抽屉原理六年级奥数
六年级《抽屉原理》奥数课件
例题四
11名学生到老师家借书,老师的书房中有A、B、C、D 四类书,每名学生最多可借两本不同类的书,最少借一本。 试证明:必有两个学生所借的书的类型相同。
答:学生所借的书有10种可能:
A、B、C、D、AB、AC、AD、 BC、BD、CD。
11个学生借书必定有两个学生借 的书类型是相同的。
找抽屉
练习四
小结
最不利原则:从最不利条件发生的情况考虑。 原理1:把不少于n+1个的物体放到n个抽屉里,
则至少有一个抽屉里的东西不少于两个。
例题三
任意4个自然数,其中至少有两个数的 差是3的倍数。这是为什么?
n n12 33hh 1(2 整数 )1 答:可任能意:4个0、自1然、数2除,以因3此的至“余少数有”两有个3种
抽屉原理
10
10个苹果放到 9个抽屉(盒子 )里,一定有一 个抽屉(盒子) 至少有2个苹果
。
例题一
一个小组共有13名同学,其中至少有2 名同学同一个月过生日,为什么?
答:假设12个月都有1名同学过生日, 则多出来的1名同学一定与另1名同 学在同一个月过生日。
一年有12 个月。
练习一
在367个1996年出生的儿童中,至少有
n33h 3 2
自然数的“余数”是相同的。它们的 差定是3的倍数。
任意4个自然数中一定存在除以3的“余数”相同的两个自然数。
这两个自然数减去相同的“余数”后都是3的倍数。
这两个3的倍数的差一定也是3的倍数。
练习三
任取8个自然数,必有两个数的差是7的 倍数。为什么?
答:任意8个自然数除以7的“余数”有7种 可能:0、1、2、3、4、5、6,因此至少 有两个自然数的“余数”是相同的。它们的 差一定是7的倍数。
(六年级)小学六年级奥数题及答案
小学六年级奥数题及答案六年级的奥数学习应该有更强的针对性,从最近的一些的考试可以看出一个趋势,就是题量大,时间短,对于单位时间内的做题效率有很高的要求,即速度和正确率。
下面给大家带来关于六年级奥数题及答案,希望对你们有所帮助。
小升初六年级奥数题及答案1、抽屉原理有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
解答首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果.把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉.由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。
2、牛吃草:(中等难度)一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水这类问题,都有它共同的特点,即总水量随漏水的延长而增加.所以总水量是个变量.而单位时间内漏进船的水的增长量是不变的.船内原有的水量(即发现船漏水时船内已有的水量)也是不变的量.对于这个问题我们换一个角度进行分析。
如果设每个人每小时的淘水量为1个单位.那么船内原有水量与3小时内漏水总量之和等于每人每小时淘水量×时间×人数,即1×3×10=30. 船内原有水量与8小时漏水量之和为1×5×8=40。
每小时的漏水量等于8小时与3小时总水量之差÷时间差,即(40-30)÷(8-3)=2(即每小时漏进水量为2个单位,相当于每小时2人的淘水量)。
船内原有的水量等于10人3小时淘出的总水量-3小时漏进水量.3小时漏进水量相当于3×2=6人1小时淘水量.所以船内原有水量为30-(2×3)=24。
高斯小学奥数六年级下册含答案第05讲_抽屉原理
第五讲抽屉原理二本讲知识点汇总:一、最不利原则:为了保.证.能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能达到目标.二、抽屉原理:形式1:把n 1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里;形式2:把m n 1个苹果放到n 个抽屉中,一定有m 1个苹果放在一个抽屉里.例1.中国奥运代表团的173 名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水 6 种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?「分析」本题的“抽屉”是饮料的选法,“苹果”是 1 73名运动员.练习1、中国奥运代表团的83 名运动员到超市买饮料.超市有可乐、雪碧、芬达和橙汁,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?例2.国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项.那么至少有多少个学生,才能保证至少有 4 个人参加的活动完全相同?「分析」本题的“抽屉”是参加活动的方法.练习2、高思运动会共有 4 个项目,每个学生至多参加3项,至少参加 1 项.那么至少有多少个学生,才能保证至少有 5 个人参加的活动完全相同?例3.从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50?「分析」思考一下:哪两个数的和是50?练习3、从1到35这35 个自然数中,至少选出多少个数才能保证其中一定有两个数的和为34?例4.从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是 6 的倍数呢?「分析」两个数的和是7 的倍数,这两个数除以7 的余数要符合什么条件哪?练习4、从1至99这99 个自然数中任意取出一些数,要保证其中一定有两个数的和是5 的倍数,至少要取多少个?例5.至少取出多少个正整数,才能保证其中一定有两个整数的和或差是100 的倍数?「分析」从余数角度思考一下:什么样的两个数的和或差是100?例6.在边长为 2 的正六边形中,放入50 个点,任意三点不共线,请证明:一定能从中选出三个点,以它们为顶点的三角形面积不大于「分析」通过把正六边形均分,来构造“抽屉”1.四大发明之印刷术印刷术是中国古代的四大发明之一,是中国古代汉族劳动人民经过长期实践和研究才发明的.活字印刷的方法是先制成单字的阳文反文字模,然后按照稿件把单字排列在字盘内涂墨印刷.自从汉朝发明纸以后,书写材料比起过去用的甲骨、简牍、金石和缣帛要轻便、经济多了,但是抄写书籍还是非常费工的,远远不能适应社会的需要.至迟到东汉末年的熹平年间(公元172~178 年),出现了摹印和拓印石碑的方法.大约在公元600 年前后的隋朝,人们从刻印章中得到启发,在人类历史上最早发明了雕版印刷术.雕版印刷是在一定厚度的平滑的木板上,粘贴上抄写工整的书稿,薄而近乎透明的稿纸正面和木板相贴,字就成了反体,笔划清晰可辨.雕刻工人用刻刀把版面没有字迹的部分削去,就成了字体凸出的阳文,和字体凹入的碑石阴文截然不同.印刷的时候,在凸起的字体上涂上墨汁,然后把纸覆在它的上面,轻轻拂拭纸背,字迹就留在纸上了.到了宋朝,雕版印刷事业发展到全盛时期.雕版印刷对文化的传播起了重大作用,但是也存在明显缺点:第一,刻版费时费工费料;第二,大批书版存放不便;第三,有错字不容易更正.北宋平民发明家毕昇总结了历代雕版印刷的丰富的实践经验,经过反复试验,在宋仁宗庆历年间(公元1041~1048)制成了胶泥活字,实行排版印刷,完成了印刷史上一项重大的革命.毕昇的方法是这样的:用胶泥做成一个个规格一致的毛坯,在一端刻上反体单字,字划突起的高度象铜钱边缘的厚度一样,用火烧硬,成为单个的胶泥活字.为了适应排版的需要,一般常用字都备有几个甚至几十个,以备同一版内重复的时候使用.遇到不常用的冷僻字,如果事前没有准备,可以随制随用.为便于拣字,把胶泥活字按韵分类放在木格子里,贴上纸条标明.排字的时候,用一块带框的铁板作底托,上面敷一层用松脂、蜡和纸灰混合制成的药剂,然后把需要的胶泥活字拣出来一个个排进框内.排满一框就成为一版,再用火烘烤,等药剂稍微熔化,用一块平板把字面压平,药剂冷却凝固后,就成为版型.印刷的时候,只要在版型上刷上墨,覆上纸,加一定的压力就行了.为了可以连续印刷,就用两块铁板,一版加刷,另一版排字,两版交替使用.印完以后,用火把药剂烤化,用手轻轻一抖,活字就可以从铁板上脱落下来,再按韵放回原来木格里,以备下次再用.毕昇还试验过木活字印刷,由于木料纹理疏密不匀,刻制困难,木活字沾水后变形,以及和药剂粘在一起不容易分开等原因,所以毕昇没有采用.毕昇的胶泥活字版印书方法,如果只印二三本,不算省事,如果印成百上千份,工作效率就极其可观了,不仅能够节约大量的人力物力,而且可以大大提高印刷的速度和质量,比雕版印刷要优越得多.现代的凸版铅印,虽然在设备和技术条件上是宋朝毕昇的活字印刷术所无法比拟的,但是基本原理和方法是完全相同的.活字印刷术的发明,为人类文化做出了重大贡献.这中间,中国的平民发明家毕昇的功绩是不可磨灭的.可是关于毕昇的生平事迹,我们却一无所知,幸亏毕昇创造活字印刷术的事迹,比较完整地记录在北宋著名科学家沈括的名著《梦溪笔谈》里.但是除开西夏文字的几本推测为活字印刷的佛经外,中原地区无发现活字印刷的中文印刷品!作业1. (1) 一个班有37个人,那么至少有多少人是同一星座的?(2) 一副扑克牌,共54张,那么至少从中摸出多少张牌,才能保证至少有6张牌的花色相同?2. 动物王国举行运动会,共有101位运动员,有短跑、跳高、跳远、10米跳台、3米跳板五个项目,每位运动员最多选三个项目,最少选一个项目. 那么至少有多少位运动员所选的项目都相同?3. 1至70这70个自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于6?4. 1至40这40个自然数中,最多可以取出多少个数,使得其中每两个数的和都不是4的倍数?5. 在半径为1的圆内,画13个点,其中任意3点不共线?请证明:一定存在3个点,以6它们为顶点的三角形面积小于6第五讲抽屉原理二例7.答案:12.解答:共有C6215种不同的选择方式,而173 15 11L 8 ,所以至少有12 个人买的饮料完全相同.例8.答案:46.解答:共有C52C5115 种参加方法,所以至少15 3 1 46 人.例9.答案:27.解答:可构造出26个组数:(1 , 49)、( 2, 48)、…、(24, 26)、(25)、( 50).所以至少要取27个数才能保证取到一组和为50 的数.例10.答案:46, 37.解答:由题意可知,如果取出的数没有两个数的和是7的倍数,则:除以7余 1 的数与除以7余6的数不能共存,除以7 余 2 的数与除以7 余 5 的数不能共存,除以7 余 3 的数与除以7 余 4 的数不能共存.而除以7余0的数只能取1个,且100 14 7L 2,所以最不利的情况是取尽余1、余2、余3和一个余0的数, 共45 个数, 所以至少选出46个数才可满足要求.同理至少选出37个数才能保证是 6 的倍数.(注意此时除以 6 余 3 和余0 的数都只能选 1 个)例11 .答案:52.解答:可构造出51 个组数:(1 , 8)、( 2 , 9)-( 7, 14 ); (15, 22 )、(16, 23 )???( 21, 28);……(85, 92)、(86 , 93)-( 91, 98); (99)、(100).每组数中的两数的差为7 ?只取出每个数组中较小的数显然不能满足要求,所以至少要取出52 个数,这时由抽屉原理知必定能取到某一个数组的两个数.例12.解答:先将正六边形分割成 6 个边长为 2 的正三角形,再将每个三角形等分成 4 个边长为 1 的正三角形,这样就把正六边形分割成24 个边长为 1 的正三角形,则由抽屉原理知,必有 3 点在一个等边三角形中,以它们为顶点的三角形面积显然不大于1.(边长是 1 的等边三角形面积小于1)练习1、答案:14.简答:共有C426种不同的选择方式,而83 6 13 5 ,所以至少有14 个人买的饮料完全相同.练习2、答案:57.简答:共有C43C42C4114 种参加方法,所以至少14 4 1 57 人.练习3、答案:20.简答:可构造出19个组数:(1, 33)、( 2, 32)、…、(16,18)、(17)、(34)、( 35).所以至少要取20个数才能保证取到一组和为34的数.练习4、答案:42.简答:1~99这99 个数中除以5余 1 的有20个,余 2 的有20个,余3的有20个,余4的有20个, 余0 的有19 个,选出余 1 和余 2 的数,再选一个余0 的数,再任选一个数一定符合题意,20 20 1 1 42 个.作业6. 答案:(1)4个;(2)23 张.简答:(1)抽屉原理;(2)最不利原则.7. 答案:5位.简答:首先运动员的项目有C5 Cf c3 25种可能,根据抽屉原理,至少有5位运动员的项目相同.8. 答案:36个.简答:每12个数中最多取出6个.9. 答案:12个.简答:将1~40按照除以4的余数分为四组:A 组:{1 , 5,…,37};B 组:{2 , 6,…,38};C组:{3,7,…,39};D 组:{4 , 8,…,40}.首先,B、D组最多取一个?取了A组就不能取C组.所以最多能取12个.10. 证明:将半径为1的圆六等分,分为六个扇形,每个扇形的面积是在同一部分中,这三个点组成的三角形不会大于所在的扇形,即-6 根据抽屉原理,至少有三个点6。
六年级数学经典奥数20题及答案解析
六年级数学经典奥数20题及答案解析【题-001】抽屉原理有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
【题-002】牛吃草:(中等难度)一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?【题-003】奇偶性应用:(中等难度)桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。
【题-004】整除问题:(中等难度)用一个自然数去除另一个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少?【题-005】填数字:(中等难度)请在下图的每个空格内填入1至8中的一个数字,使每行、每列、每条对角线上8个数字都互不相同.【题-006】灌水问题:(中等难度)公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开小1时,恰好在打开某根进水管1小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,比第一周多用了15分钟.第四周他三个管同时打开,灌满一池水用了2小时20分,第五周他只打开甲管,那么灌满一池水需用________小时.【题-007】浓度问题:(中等难度)瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的A、B两种酒精溶液,瓶中的浓度变成了14%.已知A种酒精溶液浓度是B种酒精溶液浓度的2倍,那么A种酒精溶液的浓度是百分之几?【题-008】水和牛奶:(中等难度)一个卖牛奶的人告诉两个小学生:这儿的一个钢桶里盛着水,另一个钢桶里盛着牛奶,由于牛奶乳脂含量过高,必须用水稀释才能饮用.现在我把A桶里的液体倒入B桶,使其中液体的体积翻了一番,然后我又把B桶里的液体倒进A桶,使A桶内的液体体积翻番.最后,我又将A桶中的液体倒进B桶中,使B桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体,而在B桶中,水比牛奶多出1升.现在要问你们,开始时有多少水和牛奶,而在结束时,每个桶里又有多少水和牛奶?【题-009】巧算:(中等难度)计算:【题-010】队形:(中等难度)做少年广播体操时,某年级的学生站成一个实心方阵时(正方形队列)时,还多10人,如果站成一个每边多1人的实心方阵,则还缺少15人.问:原有多少人?【题-011】计算:(中等难度)一个自然数,如果它的奇数位上各数字之和与偶数位上各数字之和的差是11的倍数,那么这个自然数是11的倍数,例如1001,因为1+0=0+1,所以它是11的倍数;又如1234,因为4+2-(3+1)=2不是11的倍数,所以1234不是11的倍数.问:用0、1、2、3、4、5这6个数字排成不含重复数字的六位数,其中有几个是11的倍数?【题-012】分数:(中等难度)某学校的若干学生在一次数学考试中所得分数之和是8250分.第一、二、三名的成绩是88、85、80分,得分最低的是30分,得同样分的学生不超过3人,每个学生的分数都是自然数.问:至少有几个学生的得分不低于60分?【题-013】四位数:(中等难度)某个四位数有如下特点:(1)这个数加1之后是15的倍数;(2)这个数减去3是38的倍数;(3)把这个数各数位上的数左右倒过来所得的数与原数之和能被10整除,求这个四位数.【题-014】行程:(中等难度)王强骑自行车上班,以均匀速度行驶.他观察来往的公共汽车,发现每隔12分钟有一辆汽车从后面超过他,每隔4分钟迎面开来一辆,如果所有汽车都以相同的匀速行驶,发车间隔时间也相同,那么调度员每隔几分钟发一辆车?【题-015】跑步:(中等难度)狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
六年级奥数抽屉原理含答案
抽屉原理知识框架一、 知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、 抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。
(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。
我们称这种现象为抽屉原理。
三、 抽屉原理的解题方案(一)、利用公式进行解题 苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11xn -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.重难点抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。
本讲的主要教学目标是: (1) 理解抽屉原理的基本概念、基本用法; (2) 掌握用抽屉原理解题的基本过程; (3) 能够构造抽屉进行解题;(4)利用最不利原则进行解题;(5)利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。
例题精讲(一)、直接利用公式进行解题(1)求结论【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗?【考点】抽屉原理【难度】1星【题型】解答【解析】6只鸽子要飞进5个笼子,如果每个笼子装1只,这样还剩下1只鸽子.这只鸽子可以任意飞进其中的一个笼子,这样至少有一个笼子里有2只鸽子.所以这句话是正确的.利用刚刚学习过的抽屉原理来解释这个问题,把鸽笼看作“抽屉”,把鸽子看作“苹果”,6511÷=,112+=(只)把6个苹果放到5个抽屉中,每个抽屉中都要有1个苹果,那么肯定有一个抽屉中有两个苹果,也就是一定有一个笼子里有2只鸽子.【答案】对【巩固】年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生日.”你知道张老师为什么这样说吗?【考点】抽屉原理【难度】1星【题型】解答【解析】略.【总结】题目中并没有说明什么是“抽屉”,什么是“物品”,解题的关键是制造“抽屉”,确定假设的“物品”,根据“抽屉少,物品多”转化为抽屉原理来解.【答案】从题目可以看出,这道题显然与月份有关.我们知道,一年有12个月,把这12个月看成12个抽屉,这道题就相当于把13个苹果放入12个抽屉中.根据抽屉原理,至少有一个抽屉放了两个苹果.因此至少有两个同学在同一个月过生日.【例 2】人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有人的头发的根数相同。
小学奥数抽屉原理
小学奥数抽屉原理小学奥数是小学生学习数学的一项重要内容,其中抽屉原理是一个非常有趣且实用的数学概念。
抽屉原理是指如果有n+1个物品放入n个抽屉中,那么至少有一个抽屉中至少有两个物品。
这个简单的原理在解决一些实际问题时非常有用,下面我们就来详细了解一下小学奥数中的抽屉原理。
首先,我们来看一个简单的例子。
假设有5个苹果和4个篮子,我们要把这些苹果放进篮子里,那么根据抽屉原理,至少有一个篮子里会有至少两个苹果。
这是因为5个苹果分别放入4个篮子,必然会有至少一个篮子里有两个或以上的苹果。
抽屉原理在解决实际问题时非常有用。
比如,在一个班级里,学生们的生日是随机分布的,如果班级有31个学生,那么根据抽屉原理,至少有两个学生会有相同的生日。
这是因为一年有365天,而学生的数量只有31个,必然会有至少两个学生生日在同一天。
除了生日问题,抽屉原理还可以应用在许多其它实际问题中。
比如在一副扑克牌中,如果抽出了5张牌,那么根据抽屉原理,至少会有一种花色的牌有两张或以上。
这是因为一副扑克牌只有4种花色,而抽出的牌有5张,必然会有至少一种花色的牌有两张或以上。
在小学奥数中,抽屉原理可以帮助学生更好地理解和解决一些问题。
通过抽屉原理,学生们可以培养逻辑思维能力,提高解决问题的能力。
同时,抽屉原理也可以帮助学生更好地理解数学知识,为他们打下坚实的数学基础。
总之,抽屉原理是小学奥数中非常重要的一个概念,它不仅能够帮助学生更好地理解数学知识,还能够在解决实际问题时发挥重要作用。
通过学习抽屉原理,学生们可以培养逻辑思维能力,提高解决问题的能力,为将来的学习打下坚实的基础。
希望学生们能够认真学习抽屉原理,将其运用到实际生活中,发挥出更大的作用。
小学六年级奥数抽屉原理含答案
小学六年级奥数抽屉原理含答案Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】抽屉原理知识要点1.抽屉原理的一般表述(1)假设有3个苹果放入2个抽屉中,必然有一个抽屉中至少有2个苹果。
它的一般表述为:第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。
(2)若把3个苹果放入4个抽屉中,则必然有一个抽屉空着。
它的一般表述为:第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。
2.构造抽屉的方法常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。
例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点,……13点牌各一张),洗好后背面朝上放。
一次至少抽取张牌,才能保证其中必定有2张牌的点数和颜色都相同。
如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。
点拨对于第一问,最不利的情况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都相同。
点拨对于第二问,最不利的情况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。
解(1)13×2+1=27(张) (2)9×4+1=37(张)例2 证明:37人中,(1)至少有4人属相相同;(2)要保证有5人属相相同,但不保证有6人属相相同,那么人的总数应在什么范围内点拨可以把12个属相看做12个抽屉,根据第一抽屉原理即可解决。
解 (1)因为37÷12=3……1,所以,根据第一抽屉原理,至少有3+1=4(人)属相相同。
(2)要保证有5人的属相相同的最少人数为4×12+1=49(人)不保证有6人属相相同的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。
小学奥数--抽屉原理
⼩学奥数--抽屉原理⼩学奥数--抽屉原理抽屉原理(⼀)解题要点:要从最不利情况考虑,准确地建⽴抽屉和确定元素的总个数(如果将5个苹果放到3个抽屉中去,那么不管怎么放,⾄少有⼀个抽屉中放的苹果不少于2个。
道理很简单,如果每个抽屉中放的苹果都少于2个,即放1个或不放,那么3个抽屉中放的苹果的总数将少于或等于3,这与有5个苹果的已知条件相⽭盾,因此⾄少有⼀个抽屉中放的苹果不少于2个。
同样,有5只鸽⼦飞进4个鸽笼⾥,那么⼀定有⼀个鸽笼⾄少飞进了2只鸽⼦。
以上两个简单的例⼦所体现的数学原理就是“抽屉原理”,也叫“鸽笼原理”。
抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么⾄少有⼀个抽屉中的物品不少于2件。
说明这个原理是不难的。
假定这n个抽屉中,每⼀个抽屉内的物品都不到2件,那么每⼀个抽屉中的物品或者是⼀件,或者没有。
这样,n个抽屉中所放物品的总数就不会超过n件,这与有多于n件物品的假设相⽭盾,所以前⾯假定“这n 个抽屉中,每⼀个抽屉内的物品都不到2件”不能成⽴,从⽽抽屉原理1成⽴。
从最不利原则也可以说明抽屉原理1。
为了使抽屉中的物品不少于2件,最不利的情况就是n个抽屉中每个都放⼊1件物品,共放⼊n 件物品,此时再放⼊1件物品,⽆论放⼊哪个抽屉,都⾄少有1个抽屉不少于2件物品。
这就说明了抽屉原理1。
例1 某幼⼉园有367名1996年出⽣的⼩朋友,是否有⽣⽇相同的⼩朋友,分析与解:1996年是闰年,这年应有366天。
把366天看作366个抽屉,将367名⼩朋友看作367个物品。
这样,把367个物品放进366个抽屉⾥,⾄少有⼀个抽屉⾥不⽌放⼀个物品。
因此⾄少有2名⼩朋友的⽣⽇相同。
例2在任意的四个⾃然数中,是否其中必有两个数,它们的差能被3整除, 分析与解:因为任何整数除以3,其余数只可能是0,1,2三种情形。
我们将余数的这三种情形看成是三个“抽屉”。
⼀个整数除以3的余数属于哪种情形,就将此整数放在那个“抽屉”⾥。
小学六年级奥数抽屉原理问题专项强化训练(高难度)
小学六年级奥数抽屉原理问题专项强化训练(高难度)例题1:某小学有4个班级,每个班级有30名学生。
学校要进行一次篮球比赛,要求每个班级至少选出2名学生参加比赛,且每个班级选出的学生人数不能超过班级总人数的一半。
那么最多能选出多少名学生参加比赛?解析:根据抽屉原理,如果每个班级选出的学生人数都是2人,那么共计选出的学生人数就是4 x 2 = 8人。
但是题目中要求每个班级的选出人数不能超过班级总人数的一半,所以每个班级最多能选出的人专项练习题:1. 某学校有3个班级,每个班级有25名学生,学校要进行一次才艺表演,要求每个班级至少选出3名学生参加比赛,且每个班级选出的学生人数不能超过班级总人数的一半。
那么最多能选出多少名学生参加比赛?2. 一家商店有5种口味的冰淇淋,每种口味至少有10个,最多有20个。
现在要求选出3种口味的冰淇淋参加一个冰淇淋品尝活动,那么最多能选出多少种口味的冰淇淋参加活动?3. 某超市有4个货架,每个货架上有20瓶可乐,要求每个货架至少选出3瓶可乐参加促销活动,且每个货架选出的可乐数量不能超过货架上可乐瓶数的一半。
那么最多能选出多少瓶可乐参加促销活动?4. 一家公司有6个部门,每个部门有50名员工,现在要从每个部门选出至少5名员工组成一个项目组,且每个部门选出的员工人数不能超过部门总人数的三分之一。
那么最多能选出多少名员工参加项目组?5. 某酒吧有8个房间,每个房间最多可容纳40名客人,现在要加入一场酒吧派对,要求每个房间至少有10名客人参加,且每个房间选出的客人数量不能超过房间可容纳人数的一半。
那么最多能选出多少名客人参加派对?6. 一家书店有7个书架,每个书架上有35本数学书,现在要从每个书架上选出至少5本数学书参加数学竞赛,且每个书架选出的数学书数量不能超过书架上数学书的三分之一。
那么最多能选出多少本数学书参加竞赛?7. 某小学有8个班级,每个班级有40名学生,学校要进行一次舞蹈比赛,要求每个班级至少选出3名学生参加比赛,且每个班级选出的学生人数不能超过班级总人数的四分之一。
小学奥数抽屉原理题型及答案解析
小学奥数抽屉原理题型及答案解析一、抽屉原理解释抽屉原理,也被称为鸽巢原理,是组合数学中的一个重要原理。
这个原理的基本含义是:如果n+1个物体被放到n个抽屉里,那么至少有一个抽屉中会放有2个或更多的物体。
这个原理可以用来解决很多看似复杂的问题。
原理解释:假设有3个抽屉和4个苹果,我们要把这4个苹果放进3个抽屉里。
无论我们怎么放,总会有至少一个抽屉里放了2个或更多的苹果。
这是因为每个抽屉最多只能放1个苹果的话,3个抽屉只能放3个苹果,但我们有4个苹果,所以至少有一个抽屉里会有2个苹果。
同样的,如果有n个抽屉和n+1个物体,无论我们怎么分配这些物体到抽屉里,至少会有一个抽屉里会有2个或更多的物体。
二、抽屉原理应用举例属相问题:中国有12个属相,如果问任意37个人中,至少有几个人属相相同?我们可以把12个属相看作12个抽屉,37个人看作37个物体。
根据抽屉原理,至少有一个抽屉里有4个或更多的物体,也就是说,至少有4个人的属相是相同的。
自然数问题:在任意的100个自然数中,是否可以找到一些数(可以是一个数),它们的和能被100整除?这个问题也可以通过抽屉原理来解决。
如果我们把这100个自然数对100取余,那么余数只能是0到99之间的数,也就是有100个“抽屉”。
根据抽屉原理,至少有一个“抽屉”里有多于一个的数,这两个数的差就是100的倍数,因此它们的和也能被100整除。
三、抽屉原理解题思路和方法首先,需要理解抽屉原理的基本含义,即如果把n+1个物体放在n个抽屉里,那么至少有一个抽屉中至少放有2个物体。
这是解题的基础。
其次,在解题过程中,需要找出隐藏的抽屉数和物体数,并将问题转化为抽屉问题。
这通常需要对问题进行仔细分析,找出其中的规律和特点。
接下来,可以利用平均分的方法来确定每个抽屉中的物体数。
如果物体数不能被抽屉数整除,那么至少有一个抽屉中的物体数会多于平均值。
这有助于确定至少有多少个物体是相同或满足某种条件的。
六年级奥数讲义第29讲抽屉原理
抽屉原理是数学中的一种基本原理,也称为鸽巢原理。
它的主要内容是:将n+1个物体放入n个抽屉中,至少有一个抽屉中至少有两个物体。
这个原理虽然听起来很简单,但在解决各种问题时非常有用。
在奥数竞赛中,经常会遇到需要运用抽屉原理的问题。
下面我们来介绍一下抽屉原理的基本思想和应用。
首先,我们来看一下抽屉原理的基本思想。
假设有n+1个物体要放入n个抽屉中,我们先将第一个物体放入第一个抽屉,第二个物体放入第二个抽屉,以此类推,第n+1个物体放入第n+1个抽屉。
根据原理,至少有一个抽屉中放入了两个物体,因为抽屉的个数比物体的个数要少1、这是因为对于任意一个抽屉来说,它只能放1个物体,物体多了就必然会出现一个抽屉中放入两个物体的情况。
抽屉原理的应用非常广泛,下面我们来举几个例子。
例1:在一个学校的排球队中,有20名男生和15名女生。
如果要从中选出5名男生和3名女生为代表出战,那么根据抽屉原理,至少有一种情况是两名或两名以上的代表选择的性别相同的。
解析:根据抽屉原理,我们可以将男生视为一个抽屉,将女生视为另一个抽屉。
我们要从男生中选择5名,从女生中选择3名,而男生的人数比女生多。
根据抽屉原理,至少有一种情况是两名或两名以上的代表选择的性别相同的。
这是因为男生的抽屉里有20个物体,女生的抽屉里有15个物体,而我们一共要从抽屉中选取8个物体。
由于男生的抽屉里物体的个数比女生的抽屉里的物体个数多,所以根据抽屉原理,至少有一种情况是两名或两名以上的代表选择的性别相同的。
例2:假设有27只猴子要选择出最重的猴子,请问最少需要进行几次称重?解析:将27只猴子分成9组,每组3只猴子。
然后对这9组进行一次比较,可以得到每组中最重的猴子。
这样,我们从9组中选择出最重的猴子,剩下的8组中每组还有2只猴子未被称重。
将剩下的8组分成4组,每组2只猴子进行一次比较,得到每组中最重的猴子。
这样,我们从4组中选择出最重的猴子,剩下的4组中每组还有1只猴子未被称重。
小学抽屉原理公式
小学奥数抽屉原理公式及经典例题解答分析第一抽屉原理原理1:把多于n个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),故不可能。
原理2 :把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。
证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。
原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。
原理1 、2 、3都是第一抽屉原理的表述。
例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0②4=3+1+0③4=2+2+0④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。
第二抽屉原理把(mn——1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。
证明(反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。
例:①k=[n/m]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
理解知识点:[X]表示不超过X的最大整数。
例[4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉。
也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。
抽屉原理经典例题:1、30名学生参加数学竞赛,已知参赛者中任何10人里都至少有一名男生,那么男生至少有______人。
答案:30-(10-1)=30-9,=21(人)。
答:男生至少有21人。
2、一副扑克牌有54张,至少抽取______张扑克牌,方能使其中至少有两张牌有相同的点数。
(大小鬼不相同)答案:建立抽屉:54张牌,根据点数特点可以分别看做15个抽屉,考虑最差情况:每个抽屉都摸出了1张牌,共摸出15张牌,此时再任意摸出一张,无论放到哪个抽屉,都会出现有两张牌在同一个抽屉,即两张牌点数相同,15+1=16(张),答:至少抽取16张扑克牌,方能使其中至少有两张牌有相同的点数。
小学六年级奥数 抽屉原理(含答案)
抽屉原理知识要点1.抽屉原理的一般表述(1)假设有3个苹果放入2个抽屉中,必然有一个抽屉中至少有2个苹果。
它的一般表述为:第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。
(2)若把3个苹果放入4个抽屉中,则必然有一个抽屉空着。
它的一般表述为:第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。
2.构造抽屉的方法常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。
例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点, (13)点牌各一张),洗好后背面朝上放。
一次至少抽取张牌,才能保证其中必定有2张牌的点数和颜色都相同。
如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。
点拨对于第一问,最不利的情况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都相同。
点拨对于第二问,最不利的情况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。
解 (1)13×2+1=27(张) (2)9×4+1=37(张)例2 证明:37人中,(1)至少有4人属相相同;(2)要保证有5人属相相同,但不保证有6人属相相同,那么人的总数应在什么范围内?点拨可以把12个属相看做12个抽屉,根据第一抽屉原理即可解决。
解 (1)因为37÷12=3……1,所以,根据第一抽屉原理,至少有3+1=4(人)属相相同。
(2)要保证有5人的属相相同的最少人数为4×12+1=49(人)不保证有6人属相相同的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。
例3 有一副扑克牌共54张,问:至少摸出多少张才能保证:(1)其中有4张花色相同?(2)四种花色都有?点拨首先我们要弄清楚一副扑克牌有2张王牌,四种花色,每种有13张。
【精品】通用版2022年六年级奥数精品讲义易错专项高频计算题-抽屉原理(含答案)
通用版六年级奥数专项精品讲义及常考易错题汇编计数问题:抽屉原理【知识点归纳】抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体.例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体.抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:]+1个物体:当n不能被m整除时.①k=[nm个物体:当n能被m整除时.②k=nm理解知识点:[X]表示不超过X的最大整数.例:[4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉.也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算.【经典题型】例1:在任意的37个人中,至少有()人属于同一种属相.A、3B、4C、6分析:把12个属相看做12个抽屉,37人看做37个元素,利用抽屉原理最差情况:要使属相相同的人数最少,只要使每个抽屉的元素数尽量平均,即可解答解:37÷12=3 (1)3+1=4(人)答:至少有4人的属相相同.故选:B点评:此题考查了利用抽屉原理解决实际问题的灵活应用,关键是从最差情况考虑例2:在一个不透明的箱子里放了大小相同的红、黄、蓝三种颜色的玻璃珠各5粒.要保证每次摸出的玻璃珠中一定有3粒是同颜色的,则每次至少要摸()粒玻璃珠.A、3B、5C、7D、无法确定分析:把红、黄、蓝三种颜色看做3个抽屉,考虑最差情况:每种颜色都摸出2粒,则一共摸出2×3=6粒玻璃珠,此时再任意摸出一粒,必定能出现3粒玻璃珠颜色相同,据此即可解答解:根据题干分析可得:2×3+1=7(粒),答:至少摸出7粒玻璃珠,可以保证取到3粒颜色相同的玻璃珠.故选:C点评:此题考查了利用抽屉原理解决实际问题的灵活应用.一.选择题1.把红、黄、蓝、白、黑五种颜色的球各8个放到一个袋子里,至少取()个球,就能保证取到两个颜色相同的球.A.2B.6C.92.把红、黄、蓝、绿四种同样大小的小球各5个放在同一箱子里,一次至少要摸出()个球才能保证摸出2个红球.A.5B.20C.173.李叔叔给正方体的六个面涂上不同的颜色,结果至少有两个面的颜色一致,颜料的颜色至少有()种.A.3B.4C.54.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中一定有两个球的颜色相同,则至少要取出()个球.A.2B.3C.4D.75.某小学有61名学生在4月份出生,至少有()名学生在同一天过生日.A.2B.3C.4D.56.25个8岁的小朋友中至少有()个小朋友是同一个月出生.A.2B.3C.4D.57.20本书放在6层的书架上,总有一层至少放()本书.A.3B.4C.5D.28.一个盒子里装有同样大小的红球、黄球、白球各3个.至少取出()个球,才能保证取到两个颜色相同的球.A.3B.4C.5二.填空题9.在一次数学考试中,有10道选择题,评分办法是:答对一题得4分,答错一题倒扣1分,不答得0分,已知参加考试的学生中,至少有4人得分相同.那么,参加考试的学生至少有人.10.据推测,四(1)班学生中,至少有4人生日一定是在同一个月,那么这个班的学生人数至少有人.11.13本书放进3个抽屉,不管怎么放,总有一个抽屉至少放进本书.12.希望小学共有368名学生,其中六年级有48名.希望小学至少有名学生的生日是同一天,六年级中至少有名学生是同一个月出生的.13.把7个梨放进5个盘子里,总有一个盘子至少放进个梨;把28个梨放进5个盘子里,总有一个盘子至少放进个梨.14.盒子里有3个红球和2个黄球,至少摸出个球,才能确保摸出的球中两种颜色都有;任意摸出一个球,摸出球的可能性比较大.15.把红、黄、蓝三种颜色的球各8个放在一个袋子里,至少取个球可以保证取到两个颜色相同的球.16.一个袋子中装有红、白、蓝三种球各10个,至少拿出个球才能保证有2个球的颜色是同色.三.判断题17.()把7支钢笔放进2个笔盒中,总有一个笔盒至少要放进4支钢笔.18.()老师把36副羽毛球拍分给5个班,至少有7副羽毛球拍分给同一个班.19.()5只小鸡装入4个笼子,至少有一个笼子放小鸡3只.20.()盒子里有同样大小的红、黄、蓝三种颜色的球各5个,要想摸出的球一定有2个是同色的,至少要摸出4个球.21.()367人中必有2人的生日相同.22.()在366人当中,一定有2人是同一天出生的.23.()36只鸽子飞进5个鸽笼,总有一个笼子至少飞进了8只鸽子.24.()11只鸽子飞进了5个鸽笼,总有一个鸽笼至少飞进了3只鸽子.四.应用题25.老师要把12朵小红花奖励给11位同学,总有一位同学至少得到几朵小红花?26.三年级二班有43名同学,班上的“图书角”至少要准备多少本课外书,才能保证有的同学可以同时借两本书?27.现有一堆桃子,分给6只猴,总有一只猴至少分到了5个桃.这堆桃子至少有多少个?28.在一个直径为2m的圆形花坛周围放上7盆花,那么至少有2盆花之间的距离不超过1米,为什么?(提示:可以通过计算后画图说明)29.有5050张数字卡片,其中1张上面写着数字“1”,2张上面写着数字“2”,3张上面写着数字“3”, ,99张上面写着数字“99”,100张上面写着数字“100”.现在要从中任意取出若干张,为了确保抽出的卡片中至少有10张完全相同的数字,至少要抽出多少张卡片?30.六(1)班有45名同学,把他们分成6个学习小组.不管怎么分,总有一个学习小组至少有8人,为什么?31.盒子里有同样大小的5个红球和6个黄球.(1)要想摸出的球一定有2个是同色的,至少要摸出几个球?(2)要想摸出的球一定有3个是同色的,至少要摸出几个球?(3)要想摸出的球一定有5个是同色的,至少要摸出几个球?(4)要想摸出的球一定有不同颜色的,至少要摸出几个球?32.作文比赛中,六年级共有7名选手获奖,已知六年级有6个班,你能不能肯定选手至少有2名来自同一个班?为什么?五.解答题33.7只鸽子飞回3个鸽舍,至少有只鸽子飞回同一个鸽舍里.34.把4个苹果放在3个盘子里,总有一个盘子里至少有个苹果.35.7个小朋友乘6只小船游玩,至少要有多少个小朋友坐在同一只小船里,为什么?36.6个小组的同学栽树.37.一个袋子中有20只绿袜子、30只蓝袜子,40只白袜子,大小都一样.不用眼睛看,至少摸出只袜子,才能保证摸出的袜子中至少有1双袜子.(颜色相同的两只袜子为一双)38.红、黄、蓝三种颜色的球各6个,混合后放在一个布袋里,一次至少摸出几个,才能保证有两个是同色的?39.黄色卡片6张,红色卡片4张,蓝色卡片5张放在袋子里,至少要摸出4张,就可以保证摸出两张颜色相同的卡片..40.26个小朋友乘6只小船游玩,至少要有一只小船里要坐6个小朋友..参考答案一.选择题1.解:根据分析可得,+=(个)516答:至少取6个球,就能保证取到两个颜色相同的球.答案:B.2.解:532⨯+=+152=(个)17答:一次至少要摸出17个球才能保证摸出2个红球.答案:C.3.解:根据分析可得,623÷=(种)答:颜料的颜色至少有3种.答案:A.4.解:314+=(个);答:为保证取出的球中一定有两个球的颜色相同,则至少要取出4个球.答案:C.5.解:61302⋯⋯(名)÷=(名)1+=(名)213答:至少有3名学生在同一天过生日.答案:B.6.解:根据分析可得,÷=(个)1⋯(人),25122+=(人);213答:至少有3个小朋友在同一个月出生.答案:B.7.解:2063⋯(本)÷=(本)2+=(本)314所以把20本书放进6层的书架上,总有一层至少要放4本。
六年级奥数-抽屉原理
抽屉原理(一)专题简析:如果给你5盒饼干,让你把它们放到4个抽屉里,那末可以肯定有一个抽屉里至少有2盒饼干。
如果把4封信投到3个邮箱中,那末可以肯定有一个邮箱中至少有2封信。
如果把3本联练习册分给两位同学,那末可以肯定其中有一位同学至少分到2本练习册。
这些简单内的例子就是数学中的“抽屉原理”。
基本的抽屉原理有两条:(1)如果把x+k(k≥1)个元素放到x个抽屉里,那末至少有一个抽屉里含有2个或者2个以上的元素。
(2)如果把m×x×k(x>k ≥1)个元素放到x个抽屉里,那末至少有一个抽屉里含有m+1个或者更多个元素。
利用抽屉原理解题时要注意区分哪些是“抽屉”?哪些是“元素”?然后按以下步骤解答:a、构造抽屉,指出元素。
b、把元素放入(或者取出)抽屉。
C、说明理由,得出结论。
本周我们先来学习第(1)条原理及其应用。
例题1:某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么?把一年中的天数看成是抽屉,把学生人数看成是元素。
把367个元素放到366个抽屉中,至少有一个抽屉中有2个元素,即至少有两个学生的生日是同一天。
平年一年有365天,闰年一年有366天。
把天数看做抽屉,共366个抽屉。
把367个人分别放入366个抽屉中,至少在一个抽屉里有两个人,因此,肯定有两个学生的生日是同一天。
练习1:1、某校有370名1992年出生的学生,其中至少有2个学生的生日是同一天,为什么?2、某校有30名学生是2月份出生的,能否至少有两个学生生日是在同一天?3、15个小朋友中,至少有几个小朋友在同一个月出生?例题2:某班学生去买语文书、数学书、外语书。
买书的情况是:有买一本的、二本的、也有三本的,问至少要去几位学生才干保证一定有两位同学买到相同的书(每种书最多买一本)?首先考虑买书的几种可能性,买一本、二半、三本共有7种类型,把7种类型看成7个抽屉,去的人数看成元素。
要保证至少有一个抽屉里有2人,那末去的人数应大于抽屉数。
六年级抽屉问题知识点总结
六年级抽屉问题知识点总结抽屉问题是数学中的经典问题之一,它涉及到概率、排列组合等内容。
在六年级的学习中,我们也接触到了一些与抽屉问题相关的知识点。
下面,我将对这些知识点进行总结,希望能够帮助大家更好地理解和应用抽屉问题。
一、抽屉原理抽屉原理是指:如果有n+1个物品要放到n个抽屉里,那么至少有一个抽屉里会放有两个或者两个以上的物品。
也就是说,当物品的数量比抽屉的数量多时,必然存在至少一个抽屉中放有多个物品。
二、鸽笼原理鸽笼原理和抽屉原理非常类似,它是说:如果有m个鸽子要放到n个笼子里,且m>n,那么至少有一个笼子里将会放有两个或两个以上的鸽子。
这个原理可以用来解决一些与抽屉问题相似的计数问题。
三、排列组合在解决抽屉问题时,排列组合是一个非常重要的数学工具。
排列是指对一组元素进行顺序排列,组合是指从一组元素中取出一部分元素的集合。
在抽屉问题中,我们常常需要计算不同的情况下的排列或组合个数。
四、概率抽屉问题与概率密切相关。
概率是用来描述事件发生的可能性的数值。
在解决抽屉问题时,我们常常需要计算某个事件发生的概率。
在计算概率时,我们可以使用等可能原理和频率公式等方法。
五、应用举例下面通过几个例子来展示抽屉问题的应用:例1:班级里有10个男生和15个女生,我们从班级中随机抽取3个人,求至少有2个男生的概率。
解:首先,我们需要求出男生和女生分别被选中的组合数。
男生被选中的组合数为C(10,2),女生被选中的组合数为C(15,1)。
然后,我们需要求出总的抽取组合数C(25,3)。
最后,通过计算得出概率为(P1+P2)/P,其中P1为2个男生被选中的概率,P2为3个男生被选中的概率,P为总的抽取概率。
例2:面试时,一个公司有10个职位和15个应聘者,每个应聘者只能申请一个职位,求至少有一个职位没有人申请的概率。
解:如果所有的职位都被申请了,那么必然会有至少一个职位没有人申请。
因此,我们需要计算所有职位都被申请的概率,然后用1减去这个概率即可得到答案。
六年级奥数考点:抽屉原理问题
考点:抽屉原理问题一、知识要点如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。
如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。
如果把3本联练习册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。
这些简单内的例子就是数学中的“抽屉原理”。
基本的抽屉原理有两条:(1)如果把x+k (k ≥1)个元素放到x 个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。
(2)如果把m ×x ×k (x >k ≥1)个元素放到x 个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。
利用抽屉原理解题时要注意区分哪些是“抽屉”?哪些是“元素”?然后按以下步骤解答:a 、构造抽屉,指出元素。
b 、把元素放入(或取出)抽屉。
C 、说明理由,得出结论。
本周我们先来学习第(1)条原理及其应用。
课后作业1、(课后)一个长方体,如果长减少2厘米,则体积减少48立方厘米;如果宽增加5厘米,则体积增加65立方厘米;如果高增加4厘米,则体积增加96立方厘米。
原来厂房体的表面积是多少平方厘米?(48÷2+65÷5+96÷4)×2=122平方厘米2、(课后)有大、中、小三个正方体水池,它们的内边长分别为4米、3米、2米。
把两堆碎石分别沉没在中、小水池的水中,两个水池的水面分别升高了4厘米和11厘米,如果将这两堆碎石都沉没在大水池中,那么大水池水面将升高多少厘米?(32×0.04+22×0.11)÷42=0.05米=5厘米3、(课后)一个圆柱形玻璃杯内盛有水,水面高2.5厘米,玻璃杯内侧的底面积是2平方厘米。
在这个杯中放进棱长6厘米的正方形铁块后,水面没有淹没铁块,这时水面高多少厘米? 杯中水的体积是:72×2.5=180立方厘米放入铁块后的底面积是72-62=36平方厘米;水面的高:180÷36=5厘米4、(课后)如果把长8厘米,宽7厘米,高3厘米的2件同样的长方体物品打包,形成一件大的包装物,有几种包装方法?怎样打包,物体的表面积最小?20.56÷(1+1+3.14)=4分米 3.14×(42)2×4=50.24立方分米二、精讲精练【例题1】某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么?把一年中的天数看成是抽屉,把学生人数看成是元素。
高斯小学奥数六年级下册含答案第05讲抽屉原理
第五讲抽屉原理二本讲学问点汇总:一、最不利原则:为了保.证.能完成一件事情,需要考虑在最倒霉〔最不利〕的状况下,如何能到达目标.二、抽屉原理:形式1:把n +1个苹果放到n 个抽屉中,确定有2 个苹果放在一个抽屉里;形式2:把m⨯n +1 个苹果放到n 个抽屉中,确定有m +1个苹果放在一个抽屉里.例1.中国奥运代表团的173 名运发动到超市买饮料,超市有可乐、雪碧、芬达、橙汁、味全和矿泉水 6 种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全一样?「分析」此题的“抽屉”是饮料的选法,“苹果”是173名运发动.练习1、中国奥运代表团的83 名运发动到超市买饮料.超市有可乐、雪碧、芬达和橙汁,每人各买两种不同的饮料,那么至少多少人买的饮料完全一样?例2.国庆嘉年华共有5 项游艺活动,每个学生至多参与2 项,至少参与1 项.那么至少有多少个学生,才能保证至少有4 个人参与的活动完全一样?「分析」此题的“抽屉”是参与活动的方法.练习2、高思运动会共有4 个工程,每个学生至多参与3 项,至少参与1 项.那么至少有多少个学生,才能保证至少有5 个人参与的活动完全一样?例3.从1 到50 这50 个自然数中,至少选出多少个数,才能保证其中确定有两个数的和是50「分析」思考一下:哪两个数的和是50?练习3、从1 到35 这35 个自然数中,至少选出多少个数才能保证其中确定有两个数的和为34?例4.从1 到100 这100 个自然数中,至少选出多少个数才能保证其中确定有两个数的和是7 的倍数?假设要保证是6 的倍数呢?「分析」两个数的和是7 的倍数,这两个数除以7 的余数要符合什么条件哪?练习4、从1 至99 这99 个自然数中任意取出一些数,要保证其中确定有两个数的和是5 的倍数,至少要取多少个?例5.至少取出多少个正整数,才能保证其中确定有两个整数的和或差是100 的倍数?「分析」从余数角度思考一下:什么样的两个数的和或差是100?例6.在边长为 2 的正六边形中,放入50 个点,任意三点不共线,请证明:确定能从中选出三个点,以它们为顶点的三角形面积不大于1.「分析」通过把正六边形均分,来构造“抽屉”.四大制造之印刷术印刷术是中国古代的四大制造之一,是中国古代汉族劳动人民经过长期实践和争论才制造的.活字印刷的方法是先制成单字的阳文反文字模,然后依据稿件把单字排列在字盘内涂墨印刷.自从汉朝制造纸以后,书写材料比起过去用的甲骨、简牍、金石和缣帛要轻松、经济多了,但是抄写书籍还是格外费工的,远远不能适应社会的需要.至迟到东汉末年的熹平年间〔公元172~178年〕,消灭了摹印和拓印石碑的方法.大约在公元600年前后的隋朝,人们从刻印章中得到启发,在人类历史上最早制造了雕版印刷术.雕版印刷是在确定厚度的平滑的木板上,粘贴上抄写工整的书稿,薄而近乎透亮的稿纸正面和木板相贴,字就成了反体,笔划清楚可辨.雕刻工人用刻刀把版面没有字迹的局部削去,就成了字体凸出的阳文,和字体凹入的碑石阴文截然不同.印刷的时候,在凸起的字体上涂上墨汁,然后把纸覆在它的上面,轻轻拂拭纸背,字迹就留在纸上了.到了宋朝,雕版印刷事业进展到全盛时期.雕版印刷对文化的传播起了重大作用,但是也存在明显缺点:第一,刻版费时费工费料;其次,大批书版存放不便;第三,有错字不简洁更正.北宋平民制造家毕昇总结了历代雕版印刷的丰富的实践阅历,经过反复试验,在宋仁宗庆历年间〔公元1041~1048〕制成了胶泥活字,实行排版印刷,完成了印刷史上一项重大的革命.毕昇的方法是这样的:用胶泥做成一个个规格全都的毛坯,在一端刻上反体单字,字划突起的高度象铜钱边缘的厚度一样,用火烧硬,成为单个的胶泥活字.为了适应排版的需要,一般常用字都备有几个甚至几十个,以备同一版内重复的时候使用.遇到不常用的冷僻字,假设事前没有预备,可以随制随用.为便于拣字,把胶泥活字按韵分类放在木格子里,贴上纸条标明.排字的时候,用一块带框的铁板作底托,上面敷一层用松脂、蜡和纸灰混合制成的药剂,然后把需要的胶泥活字拣出来一个个排进框内.排满一框就成为一版,再用火烘烤,等药剂略微熔化,用一块平板把字面压平,药剂冷却凝固后,就成为版型.印刷的时候,只要在版型上刷上墨,覆上纸,加确定的压力就行了.为了可以连续印刷,就用两块铁板,一版加刷,另一版排字,两版交替使用.印完以后,用火把药剂烤化,用手轻轻一抖,活字就可以从铁板上脱落下来,再按韵放回原来木格里,以备下次再用.毕昇还试验过木活字印刷,由于木料纹理疏密不匀,刻制困难,木活字沾水后变形,以及和药剂粘在一起不简洁分开等缘由,所以毕昇没有承受.毕昇的胶泥活字版印书方法,假设只印二三本,不算省事,假设印成百上千份,工作效率就极其可观了,不仅能够节约大量的人力物力,而且可以大大提高印刷的速度和质量,比雕版印刷要优越得多.现代的凸版铅印,虽然在设备和技术条件上是宋朝毕昇的活字印刷术所无法比较的,但是根本原理和方法是完全一样的.活字印刷术的制造,为人类文化做出了重大奉献.这中间,中国的平民制造家毕昇的功绩是不行磨灭的.可是关于毕昇的生平事迹,我们却一无所知,幸亏毕昇制造活字印刷术的事迹,比较完整地记录在北宋著名科学家沈括的名著《梦溪笔谈》里.但是除开西夏文字的几本推想为活字印刷的佛经外,中原地区无觉察活字印刷的中文印刷品!作业1.〔1〕一个班有37 个人,那么至少有多少人是同一星座的?〔2〕一副扑克牌,共54 张,那么至少从中摸出多少张牌,才能保证至少有6 张牌的花色一样?2.动物王国进展运动会,共有101 位运发动,有短跑、跳高、跳远、10 米跳台、3 米跳板五个工程,每位运发动最多项选择三个工程,最少选一个工程.那么至少有多少位运发动所选的工程都一样?3. 1 至70 这70 个自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于6?4. 1 至40 这40 个自然数中,最多可以取出多少个数,使得其中每两个数的和都不是4 的倍数?5.在半径为1 的圆内,画13 个点,其中任意3 点不共线.请证明:确定存在3 个点,以它们为顶点的三角形面积小于.6第五讲抽屉原理二例7.答案:12.解答:共有C2 =15 种不同的选择方式,而173 ÷15 =11L 8 ,所以至少有12 个人买的饮料完全一样.6例8.答案:46.解答:共有C2 +C1 =15 种参与方法,所以至少15⨯3 +1 =46 人.5 5例9.答案:27.解答:可构造出26个组数:〔1,49〕、〔2,48〕、…、〔24,26〕、〔25〕、〔50〕.所以至少要取27个数才能保证取到一组和为50 的数.例10.答案:46,37.解答:由题意可知,假设取出的数没有两个数的和是7 的倍数,则:除以7 余1 的数与除以7 余6 的数不能共存,除以7 余2 的数与除以7 余5 的数不能共存,除以7 余3 的数与除以7 余4 的数不能共存.而除以7 余0 的数只能取1 个,且100 =14⨯7L 2 ,所以最不利的状况是取尽余1、余2、余3 和一个余0 的数,共45 个数,所以至少选出46 个数才可满足要求.同理至少选出37 个数才能保证是6 的倍数.〔留意此时除以6余3和余0的数都只能选1个〕例11.答案:52.解答:可构造出51个组数:〔1,8〕、〔2,9〕…〔7,14〕;〔15,22〕、〔16,23〕…〔21,28〕;……〔85,92〕、〔86,93〕…〔91,98〕;〔99〕、〔100〕.每组数中的两数的差为7.只取出每个数组中较小的数明显不能满足要求,所以至少要取出52 个数,这时由抽屉原理知必定能取到某一个数组的两个数.例12.解答:先将正六边形分割成6 个边长为2 的正三角形,再将每个三角形等分成4 个边长为1 的正三角形,这样就把正六边形分割成24 个边长为1 的正三角形,则由抽屉原理知,必有3 点在一个等边三角形中,以它们为顶点的三角形面积明显不大于1.〔边长是1的等边三角形面积小于1〕练习1、答案:14.简答:共有C 2=6 种不同的选择方式,而83 =6 ⨯13 +5 ,所以至少有14个人买的饮料完全一样.4练习2、答案:57.简答:共有C3+C 2+C1=14 种参与方法,所以至少14 ⨯4 +1 =57 人.4 4 4练习3、答案:20.简答:可构造出19个组数:〔1,33〕、〔2,32〕、…、〔16,18〕、〔17〕、〔34〕、〔35〕.所以至少要取20 个数才能保证取到一组和为34 的数.练习4、答案:42.简答:1~99 这99 个数中除以5 余1 的有20 个,余2 的有20 个,余3 的有20 个,余4 的有20 个,余0 的有19 个,选出余 1 和余 2 的数,再选一个余0 的数,再任选一个数确定符合题意,20 +20 +1+1 =42 个.作业6. 答案:〔1〕4 个;〔2〕23 张.简答:〔1〕抽屉原理;〔2〕最不利原则.7. 答案:5 位.简答:首先运发动的工程有C1 +C 2+C3 = 25 种可能,依据抽屉原理,至少有5 位运发动的工程一样.5 5 58. 答案:36 个.简答:每12 个数中最多取出6 个.9. 答案:12 个.简答:将1~40 依据除以4 的余数分为四组:A 组:{1,5,…,37};B 组:{2,6,…,38};C 组:{3,7,…,39};D 组:{4,8,…,40}.首先,B、D 组最多取一个.取了A 组就不能取C 组.所以最多能取12 个.10. 证明:将半径为1 的圆六等分,分为六个扇形,每个扇形的面积是π6.依据抽屉原理,至少有三个点在同一局部中,这三个点组成的三角形不会大于所在的扇形,即π.6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 9、在23×23的方格纸中,将1----9这9个数字填入每一 个小方格中 ,并对所有如下图的“+”字图形中的五个 数字求和,和相等的“+”字图形至少有多少个?
• 10、口袋里有同样大小和同样质地的红、黄、蓝三种颜 色的小球各20个。问:一次最少摸出几个球,才能保证 至少有4个小球颜色相同?
• 11、口袋里有同样大小和同样质地的红、黄、蓝三种颜 色的小球共18个。其中红球3个、黄球5个、蓝球10个。 现在一次从中任意取出n个,为保证这n个小球至少有5个 同色,n的最小值是多少? • 12、一排椅子只有15个座位,部分座位已有人就座,乐 乐来后一看,他无论坐在哪个座位,都将与已就座的人 相邻。问:在乐乐之前已就座的最少有几人?
练习: 1、从一副扑克牌中至少抽出多少张牌,才能保证有5张同 样的花色?(大小王两张牌各算一种花色)
2、学校图书馆有四类图书,规定每个同学最多可以借两 本书,在借书的85名同学中,可以保证至少几人所借书的 类型是完全一样的?
3、能否在10行10列的方格纸的每一个空格中分别填上1、 2、3三个数之一,而使大正方形的每行、每列及对角线上 的各个数字之和互不相同?为什么?
先以最不利的方式分装: 载重3吨的汽车可以装3箱货物,却装不下4只箱子, 以每箱重量为x,则3x≤3且4x>3,解得0.75<x≤1 说明每只箱子装货稍多于0.75吨,若按0.75吨装 箱,10吨货至少需要13箱(余出的1/3吨可以装入 其他任意一箱),这样为确保一次运完需要的汽车 数为 13/3=4.1,即最少要准备4+1=5(辆)
抽屉原理
• 计算绝招: • 物体数÷抽屉数=商数 • 至少数=商数+1 • 整除时,至少数=商数
例题1:一个旅游团一行100人,游览甲、乙、丙三个景点, 每人至少去一处,问至少有多少人游览的地方相同?若每 人去两处呢?
例题2:一只布袋里装有黑、红、白、蓝四种颜色的手套, 问至少要摸出多少只手套才能保证有5副颜色的?
例题3:从2、4、6、8.....30这15个偶数中任取9个数, 试证明其中一定有两个数的和是34。
例题4:王平说他们班的同学至少有5人的属相是相同的, 但不敢保证6个人的属相相同,这个班人数最少有多少 人?最多有多少人?
例题5:现有苹果和橘子若干个,其中是否有两堆苹果 与橘子的个数和是偶数?
例题6:五年级一班有25人参加了学校数学小组、科技 小组、舞蹈小组,这25人中有的同学参加了一个小组, 有的同学参加了两个小组,还有的同学三个小组都参加 了,求至少多少人参加的小组完把钥匙和10把锁, 最少要试验多少次就一定能使全部的钥匙和锁相匹配?
• 14、一个布袋里有红色、黄色、黑色袜子各20只。问: 最少要拿多少只袜子才能保证其中至少有2双颜色不相 同的袜子?
• 15、10吨货物分装若干箱,每只箱子重量不超过1吨。 为了确保将这批货物一次运走,最少要准备几辆载重量 为3吨的汽车?
• 6、一次考试共有10道题,每题的评分标准是:回答完全 正确,得5分,回答的不完全正确,得3分,回答错误或 不回答,得0分,至少有多少人参加这次考试,才能保证 至少有3人的得分相同?试说明原因。 • 7、从1---60这60个数中,至少取出几个不同的数,才能 保证其中有一个数是5的倍数? • 8、在边长3厘米的等边三角形内有10个点,试证明必定 有2个点之间的距离不超过1厘米。
• 4、20名小运动员参加乒乓球比赛,比赛采用单循环制, 即每队都要和其他选手赛一场,有人说:“无论在比赛过 程中的任何时候统计已经赛过的场次,至少有两位选手已 赛过的场次是相同的。”你认为这种说法对吗?为什么?
• 5、有长、短形状完全一样的红筷子、白筷子、黑筷子、 黄筷子、紫筷子和花筷子各25根,闭上眼睛摸至少摸出多 少根筷子,才能保证摸出的筷子至少有8双?(每两根同 色的为一双)