n n n ︒︒+ C .60603(sintan )n n n︒︒+ D .60606(sintan )n n n︒︒+ 二、填空题共5小题,每小题5分,共25分。

2020年北京市高考数学试卷(解析版)

2020年北京市高考数学试卷(解析版)

绝密★本科目考试启用前2020年普通高等学校招生全国统一考试(北京卷)数学本试卷共5页,150分,考试时长120分钟.考试务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合A = {-1,0,1,2), 3 = {xl0vxv3},则AC\B=().A. {70,1}B. {0,1}C. {-1,1,2}D. {1,2}【答案】D【解析】【分析】根据交集左义直接得结果.【详解】40〃 = {一1,0,1,2}仃(0,3) = {1,2},故选:D.【点睹】本题考查集合交集概念,考査基本分析求解能力,属基础题.2.在复平而内,复数z对应的点的坐标是(1,2),则iz=().A. 1 + 2/B. 一2 + 7C. 1-2/D. -2-/【答案】B【解析】【分析】先根据复数几何意义得z ,再根据复数乘法法则得结果.【详解】由题意得z = l + 2/\ :.iz = i-2.故选:B.【点睹】本题考查复数几何意义以及复数乘法法则,考查基本分析求解能力,属基础题.3. 在(>/7-2)5的展开式中,F 的系数为().A. -5B.5C. -10D. 10【答案】C【解析】【分析】首先写出展开式的通项公式,然后结合通项公式确左x 2的系数即可.【详解】(旅-2)'展开式的通项公式为::严C ;(仮厂(-2)'=(—2)「C ;x 苧,令耳=2可得:r = l ,则的系数为:(_2)"C ;=(—2)x5 = —10.故选:C.【点睛】二项式立理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给岀的条件(特左项) 和通项公式,建立方程来确立指数(求解时要注意二项式系数中“和,•的隐含条件,即",『均为非负整数, 且如常数项指数为零、有理项指数为整数等):第二步是根据所求的指数,再求所求解的项. 4. 某三棱柱的底而为正三角形,其三视图如图所示,该三棱柱的表而积为().首先确左几何体的结构特征,然后求解其表面积即可.扎 6 + \/?>【答案】D【解析】B. 6 + 2^3C. 12 + ^D. 12 + 2 的【详解】由题意可得,三棱柱的上下底而为边长为2的等边三角形,侧面为三个边长为2的正方形,贝J其表而积为:S=3x(2x2) + 2x -^-x2x2xsin60°^ = 12 + 2\/3 .故选:D.【点睛】(1)以三视图为载体考查几何体的表而积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多而体的表而积是各个面的而积之和:组合体的表而积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲而,计算侧而积时需要将这个曲而展为平面图形计算,而表而积是侧而积与底而圆的面积之和.5.已知半径为1的圆经过点(3,4),则英圆心到原点的距离的最小值为().扎4 B. 5 C. 6 D. 7【答案】A【解析】【分析】求出圆心C的轨迹方程后,根拯圆心M到原点0的距离减去半径1可得答案.【详解】设圆心C(x,y),则^(x-3)2+(y-4)2 =1.化简得(x-3)2+(y-4)2 = l,所以圆心C的轨迹是以M(3,4)为圆心,1为半径的圆,当且仅当C在线段OM上时取得等号,故选:A.【点睹】本题考查了圆的标准方程,属于基础题.6•已知函数f(x) = 2x-x-\,贝怀等式f(x)> 0的解集是().扎(-1,1) B. (Y,—1)U(1,E)C. (0,1)D. (p,02(l,P)【答案】D【解析】【分析】作出函数y = 2V和y = x+l的图象,观察图象可得结果.【详解】因为/(x) = 2'-x-l,所以/(x)>0等价于2">x + l,两函数图象的交点坐标为(0,1),(1,2),不等式2T>x +1的解为xvO或x>l.所以不等式/(x)>0的解集为:(-co,0)^(1,+oo).故选:D.【点睛】本题考查了图象法解不等式,属于基础题.7.设抛物线的顶点为0,焦点为F,准线为/. P是抛物线上异于。

北京市2020〖人教版〗高考数学试卷文科 (2)

北京市2020〖人教版〗高考数学试卷文科 (2)

北京市2020年〖人教版〗高考数学试卷文科一、选择题:本题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设集合M={x||x﹣1|<1},N={x|x<2},则M∩N=()A.(﹣1,1)B.(﹣1,2)C.(0,2)D.(1,2)2.(5分)已知i是虚数单位,若复数z满足zi=1+i,则z2=()A.﹣2iB.2iC.﹣2D.23.(5分)已知x,y满足约束条件则z=x+2y的最大值是()A.﹣3B.﹣1C.1D.34.(5分)已知cosx=,则cos2x=()A.﹣B.C.﹣D.5.(5分)已知命题p:∃x∈R,x2﹣x+1≥0.命题q:若a2<b2,则a<b,下列命题为真命题的是()A.p∧qB.p∧¬qC.¬p∧qD.¬p∧¬q6.(5分)若执行右侧的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断框中的条件可能为()A.x>3B.x>4C.x≤4D.x≤57.(5分)函数y=sin2x+cos2x的最小正周期为()A.B.C.πD.2π8.(5分)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()A.3,5B.5,5C.3,7D.5,79.(5分)设f(x)=若f(a)=f(a+1),则f()=()A.2B.4C.6D.810.(5分)若函数e x f(x)(e=2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质,下列函数中具有M性质的是()A.f(x)=2﹣x B.f(x)=x2C.f(x)=3﹣x D.f(x)=cosx二、填空题:本大题共5小题,每小题5分,共25分11.(5分)已知向量=(2,6),=(﹣1,λ),若,则λ=.12.(5分)若直线=1(a>0,b>0)过点(1,2),则2a+b的最小值为.13.(5分)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.14.(5分)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x﹣2).若当x∈[﹣3,0]时,f(x)=6﹣x,则f(919)=.15.(5分)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.三、解答题16.(12分)某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知b=3,=﹣6,S△ABC=3,求A和a.18.(12分)由四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD 的交点,E为AD的中点,A1E⊥平面ABCD,(Ⅰ)证明:A1O∥平面B1CD1;(Ⅱ)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.19.(12分)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}通项公式;(2){b n}为各项非零的等差数列,其前n项和为S n,已知S2n+1=b n b n+1,求数列的前n项和T n.20.(13分)已知函数f(x)=x3﹣ax2,a∈R,(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.21.(14分)在平面直角坐标系xOy中,已知椭圆C:=1(a>b>0)的离心率为,椭圆C截直线y=1所得线段的长度为2.(Ⅰ)求椭圆C的方程;(Ⅱ)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N 是M关于O的对称点,⊙N的半径为|NO|.设D为AB的中点,DE,DF与⊙N 分别相切于点E,F,求∠EDF的最小值.参考答案与试题解析一、选择题:本题共10小题,每小题5分,共50分。

2020年普通高等学校招生全国统一考试数学试题 文(北京卷,含答案)

2020年普通高等学校招生全国统一考试数学试题 文(北京卷,含答案)

绝密★启封并使用完毕前2020年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知U =R ,集合{|22}A x x x =<->或,则(A )(2,2)- (B )(,2)(2,)-∞-+∞U (C )[2,2]- (D )(,2][2,)-∞-+∞U (2)若复数(1i)(i)a -+在复平面内对应的点在第二象限,则实数a 的取值范围是(A )(,1)-∞ (B )(,1)-∞- (C )(1,)+∞ (D )(1,)-+∞ (3)执行如图所示的程序框图,输出的s 值为(A )2 (B )32(C )53 (D )85(4)若,x y 满足3,2,,x x y y x ≤⎧⎪+≥⎨⎪≤⎩则2x y +的最大值为(A )1 (B )3 (C )5(D )9(5)已知函数1()3()3x xf x =-,则()f x(A )是偶函数,且在R 上是增函数 (B )是奇函数,且在R 上是增函数 (C )是偶函数,且在R 上是减函数 (D )是奇函数,且在R 上是增函数(6)某三棱锥的三视图如图所示,则该三棱锥的体积为(A )60 (B )30 (C )20 (D )10(7)设m , n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(8)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是 (参考数据:lg3≈0.48)(A )1033 (B )1053 (C )1073 (D )1093第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2020年普通高等学校招生全国统一考试数学文试题(北京卷,含答案)(2)

2020年普通高等学校招生全国统一考试数学文试题(北京卷,含答案)(2)

绝密★启用并使用完毕2020年普通高等学校招生全国统一考试(北京卷)数学(文)本试卷共5页,150分.考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上答无效。

考试结束后,将本卷和答题卡一并交回。

第一部分 (选择题 共40分)一、选择题共8小题。

每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

(1)已知集合{1,0,1}A =-,{|11}B x x =-≤<,则A B =I ( )(A ){0} (B ){1,0}- (C ){0,1} (D ){1,0,1}-(2)设,,a b c R ∈,且a b >,则( )(A )ac bc > (B )11a b < (C )22a b > (D )33a b > (3)下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是( )(A )1y x = (B) x y e -= (C )21y x =-+ (D) lg ||y x =(4)在复平面内,复数(2)i i -对应的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限(5)在ABC ∆中,3a =,5b =,1sin 3A =,则sinB =( ) (A )15 (B )59(C )53 (D )1 (6)执行如图所示的程序框图,输出的S 值为( )(A )1(B )23(C )1321(D )610987 (7)双曲线221y x m -=的离心率大于2的充分必要条件是( )(A )12m >(B )1m ≥ (C )1m > (D )2m >(8)如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,P到各顶点的距离的不同取值有( )(A )3个 (B )4个(C )5个 (D )6个第二部分(非选择题 共110分)二、填空题共6题,每小题5分,共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档