中考数学易错点知识汇总

合集下载

中考数学查补易混易错点《因式分解》原卷

中考数学查补易混易错点《因式分解》原卷

查补易混易错02 因式分解因式分解在初中数学中是整式乘除以及分式化简求值的过渡章节,起到承上启下的连接作用,所以因式分解的掌握程度也直接影响分式这个章节。

因式分解在中考数学中的考察主要是前两步,即:“一提”、“二套”,个别应用型问题中会考察“分组分解因式”和“十字相乘分解因式”,需要在复习中都清楚掌握对应方法。

中考五星高频考点,在全国各地中考试卷中属于必考考点,难度中等偏下。

易错01:因式分解的形式:整式加减的关系写成整式乘法的关系叫因式分解,左右关系千万不要记反了。

如:()2222b ab a b a ---=+-不是因式分解 易错02:因式分解的一般步骤⎪⎪⎩⎪⎪⎨⎧“十字”十字相乘:二次三项想因式式,再利用前两步分解三分组:先分组分解因二套:套用乘法公式一提:提取公因式 特别注意:①提取公因式这一步必须把所有公因式一次提取完;若没有公因式则跳过这一步②套用乘法公式时,两项式想平方法公式,三项式想完全平方公式 ③十字相乘法基本原理公式:()()()q x p x pq x q p x ++=+++2④因式分解的结果必须分解彻底,不能存在再因式分解的部分【中考真题练】1.(2022•济宁)下面各式从左到右的变形,属于因式分解的是( )A .x 2﹣x ﹣1=x (x ﹣1)﹣1B .x 2﹣1=(x ﹣1)2C .x 2﹣x ﹣6=(x ﹣3)(x +2)D .x (x ﹣1)=x 2﹣x 2.(2022•绵阳)因式分解:3x 3﹣12xy 2= .3.(2022•黔东南州)分解因式:2022x2﹣4044x+2022=.4.(2022•巴中)因式分解:﹣a3+2a2﹣a=.5.已知a+b=1,则代数式a2﹣b2+2b+9的值为.6.(2022•台湾)多项式39x2+5x﹣14可因式分解成(3x+a)(bx+c),其中a、b、c均为整数,求a+2c之值为何?()A.﹣12B.﹣3C.3D.12 7.(2022•常州)第十四届国际数学教育大会(ICME﹣14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021,表示ICME﹣14的举办年份.(1)八进制数3746换算成十进制数是;(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.8.(2022•西宁)八年级课外兴趣小组活动时,老师提出了如下问题:将2a﹣3ab﹣4+6b因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式=(2a﹣3ab)﹣(4﹣6b)=a(2﹣3b)﹣2(2﹣3b)=(2﹣3b)(a﹣2)解法二:原式=(2a﹣4)﹣(3ab﹣6b)=2(a﹣2)﹣3b(a﹣2)=(a﹣2)(2﹣3b)【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将x2﹣a2+x+a因式分解;【挑战】(2)请用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解;【应用】(3)“赵爽弦图”是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,“赵爽弦图”是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1.根据以上信息,先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值.9.(2022•重庆)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30……4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b >c.在a,b,c中任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若为整数,求出满足条件的所有数A.【中考模拟练】1.(2023•蚌山区校级二模)下列因式分解中,正确的是()A.2a3﹣4a2+2a=2a(a2﹣2a)B.C.a3﹣9a=a(a2﹣9)D.﹣a2﹣b2=﹣(a+b)(a﹣b)2.(2023•保定一模)对于①(x+1)(x﹣1)=x2﹣1,②x﹣2xy=x(1﹣2y),从左到右的变形,表述正确的是()A.都是乘法运算B.都是因式分解C.①是乘法运算,②是因式分解D.①是因式分解,②是乘法运算3.(2023•宿州模拟)下列各式中,可以在有理数范围内进行因式分解的是()A.x2+2x﹣1B.x2﹣2x+3C.x2﹣4y D.x2﹣4y2 4.(2023•路北区模拟)在探索因式分解的公式时,可以借助几何图形来解释某些公式.如图,从左图到右图的变化过程中,解释的因式分解公式是()A.(a+b)(a﹣b)=a2﹣b2B.a2﹣b2=(a+b)(a﹣b)C.a2+b2=(a+b)2D.(a﹣b)2=a2﹣2ab+b25.(2023•白塔区校级一模)分解因式:x4﹣16x2y2=.6.(2023•天门校级模拟)分解因式:a2(a﹣b)+25(b﹣a)=.7.(2023•安丘市模拟)分解因式:3x2﹣3x+=.8.(2023•合川区校级模拟)若一个四位正整数满足:a+c=b+d,我们就称该数是“交替数”,则最小的“交替数”是;若一个“交替数”m满足千位数字与百位数字的平方差是15,且十位数字与个位数的和能被5整除.则满足条件的“交替数”m 的最大值为.9.(2023•黑龙江一模)已知a+b=2,ab=2,求a3b+a2b2+ab3的值.10.(2023•襄垣县一模)(1)计算:﹣(﹣2)3×()﹣;(2)下面是小颖对多项式因式分解的过程,请认真阅读并完成相应任务.分解因式:(3x+y)2﹣(x+3y)2.解:原式=(3x+y+x+3y)(3x+y﹣x﹣3y)……第一步=(4x+4y)(2x﹣2y)……第二步=8(x+y)(x﹣y)……第三步=8(x2﹣y2).……第四步任务一:以上变形过程中,第一步依据的公式用字母a,b表示为;任务二:以上分解过程第步出现错误,具体错误为,分解因式的正确结果为.11.(2023•郑州一模)如果一个正整数能够表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.例如:因为4=22﹣02,12=42﹣22,20=62﹣42,故4,12,20 都是神秘数.(1)写出一个除4,12,20之外的“神秘数”:;(2)设两个连续偶数为2k和2k+2(k为非负整数),则由这两个连续偶数构造的“神秘数”能够被4整除吗?为什么?(3)两个相邻的“神秘数”之差是否为定值?若为定值,求出此定值;若不是定值,请说明理由.12.(2022•重庆模拟)阅读理解:若x满足(9﹣x)(x﹣4)=4,求(4﹣x)2+(x﹣9)2的值.解:设9﹣x=a,x﹣4=b,则(9﹣x)(x﹣4)=ab=4,a+b=(9﹣x)+(x﹣4)=5,∴(9﹣x)2+(x﹣4)2=a2+b2=(a+b)2﹣2ab=52﹣2×4=17.迁移应用:(1)若x满足(2020﹣x)2+(x﹣2022)2=10,求(2020﹣x)(x﹣2022)的值;(2)如图,点E,G分别是正方形ABCD的边AD、AB上的点,满足DE=k,BG=k+1(k为常数,且k>0),长方形AEFG的面积是,分别以GF、AG作正方形GFIH和正方形AGJK,求阴影部分的面积.。

2023中考数学易错题专练07图形的变化(9大典型易错变式练及详析)(原卷版)

2023中考数学易错题专练07图形的变化(9大典型易错变式练及详析)(原卷版)

备战2023年中考数学考试易错题易错点07图形的变化01图形的平移平移的性质(1)平移的条件平移的方向、平移的距离(2)平移的性质①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.1.(2022春•新城区校级期中)在直角坐标系中,点A,B的坐标分别是(1,0),(0,3),将线段AB平移,平移后点A的对应点A′的坐标是(2,﹣2),那么点B的对应点B′的坐标是()A.(1,1)B.(1,2)C.(2,2)D.(2,1)2.(2022秋•定远县期中)如图,在平面直角坐标系中,点A(﹣1,0),点A第1次向上跳动1个单位至点A1(﹣1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…依此规律跳动下去,点A第2022次跳动至点A2022的坐标是()A.(505,1009)B.(﹣506,1010)C.(﹣506,1011)D.(506,1011)3.(2022•南京模拟)如图,从起点A到终点B有多条路径,其中第一条路径为线段AB,其长度为a,第二条路径为折线ACB,其长度为b,第三条路径为折线ADEFGHIJKLB,其长度为c,第四条路径为半圆弧ACB,其长度为d,则这四条路径的长度关系为()A.a<b<c<d B.a<c<d<b C.a<b=c<d D.a<b<c=d4.(2022秋•拱墅区期末)以A(﹣1,7),B(﹣1,﹣2)为端点的线段上任意一点的坐标可表示为:(﹣1,y)(﹣2≤y≤7).现将这条线段水平向右平移5个单位,所得图形上任意一点的坐标可表示为.5.如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)在图中画出△ABC向右平移4个单位,再向下平移2个单位的△A1B1C1;(2)写出点A1,B1,C1的坐标:A1,B1,C1;(3)设点P在x轴上,且△BCP与△ABC的面积相等,直接写出点P的坐标.02 轴对称轴对称的性质(1)如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.由轴对称的性质得到一下结论:①如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;②如果两个图形成轴对称,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴.(2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.1.(2022秋•福州月考)如图,在Rt△ABC中,∠BAC=90°,∠B=55°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°2.(2022春•天桥区校级期中)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F.则EF的最小值为()A.2.4B.4.8C.5.2D.63.(2022•上虞区模拟)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=,点P是斜边AB上一动点,连结CP,将△BCP以直线CP为对称轴进行轴对称变换,B点的对称点为B',连结AB',则在P点从点A出发向点B运动的整个过程中,线段AB'长度的最小值为()A.1B.C.﹣1D.3﹣4.(2021秋•讷河市期末)如图,∠AOB=30°,点P在∠AOB的内部,点C,D分别是点P关于OA、OB的对称点,连接CD交OA、OB分别于点E,F;若△PEF的周长的为10,则线段OP=()A.8B.9C.10D.115.(2021秋•思明区校级期末)如图,已知AB∥CD,AD∥BC,∠ABC=60°,BC=2AB=8,点C 关于AD的对称点为E,连接BE交AD于点F,点G为CD的中点,连接EG、BG,则S△BEG=()A.B.C.16D.326.(2022秋•渝中区校级期末)如图,在△ABC中,∠ABC=90°,AB=6,BC=8,AC边的垂直平分线交BC于E,交AC于D,F为上一点,连接EF,点C关于EF的对称点C'恰好落在ED的延长线上,则C'D的长为.7.(2022秋•东丽区校级期末)如图,在△ABC中,AB=AC,∠BAC=108°,点D在BC边上,△ABD、△AFD关于直线AD对称,∠F AC的角平分线交BC边于点G,连接FG.∠BAD=θ,当θ的值等于时,△DFG为等腰三角形.03 轴对称与坐标变化坐标与图形变化-对称(1)关于x轴对称横坐标相等,纵坐标互为相反数.(2)关于y轴对称纵坐标相等,横坐标互为相反数.(3)关于直线对称①关于直线x=m对称,P(a,b)⇒P(2m-a,b)②关于直线y=n对称,P(a,b)⇒P(a,2n-b)1.(2022•清城区一模)在平面直角坐标系中,点A(x2+2x,1)与点B(﹣3,1)关于y轴对称,则x的值为()A.1B.3或1C.﹣3或1D.3或﹣12.(2021秋•花都区期末)剪纸艺术是最古老的中国民间艺术之一,很多剪纸作品体现了数学中的对称美.如图,蝴蝶剪纸是一幅轴对称图形,将其放在平面直角坐标系中,如果图中点E的坐标为(2m,﹣n),其关于y轴对称的点F的坐标(3﹣n,﹣m+1),则(m﹣n)2022的值为()A.32022B.﹣1C.1D.03.(2022•金水区校级模拟)如图,在平面直角坐标系中,已知A(﹣2,0),B(0,4),点C与坐标原点O关于直线AB对称.将△ABC沿x轴向右平移,当线段AB扫过的面积为20时,此时点C的对应点C'的坐标为()A.B.C.D.4.(2022秋•渠县期末)在平面直角坐标系中,对△MBC进行循环往复的轴对称变换,若原来点A 的坐标是(,),则经过第2022次变换后所得的点A的坐标是.5.(2022秋•谢家集区期中)如图,在平面直角坐标系中,已知点A的坐标为(4,3).①若△ABC是关于直线y=1的轴对称图形,则点B的坐标为;②若△ABC是关于直线y=a的轴对称图形,则点B的坐标为.6.(2022秋•温江区校级期中)在平面直角坐标系xOy中,经过点M(0,m)且平行于x轴的直线可以记作直线y=m,平行于y轴的直线可以记作直线x=m,我们给出如下的定义:点P(x,y)先关于x轴对称得到点P1,再将点P1关于直线y=m对称得点P′,则称点P′为点P关于x轴和直线y=m的二次反射点.已知点P(2,3),Q(2,2)关于x轴和直线y=m的二次反射点分别为P1,Q1,点M(2,3)关于直线x=m对称的点为M1,则当三角形P1Q1M1的面积为1时,则m=.04 图形的翻折1、翻折变换(折叠问题)实质上就是轴对称变换.2、折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.1.(2022秋•二七区校级期末)如图,在矩形ABCD中,点F是CD上一点,连结BF,然后沿着BF将矩形对折,使点C恰好落在AD边上的E处.若AE:ED=4:1,则tan∠EBF的值为()A.4B.3C.D.2.(2022秋•南岸区期末)如图,正方形ABCD的边长为4,E是边CD的中点,F是边AD上一动点,连接BF,将△ABF沿BF翻折得到△GBF,连接GE.当GE的长最小时,DF的长为()A.B.C.D.3.(2022秋•运城期末)如图,在菱形ABCD中,∠A=60°,点E,F分别在AB,AD上,沿EF折叠菱形,使点A落在BC边上的点G处,且EG⊥BD于点M,若AB=a(取=1.4,=1.7),则BE等于()A.B.C.D.4.(2023•市南区一模)如图,在矩形ABCD中,AB=1,在BC上取一点E,连接AE、ED,将△ABE沿AE翻折,使点B落在B'处,线段EB'交AD于点F,将△ECD沿DE翻折,使点C的对应点C'落在线段EB'上,若点C'恰好为EB'的中点,则线段EF的长为()A.B.C.D.5.(2022秋•徐汇区期末)如图所示,在△ABC中.沿着过点C的直线折叠这个三角形,使顶点A 落在BC边上的点E处,折痕为CD,并联结DE.如果BC=9cm,且满足=,边AC =.6.(2022秋•浦东新区期末)如图,正方形ABCD的边长为5,点E是边CD上的一点,将正方形ABCD沿直线AE翻折后,点D的对应点是点D',联结CD'交正方形ABCD的边AB于点F,如果AF=CE,那么AF的长是.05 中心对称中心对称(1)中心对称的定义把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点..(2)中心对称的性质①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.1.(2022春•嘉鱼县期末)如图,点O为矩形ABCD的两对角线交点,动点E从点A出发沿AB边向点B运动,同时动点F从点C出发以相同的速度沿CD边向点D运动,作直线EF,下列说法错误的是()A.直线EF平分矩形ABCD的周长B.直线EF必平分矩形ABCD的面积C.直线EF必过点OD.直线EF不能将矩形ABCD分成两个正方形2.(2022秋•莱西市期末)如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A.平行四边形→菱形→平行四边形→矩形B.平行四边形→正方形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形3.(2021秋•中牟县期末)如图是两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心按逆时针方向进行旋转,第一次旋转后得到图①,第二次旋转后得到图②,…,则第2022次旋转后得到的图形与图①~④中相同的()A.图①B.图②C.图③D.图④4.(2022•仙居县二模)如图,把正方形ABCD绕着它的对称中心O沿着逆时针方向旋转,得到正方形A′B′C′D′,A′B′和B'C′分别交AB于点E,F,在正方形旋转过程中,∠EOF的大小()A.随着旋转角度的增大而增大B.随着旋转角度的增大而减小C.不变,都是60°D.不变,都是45°5.(2022春•连城县校级月考)如图,在平面直角坐标系中,平行四边形OABC的顶点A在x轴上,定点B的坐标为(8,4),若直线经过点D(2,0),且将平行四边形OABC分割成面积相等的两部分,则直线DE的表达式()A.y=x﹣2B.y=2x﹣4C.D.y=3x﹣606 轴对称与最短路线问题1、最短路线问题在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.2、凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.1.(2022秋•乌鲁木齐期末)如图,在锐角△ABC中,∠C=40°;点P是边AB上的一个定点,点M、N分别是AC和BC边上的动点,当△PMN的周长最小时,∠MPN的度数是()A.90°B.100°C.110°D.80°2.(2022秋•南沙区校级期末)如图,在△ABC中,∠ABC=60°,BD平分∠ABC,点E是BC上的一动点,点P是BD上一动点,连接PC,PE,若AB=6,S△ABC=15,则PC+PE的最小值是()A.B.6C.D.103.(2022秋•和平区校级期末)如图,在四边形ABCD中,∠A=∠C=90°,M,N分别是BC,AB 边上的动点,∠B=58°,当△DMN的周长最小时,∠MDN的度数是()A.122°B.64°C.62°D.58°4.(2022秋•长安区校级期末)如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC 为()A.10B.12C.13D.145.(2022秋•黄陂区校级期末)如图,等腰三角形ABC的底边AB长为8,面积为24,腰BC的垂直平分线EF交边AB于点E,若D为AB边的中点,P为线段EF上一动点,则三角形DPB的周长的最小值为()A.7B.8C.9D.106.(2022秋•番禺区校级期末)如图,等腰三角形ABC的底边BC长为6,腰AC的垂直平分线EF分别交边AC、AB于点E,F,若D为BC边的中点,M为线段EF上一动点,若三角形CDM的周长的最小值为13,则等腰三角形ABC的面积为()A.78B.39C.42D.30A.①②③B.②③④C.③④⑤D.②③④⑤07 旋转的性质旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.1.(2022秋•武昌区校级期末)如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点B按顺时针方向旋转后得到矩形A'B'C'D'.若边A'B交线段CD于H,且BH=DH,则DH的值是()A.B.C.D.2.(2022秋•泰山区期末)如图,在△ABC中,AB=AC,∠BAC=120°,O为BC的中点,将△ABC 绕点O顺时针旋转得到△DEF,当点D,E分别在边AC和CA的延长线上,连接CF,若AD=3,则△OFC的面积是()A.B.C.D.3.(2022秋•泰山区期末)如图,点P是等边三角形ABC内部一点,连接AP、BP、CP,且AP2=BP2+CP2,现将△APC绕点A顺时针旋转到△ADB的位置,对于下列结论:①△ADP是等边三角形;②△ABP≌△CBP;③∠DBP=90°;④∠BDA+∠BP A=210°.其中正确的结论有()A.1个B.2个C.3个D.4个4.(2022秋•遵义期末)如图,已知矩形ABCD,AB=5,AD=3,矩形GBEF是由矩形ABCD绕点B顺时针旋转90°得到的,点H为CD边上一点,现将四边形ABHD沿BH折叠得到四边形A'BHD',当点A'恰好落在EF上时,DH的长是()A.B.C.D.5.(2022秋•荔湾区校级期末)如图,正方形ABCD中,AB=5cm,以B为圆心,1cm为半径画圆,点P是⊙B上一个动点,连接AP,并将AP绕点A逆时针旋转90°至AP′,连接BP′,在点P 移动的过程中,BP′长度的取值范围是cm.6.(2022秋•达川区期末)如图,在平面直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(4,0),点M为x轴上方一动点,且MA=3,以点M为直角顶点构造等腰直角三角形BMP,当线段AP取最大值时,AP=,点M的坐标为.08 旋转与坐标变换坐标与图形变化-旋转(1)关于原点对称的点的坐标P(x,y)⇒P(-x,-y)(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.1.(2022秋•南宫市期末)如图,在平面直角坐标系中,Rt△ABC的直角顶点C的坐标为(2,0),点A在x轴正半轴上,且AC=4.将△ABC绕点C逆时针旋转90°,则旋转后点A的对应点的坐标为()A.(2,4)B.(2,﹣4)C.(2,2)D.(4,2)2.(2022秋•金华期末)如图,在平面直角坐标系中,已知点A(0,2),点B在第一象限内,AO =AB,∠OAB=120°,将△AOB绕点O逆时针旋转,每次旋转60°,则第2022次旋转后,点B 的坐标为()A.(﹣,3)B.(,0)C.(,3)D.(﹣2,0)3.(2022秋•汕尾期中)在平面直角坐标系中,等边△AOB如图放置,点A的坐标为(1,0),每一次将△AOB绕着点O逆时针方向旋转60°,同时每边扩大为原来的2倍,第一次旋转后得到△A1OB1,第二次旋转后得到△A2OB2,…,依次类推,则点A2021的坐标为()A.(﹣22020,﹣×22020)B.(22021,﹣×22021)C.(22020,﹣×22020)D.(﹣22011,﹣×22021)09 几何变换综合问题1.(2022秋•商河县期末)如图,已知△ABC中,AB=AC,∠BAC=α.点D是△ABC所在平面内不与点A、C重合的任意一点,连接CD,将线段CD绕点D顺时针旋转α得到线段DE,连接AD、BE.(1)如图1,当α=60°时,线段BE与AD的数量关系是;直线BE与AD相交所成的锐角的度数是.(2)如图2,当α=90°时,①(1)中的结论是否仍然成立,请说明理由;②当BE∥AC,AB=8,AD=时,请直接写出△DCE的面积.2.(2022秋•中原区期末)已知,△ABC和△DEC都是等腰直角三角形,C为它们公共的直角顶点,如图1,D,E分别在BC,AC边上,F是BE的中点,连接CF.(1)求证:△ACD≌△BCE.(2)请猜想AD与CF的数量关系和位置关系,并说明理由.(3)如图2,将△ABC固定不动,△DEC由图1位置绕点C逆时针旋转,旋转角∠BCD=α,(0°<a<90°),旋转过程中,其他条件不变.试判断,AD与CF的关系是否发生改变?若不变,请说明理由;若改变,请求出相关正确结论.3.(2022秋•顺义区期末)如图,△ABC为等边三角形,在∠BAC内作射线AP(∠BAP<30°),点B关于射线AP的对称点为点D,连接AD,作射线CD交AP于点E,连接BE.(1)依题意补全图形;(2)设∠BAP=α,求∠BCE的大小(用含α的代数式表示);(3)用等式表示EA,EB,EC之间的数量关系,并证明.4.(2023•临川区校级一模)旋转变换在平面几何中有着广泛的应用.特别是在解(证)有关等腰三角形、正三角形、正方形等问题时,更是经常用到的思维方法,请你用旋转交换等知识,解决下面的问题.如图1,△ABC与△DCE均为等腰直角三角形,DC与AB交于点M,CE与AB交于点N.(1)以点C为中心,将△ACM逆时针旋转90°,画出旋转后的△A′CM′(2)在(1)的基础上,证明AM2+BN2=MN2.(3)如图2,在四边形ABCD中,∠BAD=45°,∠BCD=90°,AC平分∠BCD,若BC=4,CD =3,则对角线AC的长度为多少?(直接写出结果即可,但在图中保留解决问题的过程中所作辅助线、标记的有关计算数据等)5.(2022•兴庆区校级一模)已知:如图,在矩形ABCD和等腰Rt△ADE中,AB=8cm,AD=AE=6cm,∠DAE=90°.点P从点B出发,沿BA方向匀速运动.速度为1cm/s;同时,点Q从点D 出发,沿DB方向匀速运动,速度为1cm/s.过点Q作QM∥BE,交AD于点H,交DE于点M,过点Q作QN∥BC,交CD于点N.分别连接PQ,PM,设运动时间为t(s)(0<t<8).解答下列各题:(1)当PQ⊥BD时,求t的值;(2)设五边形PMDNQ的面积为S(cm2),求S与t之间的函数关系式.6.(2022秋•晋中月考)综合与实践.项目式学习小组研究了一个问题,如图1,在矩形ABCD中,AB=4,AD=6,E,F分别是AB,AD的中点,四边形AEGF是矩形,连接CG.(1)请直接写出CG与DF的长度比为;(2)如图2,将矩形AEGF绕点A按顺时针方向旋转至点G落在AB边上,求点F到AD的距离;(3)将矩形AEGF绕点A按顺时针方向旋转至如图3所示的位置时,猜想CG与DF之间的数量关系,并证明你的猜想.7.(2022秋•淮北月考)在等腰△ABC中,BC=AC,点D在BC上,延长AC至点E,使CE=CD,连接AD,DE,BE.(1)若∠ACB=90°,①如图1,求证:BE=AD;②如图2,将△DCE绕点C按顺时针方向旋转一定的角度,使点A,D,E三点在一条直线上,判定△ABE的形状,并说明理由.(2)若∠DCE=∠ACB≠90°,如图3,(1)中①的结论是否成立?若不成立,请给出AD,BE 之间的数量关系;若成立,请给出证明.8.(2022秋•沙河口区期末)如图1,平面直角坐标系中,AB∥x轴,OA=AB,C是点A关于x轴的对称点,BC∥OA,交x轴于点E,连接OB.(1)求证:①OB平分∠AOE,②△OCE是等边三角形;(2)如图2,若F在OB上,∠BAF=45°,连接CF.点B的坐标为(a,b),直接写出点F的坐标(用a、b表示).。

易错点03 函数-中考数学考试易错题(解析版)

易错点03 函数-中考数学考试易错题(解析版)

易错点03 函数1.平面直角坐标系与函数2.一次函数的图像与性质3.一次函数的应用4.反比例函数5.二次函数的图像性质与性质6.二次函数的应用01各个待定系数表示的意义。

1.一次函数y=﹣3x﹣4的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】解答:解:∵一次函数y=﹣3x﹣4,k=﹣3,b=﹣4,∵该函数经过第二、三、四象限,不经过第一象限,故选:A.1.已知反比例函数y=bx的图象如图所示,则一次函数y=cx+a和二次函数y=ax2﹣bx+c在同一直角坐标系中的图象可能是()A.B.C.D.【答案】D【解析】∵反比例函数的图象在一、三象限,∵0b>,A.∵二次函数的开口向上,对称轴在y轴右侧,∵a、b异号,a>,∵0b>不相符,故A错误;∵0b<,与0B. ∵二次函数的开口向下,对称轴在y轴右侧,∵a、b异号,∵0a<,b->,∵0与已知b>0矛盾故B错误;C.∵二次函数的开口向上,对称轴在y轴右侧,∵a、b异号,∵0a<,b>,∵0∵二次函数图象与y轴交于负半轴,c<,∵0∵一次函数y=cx+a的图象过二、三、四象限,故C错误;D. ∵二次函数的开口向上,对称轴在y轴右侧,∵a、b异号,a>,c<0∵0b-<,则b>0,∵0所以一次函数图象经过第一、二、四象限故D 正确;故选D .20(1)k -有意义,则一次函数(1)1y k x k =-+-的图象可能是( ) A . B .C .D .【答案】A【解析】解:∵0(1)k -有意义,∵10,10k k -≥-≠,∵k -1>0,∵一次函数(1)1y k x k =-+-的图象可能是A ,故选:A .3.已知抛物线2(1)y m x x =++的开口向上,则m 的取值范围是( ).A .1m >B .1m <C .1m >-D .1m <-【答案】C【解析】解:根据题意,∵抛物线2(1)y m x x =++的开口向上,∵10m +>,∵1m >-;故选:C .02 各种函数解析式的求法以及函数与几何图形的关系应用。

初中数学知识归纳最易出错的61个知识点总结

初中数学知识归纳最易出错的61个知识点总结

初中数学知识归纳:最易出错的61个知识点总结一、数与式易错点1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。

以及绝对值与数的分类。

每年选择必考。

易错点2:实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。

易错点3:平方根、算术平方根、立方根的区别。

填空题必考。

易错点4:求分式值为零时学生易忽略分母不能为零。

易错点5:分式运算时要注意运算法则和符号的变化。

当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。

填空题必考。

易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。

易错点7:计算第一题必考。

五个基本数的计算:0 指数,三角函数,绝对值,负指数,二次根式的化简。

易错点8:科学记数法。

精确度,有效数字。

这个上海还没有考过,知道就好!易错点9:代入求值要使式子有意义。

各种数式的计算方法要掌握,一定要注意计算顺序。

二、方程(组)与不等式(组)易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。

易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0 的情况,还要关注解方程与方程组的基本思想。

(消元降次)主要陷阱是消除了一个带X 公因式要回头检验!易错点3:运用不等式的性质3时,容易忘记改不改变符号的方向而导致结果出错。

易错点4:关于一元二次方程的取值范围的题目易忽视二次项系数不为0导致出错。

易错点5:关于一元一次不等式组有解无解的条件易忽视相等的情况。

易错点6:解分式方程时首要步骤去分母,分数相相当于括号,易忘记根检验,导致运算结果出错。

易错点7:不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。

易错点8:利用函数图象求不等式的解集和方程的解。

中考数学常考易错点-平面直角坐标系及函数的图象

中考数学常考易错点-平面直角坐标系及函数的图象

平面直角坐标系及函数的图象易错清单1.能确定较复杂函数的自变量取值范围吗?【例1】(山东济宁)函数中的自变量x的取值范围是().A. x≥0B. x≠-1C. x>0D. x≥0且x≠-1【解析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【答案】根据题意,得x≥0且x+1≠0,解得x≥0.故选A.【误区纠错】本题考查了自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.2.能利用直角坐标系探讨点的坐标的变化规律.【例2】(山东泰安)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B,O分别落在点B1,C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点,B(0,4),则点B2014的横坐标为.【解析】首先利用勾股定理得出AB的长,进而得出三角形的周长,进而求出B2,B4的横坐标,进而得出变化规律,即可得出答案.【答案】∵,BO=4,故答案为10070.【误区纠错】此题主要考查了点的坐标以及图形变化类,根据题意得出B点横坐标变化规律是解题关键.由特殊总结一般性.3.借助函数图象描述问题中两个变量之间的关系.【例3】(山东烟台)如图,点P是ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是().【解析】分三段来考虑点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C移动,△BAP的面积不变;点P沿C→B的路径移动,△BAP的面积逐渐减小,据此选择即可.【答案】点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C移动,△BAP的面积不变;点P沿C→B的路径移动,△BAP的面积逐渐减小.故选A.【误区纠错】本题主要考查了动点问题的函数图象.注意分段考虑.名师点拨1.会画出直角坐标系,能标识点在平面直角坐标系的位置.2.能根据点的坐标的正、负性确定点的对称性及所在象限.3.理解函数的意义,会解释并区分常量与变量,能列简单的函数关系,会进行描点法画函数的图象.4.能列举函数的三种表示方法.5.会求出函数中自变量的取值范围,如保证分母不为零,使二次根式有意义等.6.能利用代入法求函数的值.7.能利用函数变化规律进行准确猜想、判断.提分策略1.函数的概念及函数自变量的取值范围.函数自变量的取值范围一般从三个方面考虑:(1)当函数关系式是整式时,自变量可取全体实数;(2)当函数关系式是分式时,考虑分式的分母不能为0;(3)当函数关系式是二次根式时,被开方数为非负数.此题就是第三种情形,考虑被开方数必须大于等于0.【解析】根据二次根式的意义,被开方数不能为负数,据此求解.【答案】 C2.函数解析式的求法.具体地说求函数的解析式和列一元一次方程解实际问题基本相似,即弄清题意和题目中的数量关系,找到能够表示所求问题含义的一个相等的关系,根据这个相等的数量关系,列出所需的代数式,从而列出两个变量之间的关系式.【例2】某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.(1)若需要这种规格的纸箱x个,请分别写出从纸箱厂购买纸箱的费用y1(元)和蔬菜加工厂自己加工制作纸箱的费用y2(元)关于x(个)的函数关系式;(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.【答案】(1)从纸箱厂定制购买纸箱费用y1=4x.蔬菜加工厂自己加工纸箱费用y2=2.4x+16000.(2)y2-y1=(2.4x+16000)-4x=16000-1.6x,由y1=y2,得16 000-1.6x=0,解得x=10000.∴当x<10000时,y1<y2.选择方案一,从纸箱厂定制购买纸箱所需的费用低.∴当x>10000时,y1>y2.选择方案二,蔬菜加工厂自己加工纸箱所需的费用低.∴当x=10000时,y1=y2.两种方案都可以,两种方案所需的费用相同.3.坐标系中的图形的平移与旋转.求一个图形旋转、平移后的图形上对应点的坐标,一般要把握三点:一是根据图形变换的性质,二是利用图形的全等关系;三是确定变换前后点所在的象限.【例3】在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移2个单位长度称为1次变换.如图,已知等边三角形ABC的顶点B,C的坐标分别是(-1,-1),(-3,-1),把△ABC经过连续9次这样的变换得到△A'B'C',则点A的对应点A'的坐标是.4.运用函数的图象特征解决问题.(1)由函数图象的定义可知图象上任意一点P(x,y)中的坐标值x,y是解析式方程的一个解,反之,以解析式方程的任意一解为坐标的点一定在函数的图形上.(2)注意方程与函数的结合,抓住“方程(方程的解)——点的坐标——函数图象与性质”这个网,结合数学知识,用数形结合法来解题.【例4】小刚上午7:30从家里出发步行上学,途经少年宫时走了1200步,用时10分钟,到达学校的时间是7:55.为了估测路程等有关数据,小刚特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.(1)小刚上学步行的平均速度是多少米/分?小刚家和少年宫之间、少年宫和学校之间的路程分别是多少米?(2)下午4:00,小刚从学校出发,以45米/分的速度行走,按上学时的原路回家,在未到少年宫300米处与同伴玩了半小时后,赶紧以110米/分的速度回家,中途没有再停留.问:①小刚到家的时间是下午几时?②小刚回家过程中,离家的路程s(米)与时间t(分)之间的函数关系如图,请写出点B的坐标,并求出线段CD所在直线的函数解析式.②小刚从学校出发,以45米/分的速度行走到离少年宫300米处时实际走了900米,用时分,此时小刚离家1100米,所以点B的坐标是(20,1100).点C的坐标是(50,1100),点D的坐标是(60,0),设线段CD所在直线的函数解析式是s=kt+b,将点C,D的坐标代入,得所以线段CD所在直线的函数解析式是s=-110t+6600.5.分段函数的应用自变量在不同的范围内取值时,函数y和x有不同的对应关系,这种函数称为分段函数,解决分段函数的有关问题时,关键是弄清自变量的取值范围,选择适合的解析式解决问题.【例5】如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D作匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致是().【答案】 B专项训练一、选择题1.(四川中江县一模)已知点A(a,1)与点A'(-5,b)是关于原点O的对称点,则a+b的值为().A. 1B. 5C. 6D. 42. (深圳模拟)已知点A(a+2,a-1)在平面直角坐标系的第四象限内,则α的取值范围为().A. -2<a<1B. -2≤a≤1C. -1<a<1D. -1≤a≤23.(宁夏银川外国语学校模拟)已知点P(a+1,2a-3)关于x轴的对称点在第一象限,则a的取值范围是().4. (内蒙古赤峰模拟)小芳的爷爷每天坚持体育锻炼,某天他慢步行走到离家较远的公园,打了一会儿太极拳,然后沿原路跑步回到家里.下面能够反映当天小芳爷爷离家的距离y(米)与时间x(分钟)之间的函数关系的大致图象是().5.(2013·广东佛山模拟)在直角坐标系xOy中,点P(4,y)在第四象限内,且OP与x轴正半轴的夹角的正切值是2,则y的值是().A. 2B. 8C. -2D. -86.(2013·湖北宜昌调研)在正方形ABCD中,点P从点C出发沿着正方形的边依次经过点D,A向终点B运动,运动的路程为x(cm),△PBC的面积为y(cm2),y随x变化的图象可能是().7. (2013·河南南阳模拟)如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA,OB,使OA=OB;再分别以点A,B为圆心,以大于AB长为半径作弧,两弧交于点C.若点C的坐标为(m-1,2n),则m与n的关系为().(第7题)A. m+2n=1B. m-2n=1C. 2n-m=1D. n-2m=1二、填空题8. (广西玉林模拟)在平面直角坐标系中,点(0,2)到x轴的距离是.9. (甘肃天水模拟)函数中,自变量x的取值范围10.(四川达州模拟)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示).(第10题)11.(2013·北京房山区一模)如图,在平面直角坐标系中,以原点O为圆心的同心圆半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A1,A2,A3,A4,…,则点A31的坐标是.(第11题)三、解答题12. (四川峨眉山二模)如图所示,在平面直角坐标系中,每个小方格的边长是1,把△ABC 先向右平移4个单位,再向下平移2个单位,得到△A'B'C'.在坐标系中画出△A'B'C',并写出△A'B'C'各顶点的坐标.(第12题)13.(2013·辽宁葫芦岛一模)如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A,B的坐标分别为(3,2),(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)点A关于点O中心对称的点的坐标为;(2)点A1的坐标为;(3)在旋转过程中,点B经过的路径为的长为.(第13题)参考答案与解析1. D[解析]a=5,b=-1.2. A[解析]由a+2>0,a-1<0,得-2<a<1.4. C[解析]先慢步行走,再打了一会儿太极拳,最后原路跑步回到家里.只有C图能反映爷爷离家的距离y(米)与时间x(分钟)之间的函数关系6.A[解析]利用图象可以发现△PBC的面积,从增大到不变,再到不断减小,结合图象可选出答案.7. B[解析]根据题意可知OC为∠AOB的平分线,点C的坐标为(m-1,2n)且在第一象限,点C到x轴、y轴距离为m-1,2n,根据角平分线上的点到角两边距离相等,可知m-1=2n,所以m-2n=1.8. 2[解析]点p(a,b)到x轴的距离是|b|,到y轴的距离是|a|.9.x≥0且x≠1[解析]根据被开方数具有非负性且分母不等于零,得x≥0且x≠1.10. (2n,1)[解析]A4 (2,0),A8(4,0),A12(6,0),∴A4n (2n,0).11.[解析]根据31÷4=7……3,得出A31在直线y=x上,在第三象限,且在第8个圆上,求出OA31=8,通过解直角三角形即可求出答案.12.图略; 各顶点坐标为A'(2,2),B'(3,-2),C'(0,-6).。

专题 08 一次函数(5大易错点分析)(解析版)-备战2024年中考数学考试易错题(广东专用)

专题 08  一次函数(5大易错点分析)(解析版)-备战2024年中考数学考试易错题(广东专用)
确定另一个变量的值;
2、一般地,一次函数y=kx+b图象上任意一点的坐标都是二元一次方程kx-y+b=0
的一个解;
3、以二元一次方程kx-y+b=0的解为坐标的点都在一次函数y=kx+b的图象上,
4、一般地,如果两个一次函数的图象有一个交点,那么交点的坐标就是相应的二元 次方程组的解
学以 致 用
1.(2023·海珠区校级二模)已知一次函数y=ax+2的图象与x轴的交点坐
O D.
【分析】先根据正比例函数的增减性判断出k的符号,再由一次函数的图
象与系数的关系即可得出结论.
【解答】解:∵正比例函数y=kx,且y随x的增大而减少,
∴k<0.
在直线y=2x+k中, ∵2>0,k<0,
∴函数图象经过一三四象限,
故选:D.
x<壹 5.(2021·广州模拟)已知:函数yi=2x-1,yz=-x+3,若
小,则直线 y= -2x+k的图象是()

yA
y'
yl
0X
0x
A.
B.
C.
Ox 0 x
D.
【分析】先根据正比例函数的增减性判断出k的符号,再由一次函数的图
象与系数的关系即可得出结论.
【解答】解:∵正比例函数y=kx,且y随x的增大而减小,
∴k<0,
在直线 y=-2x+k中,
-2<0,k<0,
∴函数图象经过二、三、四象限.
2.函数性质的理解:一次函数具有一些特殊的性质,如增减性、连续性等。学生容易
忽视这些性质,或者在应用这些性质时出错。 3.函数斜率和截距的理解:在一次函数y=ax+b中,a 是函数的斜率,b 是函数的 截距。学生容易混淆斜率和截距的概念,或者不理解它们对函数图像的影响。 易错提醒:1、一次函数y=kx+b(k≠O)的增减性:

中考数学常考易错点:2 2《分式方程》

中考数学常考易错点:2 2《分式方程》

中考数学常考易错点:2 2《分式方程》中考数学常考易错点:2-2《分式方程》分数阶方程易错清单1.为什么解分数阶方程容易出错?[示例1](2022新疆)求解分数阶方程:+=1【解析】先将分式方程转换为整式方程,再求出整式方程的解,最后检验后判定分式方程解的情况.[答:]将方程两边乘以(x+3)(x-3),得到3+x(x+3)=x-9。

去掉括号,得到3+X+3x=X-9,解为X=-4检验:把x=-4代入(x+3)(x-3)≠0,二2二∴x=-4是原分式方程的解.【纠错】最简单的公分母是错误的,这会增加计算负担并导致错误;在计算中,应注意常数项应乘以最简单的公分母【例2】(2021内蒙古呼和浩特)解方程:-=0.【分析】首先去掉分母,将其转换成积分方程。

这个问题最简单的公分母是x(x+2)(x-2)[回答]去掉分母,得到3x-6-x-2=0。

解为x=4,经检验,x=4是原方程的根,故x=4是原方程的解.【纠错】解分数阶方程会产生额外的根并忘记测试根【例3】(贵州省黔西南地区2022年)解方程:=【解析】将分式方程转化为整式方程时易产生增根,所以要检验,检验时只要代入最简公分母中即可.[答:]将方程两边乘以(x+2)(x-2)得到x+2=4,解为x=2,经检验,x=2不是分式方程的解,故原分式方程无解.[错误纠正]增加根不是分数方程式的根。

学生经常犯漏掉最后一句话的错误:“原始分数阶方程没有解”2.运用分式方程解决实际问题时,关键是找出等量关系.【例4】(2022年)云南“母亲节”前夕,根据市场调查,一家商店以3000元的价格购买了第一批盒装鲜花,上市后很快就售罄,然后用5000元买了第二批盒花据了解,第二批购买的盒花数量是第一批的两倍,每箱花的购买价格比第一批低5元第一批盒花的购买价格是多少?【解析】设第一批盒装花的进价是x元/盒,则第一批进的数量是,第二批进的数量是,再根据等量关系:第二批进的数量=第一批进的数量×2,可得方程.【答案】设第一批盒装花的进价是x元/盒,由题意,得2×=,解得x=30.经测试,x=30是原始方程的根,因此,第一批盒装鲜花的购买价格为每盒30元【误区纠错】题目中的相等关系不明显,倍数关系易出错,学生找不到相等关系而无法得到对应的分式方程.运用分式方程解决实际问题的关键是确定问题中的相等关系.名师忠告1.会利用分式方程的定义判断分式方程.2.能用最简单的公分母将分数阶方程转化为积分方程,能用代换的思想求解分数阶方程。

中考数学易错题复习专题:三角形(1)

中考数学易错题复习专题:三角形(1)

三角形易错点1:三角形的概念,三角形中三种重要的线段——角平分线、中线、高.易错题1:如图,点A ,B ,C 分别是线段A 1B ,B 1C ,C 1A 的中点,若△ABC 的面积是1,那么△A 1B 1C 1的面积是______________.CBA1B 1A 1错解:4 正解:7赏析:错解的主要原因在对三角形中线的有关性质理解错误,以为外侧三个三角形与里面的△ABC 面积相等.三角形的一条中线把原三角形分成的两部分是两个等底同高的等积三角形,由此,连接B 1A ,C 1B ,A 1C ,图中的7个小三角形面积均相等,故答案为7.易错点2:三角形三边之间的关系——三角形任意两边之和大于第三边,任意两边之差小于第三边.易错题2:现有3cm ,4cm ,7cm ,9cm 长的四根木棒,任取其中的三根组成一个三角形,那么可组成三角形的个数是……………………………………………………………( )A .1个B .2个C .3个D .4个 错解:C 正解:B 赏析:本题对三角形三边的关系理解错误,可能以为三角形任意两边之和大于第三边的对立面是三角形任意两边之和小于第三边,其实,其对立面还包括等于的情况.从四根木棒中任取三根,共有3cm ,4cm ,7cm ;3cm ,4cm ,9cm ;3cm ,7cm ,9cm ;4cm ,7cm ,9cm 四种情况,但3+4=7,3+4<9,所以这两种情况不能组成三角形,故选B .易错点3:三角形按边、按角的分类,三角形内、外角的性质,特别是外角的两条性质. 易错题3:如图,在△ABC 中,∠ABC =50°,∠ACB =60°,点E 在BC 的延长线上,∠ABC 的平分线BD 与∠ACE 的平分线CD 相交于点D ,连接AD ,下列结论:①∠BAC =70°;②∠DOC =90°;∠BDC =35°;∠DAC =55°.其中,不正确的有………………( )A .①③B .②④C .②D .④F M O NP DA B错解:B 正解:C赏析:本题对①,②,③可利用三角形内角和定理及三角形外角的性质就可判断对错,关键是对④的判断易产生错误本题错解就是这种情况.判断④对错的关键是能否判定AD 是△ABC 的外角∠F AC 的平分线,为此,过点D 分别作DM ⊥AF 于点M ,DN ⊥AC 于点N ,DP ⊥CE 于点P ,由BD ,CD 分别平分∠BAC ,∠ACE ,可得DM =DP ,DN =DP ,所以DM =DN ,由角平分线的判定可得AD 平分∠F AC ,从而可通过计算判断④正确.易错点4:全等三角形的性质,三角形全等的判定,特别是两边一角对应相等的两个三角形不一定全等.易错题4:如图,已知AB =DC ,∠ACF =∠DBE ,则添加下列条件之一,能判定△ACF ≌△DBE 且是用“SAS ”判断全等的是……………………………………………………( )A .AF =DEB .∠A =∠DC .AF ∥DED .FC =EBF EDC AB错解:A 正解:D赏析:三角形全等的判定方法通常有SAS 、ASA 、SSS 、AAS 四种,本题错解的原因是对SAS 的条件没有理解清楚.两边一角对应相等的情况有两种:一种是SAS ,其条件是两边及其夹角对应相等,另一种是两边及其一组等边的对角对应相等,这样的两个三角形不全等.易错题5:如图,在△ABC 和△ABD 中,AC 与BD 相交于点E ,AD =BC ,∠DAB =∠CBA ,求证:AE =BE .EBCDA错解:∵∠DAB =∠CBA ,∴∠DAE =∠CBE ,在△ADE 和△BCE 中,∵AD =BC ,∠DAE =∠CBE ,∠DEA =∠CEB ,∴△ADE ≌△BCE (AAS ),∴AE =BE .正解:在△ADB 和△BCA 中,∵AD BC DAB CBA AB BA =⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△BCA (SAS ),∴∠D =∠C . 在△ADE 和△BCE 中,∵AD BC DEA CEB D C =⎧⎪∠=∠⎨⎪∠=∠⎩,∴△ADE ≌△BCE (AAS ),∴AE =BE .又解:在△ADB 和△BCA 中,∵AD BC DAB CBA AB BA =⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△BCA (SAS ),∴∠ABD =∠BAC ,即∠ABE =∠BAE ,∴AE =BE .赏析:本题错在第一步,由∠DAB =∠CBA ,不能得出∠DAE =∠CBE ,可能是把未知条件当做已知条件用了.应先根据“SAS ”证△ADB ≌△BCA ,注意,这里的理由是“SAS ”而不是“SSA ”,由“SSA ”不能判断三角形全等,接下来可用“AAS ”或“ASA ”证△ADE≌△BCE 而得出结论,也可根据等腰三角形的判定“等角对等边”得出结论.易错点5:等腰三角形(含等边三角形)的性质与判定.易错题6:已知△ABC 是等边三角形,BD 为中线,延长BC 至点E ,使CE =CD =a ,连接DE ,则DE =__________.EBCDA错解:2a 正解赏析:本题可能以为DE =AC 而得出错解,在△DCE 中,用三边的关系也可判断2a 不正确.应先由等边三角形的性质得出BD 垂直平分AC ,∠CBD =30°,∠BCD =60°,又CE =CD ,∴∠E =∠CDE ,又∵∠BCD =∠E +∠CDE ,∴∠E =∠CBD =30°,∴BD =ED .再在Rt △BCD 中,由tan ∠BCD =BDCD得出BD =CD tan60,也可在Rt △BCD 中先得出BC =2CD ,再由勾股定理求得BD,∴DE.易错点6:运用等腰三角形的性质与判定计算或证明有关问题时注意分类讨论思想的运用.易错题7:在△ABC 中,AB =AC ,AB 的垂直平分线与AC 所在直线相交所得锐角为40°,则∠B 的度数为_______________.错解:65°正解:65°或25°赏析:本题只考虑了△ABC 中顶角∠BAC 为锐角的情况.由于等腰三角形的顶角可以是锐角,也可以是直角或钝角,∴本题应分三种情况讨论求解:①当∠BAC 为锐角时,如图1:40°图1E BCD A40°图2EBCDA图3EBCDADE 垂直平分AB ,∠ADE =40°,则∠A =50°,又∵AB =AC ,∴∠B =∠C ,∴∠B =180502︒-︒=65°;当∠BAC 为钝角时,如图2,DE 垂直平分AB ,∠ADE =40°,则∠DAB =50°,∴∠BAC =180°-50°=130°,又∵AB =AC ,∴∠B =∠C ,∴∠B =1801302︒-︒=25°(或:由∠DAB =∠B +∠C ,而∠B =∠C ,∴∠B =12∠DAB =12×50°=25°);当∠BAC 为直角时,如图3,DE ∥AC ,不合题意,此种情况舍去.∴答案为65°或25°.易错点7:全等三角形与等腰三角形的综合应用.易错题8:我们把由不平行于底边的直线截等腰三角形两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD 即为“准等腰梯形”,其中∠B =∠C .在由不平行BC 的直线AD 截△PBC 所得的四边形ABCD 中,∠BAD 与∠ADC 的平分线交于点E ,若EB =EC ,请问当点E 在四边形ABCD 内部时(如图2所示),四边形ABCD 是不是“准等腰梯形”,为什么?若点E 不在四边形ABCD 内部时,情况又将如何?写出你的结论.(不必说明理由)图1BCP D A 图2EBCDA图3BCDA错解:是“准等腰梯形”,理由:∵EB =EC ,∴∠EBC =∠ECB ,∴∠ABC =∠DCB ,∴是“准等腰梯形”.当点E 不在四边形ABCD 内部时,如图3,四边形ABCD 是“准等腰梯形”.正解:如图4,过点E 分别作EF ⊥AB 于点F ,EG ⊥AD 于点G ,EH ⊥CD 于点H .∵AE 、DE 分别平分∠BAD 、∠ADC ,∴EF =EG =EH .又∵EB =EC ,∴Rt △BFE ≌Rt △CHE ,∴∠3=∠4,又∵EB =EC ,∴∠1=∠2,∴∠1+∠3=∠2+∠4,即∠ABC =∠DCB .又∵四边形ABCD 为AD 截某三角形所得,且AD 不平行BC ,∴四边形ABCD 是“准等腰梯形”. 当点E 不在四边形ABCD 内部时,有两种情况:当点E 在四边形ABCD 的边BC 上时,如图5,四边形ABCD 是“准等腰梯形”;当点E 在四边形ABCD 的外部时,如图6,四边形ABCD 是“准等腰梯形”.4321HGF图4EBCD A 图5BCDA 图6BDA赏析:本题中第一问的理由不正确,没有充分利用两条角平分线的条件,第二问没有理解不在四边形内部的含义,不在四边形内部应包括在四边形上和四边形外部两种情况.这两种情况的理由是:当点E 在四边形ABCD 的边BC 上时,如图7,同理可得Rt △BFE ≌Rt △CHE ,∴∠B =∠C ,∴四边形ABCD 是“准等腰梯形”;当点E 在四边形ABCD 的外部时,如图8,同理可得Rt △BFE ≌Rt △CHE ,∴∠EBF =∠ECH ,∵EB =EC ,∴∠EBC =∠ECB ,∴∠EBF -∠EBC =∠ECH -∠ECB ,即∠ABC =∠DCB .∴四边形ABCD 是“准等腰梯形”.HGF 图7BCD A H GF 图8BCD A易错练1.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条边上,若∠1=25°,则∠2的度数为……………………………………………………………………………( ) A .53° B .55° C .57° D .60°2.如图,在△ABC 中,AB =AC ,点D 、E 在BC 上,连接AD 、AE .若只添加一个条件就能得到∠DAB =∠EAC ,则下列条件中不正确的是………………………………………( ) A .BE =CD B .AD =AE C .∠BAE =∠CAD D .∠DAE =∠DEA30°21第1题图第2题图BCDA3.已知等腰三角形ABC 中,AD ⊥BC 于点D ,AD =12BC ,则△ABC 的底角度数为_________. 4.在△ABC 中,AB =AC ,点E 、F 分别在AB 、AC 上,AE =AF ,BF 与CE 相交于点D .求证:DB =DC ,并直接写出图中其他相等的线段.FEBC DA5.已知等腰三角形ABC 中,∠ACB =90°,点E 在AC 边的延长线上,且∠DEC =45°,点M 、N 分别是DE 、AE 的中点,连接MN 交直线BE 于点F .当点D 在CB 边的延长线上时,如图1所示,易证MF +FN =12BE . (1)当点D 在CB 边上时,如图2所示,上述结论是否成立?若成立,请给予证明;若不成立,请写出你的猜想,并说明理由.(2)当点D 在BC 边的延长线上时,如图3所示,请证明你发现的结论. (3)你能用式子综合概括本题中MF 、FN 与BE 之间的关系吗?NMF EBC DA图1N MFEBCDA图2NMFE BC DA 图3参考答案3.75°或45°或15°解析:分三种情况:如图①,AD为腰上的高,且在△ABC内部,∵AB=BC,AD=12BC,∴AD=12AB,∴12ADAB=,又∵sin∠B=ADAB,∴sin∠B=12,∴∠B=30°,∴底角为180302︒-︒=75°;如图②,AD为底边上的高,∵AB=BC,AD⊥BC,∴BD=CD,又∵AD=12BC,∴BD=AD,∴△ABD为等腰直角三角形,∴底角为45°;如图③,AD为腰上的高,且在△ABC外部,∵AB=BC,AD=12BC,∴AD=12AB,∴12ADAB=,又∵sin∠DBA=ADAB,∴sin∠DBA=12,∴∠DBA=30°,又∵∠DBA=∠B +∠C,∠B=∠C,∴底角为30°÷2=15°.4.证明:在△ABF和△ACE中,∵AB ACBAF CAEAF AE=⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△ACE(SAS),∴∠ABF=∠ACE,∴BF=CE,∵AB=AC,AE=AF,∴BE=CF.∠ABF =∠ACE ,∵AB =AC ,∴∠ABC =∠ACB ,∴∠ABC -∠ABF =∠ACB -∠ACE ,即∠DBC =∠DCB ,∴DB =DC .图中其他相等的线段有DE =DF ,BE =CF ,BF =CE . 5.解:(1)不成立;猜想:FN -MF =12BE .理由如下:如图4,连接AD ,∵点M 、N 分别是DE 、AE 的中点,∴MN =12AD ,又∵AC =BC ,∠ACB =∠BCE =90°,∠DEC =45°,∴DC =EC ,∴△ACD ≌△BCE (SAS ),∴AD =BE .∵MN =FN -MF ,∴FN -MF =12BE .N MFEBCD A图4(2)发现的结论: MF -FN =12BE .证明:如图5,连接AD ,∵点M 、N 分别是DE 、AE 的中点,∴MN =12AD ,又∵AC =BC ,∠ACB =∠BCE =90°,∠DEC =45°,∴DC =EC ,∴△ACD ≌△BCE (SAS ),∴AD =BE .∵MN =MF -FN ,∴MF -FN =12BE .。

中考数学易错点总结

中考数学易错点总结

中考数学易错点总结
以下是中考数学易错点总结:
1. 题目未仔细审题:中考数学题有很多需要仔细审题的,如果没有认真阅读题目,容易做错。

2. 计算错误:计算错误是中考数学的一个大问题,因此在做数学题时,需要耐心地完整计算,避免粗心的笔误。

3. 公式记不清:中考数学中有很多公式,需要事先认真记忆和理解。

4. 几何题图形画错:中考数学有很多几何题,如果图形画错,答案就会错误。

5. 不理解概念:在做数学题时,难免会出现不理解概念的情况,因此需要认真的学习数学概念,理解其含义。

6. 不会分析问题:中考数学的问题有时需要进行分析,如果没有仔细分析问题,就很容易将坐错。

7. 概率题计算错误:计算概率题时,不能只考虑一个事件,还要考虑其他事件的因素。

8. 公式套用不当:中考数学中的公式不能随便套用,需要根据实际情况进行适当的调整。

9. 非标准答案:中考数学有时会出现非标准答案,需要认真理解题目,避免盲目使用。

10. 考试压力:中考数学是一场考试,可能会产生一定的压力,因此需要做好心理准备,保持冷静。

2023年中考数学易错点及解决方案

2023年中考数学易错点及解决方案

2023年中考数学易错点及解决方案中考数学是每一位初中学生所必须要面对的重要考试,因此在备考过程中,了解常见易错点,并采取相应的解决方案,可以帮助学生更好地应对考试。

下面是一些可能出现的数学易错点及解决方案,希望对2023年中考的学生有所帮助。

易错点1:运算符号的混淆解决方案:在运算符号方面,学生容易混淆加法和减法、乘法和除法等。

因此,在做题过程中,要注意仔细辨别符号,不要慌张,按照正确的运算法则进行计算。

易错点2:反比例关系的理解错误解决方案:反比例关系在中考数学中是一个重要的概念。

学生容易混淆反比例关系和正比例关系的数学表达形式。

正确理解反比例关系的概念并能够灵活运用是解决这个问题的关键。

在练习题中多做一些反比例关系的题目,加深对该概念的理解。

易错点3:面积和体积计算错误解决方案:面积和体积的计算是中考数学中常见的考点。

学生容易在计算面积和体积时,忽略边长、高度等值,导致计算结果错误。

解决这个问题的关键是仔细阅读题目,理解问题的意思,并将给定的数据准确地带入公式进行计算。

易错点4:平面几何图形的性质不熟悉解决方案:平面几何图形的性质是中考数学中的重点内容。

学生容易混淆图形的命名和性质,导致在解题过程中无法正确运用相应的性质。

解决这个问题的方法是多做几道与平面几何图形性质相关的习题,加强对这些性质的理解。

易错点5:代数式的展开和因式分解错误解决方案:代数式的展开和因式分解是中考数学中的重要内容。

学生容易展开和因式分解时出现错误,导致结果不正确。

解决这个问题的关键是掌握基本的代数运算法则和恰当灵活地运用它们。

在做题时,要先仔细观察代数式的特点,然后才能进行正确的展开和因式分解。

易错点6:数据分析和统计知识的不熟悉解决方案:数据分析和统计是中考数学中的一个考察点。

学生容易在图表的读取和数据的分析方面出现问题。

解决这个问题的方法是多做一些与数据分析和统计有关的题目,加强对这些知识的掌握。

易错点7:解方程时出现操作失误解决方案:解方程是中考数学中的一个重要内容。

中考数学常考易错点:4-1《角、相交线与平行线》

中考数学常考易错点:4-1《角、相交线与平行线》

第 - 1 - 页 共 9 页角、相交线与平行线易错清单1. 平行线的性质.【例1】 (2014·湖北襄阳)如图,BC ⊥AE 于点C ,CD ∥AB ,∠B=55°,则∠1等于( ).A. 35°B. 45°C. 55°D. 65°【解析】 利用“直角三角形的两个锐角互余”的性质求得∠A=35°,然后利用平行线的性质得到∠1=∠A=35°.【答案】 ∵ BC ⊥AE ,∴ ∠ACB=90°.∴ ∠A+∠B=90°.又∵ ∠B=55°, ∴ ∠A=35°.又 CD ∥AB ,∴ ∠1=∠A=35°.【误区纠错】 本题考查了平行线的性质和直角三角形的性质.此题也可以利用垂直的定义、邻补角的性质以及平行线的性质来求∠1的度数.【例2】 (2014·广东梅州)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( ).A. 15°B. 20°C. 25°D. 30°【解析】 根据两直线平行,内错角相等求出∠3, 再求解即可.【答案】 ∵ 直尺的两边平行,∠1=20°,第 - 2 - 页 共 9 页∴ ∠3=∠1=20°.∴ ∠2=45°-20°=25°.【误区纠错】 误认为∠1与∠2是内错角来解题.【例3】 (2014·湖北孝感)如图,直线l 1∥l 2,l 3⊥l 4,∠1=44°,那么∠2的度数( ).A. 46°B. 44°C. 36°D. 22°【解析】 根据两直线平行,内错角相等可得∠3=∠1, 再根据直角三角形两锐角互余列式计算即可得解.【答案】 ∵ l 1∥l 2,∴∠3=∠1=44°.∵ l 3⊥l 4,∴ ∠2=90°-∠3=90°-44°=46°.故选A .【误区纠错】 本题考查了平行线的性质,垂线的定义,要熟记性质并准确识图.例外识别∠3与∠1是同位角很重要.2. 平行线的判定.【例4】 (2014·湖南湘潭)如图,直线a ,b 被直线c 所截,若满足 ,则a ,b 平行.【解析】根据同位角相等两直线平行可得∠1=∠2时,a∥b.其他合理答案亦可.【答案】∵∠1=∠2,∴a∥b(同位角相等两直线平行).故可填∠1=∠2.【误区纠错】分不清三线八角,以及平行线的判定方法是解题的误区,本题属条件开放性题.名师点拨1.能记住点、线、面的概念.2.能利用角的概念判断角的大小及角的表示方法;会进行角的换算;能正确区分角的大小;会进行角的和、差运算.3.能区分补角、余角的概念,记住补角、余角的性质.4.掌握角平分线定理和线段垂直平分线定理并能正确使用.5.会画直线的垂线;能区分垂线、垂线段的联系与区别.6.掌握平行的概念,会进行平行线的判断.7.能利用直尺画直线的平行线;会作两平行线间的距离;能确定并准确度量两平行线间的距离.提分策略1.直线平行与垂直的判定及简单应用.计算角度问题时,要注意挖掘图形中的隐含条件(三角形内角和、互为余角或补角、平行性质、垂直)及角平分线知识的应用.【例1】如图,△ABC中,∠A=90°,点D在边AC上,DE∥BC.若∠1=155°,则∠B的度数为.【解析】由∠1=155°,可求得∠BCD=∠CDE=25°,最后求∠B=65°.【答案】65°第 - 3 - 页共 9 页第 - 4 - 页 共 9 页2. 平行线的性质和判定的应用.主要理解和掌握:(1)平行线的性质;(2)平行线的判定.【例2】 如图,AB ∥CD ,分别探讨下面四个图形中∠APC 与∠PAB ,∠PCD 的关系,请你从所得到的关系中任选一个加以证明.【解析】 ①∠APC=∠PAB+∠PCD ;②∠APC=360°-(∠PAB+∠PCD );③∠APC=∠PAB-∠PCD ;④∠APC=∠PCD-∠PAB.如证明① ∠APC=∠PAB+∠PCD.证明:过点P 作PE ∥AB ,所以∠A=∠APE.又因为AB ∥CD ,所以PE ∥CD.所以∠C=∠CPE.所以∠A+∠C=∠APE+∠CPE.所以∠APC=∠PAB+∠PCD.同理可证明其他的结论.专项训练一、 选择题1. (2014·四川峨眉山二模)如图,已知直线AB ,CD 相交于点O ,OE 平分∠CPB.若∠BOD=70°,则∠COE 的度数是( ).A. 45°B. 70°第 - 5 - 页共 9 页C. 55°D. 110°(第1题)(第2题)2. (2014·北京平谷区模拟)如图,AB ∥CD ,O 为CD 上一点,且∠AOB=90°.若∠B=33°,则∠AOC 的度数是( ).A. 33°B. 60°C. 67°D. 57°3. (2014·山东日照模拟)将一副三角板按图中的方式叠放,则∠α等于( ).A. 75°B. 60°C. 45°D. 30°(第3题)(第4题)4. (2013·广东广州海珠区毕业班综合调研)如图,∠1与∠2是同位角,若∠2=65°,则∠1的大小是( ).A. 25°B. 65°C. 115°D. 不能确定5. (2013·浙江温州一模)如图,在△ABC 中,DE ∥BC ,AD=2,AB=6,DE=3,则BC 的长为( ).第 - 6 - 页共 9 页A. 9B. 6C. 4D. 3(第5题)(第6题)6. (2012·湖北荆门东宝区模拟)如图,已知直线a ∥b ,∠1=40°,∠2=60°.则∠3等于( ).A. 100°B. 60°C. 40°D. 20°二、 填空题7. (2014·广东模拟)将三角板ABC 按下图放置,使其三个顶点分别落在三条平行直线上,其中∠CAB=90°,且 CF 恰好平分∠ACB.若∠CBA=40°,则∠DAC 的度数是 .(第7题)(第8题)8. (2014·河南鹿邑一模)如图,∠1=∠2,∠3=40°.则∠4= .9. (2014·湖北鄂州二模)如图AB∥CD,∠1=50°,∠2=110°,则∠3= .(第9题)(第10题)10. (2013·湖北孝感模拟)如图, 直线AB,CD相交于点E,EF⊥AB于点E,若∠CEF=59°,则∠AED的度数为.三、解答题11. (2014·河南安阳模拟)已知:在△ABC中,BC=a,AC=b,以AB为边作等边三角形ABD.探究下列问题:(1)如图(1),当点D与点C位于直线AB的两侧时,a=b=3,且∠ACB=60°,则CD= ;(2)如图(2),当点D与点C位于直线AB的同侧时,a=b=6,且∠ACB=90°,则CD= ;(3)如图(3),当∠ACB变化,且点D与点C位于直线AB的两侧时,求CD的最大值及相应的∠ACB的度数.(第11题)参考答案与解析1. C[解析]2. D[解析] ∠AOC=90°-33°=57°.3. A[解析] ∠α=45°+(90°-60°)=75°.4. D[解析]两直线平行同位角相等,如果不能确定两直线是平行线则不能确定同位角之间第 - 7 - 页共 9 页的关系.5. A[解析]首先利用平行线判定两三角形相似,然后利用相似三角形对应边的比等于相似比求得线段BC的长即可.6. A[解析]∠3=∠1+∠2=100°.8.140°[解析] ∠4=180°-∠3=140°.9.60°[解析] ∠3=180°-(∠1+180°-∠2)=60°.10.149°[解析]∵EF⊥AB于点E,∠CEF=59°,∴∠AEC=90°-∠CEF=90°-59°=31°.∴∠AED=180°-∠AEC=180°-31°=149°.11.(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.连接AE,CE.∴CD=ED,∠CDE=60°,AE=CB=a.∴△CDE为等边三角形.∴CE=CD.如图(1),当点E,A,C不在一条直线上时,有CD=CE<AE+AC=a+b;如图(2),当点E,A,C在一条直线上时,CD有最大值,CD=CD=a+b.此时∠CED=∠BCD=∠ECD=60°,∴∠ACB=120°.因此当∠ACB=120°时,CD有最大值a+b.第 - 8 - 页共 9 页(第11题)第 - 9 - 页共 9 页。

中考数学重难点易错题汇总含答案解析

中考数学重难点易错题汇总含答案解析

精品基础教育教学资料,仅供参考,需要可下载使用!最新初三九年级中考数学易错题集锦汇总学校:__________ 姓名:__________ 班级:__________ 考号:__________ 题号 一 总分 得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分 一、选择题1.如图,能判定 AB ∥CD 的条件是( )A .∠1=∠2B .∠1+∠2= 180°C .∠3=∠4D .∠3+∠1=180°2.下列各式中从左到右的变形,是因式分解的是( )A .(a+3)(a-3)=a 2-9;B .x 2+x-5=(x-2)(x+3)+1;C .a 2b+ab 2=ab (a+b )D .x 2+1=x (x+x1) 3.用科学记数方法表示0000907.0,得( )A .41007.9-⨯B .51007.9-⨯C .6107.90-⨯D .7107.90-⨯ 4.小马虎在下面的计算中只做对了一道题,则他做对的题目是 ( )A .222)(b a b a -=-B .6234)2(a a =-C .5232a a a =+D .1)1(--=--a a5.方程x 3=22-x 的解的情况是( ) A .2=x B .6=xC .6-=xD .无解 6.已知235x x ++的值为 3,则代数式2391x x +-的值为( )A .-9B .-7C .0D .37.下列事件中,届于不确定事件的是( )A .2008年奥运会在北京举行B .太阳从西边升起C .在1,2,3,4中任取一个教比 5大D .打开数学书就翻到第10页8.下列长度的三条线段能组成三角形的是( )A .5cm,3cm,1cmB .6cm,4cm,2cmC . 8cm, 5cm, 3cmD . 9cm,6cm,4cm9.在下面四个图形中,既包含图形的旋转,又有图形的轴对称设计的是( )A .B .C .D .10.下列说法中,正确的是( )A .一颗质地均匀的骰子已连续抛掷了 2000次,其中抛掷出 5点的次数最少,则第2001次一定抛掷出 5点B .某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C .天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D .抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等11.某地区10户家庭的年消费情况如下:年消费l0万元的有2户,年消费5万元的有l 户,年消费1.5万元的有6户,年消费7千元的有1户.可估计该地区每户年消费金额的一般水平为()A.1.5万元 B.5万元 C.10万元 D.3.47万元12.三角形的一个外角小于与它相邻的内角,这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.属于哪一类不能确定13.下列图形中,由已知图形通过平移变换得到的是()14.在同一平面内垂直于同一条直线的两条直线必然()A.互相平行B.互相垂直C.互相重合D.关系不能确定15.△ABC和△DEF都是等边三角形,若△ABC的周长为24 cm ,△DEF的边长比△ABC 的边长长3 cm,则△DEF的周长为()A.27 cm B.30 cm C.33 cm D.无法确定16.下列命题不正确的是()A.在同一三角形中,等边对等角B.在同一三角形中,等角对等边C.在等腰三角形中与顶角相邻的外角等于底角的2倍D.等腰三角形是等边三角形17.在△ABC中,∠A:∠B:∠C=2:3:5,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定18.等腰三角形的“三线合一”是指()A.中线、高、角平分线互相重合B.腰上的中线、腰上的高、底角的平分线互相重合C.顶角的平分线、中线、高线三线互相重合D . 顶角的平分线、底边上的高及底边上的中线三线互相重合19.在△ABC 中,已知AC AB = ,DE 垂直平分AC ,50=∠A °,则DCB ∠的度数是( )A . 15°B .30°C . 50°D . 65°20.将如图1所示的Rt △ABC 绕直角边BC 旋转一周,所得几何体的左视图是( )21.画一个物体的三视图时,一般的顺序是( )A .主视图、左视图、俯视图B .主视图、俯视图、左视图C .俯视图、主视图、左视图D .左视图、俯视图、主视图22.要了解一批电视机的使用寿命,从中任意抽取30台电视机进行试验,在这个问题中,30是( )A .个体B .总体C .样本容量D .总体的一个样本23.济南市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S (吨)与时间t (小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是( )A .4小时B .4.4小时C .4.8小时D .5小时 24.若分式3242x x +-有意义,则字母x 的取值范围是( ) A .12x = B .23x =- C .12x ≠ 23x ≠-25.把图中的角表示成下列形式:①∠AP0;②∠P;③∠0PC;④∠0;⑤∠CP0;⑥∠AOP.其中正确的有()A.6个B.5个C.4个D.3个26.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为()A.90个B.24个C.70个D.32个27.如图所示的 6 个数是按一定规律排列的,根据这个规律,括号内的数应是()A.27 B.56 C.43 D.3028.现有两个有理数 a、b,它们的绝对值相等,则这两个有理数()A.相等 B.相等或互为相反数 C.都是零 D.互为相反数29.某天股票A 开盘价 19 元,上午 11:30 跌1. 5 元,下午收盘时又涨了 0. 5 元,则投票A 这天收盘价为()A.0.3 元B.l6.2 元C.16.8 元D.18 元30.蜗牛在井里距井口 lm 处,它每天白天向上爬行 30 cm,每天夜晚又下滑 20 cm,则蜗牛爬出井口需要的天数是()A.11 天B.10 天C.9 天D.8 天31.小红妈妈的 2 万元存款到期了,按规定她可以得到 2 的利息,但同时必须向国家缴 纳 20% 的利息所得税,则小红妈妈缴税的金额是( )A .80 元B .60 元C .40 元D .20 元32.求0.0529的正确按键顺序为( )A .B .C .D .33.下列方程中,是一元一次方程的为( )A .x+y=1B .2210x x -+=C .21x =D .x=034.有下列计算 :①0-(-5)=-5;②(-3)+(-9)=-12;③293()342⨯-=-;④(36)(9)4-÷-=-.其中正确的有( )A . 1个B . 2个C .3个D .4个35.一个五次多项式,它的任何一项的次数( )A .都小于5B .都等于5C .都不大于5D .都不小于536.⎩⎨⎧==21y x 是方程3=-y ax 的解,则a 的值是( ) A .5 B .5- C .2 D .137.下列说法中正确的是 ( )A .直线大于射线B .连结两点的线段叫做两点的距离C .若AB=BC ,则B 是线段AC 的中点D .两点之间线段最短38. 在△ABC 中,∠A =30°,∠B =50°,则∠C 的外角=( )A .60°B .80°C .100°D .120°39.如图,∠AOC=∠BOD=90°,下列结论中正确的个数是( )①∠AOB=∠COD ;②∠AOD=3∠B0C ;③∠AOD+∠BOC=∠AOC+∠BODA .0个B .l 个C .2个D .3个40.若两个角互为补角,则这两个角( )A .都是锐角B .都是钝角C .一个是锐角,另一个是钝角D .以上结论都不全对41.下列说法中,错误的是( )A .经过一点可以画无数条直线B .经过两点可以画一条直线C .两点之间线段最短D .三点确定一条直线42.12-的绝对值是( ) A .2- B .12- C .2 D .1243.下列说法中正确的是( )A .从三角形一个顶点向它对边所在直线画垂线,此垂线就是三角形的高B .三角形的角平分线是一条射线C.直角三角形只有一条高D.钝角三角形的三条高所在的直线的交点在此三角形的外部44.如图所示,是轴对称图形的个数有()A.4个B.3个C.2个D.1个45.将如图所示的图形按照顺时针方向旋转90°后所得的图形是()46.如图,已知 6.75r=,则图中阴影部分的面积为(结果保留π)()R=, 3.25A.35π⋅B.12.25πC.27πD.35π47.如图,由△ABC平移而得的三角形有()A. 8个B. 9个C. 10个D. 16个48.下列各式中不是不等式的为()A.25x=D.610x+≤C.58-<B.92y+> 49.关于单项式322-的系数、次数,下列说法中,正确的是()2x y zA.系数为-2,次数为 8B.系数为-8,次数为 5C.系数为-23,次数为 4D .系数为-2,次数为 750.直角三角形在正方形网格纸中的位置如图所示,则cos α的值是( )A . 43B . 34C . 53D . 5451.下列说法中,正确的个数是( )①样本的方差越小,波动性越小,说明样本稳定性越好;②一组数据的方差一定是正数;③一组数据的方差的单位与原数据的单位是一致的;④一组数据的标准差越大,则这组数据的方差一定越大.A .1个B .2个C .3个D .4个52.如图,在两半径不同的圆心角中,∠AOB=∠A ′O ′B ′=60°,则( )A .AB=A ′B ′ B .AB<A ′B ′C .AB 的度数=A ′B ′的度数D .AB 的长度=A ′B ′的长度53.△ABC 中,A = 47°,AB = 1.5 cm ,AC=2 cm ,△DEF 中,E = 47°,ED =2.8 cm ,EF=2. 1 cnn ,这两个三角形( )A . 相似B .不相似C . 全等D . 以上都不对54.在△ABC 中,AB=AC ,∠A=36°.以点A 为位似中心,把△ABC 放大2倍后得△A ′B ′C ′,则∠B 等于( )A .36°B .54°C .72°D .144°55.如图,∠APD =90°,AP =PB =BC =CD ,则下列结论成立的是( )A .ΔPAB ∽ΔPCA B .ΔPAB ∽ΔPDAC .ΔABC ∽ΔDBAD .ΔABC ∽ΔDCA56.如图,已知21∠=∠,那么添加下列一个条件后,仍无法..判定ABC ∆∽ADE ∆的是( )A .AE AC AD AB = B .DE BC AD AB = C .D B ∠=∠ D .AED C ∠=∠57.若正比例函数2y x =-与反比例函数k y x=的图象交于点A ,且A 点的横坐标是1-,则此反比例函数的解析式为( )A .12y x =B .12y x =-C .2y x =D .2y x=- 58.如图,梯形ABCD 中,AB ∥DC ,AB ⊥BC ,AB =2cm ,CD =4cm .以BC 上一点O 为圆心的圆经过A 、D 两点,且∠AOD =90°,则圆心O 到弦AD 的距离是( )A .6cmB .10cmC .32cmD .52cm59.等腰三角形的腰长为32,底边长为6,那么底角等于( )A . 30°B . 45°C . 60°D .120°60.下列事件,是必然事件的是( )A .掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是1B .掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是偶数C .打开电视,正在播广告D .抛掷一枚硬币,掷得的结果不是正面就是反面61.如图,扇形 OAB 的圆心角为 90°,分别以 OA 、OB 为直径在扇形内作半圆,P 和Q 分别表示两个阴影部分的面积,那么 P 和Q 的大小关系是( )A .P=QB .P>QC .P<QD . 无法确定62.某飞机于空中 A 处探测到平面目标 B ,此时从飞机上看目标B 的俯角α=30°,飞行高度AC= 1200 m,那么飞机到目标B 的距离AB为()A.2400m B.1200m C.4003 m D.12003 m 63.已知二次函数22(21)1y x a x a=+++-的最小值为 0,则a的值为()A.34B.34-C.54D.54-64.一箱灯泡有 24 个,灯泡的合格率是87.5%,则从中任意拿出一个是次品的概率是()A.0 B.124C.78D.1865.设有 10 个型号相同的杯子,其中一等品 7个、二等品 2个、三等品 1 个,从中任取一个杯子是一等品的概率等于()A.310B.70lC.37D.1766.书架的第一层放有 2 本文艺书、3 本科技书,书架的第二层放有 4 本文艺书、1 本科技书,从两层各取 1 本书,恰好都是科技书的概率是()A.325B.49C.1720D.2567.在一个有 10 万人的小镇,随机调查了 2000人,其中有 250 人看中央电视台的早新闻,在该镇随机问一个人,他看早新闻的概率大约是()A.0.75 B. 0.5 C. 0.25 D. 0.12568.有左、中、右三个抽屉,左边的抽屉里放有 2个白球,中间和右边的抽屉里各放一个红球和一个白球,从三个抽屉里任选一个球是红球的概率是()A.14B.13C.16D.2569.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类。

中考数学最易出错61个知识点

中考数学最易出错61个知识点

中考数学最易出错61个知识点中考数学是中学学生所要参加的一项重要考试,其中涉及的知识点众多,且易出错。

在这里,我将为你详细介绍中考数学中最常见的61个易出错知识点。

1.四则运算:在进行加减乘除的运算时,容易出错的地方主要有横式运算错误、进位或借位错误、计算优先级错误等。

2.小数和分数:容易忽略小数点位置,小数转化成百分数或分数时易出错。

3.百分数:容易忘记将百分数转换成小数或分数,计算百分数的加减乘除时易出错。

4.平方和立方:容易将平方和立方的运算法则记错,例如平方数的开平方计算等。

5.代数式的计算:在多项式的加减乘除时容易忽略项,忘记合并同类项等。

6.等式和方程:在等式的加减乘除时易出错,方程的解错等。

7.几何图形的计算:容易计算图形的周长、面积和体积时忽略单位,记错公式等。

8.几何相似:容易混淆正相似和全等,计算相似比时出错。

9.圆与圆相关的知识点:包括弦长、弧长、扇形面积等计算容易出错。

10.直角三角形:容易记错勾股定理和三角函数的计算。

11.等腰三角形和等边三角形:容易忘记等腰三角形的性质和计算等边三角形的周长和面积。

12.梯形和平行四边形:容易计算梯形和平行四边形的面积时忽略高,记错公式。

13.计算用纸:容易使用错单位,计算时纸上的步骤和结果容易出错。

14.逻辑推理和证明:在逻辑推理和证明问题时容易漏项,记错条件或结论。

15.统计与概率:在统计数据的收集和处理时易出错,概率计算容易忽略条件。

以上是中考数学中最常见的61个易出错知识点的简要介绍。

为了避免这些易出错的情况,建议同学们在备考过程中多做相关的练习题,掌握基本技巧和方法,加强解题能力。

此外,同学们还可以多与同学、老师交流,共同探讨和解决问题,提升自己的数学水平。

中考数学高频错题集锦

中考数学高频错题集锦

点与系数 a,b,c 的关系
例题:已知二次函数 y=ax2+bx+c 的图象如图 G-3,对称
轴是直线 x=1.下列结论:①abc>0;②2a+b=0;③b2-4ac
<0;④4a+2b+c>0.其中正确的是( A.①③ B.只有② C.②④ D.③④ 图 G-3 )
b 分析:∵抛物线的开口向上,∴a>0.∵-2a>0,∴b<0. ∵抛物线与 y 轴交于正半轴,∴c>0.∴abc<0.①错误; b ∵对称轴为 x=1,∴-2a=1,即 2a+b=0.②正确; ∵抛物线与 x 轴有 2 个交点,∴b2-4ac>0.③错误; ∵对称轴为直线 x=1, ∴当 x=2 与 x=0 时的函数值相等, 而当 x=0 时对应的函数值为正数,∴4a+2b+c>0.④正确.
)
分析:当x=0 时,方程两边相等,即x=0 是方程的一个 根;当 x≠0 时,原方程同时除以 x,得x-1=1,即x=2. 正解:C
失误与防范:错误的原因是方程两边同时除以 x,忽略 x
可能为 0,这时就造成了失根.防范这种错误的方法是解方程 时,如果方程的两边同时除以一个代数式,一定要注意它是否 会等于 0.
于a4;D 中 a2a3 是同底数幂相乘指数相加等于a5.
正解:D
失误与防范:易混淆幂的运算法则,幂的运算法则较多,
一定要分清楚记牢.
易错点3:完全平方公式中的交叉项可正可负
例题:如果 a2-ka+1 是一个完全平方式,那么 k 的值是 ________. 分析:当k=2 时,a2-ka+1=a2-2a+1 是一个完全平方 式;当k=-2 时,a2-ka+1=a2+2a+1 也是一个完全平方式. 正解:k=2 或-2 失误与防范:错误的原因是没有注意到完全平方公式中的 交叉项可正可负,防范这种错误的方法是牢记公式.

中考数学易错点及解决方案(二篇)

中考数学易错点及解决方案(二篇)

中考数学易错点及解决方案一、学习方法方面的问题1.做几何题时候不会做辅助线原因:对于几何模型认识不充分解决方案:每一种基本的几何模型都有定义、性质和判定三方面,要将这三方面知识熟记于心。

一般来说应用的过程是:判定是哪种模型→此模型有何性质→此性质能不能直接用→若不能,则作辅助线体现其性质。

例如:平行四边形模型→对角线互相平分,对边平行且相等,对角相等。

等腰三角形模型→三线合一。

倍长中线模型→有三角形一边中点,可以考虑倍长中线构造全等。

还有梯形的三类辅助线,都应该熟记。

2.考虑问题不全面,不会进行分类讨论原因:(1)对于题型本身掌握不好,没思路;(2)有些想法,不知道是否正确,不敢动笔;(3)不会写过程;(4)会做,懒得写。

解决方案:(1)注意几种经常需要分类讨论的知识点,就函数自变量取值的范围,一次函数的k,b的正负性,平方根的双重性,直角坐标系中点的坐标与线段长度的转化等。

(2)学会讨论方法,把每一种情况都写下来,然后分别解出每种情况下的结果。

(3)注意分类之后的取舍,并不是所有情况都是正确答案,尤其是解分式方程和根式方程的时候,会出现增根,一定要检验。

3.自信心不足,不敢下手二、学习习惯方面的问题1.喜欢用铅笔后果:过于依赖铅笔,习惯于没想好就下笔,导致考试时多次使用修改,卷面凌乱,当没有可涂改工具时不敢下笔写。

解决方案:除了画图,其他一律使用签字笔书写。

除了笔误,由于思路不清或是方法错误导致的失误尽量不要用涂改带修改,标明错误,在一旁写下正确答案。

一来,养成“慢想快写”的好习惯;二来,可以保留错误作为警戒;三来,强制自己的行文工整,否则会一团糟。

2.几何题用签字笔或圆珠笔在图上标注后果:原图被涂改的一团糟,什么都看不清。

解决方案:改用铅笔画图,学会科学地标注相等的线段,相等的角,辅助线用虚线等。

3.看见题目,急于下手,结果思考不出来后果:耗费了大量时间仍然没有做出题。

解决方案:这个时候同学们再读几遍题目,尤其是几何题,综合题。

初中数学最易出错的61个知识点

初中数学最易出错的61个知识点

初中数学最易出错的61个知识点在初中数学学习中,有一些知识点容易使学生犯错。

以下是初中数学最易出错的61个知识点:1.小数的运算规则2.含有绝对值的运算3.含有根式的运算4.有理数的比较5.正负数的四则运算6.解一元一次方程7.解一元一次不等式8.平方根的性质和计算9.立方根的性质和计算10.分数的加减乘除运算11.分数的比较大小12.分数的化简和约分13.相似三角形的性质14.平行四边形的性质15.三角形内角和的性质16.直角三角形的性质17.平行线的性质和判定18.垂直线的性质和判定19.点、线、面的位置关系20.函数图象的性质和绘制21.图形的放大和缩小22.图形的旋转和平移23.图形的对称性24.等腰三角形的性质和判定25.等边三角形的性质和判定26.二次函数的图象和性质27.一元二次方程的解法和判别式28.计算二次根式29.二次根式的化简30.集合的运算和表示31.方程与函数的关系32.因式分解与配方法33.判断一个数的因数34.等式的性质和运算35.余弦定理和正弦定理的应用36.二次根式的大小比较37.二次函数的最值问题38.分数方程的解法39.方程组的解法40.数列的通项公式41.等差数列的性质42.等比数列的性质43.最大公约数和最小公倍数44.矩形的性质和计算45.面积的计算和性质46.体积的计算和性质47.三角函数的计算和性质48.三角函数的图象和性质49.圆的性质和计算50.圆的面积和周长51.球的性质和计算52.梯形和菱形的性质和计算53.错题总结与错误分析54.去掉画蛇添足的步骤55.计算步骤的合理性和正确性56.数学语言的理解和运用57.分解和组合的运算技巧58.图形的结构和形状分析59.策略的选择和运用60.推理和证明的思路和方法61.解决实际问题的数学思维和能力这些知识点需要学生特别注意,并反复进行练习和巩固。

通过不断的练习和理解,学生可以避免在这些知识点上犯错误,并提高数学学习的效果。

【解析版】中考数学常考易错点:1.3《整式》(原创)

【解析版】中考数学常考易错点:1.3《整式》(原创)

整式易错清单1. (a m)n与a m·a n的区别.【例1】(2019·湖南娄底)下列运算正确的是().A. x2·x3=x6B. (x3)3=x9C. x2+x2=x4D. x6÷x3=x2【解析】x2·x3=x5,故A错误;(x3)3=x9,故B正确;x2+x2=2x2,故C错误;x6÷x3=x3,故D错误.【答案】 B【误区纠错】易把同底数幂的乘法和幂的乘方相混淆,如x2·x3=x5和(x3)3=x9,即(a m)n和a m·a n 混淆.2.因式分解的步骤.【例2】(2014·山东日照)分解因式:x3-9x= .【解析】先提取公因式,再利用平方差公式,x3-9x=x(x2-9)=x(x+3)(x-3).【答案】x(x+3)(x-3)【误区纠错】易错原因:一是提不出公因式和不能正确运用公式;二是因式分解不彻底;三是因式分解与整式乘法相混淆.3.整式运算中常见的错误.【例3】(2014·北京)已知,求代数式(x+1)2-2x+y(y-2x)的值.【解析】本题先利用完全平方公式展开,再将x-y视为一个整体未知数代入求值.【答案】原式=x2+2x+1-2x+y2-2xy=(x-y)2+1,当时,原式=3+1=4.【误区纠错】本题最常见的错误:(1)去括号时符号出错;(2)完全平方公式不熟悉.名师点拨1.能用字母表示实际意义,正确解释代数式的含义.2.会利用概念判断整式、单项式、多项式.3.会说出单项式系数、次数、多项式项数以及按幂排列问题.4.能掌握同类项的概念,能进行同类项合并,能区分去括号与添加括号法则的差异.5.能区分幂的乘方、积的乘方、同底数幂相乘的差异.6.能利用乘法公式简化整式乘除,会利用乘法公式进行因式分解的运算.提分策略1.整式的运算.(1)进行整式的运算时,一要注意合理选择运算法则,二要注意结果的符号.(2)整式的运算顺序是:先计算乘除,再做整式的加减,整式加减的实质就是合并同类项,其中能运用乘法公式计算的应采用乘法公式进行计算.2.因式分解的应用.(1)通过拼图的方法可验证平方差公式和完全平方公式,关键要能准确计算阴影部分的面积.(2)利用因式分解进行计算与化简,先把要求的代数式进行因式分解,再代入已知条件计算.【例2】图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是().A. 2mnB. (m+n)2C. (m-n)2D. m2-n2【解析】中间空的部分的面积是(m+n)2-2m·2n=(m+n)2-4mn=(m-n)2.【答案】 C3.整式的创新应用.解决整式的规律性问题应充分发挥数形结合的作用,从分析图形的结构入手,分析图形结构的形成过程,从简单到复杂,进行归纳猜想,从而获得隐含的数学规律,并用代数式进行描述.【例3】用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少颗黑色棋子?(2)第几个图形有2 013颗黑色棋子?请说明理由.【解析】(1)根据图中所给的黑色棋子的颗数,找出其中的规律,即可得出答案;(2)根据(1)所找出的规律,列出式子,即可求出答案.【答案】(1)第1个图需棋子6颗,第2个图需棋子9颗,第3个图需棋子12颗,第4个图需棋子15颗,…第n个图需棋子3(n+1)颗.故第5个图形有18颗黑色棋子.(2)设第n个图形有2013颗黑色棋子,根据(1),得3(n+1)=2013,解得n=670,所以第670个图形有2013颗黑色棋子.专项训练一、选择题2. (2014·江苏苏州高新区模拟)下列计算正确的是().A. x4·x4=x16B. (a3)2·a4=a9C. (ab2)3÷(-ab)2=-ab4D. (a6)2÷(a4)3=13. (2014·山东泰安模拟)下列运算正确的是().A. x3·x2=x5B. (x3)3=x6C. x5+x5=x10D. x6-x3=x34. (2014·广西南宁五模)下列计算正确的是().A. a+a=a2B. (2a)3=6a3C. (a-1)2=a2-1D. (-ab)5÷(-ab)2=-a3b35. (2013·山西模拟)已知-4x a y+x2y b=-3x2y,则a+b的值为().A. 1B. 2C. 3D. 46. (2013·浙江宁波北仑区一模)下列运算不正确的是().A. -(a-b)=-a+bB. a2·a3=a6C. a2-2ab+b2=(a-b)2D. 3a-2a=a7. (2013·江苏无锡崇安区一模)下列运算正确的是().A. 3a+2a=5a2B. (2a)3=6a3C. (x+1)2=x2+1D. x2-4=(x+2)(x-2)二、填空题8. (2014·陕西模拟)计算:(2a)3·(-3a2)= .9. (2014·广东深圳模拟)分解因式:xy2-2xy+x= .10. (2014·浙江温州模拟)分解因式:(x-1)2-4= .(第11题)12.(2013·浙江温州一模)已知方程x2-x-1=0有一根为m,则m2-m+2012的值为.13. (2013·吉林模拟)已知x+y=-5,xy=6,则x2+y2= .14. (2013·江苏无锡崇安区一模)分解因式:3a2-6ab+3b2= .三、解答题17. (2013·江苏宜兴外国语学校二模)已知xy=-1,求代数式(x+y)2-(x-y)2的值.参考答案与解析2. D[解析]x4·x4=x8;(a3)2·a4=a10;(ab2)3÷(-ab)2=ab4.3. A[解析](x3)3=x9;x5+x5=2x5;x6与x3不能合并.4. D[解析]a+a=2a;(2a)3=8a3;(a-1)2=a2-2a+1.5. C[解析]由同类项的意义知a=2,b=1.6. B[解析]a2·a3=a5.7. D[解析]3a+2a=5a;(2a)3=8a3;(x+1)2=x2+2x+1.8.-24a5[解析](2a)3·(-3a2)=8a3·(-3a2)=-24a5.9.x(y-1)2[解析]xy2-2xy+x=x(y2-2y+1)=x(y-1)2.10. (x+1)(x-3)[解析](x-1)2-4=(x-1+2)(x-1-2)=(x+1)(x-3).12. 2013[解析]由题意,得m2-m-1=0,则m2-m+2012=2013.13. 13[解析]x2+y2=(x+y)2-2xy=25-12=13.14. 3(a-b)2[解析]先提公因式,再用完全平方公式.17.原式=x2+2xy+y2-(x2-2xy+y2)=4xy,当xy=-1时,原式=-4.。

中考数学专题训练第1讲有理数(解析版)

中考数学专题训练第1讲有理数(解析版)

有理数易错点梳理易错点01 误把0当成正数0既不是正数也不是负数.0是正数与负数的分界点。

易错点02 误以为带“+”号的数就是正数.带“-”号的数就是负数不能简单地理解为带“+”号的数就是正数.带“-”号的数就是负数。

例如:当0>a 时.a 表示正数.a -表示负数;当0=a 时.a 与a -都表示0;当0<a 时.a 表示负数.a -表示正数。

易错点03 误把无限循环小数看成无理数有限小数和无限循环小数都可以写成分数形式.所以有限小数和无限循环小数都是有理数;无限不循环小数是无理数。

易错点04 误把数轴当成线段数轴是规定了原点、正方向和单位长度的直线。

易错点05 混淆“单位长度”和“长度单位”单位长度是指具体的时间内具体的长度为1;长度单位是指毫米、厘米、分米、米、千米等。

它们是完全不同的概念。

易错点06 误认为0的倒数是00的相反数是0,0的绝对值为0,0没有倒数。

易错点07 混淆na -与na )(-的意义n a -表示n a 的相反数.n a )(-表示n 个a -相乘。

易错点08 运用加法交换律时弄错符号运用加法交换律时.在交换各加数的位置时.要连同它前面的符号一起交换.不能漏掉符号。

易错点09 运用分配律时易漏乘运用分配律时.括号内的每一项都要乘以括号外的数.不要漏乘。

考向01 正负数的概念易错点梳理例题分析例题1:(2021·青海西宁·中考真题)中国人最先使用负数.魏晋时期的数学家刘徽在其著作《九章算术注》中.用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正.黑色为负).如图1表示的是(+2)+(-2).根据这种表示法.可推算出图2所表示的算式是( )A .()()36+++B .()()36++-C .()()36-++D .()(36)-+-【答案】B【思路分析】根据题意图2中.红色的有三根.黑色的有六根可得答案.【解析】解:由题知. 图2红色的有三根.黑色的有六根.故图2表示的算式是(+3)+ (-6) .故选:B .【点拨】本题主要考查正负数的含义.解题的关键是理解正负数的含义.考向02 数轴的概念例题2:(2021·广东广州·中考真题)如图.在数轴上.点A 、B 分别表示a 、b .且0a b +=.若6AB =.则点A 表示的数为( )A .3-B .0C .3D .6-【答案】A【思路分析】由AB 的长度结合A 、B 表示的数互为相反数.即可得出A .B 表示的数 【解析】解:∵0a b += ∴A .B 两点对应的数互为相反数.∴可设A 表示的数为a .则B 表示的数为a -. ∵6AB = ∴6a a --=. 解得:3a =-.∴点A 表示的数为-3.故选:A .【点拨】本题考查了绝对值.相反数的应用.关键是能根据题意得出方程6a a --=.考向03 相反数的概念例题3:(2021·湖南永州·中考真题)1||202--的相反数为( ) A .2021- B .2021C .12021-D .12021【答案】B【思路分析】根据绝对值、相反数的概念求解即可.【解析】解:由题意可知:||=22110202-.故1||202--的相反数为2021.故选:B . 【点拨】本题考查相反数、绝对值的概念.属于基础题.熟练掌握概念是解决本题的关键.考向04 绝对值和概念和非负性例题4:(2021·黑龙江大庆·中考真题)下列说法正确的是( ) A .||x x <B .若|1|2x -+取最小值.则0x =C .若11x y >>>-.则||||x y <D .若|1|0x +≤.则1x =-【答案】D【思路分析】根据绝对值的定义和绝对值的非负性逐一分析判定即可.【解析】解:A .当0x =时.||=x x .故该项错误;B .∵10x -≥.∴当1x =时|1|2x -+取最小值.故该项错误;C .∵11x y >>>-.∴1x >.1y <.∴||||x y .故该项错误;D .∵|1|0x +≤且|1|0x +≥.∴|1|0x +=.∴1x =-.故该项正确;故选:D .【点拨】本题考查绝对值.掌握绝对值的定义和绝对值的非负性是解题的关键.考向05 有理数大小的比较例题5:(2021·四川巴中·中考真题)下列各式的值最小的是( ) A .20 B .|﹣2| C .2﹣1 D .﹣(﹣2)【答案】C【思路分析】直接利用零指数幂的性质以及负整数指数幂的性质、绝对值的性质、相反数分别化简得出答案.【解析】解:20=1.|-2|=2.2-1=12.-(-2)=2. ∵12<1<2. ∴最小的是2-1. 故选:C .【点拨】此题主要考查了零指数幂的性质以及负整数指数幂的性质、绝对值的性质、相反数.正确化简各数是解题关键.考向06 有理数加减法的运算例题6:(2021·四川广元·中考真题)计算()32---的最后结果是( ) A .1B .1-C .5D .5-【答案】C【思路分析】先计算绝对值.再将减法转化为加法运算即可得到最后结果. 【解析】解:原式325=+=.故选:C .【点拨】本题考查了绝对值化简和有理数的加减法运算.解决本题的关键是牢记绝对值定义与有理数运算法则.本题较基础.考查了学生对概念的理解与应用.考向07 科学计数法例题7:(2021·山东青岛·中考真题)2021年3月5 日.李克强总理在政府工作报告中指出.我国脱贫攻坚成果举世瞩目.5575万农村贫困人口实现脱贫.5575万=55750000.用科学记数法将55750000表示为( ) A .4557510⨯ B .555.7510⨯C .75.57510⨯D .80.557510⨯【答案】C【思路分析】根据科学记数法的定义“把一个大于10的数表示成10n a ⨯的形式(其中a 是整数位只有一位的数.即a 大于或等于1且小于10.n 是正整数).这样的记数方法叫做科学记数法”进行解答即可得.【解析】解:755750000 5.57510=⨯.故选C .【点拨】本题考查了科学记数法.解题的关键是熟记科学记数法的定义.一、单选题1.(2021·湖南·长沙市开福区青竹湖湘一外国语学校三模)-2021的绝对值是( ) A .2021- B .12021-C .2021D .12020【答案】C【解析】-2021的绝对值是2021.故选:C2.(2021·浙江·温州市教育教学研究院一模)2的相反数是( ) A .2 B .12C .2-D .4-【答案】C【解析】解:2的相反数是-2.故选C .3.(2021·安徽·合肥一六八中学模拟预测)下列是有理数的是( ) A .tan 45︒ B .sin 45︒C .cos45︒D .sin 60︒【答案】A微练习【解析】解:A 、tan 451︒=.是有理数.符合题意;B 、2sin 452=°.不是有理数.不符合题意;C 、2cos 452=°.不是有理数.不符合题意;D 、3sin 602︒=.不是有理数.不符合题意;故选:A .4.(2021·陕西·交大附中分校模拟预测)如图.数轴上点A 表示的数为( )A .﹣2B .﹣1C .0D .1【答案】B【解析】解:由图可知:点A 在﹣1的位置.表示的数为﹣1.故选:B .5.(2021·广东·佛山市华英学校一模)在2. 1.5-.0.23-这四个数中最小的数是( )A .2B . 1.5-C .0D .23-【答案】B【解析】解:∵2>0.0>﹣1.5.0>﹣23.又∵|﹣1.5|=32.|﹣23|=23.∴32>23.∴﹣1.5<﹣23.综上所述.﹣1.5<﹣23<0<2.故选:B .6.(2021·浙江·翠苑中学二模)计算42=( ) A .8 B .18C .16D .116【答案】C【解析】解:24=2×2×2×2=16.故选:C . 7.(2021·内蒙古东胜·二模)截止2021年4月17日.全国接种新冠病毒疫苗达到81.89810⨯剂次.则数据81.89810⨯表示的原数是( ) A .1898000 B .18980000 C .189800000 D .1898000000【答案】C【解析】解:81.89810⨯=189800000. 故选C .8.(2021·安徽·安庆市第四中学二模)计算:2﹣(﹣2)等于( ) A .﹣4 B .4 C .0 D .1【答案】B【解析】解:2﹣(﹣2)=2+2=4.故选择B . 二、填空题9.(2021·福建·泉州五中模拟预测)计算:1012(3)2--+-=_______.【答案】0 【解析】原式111022=-+=.故答案为:0. 10.(2021·福建·厦门双十中学思明分校二模)实数a 与b 在数轴上对应点的位置如图所示.a <c <﹣b .且c 为整数.则实数c 的值为________.【答案】3 【解析】解:如图由a <c <﹣b .且c 为整数.故实数c 的值为3.故答案为:3.11.(2021·广东·执信中学模拟预测)()0222cos4512 3.14π--+︒-+--=____________【答案】314【解析】解:()0222cos4512 3.14π--+︒---122(21)14=-++122114=-+314=.故答案为:314.12.(2021·福建·重庆实验外国语学校模拟预测)新华社北京5月11日电11日发布的第七次全国人口普查结果显示.全国人口共141178万人.与2010年第六次全国人口普查数据相比.增加7206万人.增长5.38%.年平均增长率为0.53%.数据表明.我国人口10年来继续保持低速增长态势.用科学记数法将数据“7206万”表示为 __. 【答案】77.20610⨯【解析】解:7206万77.20610=⨯故答案为:77.20610⨯. 三、解答题13.(2021·广西·南宁十四中三模)计算:()()3425284+-⨯--÷. 【答案】29-【解析】()()3425284+-⨯--÷485(7)=-⨯--1140=- 29=-14.(2021·云南昭通·二模)计算:1020211(1)|2|3-⎛⎫+-+--- ⎪⎝⎭(-2021). 【答案】-5【解析】原式1(1)(3)2=+-+--5=-.15.(2021·黑龙江·二模)计算: 120201(1)3-⎛⎫-+ ⎪⎝⎭【答案】2.【解析】原式132=+-2=.16.(2021·吉林长春·二模)计算:()()2111323π--+---+⎛⎫⎪⎝⎭【答案】3【解析】解:原式11233=+-+=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
① BE 平分 CBF ;② CF 平分 DCB ;③ BC FB ;④ PF PC .
其中正确结论的个数为( )
A.1
B.2
C.3
D.4
5、四边形
易错点 2: 平行四 边形注意与三 角形面积求法 的区分。平行四 边形与特殊平 行四边形之间 的转化 关系,特殊平行 四边形的判定注意 打出层次。
中考数学易错知识点汇总
西张 张芹
1、数与式
易错点 1: 平方根、算 术平方根、立方根 的区别。 (2018 安顺) 4 的算术平方 根是( )
A. 2
B. 2
C.2
D.2
易错点 2: 分式值为零 时易忽略分母不能 为零。 (2018 滨州)若分 式 x2 9 的值为 0,则 x 的值为________。
易错点 9: 三角函数的 定义中对应线段的 比经常出错以及特 殊角的三角函数值 。
5、四边形
易错点 1: 平行四边形 的性质和判定,如 何灵活、恰当地应 用。
(2017 年山东省泰安市第 19 题)如图,四边形 ABCD 是平行四边形,点 E 是边CD 上的
一点,且 BC EC , CF BE 交 AB 于点 F , P 是 EB 延长线上一点,下列结论:

5 3
,则代数式
(x2

4xy

4 y2)( x

2y)
的值为_____
易错点 5:
五个基本数的计算:0 指数,三角函数,绝对值,负指数,二次根式的化简。
(2018
菏泽)
12018


1
2


3 2 2sin 60
易错点 6:
2
代入求值要 使式子有意义。各 种数式的计算方法 要掌握,一定要注 意计算顺序。
分别 交于 A、B 两点 ,且与 反比例 函数(y201n7 (宁夏n 为)常解方数程,:且
易限错交点于点7:C.CD⊥x
轴,垂足为
D,若
x
O B= 2O A =3 OD = 12.
xxn≠330)x的4 3图象1

第二

不(等1)式求(一组次)函的数解与得反比问例题函要数先的确解定析解式;集,确定解 集的方法运用数轴 。
4、三角形
易错点1: 三角形三边 之间的不等 关系,注意 其中的“任 何两边”。 求最短距离 的方法。
4、三角形
易错点 2: 全等形,全等三 角形及其性质 ,三角形 全等判定。着重学 会论证三角形 全等,三角形 相似与 全等的综合运 用以及线段相 等是全等的 特征,线段的 倍分是相似的 特征以及相 似与三 角函数的结合 。根据边 边角不能得到 两个三角形全 等。全等相 似的条件写不 全, 步骤不完整 。重点掌握几种全 等和相似的基本图 形。
D. 6 a 5
4
5
6
7 2-a 8
72-a<8
2、方程(组)与不等式(组)
易错点 6:
解分式 方程时首要步 骤去分母,分数 线相当于 括号,易忘记 根检验,导致运 算结果出
错(。2尤01其8 是枣在庄列)如分图式,方一程次解函应数用题y 中k,x易b忘(记k、检b验为与常结数论,。k≠0)的图象 与 x 轴 、y 轴
运用等 式性质时,两边同 除以一个数必 须要注意不能 为 0 的情况 ,还要关 注解方程与
方程组的基本思想。消元降次的主要陷阱在于消除了一个带 x 公因式时回头检验!
(2018 齐齐哈尔) 解方程: 2(x 3) 3x(x 3)
2、方程(组)与不等式(组)
易错点 3: 运用不等式 的性质3时,容易 忘记改变不等号的方向而 导致结果出错。
3、函数
易错点 6: 与坐标 轴交点坐标一 定要会求。线段最 值,面积最 值的求解方法 ,距离之 和的最小值 的求解方法 ,距离之差最大值 的求解方法。
3、函数
易错点 7:
数形结 合思想方法的 运用,还应注 意结合图像性 质解题。函数图 象与图形结合 学会从
复杂图形分 解为简单图形的方 法,图形为图像提 供数据或者图像为 图形提供数据。
如图, 已知一次函数
y1

kx 2的图象与反比例函数
y2

m (x x

0)
的图象 交于点
A,
与 x 轴、y 轴交于 C、D 两点,过 A 作 AB 垂直于 x 轴于 B 点。已知 AB=1,BC=2.
(1)求一次函数
y1

kx
2
和反比例函

y2

m x
(x

0)
的解析式。
(2)观察图象: 当 x>0 时,比较 y1, y2 的大小。
易错点 4: 关于一元二 次方程的取值范围 的题目易忽视二次 项系数不为 0。
(2018 菏泽 )关于 x 的一元 二次方程 (k 1)x2 2x 1 0 有两个 实数根,则 k 的取值
范围是( )
A.k
B.k 0
C. k 0且k 1
D. k 0且k 1
2、方程(组)与不等式(组)
4、三角形
易错点 3: 两个角 相等和平行经 常是相似的基 本构成要素 ,以及相 似三角形对应 线段之比等 于相 似比,对应 线段成比例,面积 之比等于相似比的 平方。
4、三角形
易错点 4: 等腰(等边 )三角形 的定义以及等 腰(等边 )三角形 的判定与性质,运用等 腰(等边) 三角形的判 定与性质解决有关 计算与证明问题, 这里需注意分类讨 论思想的渗入。
m 1 m 1

1、数与式
易错点 4:
非负数的性 质:几个非负数的 和为 0,每个式子 都为 0;整体代入 法;完全平方式。
已知 x,y 为实数, y x2 9 9 x2 1 ,则 x 6y 的值为_________ x3
已知
x,y
满足方程组
x x

2y 2y
5、四边形
易错点4: 平行四边形中运用全等三角形和相似三角形的知识解题,突出转化思想的渗透。
(2018泰安)如图,在 菱形ABCD中,AC与 BD交于点O,E是BD上 一点,EF//AB, ∠EAB=∠EBA,过点B 作DA的垂线,交DA的 延长线于点G. (1)∠DEF和∠AEF 是否相等?若相等,请 证明;若不相等,请说 明理由; (2)找出图中与 Δ AGB相似的三角形, 并证明; (3)BF的延长线交CD 的延长线于点H,交AC 于点M.求证: BM2=MF⋅MH.
5、四边形
易错点 5: 矩形、菱形、正方形 的概念、性质 、判定及 它们之间的关 系,主要考 查边长、对角线 长、面积等 的计算。矩形与正 方形的折叠。
5、四边形
易错点 6: 四边形 中的翻折、平移、旋转、剪拼等 动手操作性问 题,掌握其 中的不变与旋 转一些 性质。
先化 简 x 2 5 3x x2 ,再 从 0,2,3, 2, 3 中选 取一 个你 喜爱 的 x 值代 入求

x 2 2x 4
值。易错点 1:最后结果的 符号问题 2x 6 , 2(x 3) , 2x 6 , 2x 6
x
x
x x
易错点 2:分母有理化
4、三角形
易错点6: 将直角三角形,平面直角 坐标系,函数,开放性问 题,探索性问题结合在一 起综合运用探究各种解题 方法。
4、三角形
易错点 7: 中点,中线 ,中位线,一半定 理的归纳以及各自 的性质。
4、三角形
易错点 8: 直角三角形 判定方法:三角形 面积的确定与底上 的高(特别是钝角 三角形)。
x3
易错点 3: 分式 运算 要注 意运 算法则 和符 号的 变化 。当分 式的 分子 分母 是多项 式时 要先 因式 分
解,因式分 解要分解到不 能再分解为止,注意计 算方法,不能去 分母,把分式 化为最
简分式。
(2018 泰安)先化 简,再求值 m2 4m 4 3 m 1 ,其中 m 2 2.
4、三角形
易错点 5: 运用勾 股定理及其逆 定理计算线段 的长,证明线 段的数量关系 ,解决与 面积有关的问 题以及简单 的实际问题。
如图,已知菱形ABCD的边长为2,∠A=60°,点E、F分别在边AB、AD 上,若将ΔAEF沿直线EF折叠,使得点A恰好落在CD边的中点G处, 则EF=_________.
y
0 x 6, y1 y2
A
O
CB
D
x 6, y1 y2
x
x 6, y1 y2
3、函数
易错点 4: 两个变 量利用函数模 型解实际问题 ,注意区 别方程、函数、不等式 模型解决不等 领域 的问题。
3、函数
易错点 5: 利用函 数图象进行分 类(平行四 边形、相似、直角三 角形、等腰三 角形)以及分 类的 求解方法。
D 相切。其中正确结论的个数是( )
A.1
B.2
C.3
D .4
y
D
A
O
B
x
C E
M
易错点 8: 自变量 的取值范 围有:二次 根式的被 开方数是 非负数,分 式的分母 不为 0, 0 指数底 数不为 0,其它都是全体实数。
(2018 黑龙江)函 数 y x 1 (x 4) 中,自变量 x 的取值范围 是___________。 x3
D. m 3且m 2
易错点:漏 掉分式方程无解的 情况
(2018 达州)若关 于 x 的分式方程 x 3a 2a 无解,则 a 的值为 ____。 x3 3x
易错点:化 为整式方程后,要 分无解和整式方程 的解为增根两种情 况讨论。
(1 2a)x 3a
相关文档
最新文档