初三数学难题集锦 (1)

合集下载

(易错题精选)初中数学有理数难题汇编附解析(1)

(易错题精选)初中数学有理数难题汇编附解析(1)

(易错题精选)初中数学有理数难题汇编附解析(1)一、选择题1.下列各数中,最大的数是( )A .12-B .14C .0D .-2【答案】B【解析】【分析】将四个数进行排序,进而确定出最大的数即可.【详解】112024-<-<<, 则最大的数是14, 故选B .【点睛】此题考查了有理数大小比较,熟练掌握有理数大小比较的方法是解本题的关键.2.如图是一个22⨯的方阵,其中每行,每列的两数和相等,则a 可以是( )A .tan 60︒B .()20191-C .0D .()20201-【答案】D【解析】【分析】 根据题意列出等式,直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【详解】解:由题意可得:03282a +-=,则23a +=,解得:1a =, Q 3tan 603︒=,()201911-=-,()202011-= 故a 可以是2020(1)-.故选:D .此题考查了零指数幂、绝对值的性质、立方根的性质和实数的运算,理解题意并列出等式是解题关键.3.已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A .1a b <<B .11b <-<C .1a b <<D .1b a -<<-【答案】A【解析】【分析】首先根据数轴的特征,判断出a 、-1、0、1、b 的大小关系;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,逐一判断每个选项的正确性即可.【详解】解:根据实数a ,b 在数轴上的位置,可得a <-1<0<1<b ,∵1<|a|<|b|,∴选项A 错误;∵1<-a <b ,∴选项B 正确;∵1<|a|<|b|,∴选项C 正确;∵-b <a <-1,∴选项D 正确.故选:A .【点睛】此题主要考查了实数与数轴,实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.4.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,f 的算术平方根是8,求23125c d ab e f ++++( ) A .922B .922C .922+922-D .132【答案】D【解析】根据相反数,倒数,以及绝对值的意义求出c+d ,ab 及e 的值,代入计算即可.【详解】由题意可知:ab=1,c+d=0,2=±e ,f=64, ∴2222e =±=(),33644f ==, ∴23125c d ab e f ++++ =11024622+++=; 故答案为:D【点睛】 此题考查了实数的运算,算术平方根,绝对值,相反数以及倒数和立方根,熟练掌握运算法则是解本题的关键.5.和数轴上的点一一对应的是( )A .整数B .实数C .有理数D .无理数【答案】B【解析】∵实数与数轴上的点是一一对应的,∴和数轴上的点一一对应的是实数.故选B.6.实数在数轴上的对应点的位置如图所示,若,则下列结论中错误的是( )A .B .C .D .【答案】A【解析】【分析】根据,确定原点的位置,根据实数与数轴即可解答. 【详解】解:, 原点在a ,b 的中间, 如图,由图可得:,,,,,故选项A 错误,故选:A .本题考查了实数与数轴,解决本题的关键是确定原点的位置.7.若︱2a︱=-2a,则a一定是( )A.正数B.负数C.正数或零D.负数或零【答案】D【解析】试题分析:根据绝对值的意义,一个正数的绝对值是本身,0的绝对值是0,一个负数的绝对值是其相反数,可知a一定是一个负数或0.故选D8.下列说法错误的是()A.2a与()2a-相等BC.D.a与a-互为相反数【答案】D【解析】【分析】根据乘方、算术平方根、立方根、绝对值,以及相反数的定义,分别对每个选项进行判断,即可得到答案.【详解】解:A、()2a-=2a,故A正确;B=B正确;C、C正确;-=,故D说法错误;D、a a故选:D.【点睛】本题考查了乘方、算术平方根、立方根、绝对值,以及相反数的定义,解题的关键是熟练掌握所学的定义进行解题.9.在﹣3,﹣1,1,3四个数中,比2大的数是()A.﹣3 B.﹣1 C.1 D.3【答案】D【解析】【分析】根据有理数比较大小的方法解答即可.【详解】解:比2大的数是3.故选:D.【点睛】本题考查了有理数比较大小,掌握有理数比较大小的比较方法是解题的关键.10.在-3,-1,0,3这四个数中,比-2小的数是()A.-3 B.-1 C.0 D.3【答案】A【解析】【分析】根据两个负数比较大小,绝对值较大的数反而小,正数比负数大,逐个判断与-2的大小关系即可.【详解】<-<-<<解:∵-32103∴比-2小的数是-3故选:A【点睛】本题考查有理数的大小比较,掌握负数比较大小的方法是关键.11.小麦做这样一道题“计算()3-+W”、其中“□”是被墨水污染看不清的一个数,他翻开后面的答案,得知该题计算结果是8,那么”□”表示的数是( )A.5 B.-5 C.11 D.-5或11【答案】D【解析】【分析】根据绝对值的性质求得结果,采用排除法判定正确选项.【详解】解:设”□”表示的数是x,则|(-3)+x|=8,∴-3+x=-8或-3+x=8,∴x=-5或11.故选:D.【点睛】本题考查了绝对值的运算,掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.下面说法正确的是()A.1是最小的自然数;B.正分数、0、负分数统称分数C.绝对值最小的数是0;D.任何有理数都有倒数【答案】C【解析】【分析】0是最小的自然数,属于整数,没有倒数,在解题过程中,需要关注【详解】最小的自然是为0,A 错误;0是整数,B 错误;任何一个数的绝对值都是非负的,故绝对值最小为0,C 正确;0无倒数,D 错误【点睛】本题是有理数概念的考查,主要需要注意0的特殊存在13.实数a ,b 在数轴上对应点的位置如图所示,化简|a |+2(a b )-的结果是( )A .2a+bB .-2a+bC .bD .2a-b 【答案】B【解析】【分析】根据数轴得出0a <,0a b -<,然后利用绝对值的性质和二次根式的性质化简.【详解】解:由数轴可知:0a <,0b >,∴0a b -<,∴()()22a a b a b a a b -=-+-=-+,故选:B .【点睛】本题考查了数轴、绝对值的性质和二次根式的性质,根据数轴得出0a <,0a b -<是解题的关键.14.2019的倒数的相反数是( ) A .-2019B .12019-C .12019D .2019【答案】B【解析】【分析】先求2019的倒数,再求倒数的相反数即可.【详解】2019的倒数是1 2019,1 2019的相反数为12019-,所以2019的倒数的相反数是1 2019 -,故选B.【点睛】本题考查了倒数和相反数,熟练掌握倒数和相反数的求法是解题的关键.15.下列各组数中互为相反数的是()A.5B.-和(-C.D.﹣5和1 5【答案】B【解析】【分析】直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A、5,两数相等,故此选项错误;B、和-()互为相反数,故此选项正确;C、=-2,两数相等,故此选项错误;D、-5和15,不互为相反数,故此选项错误.故选B.【点睛】本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.16.12的相反数与﹣7的绝对值的和是()A.5 B.19 C.﹣17 D.﹣5【答案】D【解析】【分析】根据绝对值和相反数的定义进行选择即可.【详解】-12+|-7|=-12+7=-5,故选D.【点睛】本题考查了绝对值和相反数的定义,掌握绝对值和相反数的求法是解题的关键.17.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点()1,1;第二次接着运动到点()2,0;第三次接着运动到点()3,2,按这样的运动规律,经过2019次运动后,动点P 的坐标为( )A .()2019,0B .()2019,1C .()2019,2D .()2020,0【答案】C【解析】【分析】 分析点P 的运动规律,找到循环次数即可.【详解】解:从图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位. ∴2019=4×504+3, 当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C .【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.18.下列各数中,绝对值最大的数是( )A .1B .﹣1C .3.14D .π 【答案】D【解析】分析:先求出每个数的绝对值,再根据实数的大小比较法则比较即可.详解:∵1、-1、3.14、π的绝对值依次为1、1、3.14、π,∴绝对值最大的数是π,故选D .点睛:本题考查了实数的大小比较和绝对值,能比较实数的大小是解此题的关键.19.若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a <-5B .b +d <0C .||||a c <D .c <【答案】D【解析】【分析】 根据数轴得到-5<a<b<0<c<d ,且a d b c >>>,再依次判断各选项即可得到答案.【详解】由数轴得-5<a<b<0<c<d ,且a d b c >>>,∴A 错误;∵b+d>0,故B 错误; ∵a c >,∴C 错误; ∵d c >,c>0,∴c <D 正确,故选:D.【点睛】此题考查数轴上数的大小关系,绝对值的性质,有理数的加法法则.20.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( ) A .±1B .1C .-1D .0 【答案】C【解析】【分析】 根据已知和根与系数的关系12c x x a =得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =, ∴k 2=1,解得k =1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k =1时,34430∆=--+=-<,∴k =1不合题意,故舍去,当k =−1时,34450∆=-++=>,符合题意,∴k=−1,故答案为:−1.【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.。

【初中数学】中考数学20道“几何难题”

【初中数学】中考数学20道“几何难题”

【初中数学】中考数学20道“几何难题”经典难题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15度求证:△PBC是正三角形.3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.求证:四边形A2B2C2D2是正方形.4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.经典难题(二)1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.求证:AP=AQ.3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q.求证:AP=AQ.4、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点.求证:点P到边AB的距离等于AB的一半.经典难题(三)1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.求证:CE=CF.2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.求证:AE=AF.3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.求证:PA=PF.4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.经典难题(四)1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.求:∠APB的度数.2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且AE=CF.求证:∠DPA=∠DPC.经典难题(五)1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.4、如图,△ABC中,∠ABC=∠ACB=80度,D、E分别是AB、AC上的点,∠DCA=30度,∠EBA=20度,求∠BED的度数.答案经典难题(一)1、如下图做GH⊥AB,连接EO。

初中数学难题精选(附答案)

初中数学难题精选(附答案)

初中数学难题精选(附答案)一、数与代数1. 题目:解方程:2x 3 = 5解答思路:这是一道一元一次方程的题目。

我们需要将方程两边的项进行移项,然后求解x的值。

解答过程:2x 3 = 52x = 5 + 32x = 8x = 8 / 2x = 4答案:x = 42. 题目:计算:3^2 2^3 + 4解答思路:这是一道指数运算的题目。

我们需要先计算指数,然后进行加减运算。

解答过程:3^2 2^3 + 4= 9 8 + 4= 1 + 4= 5答案:5二、空间与图形3. 题目:一个等边三角形的边长为5cm,求它的面积。

解答思路:这是一道求等边三角形面积的题目。

我们需要使用等边三角形的面积公式:面积 = (边长^2 根号3) / 4。

解答过程:面积 = (5^2 根号3) / 4= (25 根号3) / 4= 6.25 根号3答案:6.25 根号3 平方厘米4. 题目:一个圆柱的底面半径为3cm,高为6cm,求它的体积。

解答思路:这是一道求圆柱体积的题目。

我们需要使用圆柱体积的公式:体积 = 底面积高= π 半径^2 高。

解答过程:体积= π 3^2 6= π 9 6= 54π答案:54π 立方厘米三、统计与概率5. 题目:一个班级有30名学生,其中男生20名,女生10名。

随机抽取一名学生,求抽到女生的概率。

解答思路:这是一道求概率的题目。

我们需要计算女生的人数除以总人数,得到抽到女生的概率。

解答过程:概率 = 女生人数 / 总人数= 10 / 30= 1 / 3答案:1/3初中数学难题精选(附答案)一、数与代数6. 题目:解不等式:3x 7 > 2x + 4解答思路:这是一道一元一次不等式的题目。

我们需要将不等式两边的项进行移项,然后求解x的值。

解答过程:3x 7 > 2x + 43x 2x > 4 + 7x > 11答案:x > 117. 题目:计算:4^3 / 2^2解答思路:这是一道指数运算的题目。

初三奥赛数学难题汇总(附答案)

初三奥赛数学难题汇总(附答案)

如图,在直角坐标系中,以点A(3,0)为圆心,以32为半径的圆与x 轴交于B 、C 两点,与y 轴交于D 、E 两点. (1)求D 点坐标.(2)若B 、C 、D 三点在抛物线c bx ax y ++=2上,求这个抛物线的解析式. (3)若⊙A 的切线交x 轴正半轴于点M ,交y 轴负半轴于点N ,切点为P ,∠OMN=30º,试判断直线MN 是否经过所求抛物线的顶点?说明理由.28、(12分)某企业有员工300人,生产A 种产品,平均每人每年可创造利润m 万元(m 为大于零的常数)。

为减员增效,决定从中调配x 人去生产新开发的B 种产品,根据评估,调配后,继续生产A 种产品的员工平均每人每年创造的利润可增加20%,生产B 种产品的员工平均每人每年可创造利润1.54m 万元。

(1)调配后,企业生产A 种产品的年利润为_________万元,企业生产B 种产品的年利润为_________万元(用含x 和m 的代数式表示)。

若设调配后企业全年总利润为y 万元,则y 与x 之间的关系式为y =____________。

(2)若要求调配后,企业生产A 种产品的年利润不小于调配前企业年利润的54,生产B 种产品的年利润大于调配前企业年利润的一半,应有哪几种调配方案 ?请设计出来,并指出其中哪种方案全年总利润最大(必要时,运算过程可保留3个有效数字)。

(3)企业决定将(2)中的年最大总利润(设m =2)继续投资开发新产品。

现有6种产品可供选择(不得重复投资同一种产品)各产品所需资金及所获年利润如下表:如果你是企业决策者,为使此项投资所获年利润不少于145万元,你可以投资开发哪些产品?请写出两种投资方案。

25.解:(1)连结AD ,得OA=3,AD=23 ……………………1分∴OD =3, D(0,-3) ………………………………………………2分(2)由B (-3,0),C (33,0),D (0,-3)三点在抛物线c bx ax y ++=2上, (3)分得 ⎪⎩⎪⎨⎧=-++=+-=c c b a c b a 333270330 解得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-==333231c b a ………………………………5分x∴3332312--=x x y …………………………………………………………6分 (3)连结AP ,在Rt △APM 中,∠PMA==30º,AP=23 ∴AM =43, M (53,0) …………………………7分5333530tan =⋅=︒⋅=MO ON ∴N (0,-5) ……………………………………………8分 直线MN 解析式为:533-=x y 抛物线顶点坐标为(3,-4) ………………………………9分∵45333533-=-⨯=-x ∴抛物线顶点在直线MN 上. ……………………………10分28、解:(1)m x %)201()300(+⋅-,mx 54.1,mx m x y 54.1%)201)(300(++-=(2)由题意得⎪⎪⎩⎪⎪⎨⎧⨯>⨯≥+-mmx m m x 3002154.130054%)201(0300(解得773197<x ≤100。

九年级上册数学难题及其解答

九年级上册数学难题及其解答

九年级上册数学难题及其解答一、一元二次方程相关(5题)1. 已知关于x的一元二次方程x^2-(2k + 1)x + k^2+k = 0。

- 求证:方程有两个不相等的实数根。

- 若ABC的两边AB、AC的长是这个方程的两个实数根,第三边BC的长为5。

当ABC是等腰三角形时,求k的值。

- 解答:- 对于一元二次方程ax^2+bx + c = 0(a≠0),判别式Δ=b^2-4ac。

在方程x^2-(2k + 1)x + k^2+k = 0中,a = 1,b=-(2k + 1),c=k^2+k。

- Δ=(2k + 1)^2-4(k^2+k)- =4k^2+4k + 1-4k^2-4k- =1>0,所以方程有两个不相等的实数根。

- 由一元二次方程x^2-(2k + 1)x + k^2+k = 0,根据韦达定理x_1+x_2=-(b)/(a),x_1x_2=(c)/(a),可得x_1+x_2=2k + 1,x_1x_2=k^2+k。

- 因为ABC是等腰三角形,BC = 5,设AB=x_1,AC = x_2。

- 当AB=BC = 5或AC = BC = 5时,把x = 5代入方程x^2-(2k + 1)x +k^2+k = 0得:- 25-5(2k + 1)+k^2+k = 0- 25-10k - 5+k^2+k = 0- k^2-9k + 20 = 0- (k - 4)(k - 5)=0- 解得k = 4或k = 5。

- 当k = 4时,原方程为x^2-9x+20 = 0,解得x_1=5,x_2=4,三角形三边为5,5,4,满足三角形三边关系。

- 当k = 5时,原方程为x^2-11x + 30 = 0,解得x_1=5,x_2=6,三角形三边为5,5,6,满足三角形三边关系。

2. 若关于x的一元二次方程mx^2-(3m - 1)x+2m - 1 = 0,其根的判别式的值为1,求m的值及该方程的根。

- 解答:- 对于一元二次方程ax^2+bx + c = 0(a≠0),判别式Δ=b^2-4ac。

初中数学难题1(含答案)

初中数学难题1(含答案)

1.已知过点(2,﹣3)的直线y=ax+b(a≠0)不经过第一象限,设s=a+2b,则s的取值范围是()A.﹣5≤s≤﹣B.﹣6<s≤﹣C.﹣6≤s≤﹣D.﹣7<s≤﹣2.关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,①(m﹣1)2+(n ﹣1)2≥2 是否正确?;② m﹣n的取值范围为3.设a为﹣的小数部分,b为﹣的小数部分.则﹣的值为()A.+﹣1 B.﹣+1 C.﹣﹣1 D.++1 4.设直线kx+(k+1)y﹣1=0与坐标轴所构成的直角三角形的面积为S k,则S1+S2+…+S2008=.5.如图,点A的坐标为(﹣1,0),点B在直线y=2x﹣4上运动,当线段AB 最短时,点B的坐标是.6.如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△A n B n A n+1都是等腰直角三角形,其中点A1、A2、…、A n在x轴上,点B1、B2、…、B n在直线y=x上,已知OA1=1,则OA2015的长为.7.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为.8.将函数y=﹣6x的图象l1向上平移5个单位得直线l2,则直线l2与坐标轴围成的三角形面积为.9.在平面直角坐标系中,点A,B的坐标分别为(m,3),(3m﹣1,3),若线段AB与直线y=2x+1相交,则m的取值范围为.10.方程组的解是.11.已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于.12.已知整数k<5,若△ABC的边长均满足关于x的方程x2﹣3x+8=0,则△ABC的周长是.13.已知实数x满足,则=.14.方程x2﹣|x|﹣1=0的根是.15.已知:a<0,化简=.16.=.17.如果不等式组的解集是1<x<2,求:坐标原点到直线y=ax+b距离.18.用配方法解方程:x2+x﹣2=0.19.已知方程x2+(m﹣1)x+m﹣10=0的一个根是3,求m的值及方程的另一个根.参考答案与试题解析一.选择题(共3小题)1.(2014•镇江)已知过点(2,﹣3)的直线y=ax+b(a≠0)不经过第一象限,设s=a+2b,则s的取值范围是()A.﹣5≤s≤﹣B.﹣6<s≤﹣C.﹣6≤s≤﹣D.﹣7<s≤﹣【考点】F7:一次函数图象与系数的关系.【分析】根据直线y=ax+b(a≠0)不经过第一象限,可知a<0,b≤0,直线y=ax+b(a≠0)过点(2,﹣3),可知2a+b=﹣3,依此即可得到s的取值范围.【解答】解:∵直线y=ax+b(a≠0)不经过第一象限,∴a<0,b≤0,∵直线y=ax+b(a≠0)过点(2,﹣3),∴2a+b=﹣3,∴a=,b=﹣2a﹣3,∴s=a+2b=+2b=b﹣≤﹣,s=a+2b=a+2(﹣2a﹣3)=﹣3a﹣6>﹣6,即s的取值范围是﹣6<s≤﹣.故选:B.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.2.(2015•南充)关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m﹣1)2+(n﹣1)2≥2;③﹣1≤2m﹣2n≤1,其中正确结论的个数是()A.0个B.1个C.2个D.3个【考点】AB:根与系数的关系;AA:根的判别式.【专题】16 :压轴题.【分析】①根据题意,以及根与系数的关系,可知两个整数根都是负数;②根据根的判别式,以及题意可以得出m2﹣2n≥0以及n2﹣2m≥0,进而得解;③可以采用根与系数关系进行解答,据此即可得解.【解答】解:①两个整数根且乘积为正,两个根同号,由韦达定理有,x1•x2=2n >0,y1•y2=2m>0,y1+y2=﹣2n<0,x1+x2=﹣2m<0,这两个方程的根都为负根,①正确;②由根判别式有:△=b2﹣4ac=4m2﹣8n≥0,△=b2﹣4ac=4n2﹣8m≥0,∵4m2﹣8n≥0,4n2﹣8m≥0,∴m2﹣2n≥0,n2﹣2m≥0,m2﹣2m+1+n2﹣2n+1=m2﹣2n+n2﹣2m+2≥2,(m﹣1)2+(n﹣1)2≥2,②正确;③由根与系数关系可得2m﹣2n=y1y2+y1+y2=(y1+1)(y2+1)﹣1,由y1、y2均为负整数,故(y1+1)•(y2+1)≥0,故2m﹣2n≥﹣1,同理可得:2n﹣2m=x1x2+x1+x2=(x1+1)(x2+1)﹣1,得2n﹣2m≥﹣1,即2m ﹣2n≤1,故③正确.故选:D.【点评】本题主要考查了根与系数的关系,以及一元二次方程的根的判别式,有一定的难度,注意总结.3.(2016•邯郸校级自主招生)设a为﹣的小数部分,b为﹣的小数部分.则﹣的值为()A.+﹣1 B.﹣+1 C.﹣﹣1 D.++1【考点】7A:二次根式的化简求值.【分析】首先分别化简所给的两个二次根式,分别求出a、b对应的小数部分,然后代、化简、运算、求值,即可解决问题.【解答】解:∵﹣=﹣=﹣===,∴a的小数部分=﹣1;∵﹣==﹣==,∴b的小数部分=﹣2,∴﹣====.故选B.【点评】该题主要考查了二次根式的化简与求值问题;解题的关键是灵活运用二次根式的运算法则来分析、判断、解答.二.填空题(共13小题)4.(2012•麻城市校级自主招生)设直线kx+(k+1)y﹣1=0与坐标轴所构成的直角三角形的面积为S k,则S1+S2+…+S2008=.【考点】F5:一次函数的性质.【专题】16 :压轴题;2A :规律型.【分析】先依次计算出S1、S2等的面积,再依据规律求解.【解答】解:∵kx+(k+1)y﹣1=0∴当x=0时,y=;当y=0时,x=∴Sk=××=,根据公式可知,S1+S2+…+S2008=[﹣+﹣+…+﹣]=(1﹣)=.【点评】结合题意依次计算出S1、S2等的面积,再总结规律,易求解.5.(2012•北海)如图,点A的坐标为(﹣1,0),点B在直线y=2x﹣4上运动,当线段AB最短时,点B的坐标是(,﹣).【考点】F5:一次函数的性质;J4:垂线段最短.【专题】11 :计算题;16 :压轴题.【分析】作AB′⊥BB′,B′即为当线段AB最短时B点坐标,求出AB′的解析式,与BB′组成方程组,求出其交点坐标即可.【解答】解:设AB′解析式为y=kx+b,∵AB′⊥BB′,BB′解析式为y=2x﹣4,k1×k2=﹣1,∴2k=﹣1,k=﹣,于是函数解析式为y=﹣x+b,将A(﹣1,0)代入y=﹣x+b得,+b=0,b=﹣,则函数解析式为y=﹣x﹣,将两函数解析式组成方程组得,,解得,故B点坐标为(,﹣).故答案为(,﹣).【点评】本题考查了一次函数的性质和垂线段最短,找到B′点是解题的关键,同时要熟悉待定系数法求函数解析式.6.(2015•衡阳)如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△A n B n A n+1都是等腰直角三角形,其中点A1、A2、…、A n在x轴上,点B1、B2、…、B n在直线y=x 上,已知OA1=1,则OA2015的长为22014.【考点】F8:一次函数图象上点的坐标特征;KW:等腰直角三角形.【专题】16 :压轴题;2A :规律型.【分析】根据规律得出OA1=1,OA2=2,OA3=4,OA4=8,所以可得OA n=2n﹣1,进而解答即可.【解答】解:因为OA1=1,∴OA2=2,OA3=4,OA4=8,由此得出OA n=2n﹣1,所以OA2015=22014,故答案为:22014.【点评】此题考查一次函数图象上点的坐标,关键是根据规律得出OA n=2n﹣1进行解答.7.(2013•包头)如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为y=﹣2x﹣2.【考点】F9:一次函数图象与几何变换.【专题】16 :压轴题.【分析】先求出直线AB的解析式,再根据平移的性质求直线CD的解析式.【解答】解:设直线AB的解析式为y=kx+b,把A(0,2)、点B(1,0)代入,得,解得,故直线AB的解析式为y=﹣2x+2;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC,∴DO垂直平分BC,∴OC=OB,∵直线CD由直线AB平移而成,∴CD=AB,∴点D的坐标为(0,﹣2),∵平移后的图形与原图形平行,∴平移以后的函数解析式为:y=﹣2x﹣2.故答案为:y=﹣2x﹣2.【点评】本题考查了一次函数图象与几何变换,要注意利用一次函数的特点,列出方程组,求出未知数的值从而求得其解析式;求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.8.(2010•黄石)将函数y=﹣6x的图象l1向上平移5个单位得直线l2,则直线l2与坐标轴围成的三角形面积为.【考点】F9:一次函数图象与几何变换.【专题】11 :计算题;16 :压轴题.【分析】易得l2的解析式,那么常数项为y轴上的截距,让纵坐标为0可得与x轴的交点,围成三角形的面积=×x轴交点的绝对值×y轴交点的绝对值.【解答】解:由题意得l2的解析式为:y=﹣6x+5,∴与y轴的交点为(0,5),与x轴的交点为(,0),∴所求三角形的面积=×5×=.【点评】考查的知识点为:一次函数向上平移,常数项加相应的单位,注意熟练掌握直线与坐标轴围成三角形的面积=×x轴交点的绝对值×y轴交点的绝对值.9.(2015•大连)在平面直角坐标系中,点A,B的坐标分别为(m,3),(3m﹣1,3),若线段AB与直线y=2x+1相交,则m的取值范围为≤m≤1.【考点】FF:两条直线相交或平行问题.【专题】11 :计算题;16 :压轴题.【分析】先求出直线y=3与直线y=2x+1的交点为(1,3),再分类讨论:当点B在点A的右侧,则m≤1≤3m﹣1,当点B在点A的左侧,则3m﹣1≤1≤m,然后分别解关于m的不等式组即可.【解答】解:当y=3时,2x+1=3,解得x=1,所以直线y=3与直线y=2x+1的交点为(1,3),当点B在点A的右侧,则m≤1≤3m﹣1,解得≤m≤1;当点B在点A的左侧,则3m﹣1≤1≤m,无解,所以m的取值范围为≤m≤1.【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.10.(2012•徐汇区校级模拟)方程组的解是.【考点】AF:高次方程.【专题】11 :计算题;16 :压轴题.【分析】根据2x﹣y=1,用x表示出y,然后代入第一个方程,得出x的值后代入,可得出y的值.【解答】解:由2x﹣y=1,可得:y=2x﹣1,代入第一个方程可得:3x2﹣(2x﹣1)2﹣(2x﹣1)+3=0,解得:x1=3,x2=﹣1,当x=3时,y=5;当x=﹣1时,y=﹣3;故方程组的根为:,.故答案为:,.【点评】解答此类题目一般用代入法比较简单,先消去一个未知数再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中即可.11.(2014•南通)已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于4.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.【专题】16 :压轴题;36 :整体思想.【分析】已知等式变形后代入原式,利用完全平方公式变形,根据完全平方式恒大于等于0,即可确定出最小值.【解答】解:∵m﹣n2=1,即n2=m﹣1≥0,m≥1,∴原式=m2+2m﹣2+4m﹣1=m2+6m+9﹣12=(m+3)2﹣12,则代数式m2+2n2+4m﹣1的最小值等于(1+3)2﹣12=4.故答案为:4.【点评】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.12.(2013•绵阳)已知整数k<5,若△ABC的边长均满足关于x的方程x2﹣3x+8=0,则△ABC的周长是6或12或10.【考点】AA:根的判别式;A8:解一元二次方程﹣因式分解法;K6:三角形三边关系.【专题】11 :计算题;16 :压轴题.【分析】根据题意得k≥0且(3)2﹣4×8≥0,而整数k<5,则k=4,方程变形为x2﹣6x+8=0,解得x1=2,x2=4,由于△ABC的边长均满足关于x的方程x2﹣6x+8=0,所以△ABC的边长可以为2、2、2或4、4、4或4、4、2,然后分别计算三角形周长.【解答】解:根据题意得k≥0且(3)2﹣4×8≥0,解得k≥,∵整数k<5,∴k=4,∴方程变形为x2﹣6x+8=0,解得x1=2,x2=4,∵△ABC的边长均满足关于x的方程x2﹣6x+8=0,∴△ABC的边长为2、2、2或4、4、4或4、4、2.∴△ABC的周长为6或12或10.故答案为:6或12或10..【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了因式分解法解一元二次方程以及三角形三边的关系.13.(2012•金牛区三模)已知实数x满足,则= 3.【考点】A9:换元法解一元二次方程.【专题】16 :压轴题.【分析】先设=y,代入后化为整式方程求解,即可求出答案.【解答】解:设=y,则原方程可变形为y2﹣y=6,解得y1=﹣2,y2=3,当y1=﹣2时,=﹣2,x2+2x+2=0,∵△=b2﹣4ac<0∴此方程无解,当y2=3时,=3,x2﹣3x+2=0,∵△=b2﹣4ac>0∴此方程有解,∴=3;故答案为:3.【点评】此题考查了用换元法解分式方程,是常用方法之一,它能够使方程化繁为简,化难为易,因此对能用此方法解的分式方程的特点应该加以注意,并要能够熟练变形整理.14.(2011春•桐城市月考)方程x2﹣|x|﹣1=0的根是或.【考点】A7:解一元二次方程﹣公式法.【专题】16 :压轴题;32 :分类讨论.【分析】分x>0和x<0两种情况进行讨论,当x>0时,方程x2﹣x﹣1=0;当x<0时,方程x2+x﹣1=0;分别求符合条件的解即可.【解答】解:当x>0时,方程x2﹣x﹣1=0;∴x=;当x<0时,方程x2+x﹣1=0;∴x=,∴x=;故答案为或.【点评】本题考查了一元二次方程的解法﹣公式法,要特别注意分类讨论思想的运用.15.(2004•宁波)已知:a<0,化简=﹣2.【考点】73:二次根式的性质与化简.【专题】16 :压轴题.【分析】根据二次根式的性质化简.【解答】解:∵原式=﹣=﹣又∵二次根式内的数为非负数∴a﹣=0∴a=1或﹣1∵a<0∴a=﹣1∴原式=0﹣2=﹣2.【点评】解决本题的关键是根据二次根式内的数为非负数得到a的值.16.(2013•庄浪县校级模拟)观察下列二次根式的化简:,,,…从计算结果中找到规律,再利用这一规律计算下列式子的值.=2009.【考点】76:分母有理化.【专题】16 :压轴题;2A :规律型.【分析】先将第一个括号内的各项分母有理化,此时发现,除第二项和倒数第二项外,其他各项的和为0,由此可计算出第一个括号的值,然后再计算和第二个括号的乘积.【解答】解:原式=(﹣1+﹣+﹣+…+﹣)(+1)=(﹣1)(+1)=2009.【点评】本题考查的是二次根式的分母有理化以及二次根式的加减运算.能够发现式子的规律是解答此题的关键.三.解答题(共3小题)17.(2017春•武侯区校级月考)如果不等式组的解集是1<x<2,求:坐标原点到直线y=ax+b距离.【考点】FD:一次函数与一元一次不等式.【分析】根据不等式组的解集是1<x<2,得到关于a,b的二元一次方程组,解方程组得到a,b的值,再根据互相垂直的两条直线的关系可得经过原点并且与直线y=ax+b垂直的直线解析式,联立两直线解析式可得交点坐标,再根据勾股定理即可求解.【解答】解:,解①得x>﹣2a+b+4,解②得x<,∵不等式组的解集是1<x<2,∴2a+b+4=1,解②得x<,∴,解得,∴直线y=ax+b的解析式为y=x﹣1,∴经过原点并且与直线y=ax+b垂直的直线解析式为y=﹣x,联立两解析式,解得,由勾股定理可得坐标原点到直线y=ax+b距离为=.【点评】考查了一次函数与一元一次不等式,互相垂直的两条直线的关系,勾股定理,方程思想,解题的关键是得到a,b的值.18.(2013•甘肃模拟)用配方法解方程:x2+x﹣2=0.【考点】A6:解一元二次方程﹣配方法.【专题】16 :压轴题.【分析】先把常数项﹣2移项后,再在方程的左右两边同时加上一次项系数1的一半的平方,然后配方,再进行计算即可.【解答】解:配方,得x2+x﹣=2+,即=,所以x+=或x+=﹣.解得 x1=1,x2=﹣2.【点评】此题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.19.(2012•常德模拟)已知方程x2+(m﹣1)x+m﹣10=0的一个根是3,求m的值及方程的另一个根.【考点】A5:解一元二次方程﹣直接开平方法;A3:一元二次方程的解.【专题】11 :计算题;16 :压轴题.【分析】一元二次方程的根就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立;将x=3代入原方程即可求得m及另一根的值.【解答】解:∵方程x2+(m﹣1)x+m﹣10=0的一个根是3,∴方程9+3(m﹣1)+m﹣10=0,即4m﹣4=0,解得m=1;有方程x2﹣9=0,解得x=±3,所以另一根为﹣3.【点评】本题考查的是一元二次方程的根的定义.考点卡片1.非负数的性质:偶次方偶次方具有非负性.任意一个数的偶次方都是非负数,当几个数或式的偶次方相加和为0时,则其中的每一项都必须等于0.2.二次根式的性质与化简(1)二次根式的基本性质:①a≥0;a≥0(双重非负性).②(a)2=a (a≥0)(任何一个非负数都可以写成一个数的平方的形式).③a2=a(a≥0)(算术平方根的意义)(2)二次根式的化简:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.ab=a•b ab=ab(3)化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.【规律方法】二次根式的化简求值的常见题型及方法1.常见题型:与分式的化简求值相结合.2.解题方法:(1)化简分式:按照分式的运算法则,将所给的分式进行化简.(2)代入求值:将含有二次根式的值代入,求出结果.(3)检验结果:所得结果为最简二次根式或整式.3.分母有理化(1)分母有理化是指把分母中的根号化去.分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式.例如:①1a=aa•a=aa;②1a+b=a﹣b(a+b)(a﹣b)=a﹣ba﹣b.(2)两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理化因式.一个二次根式的有理化因式不止一个.例如:2﹣3的有理化因式可以是2+3,也可以是a(2+3),这里的a可以是任意有理数.4.二次根式的化简求值二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.5.一元二次方程的解(1)一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.(2)一元二次方程一定有两个解,但不一定有两个实数解.这x1,x2是一元二次方程ax 2+bx+c=0(a≠0)的两实数根,则下列两等式成立,并可利用这两个等式求解未知量.ax12+bx1+c=0(a≠0),ax22+bx2+c=0(a≠0).6.解一元二次方程-直接开平方法形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成x2=p的形式,那么可得x=±;如果方程能化成(nx+m)2=p(p≥0)的形式,那么nx+m=±.注意:①等号左边是一个数的平方的形式而等号右边是一个非负数.②降次的实质是由一个二次方程转化为两个一元一次方程.③方法是根据平方根的意义开平方.7.解一元二次方程-配方法(1)将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)用配方法解一元二次方程的步骤:①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.8.解一元二次方程-公式法(1)把x=﹣b±b2﹣4ac2a(b2﹣4ac≥0)叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.(2)用求根公式解一元二次方程的方法是公式法.(3)用公式法解一元二次方程的一般步骤为:①把方程化成一般形式,进而确定a,b,c的值(注意符号);②求出b2﹣4ac的值(若b2﹣4ac<0,方程无实数根);③在b2﹣4ac≥0的前提下,把a、b、c的值代入公式进行计算求出方程的根.注意:用公式法解一元二次方程的前提条件有两个:①a≠0;②b2﹣4ac≥0.9.解一元二次方程-因式分解法(1)因式分解法解一元二次方程的意义因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).(2)因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.10.换元法解一元二次方程1、解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.2、我们常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.11.根的判别式利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.12.根与系数的关系(1)若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.(2)若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=,反过来也成立,即=﹣(x1+x2),=x1x2.(3)常用根与系数的关系解决以下问题:①不解方程,判断两个数是不是一元二次方程的两个根.②已知方程及方程的一个根,求另一个根及未知数.③不解方程求关于根的式子的值,如求,x12+x22等等.④判断两根的符号.⑤求作新方程.⑥由给出的两根满足的条件,确定字母的取值.这类问题比较综合,解题时除了利用根与系数的关系,同时还要考虑a≠0,△≥0这两个前提条件.13.配方法的应用1、用配方法解一元二次方程.配方法的理论依据是公式a2±2ab+b2=(a±b)2配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方.2、利用配方法求二次三项式是一个完全平方式时所含字母系数的值.关键是:二次三项式是完全平方式,则常数项是一次项系数一半的平方.3、配方法的综合应用.14.高次方程(1)高次方程的定义:整式方程未知数次数最高项次数高于2次的方程,称为高次方程.(2)高次方程的解法思想:通过适当的方法,把高次方程化为次数较低的方程求解.所以解高次方程一般要降次,即把它转化成二次方程或一次方程.也有的通过因式分解来解.对于5次及以上的一元高次方程没有通用的代数解法和求根公式(即通过各项系数经过有限次四则运算和乘方和开方运算无法求解),这称为阿贝尔定理.换句话说,只有三次和四次的高次方程可用根式求解.15.一次函数的性质一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.16.一次函数图象与系数的关系由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.①k>0,b>0⇔y=kx+b的图象在一、二、三象限;②k>0,b<0⇔y=kx+b的图象在一、三、四象限;③k<0,b>0⇔y=kx+b的图象在一、二、四象限;④k<0,b<0⇔y=kx+b的图象在二、三、四象限.17.一次函数图象上点的坐标特征一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.18.一次函数图象与几何变换直线y=kx+b,(k≠0,且k,b为常数)①关于x轴对称,就是x不变,y变成﹣y:﹣y=kx+b,即y=﹣kx﹣b;(关于X轴对称,横坐标不变,纵坐标是原来的相反数)②关于y轴对称,就是y不变,x变成﹣x:y=k(﹣x)+b,即y=﹣kx+b;(关于y轴对称,纵坐标不变,横坐标是原来的相反数)③关于原点对称,就是x和y都变成相反数:﹣y=k(﹣x)+b,即y=kx﹣b.(关于原点轴对称,横、纵坐标都变为原来的相反数)19.一次函数与一元一次不等式(1)一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.(2)用画函数图象的方法解不等式kx+b>0(或<0)对应一次函数y=kx+b,它与x轴交点为(﹣,0).当k>0时,不等式kx+b>0的解为:x>,不等式kx+b<0的解为:x<;当k<0,不等式kx+b>0的解为:x<,不等式kx+b<0的解为:x>.20.两条直线相交或平行问题直线y=kx+b,(k≠0,且k,b为常数),当k相同,且b不相等,图象平行;当k不同,且b相等,图象相交;当k,b都相同时,两条线段重合.(1)两条直线的交点问题两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.(2)两条直线的平行问题若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.例如:若直线y1=k1x+b1与直线y2=k2x+b2平行,那么k1=k2.21.垂线段最短(1)垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.(2)垂线段的性质:垂线段最短.正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.(3)实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.22.三角形三边关系(1)三角形三边关系定理:三角形两边之和大于第三边.(2)在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.(3)三角形的两边差小于第三边.(4)在涉及三角形的边长或周长的计算时,注意最后要用三边关系去检验,这是一个隐藏的定时炸弹,容易忽略.23.等腰直角三角形(1)两条直角边相等的直角三角形叫做等腰直角三角形.(2)等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,斜边上中线、角平分线、斜边上的高,三线合一,等腰直角三角形斜边上的高为外接圆的半径R,而高又为内切圆的直径(因为等腰直角三角形的两个小角均为45°,高又垂直于斜边,所以两个小三角形均为等腰直角三角形,则两腰相等);(3)若设等腰直角三角形内切圆的半径r=1,则外接圆的半径R=+1,所以r:R=1:+1.。

中考数学经典难题集锦

中考数学经典难题集锦

经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .经典难题(二)A P C DB A F G CE BO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1 BF1、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线EB及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典难1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .经典难题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、Ptolemy (托勒密)定理:设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD . (初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:1≤L <中考数学经典难题集锦2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a4、如图,△ABC 中,∠ABC=∠ACB =800,D 、E 分别是AB 、AC 上的点,∠EBA =200,求∠BED 的度数.。

九年级数学难题精选(有答案)

九年级数学难题精选(有答案)

一、如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N,其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF ∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E 的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0)及C(2,3)得,,解得,故抛物线为y=﹣x2+2x+3又设直线为y=kx+n过点A(﹣1,0)及C(2,3)得,解得故直线AC为y=x+1;(2)作N点关于直线x=3的对称点N',则N'(6,3),由(1)得D(1,4),故直线DN'的函数关系式为y=﹣x+,当M(3,m)在直线DN'上时,MN+MD的值最小,则m=﹣×=;(3)由(1)、(2)得D(1,4),B(1,2)∵点E在直线AC上,设E(x,x+1),①当点E在线段AC上时,点F在点E上方,则F(x,x+3),∵F在抛物线上,∴x+3=﹣x2+2x+3,解得,x=0或x=1(舍去)∴E(0,1);②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,x﹣1)由F在抛物线上∴x﹣1=﹣x2+2x+3解得x=或x=∴E(,)或(,)综上,满足条件的点E为E(0,1)、(,)或(,);(4)方法一:过点P作PQ⊥x轴交AC于点Q;过点C作CG⊥x轴于点G,如图1设Q(x,x+1),则P(x,-x2+2x+3)∴PQ=(-x2+2x+3)-(x﹣1)=-x2+x+2又∵S△APC=S△APQ+S△CPQ=PQ·AG=(-x2+x+2)×3=-(x﹣)2+∴面积的最大值为.二、已知:直角梯形OABC中,BC∥OA,∠AOC=90°,以AB为直径的圆M交OC于D、E,连结AD、BD、BE。

初三数学难题精选答案及讲解

初三数学难题精选答案及讲解

1、如果将点P 绕定点M 旋转180°后与点Q 重合,那么称点P 与点Q 关于点M 对称,定点M 叫做对称中心。

此时,M 是线段PQ 的中点。

如图,在平面直角坐标系中,△ABO 的顶点A ,B ,O 的坐标分别为(1,0),(0,1),(0,0)。

点列P 1,P 2,P 3,…中的相邻两点都关于△ABO 的一个顶点对称:点P 1与点P 2关于点A 对称,点P 2与点P 3关于点B 对称,点P 3与点P 4关于点O 对称,点P 4与点P 5关于点A 对称,点P 5与点P 6关于点B 对称,点P 6与点P 7关于点O 对称…对称中心分别是A ,B ,O ,A ,B ,O ,…,且这些对称中心依次循环。

已知点P 1的坐标是(1,1),则点P 2017的坐标为 。

解:P 2的坐标是(1,-1),P 2017的坐标是(1,-1)。

理由:作P 1关于A 点的对称点,即可得到P 2(1,-1),P 3(-1,3),P 4(1,-3),P 5(1,3),P 6(-1,-1),又回到原来P 1的坐标,P 7(-1,-1);由此可知,每6个点为一个周期,作一次循环,2017÷6=336…1,循环了336次后又回到了原来P 1的坐标,故P 2017的坐标与P 1的坐标一样为(1,1)。

点评:此题主要考查了平面直角坐标系中中心对称的性质,以及找规律问题,根据已知得出点P 的坐标每6个一循环是解题关键.2、如图①,已知△ABC 是等边三角形,点E 在线段AB 上,点D 在直线BC 上,且DE=EC ,将△BCE 绕点C 顺时针旋转60°至△ACF ,连接EF 。

试证明:AB=DB+AF 。

【类比探究】(1)如图②,如果点E 在线段AB 的延长线上,其它条件不变,线段AB 、DB 、AF 之间又有怎样的数量关系?请说明理由。

(2)如果点E 在线段BA 的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB ,DB ,AF 之间数量关系,不必说明理由。

(易错题精选)初中数学因式分解难题汇编含答案解析(1)

(易错题精选)初中数学因式分解难题汇编含答案解析(1)
10.下列因式分解正确的是( )
A.x3﹣x=x(x2﹣1)B.x2+y2=(x+y)(x﹣y)
C.(a+4)(a﹣4)=a2﹣16D.m2+4m+4=(m+2)2
【答案】D
【解析】
【分析】
逐项分解因式,即可作出判断.
【详解】
A、原式=x(x2﹣1)=x(x+1)(x﹣1),不符合题意;
B、原式不能分解,不符合题意;
A. B.
C. D.
【答案】A
【解析】
【分析】
根据因式分解的意义:把一个多项式转化成几个整式积的形式叫因式分解,可得答案.
【详解】
解:A、把一个多项式转化成几个整式积的形式,符合题意;
B、右边不是整式积的形式,不符合题意;
C、是整式的乘法,不是因式分解,不符合题意;
D、是整式的乘法,不是因式分解,不符合题意;
【详解】
A.4a2+4a+1=(2a+1)2,正确;
B.a2﹣4b2=(a﹣2b)(a+2b),故此选项错误;
C.a2﹣2a﹣1在有理数范围内无法运用公式分解因式,故此选项错误;
D.(a﹣b)(a+b)=a2﹣b2,是多项式乘法,故此选项错误.
故选:A.
【点睛】
此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.
C、4x2+1+4x4=(2x2+1)2,能利用完全平方公式进行因式分解,故不符合题意;
D、4x2+1+4x=(2x+1)2,能利用完全平方公式进行因式分解,故不符合题意,
故选A.
【点睛】
本题考查了完全平方式,熟记完全平方式的结构特征是解题的关键.

初三下学期数学好题难题集锦及答案

初三下学期数学好题难题集锦及答案

一、分式:1、如果ab c=1,求证初三下学期数学好题难题集锦++=1.2、已知+=,则+等于多少?3、一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度.4、(2009•邵阳)已知M=、N=,用“+”或“﹣”连接M、N,有三种不同的形式,M+N、M﹣N、N﹣M,请你任取其中一种进行计算,并简求值,其中x:y=5:2.二、反比例函数:5、一张边长为16cm正方形的纸片,剪去两个面积一定且一样的小矩形得到一个“E”图案如图1所示.小矩形的长x(cm)与宽y(cm)之间的函数关系如图2所示:(1)求y与x之间的函数关系式;(2)“E”图案的面积是多少?(3)如果小矩形的长是6≤x≤12cm,求小矩形宽的范围.6、(2009•邵阳)如图是一个反比例函数图象的一部分,点A(1,10),B(10,1)是它的端点.(1)求此函数的解析式,并写出自变量x的取值范围;(2)请你举出一个能用本题的函数关系描述的生活实例.7、如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数的图象上,则图中阴影部分的面积等于_________.8、(2009郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y 轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ△与OAP 面积相等如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.,9、如图,在平面直角坐标系中,直线 AB 与 y 轴和 x 轴分别交于点 A 、点 B ,与反比例函数 y 在第一象限的图象交于点 c (1,6)、点 D (3,x ).过点 C 作 CE 上 y 轴于 E ,过点 D 作 DF 上 X 轴于 F .(1)求 m ,n 的值;(2)求直线 AB 的函数解析式.三、勾股定理:10、清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日,西安发现了他的数学专著, 其中有一文《积求勾股法》 它对“三边长为 3、4、5 的整数倍的直角三角形,已知面积求边 长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以 勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为 3、4、5 的整数倍,设其面积为 S ,则第一步: =m ;第二步:=k ;第三步:分别用 3、4、5 乘以 k ,得三边长”.(1)当面积 S 等于 150 时,请用康熙的“积求勾股法”求出这个直角三角形的三边长; (2)你能证明“积求勾股法”的正确性吗请写出证明过程.11、(2009•温州)一张等腰三角形纸片,底边长 15cm ,底边上的高长 22.5cm .现沿底边依 次从下往上裁剪宽度均为 3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形, 则这张正方形纸条是( )A 、第 4 张C 、第 6 张 B 、第 5 张D 、第 7 张112、(2009•茂名)如图,甲,乙两楼相距 20 米,甲楼高 20 米,小明站在距甲楼 10 米的 A 处目测得点 A 与甲,乙楼顶 B 、C 刚好在同一直线上,若小明的身高忽略不计,则乙楼的 高度是 _________ 米.13、(2009•恩施州)恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名 的恩施大峡谷(A )和世界级自然保护区星斗山( B )位于笔直的沪渝高速公路 X 同侧, AB=50km 、B 到直线 X 的距离分别为 10km 和 40km ,要在沪渝高速公路旁修建一服务区 P , 向 A 、B 两景区运送游客.小民设计了两种方案,图( )是方案一的示意图(AP 与直线 X 垂直,垂足为 P ),P 到 A 、B 的距离之和 S 1=P A+PB ,图(2)是方案二的示意图(点 A 关 于直线 X 的对称点是 A',连接 BA'交直线 X 于点 P ),P 到 A 、B 的距离之和 S 2=P A+PB . (1)求 S 1、S 2,并比较它们的大小;(2)请你说明 S 2=P A+PB 的值为最小;(3)拟建的恩施到张家界高速公路 Y 与沪渝高速公路垂直,建立如图(3)所示的直角坐 标系,B 到直线 Y 的距离为 30km ,请你在 X 旁和 Y 旁各修建一服务区 P 、Q ,使 P 、A 、B 、 Q 组成的四边形的周长最小.并求出这个最小值.( 14、(2009•重庆)已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC=90°,DE ⊥AC 于 点 F ,交 BC 于点 G ,交 AB 的延长线于点 E ,且 AE=AC .(1)求证:BG=FG ;(2)若 AD=DC=2,求 AB 的长.四、四边形:15、(2008•佛山)如图,△ ACD △、 ABE △、 BCF 均为直线 BC 同侧的等边三角形. (1)当 AB≠AC 时,证明四边形 ADFE 为平行四边形;(2)当 AB=AC 时,顺次连接 A 、D 、F 、E 四点所构成的图形有哪几类?直接写出构成图 形的类型和相应的条件.16、 2008•山西)如图,已知△ ABC 是等边三角形,D 、E 分别在边 BC 、AC 上,且 CD=CE , 连接 DE 并延长至点 F ,使 EF=AE ,连接 AF 、BE 和 CF .(1)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明;(2)判断四边形 ABDF 是怎样的四边形,并说明理由;(3)若 AB=6,BD=2DC ,求四边形 ABEF 的面积.( 17、(2008•资阳)如图,在△ ABC 中,∠A ,∠B 的平分线交于点 D ,DE ∥AC 交 BC 于点 E ,DF ∥BC 交 AC 于点 F .(1)点 D △是 ABC 的 _________ 心;(2)求证:四边形 DECF 为菱形.18、2008•哈尔滨)在矩形 ABCD 中,点 E 是 AD 边上一点,连接 BE ,且∠ABE=30°,BE=DE , 连接 BD .点 P 从点 E 出发沿射线 ED 运动,过点 P 作 PQ ∥BD 交直线 BE 于点 Q .(1)当点 P 在线段 ED 上时(如图 1),求证:BE=PD+PQ ;(2)若 BC=6,设 PQ 长为 x ,以 P 、Q 、D 三点为顶点所构成的三角形面积为 y ,求 y 与 x 的函数关系式(不要求写出自变量 x 的取值范围);(3)在②的条件下,当点 P 运动到线段 ED 的中点时,连接 QC ,过点 P 作 PF ⊥QC ,垂足 为 F ,PF 交对角线 BD 于点 G (如图 2),求线段 PG 的长.( 19、(2008•常州)如图,这是一张等腰梯形纸片,它的上底长为 2,下底长为 4,腰长为 2, 这样的纸片共有 5 张.打算用其中的几张来拼成较大的等腰梯形,那么你能拼出哪几种不同 的等腰梯形?分别画出它们的示意图,并写出它们的周长.20、 2008•常州)已知:如图,在矩形 ABCD 中,E 、F 分别是边 BC 、AB 上的点,且 EF=ED , EF ⊥ED .求证:AE 平分∠BAD .21、(2008•潍坊)如图,矩形纸片 ABCD 中,AB=8,将纸片折叠,使顶点 B 落在边 AD 的 E 点上,BG=10.(1)当折痕的另一端 F 在 AB 边上时,如图.求△EFG 的面积;(2)当折痕的另一端 F 在 AD 边上时,如图.证明四边形 BGEF 为菱形,并求出折痕 GF 的长.22、(2008•新疆)(1)请用两种不同的方法,用尺规在所给的两个矩形中各作一个不为正方形的菱形,且菱形的四个顶点都在矩形的边上.(保留作图痕迹)(2)写出你的作法.23、(2008•海南)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB.(1)求证:①PE=PD;②PE⊥PD;(2)设AP=x△,PBE的面积为y.①求出y关于x的函数关系式,并写出x的取值范围;②当x取何值时,y取得最大值,并求出这个最大值.24、2008•义乌市)如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、(D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2,如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断;(2)将原题中正方形改为矩形(如图4﹣6),且AB=a,BC=b,CE=ka,CG=kb(a≠b,k >0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由;(3)在第(2)题图5中,连接DG、BE,且a=3,b=2,k=,求BE2+DG2的值.ABCC 1、DD 1 的中点. A 2五、几何:25、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF .(初二)CEGDO F26、已知:如图,P 是正方形 ABCD 内点,∠P AD =∠PDA =150.求证:△PBC 是正三角形.(初二)A DPB C27、如图,已知四边形 ABCD 、A 1B 1C 1D 1 都是正方形,A 2、B 2、C 2、D 2 分别是 AA 1、BB 1、A D求证:四边形 A 2B 2C 2D 2 是正方形.(初二)D 2A 1D 1B 1C 1B 2C 2BC28、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是 AB 、CD 的中点,AD 、BC的延长线交 MN 于 E 、F .求证:∠DEN =∠F . FEN CDAMBM DQ M·N△29、已知: ABC 中,H 为垂心(各边高线的交点),O 为外心,且 OM ⊥BC 于 M .(1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)AO· H EBC30、设 MN 是圆 O 外一直线,过 O 作 OA ⊥MN 于 A ,自 A 引圆的两条直线,交圆于 B 、C及 D 、E ,直线 EB 及 CD 分别交 MN 于 P 、Q . G求证:AP =AQ .(初二)ECO ·BDMNPA Q31、如果上题把直线 MN 由圆外平移至圆内,则由此可得以下命题:设 MN 是圆 O 的弦,过 MN 的中点 A 任作两弦 BC 、DE ,设 CD 、EB 分别交 MN于 P 、Q .求证:AP =AQ .(初二)CPEA·O BD△32、如图,分别以 ABC 的 AC 和 BC 为一边,在△ABC 的外侧作正方形 ACDE 和正方形CBFG ,点 P 是 EF 的中点.求证:点 P 到边 AB 的距离等于 AB 的一半.(初二)DGC EPAQBF33、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.求证:CE=CF.(初二)A DF EB C34、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.求证:AE=AF.(初二)F A DB CE 35、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.求证:PA=PF.(初二)A DFB PC E36、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.(初三)AB O DPE FC△37、已知:ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.求:∠APB的度数.(初二)APB C38、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.(初二)A DPB C39、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.(初三)ADB C40、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且AE=CF.求证:∠DP A=∠DPC.(初二)AFP DB E C41、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:≤L<2.APB C42、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.A DPB C43、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.A DPB C △44、如图,ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.AEDB C五、数据的分析:45、(2005•南平)为了帮助贫困失学儿童,宿迁市团委发起“爱心储蓄”活动,鼓励学生将自己的压岁钱和零花钱存入银行,定期一年,到期后取回本金,而把利息捐赠给贫困失学儿童.某中学共有学生1200人,图1是该校各年级学生人数比例分布的扇形统计图,图2是该校学生人均存款情况的条形统计图.(1)求该学校的人均存款数;(2)已知银行一年定期存款的年利率是2.25%(“爱心储蓄”免收利息税),且每351元能提供给1位失学儿童一年的基本费用,那么该学校一学年能够帮助多少位失学儿童?46、(2005•河北)如图是连续十周测试甲、乙两名运动员体能训练情况的折线统计图.教练组规定:体能测试成绩70分以上(包括70分)为合格.(1)请根据图中所提供的信息填写右表:(2)请从下面两个不同的角度对运动员体能测试结果进行判断:①依据平均数与成绩合格的次数比较甲和乙,_________的体能测试成绩较好;②依据平均数与中位数比较甲和乙,_________的体能测试成绩较好.③依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效果较好.A x47、(2005•重庆)如图所示,A 、B 两个旅游点从 2001 年至 2005 年“五•一”的旅游人数变化 情况分别用实线和虚线表示.根据图中所示解答以下问题:(1)B 旅游点的旅游人数相对上一年,增长最快的是哪一年?(2)求 A 、B 两个旅游点从 2001 到 2005 年旅游人数的平均数和方差,并从平均数和方差 的角度,用一句话对这两个旅游点的情况进行评价;(3)A 旅游点现在的门票价格为每人 80 元,为保护旅游点环境和游客的安全,A 旅游点的 最佳接待人数为 4 万人,为控制游客数量, 旅游点决定提高门票价格.已知门票价格 (元)与游客人数 y (万人)满足函数关系 y=5﹣则门票价格至少应提高多少?.若要使 A 旅游点的游客人数不超过 4 万人,答案与评分标准一、分式:1、如果ab c=1,求证++=1.考点:分式的混合运算。

九年级数学上册难题

九年级数学上册难题

若不成立请说明理由;
(2)当△ADE 绕 A 点旋转到图 11 的位置时,△AMN 是否还是等边三角形?若是,请给
出证明,并求出当 AB=2AD 时,△ADE 与△ABC 及△AMN 的面积之比;若不是,请说明理
由.
图9
图 10
图8
图 11
37、关于 x 的一元二次方程 kx2-6x+1=0 有两个不相等的实数根,则 k 的取值范围是( )
(3)若 AB 8cm,BC 10cm ,求大圆与小圆围成的圆环的面积。(结果保留 π)CDA O NhomakorabeaB
42.不一定在三角形内部的线段是( ) A.三角形的角平分线;B.三角形的中线; C.三角形的高;
单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善
D.三角形的中位线。
教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。教育革命的对策是手脑联盟,结果是手与脑的力量都可以大到不可思议。
41、(9 分)如图,在以 O 为圆心的两个同心圆中,AB 经过圆心 O,且与小圆相交于点 A、 与大圆相交于点 B。小圆的切线 AC 与大圆相交于点 D,且 CO 平分∠ACB。
(1)试判断 BC 所在直线与小圆的位置关系,并说明理由; (2)试判断线段 AC、AD、BC 之间的数量关系,并说明理由;
A. 4 3
B. 2 3
C. 4 3
3
D. 不能确定
11.如图,圆 O 与圆 P 相交,EA 过圆心 P 交圆于 C,连心线 PO
交于圆 O 于点 D,已知∠BCA=36°,则∠EDB=
.
.
12. 如图,在平面直角坐标系中有一正方形 AOBC,反比例函数 y k 经过正方形 AOBC 对角 x

新初中数学实数难题汇编附答案(1)

新初中数学实数难题汇编附答案(1)

新初中数学实数难题汇编附答案(1)一、选择题1.25的平方根是( )A .±5B .5C .﹣5D .±25【答案】A【解析】【分析】如果一个数 x 的平方是a ,则x 是a 的平方根,根据此定义求解即可.【详解】∵(±5)2=25,∴25的立方根是±5,故选A .【点睛】本题考查了求一个数的平方根,解题的关键是掌握一个正数的平方根有两个,这两个互为相反数.2.在整数范围内,有被除数=除数⨯商+余数,即a bq r a b =+≥(且)00b r b ≠≤<,,若被除数a 和除数b 确定,则商q 和余数r 也唯一确定,如:11,2a b ==,则11251=⨯+此时51q r ==,.在实数范围中,也有 (a bq r a b =+≥且0b ≠,商q 为整数,余数r 满足:0)r b ≤<,若被除数是,除数是2,则q 与r 的和( )A .4B .6C .4D .4 【答案】A【解析】【分析】根据2=q 即可先求出q 的值,再将a 、q 、b 的值代入a =bq +r 中即可求出r 的值,从而作答.【详解】∵2=7=45,的整数部分是4, ∴商q =4,∴余数r =a ﹣bq =2×4=8,∴q +r =4+8=4.故选:A .【点睛】本题考查了整式的除法、估算无理数的大小,解答本题的关键理解q即2的整数部分.3.把-( )A B.C.D【答案】A【解析】【分析】由二次根式-a是负数,根据平方根的定义将a移到根号内是2a,再化简根号内的因式即可.【详解】∵1a-≥,且0a≠,∴a<0,∴-,∴-=故选:A.【点睛】此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于0得到a的取值范围是解题的关键.4.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是()A.0个B.1个C.2个D.3个【答案】D【解析】【详解】①实数和数轴上的点是一一对应的,正确;②无理数是开方开不尽的数,错误;③负数没有立方根,错误;④16的平方根是±4,用式子表示是,错误;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,正确.错误的一共有3个,故选D .5.设,a b 是不相等的实数,定义W 的一种运算;()()()2a b a b a b a b =+-+-W ,下面给出了关于这种运算的四个结论:①()6318-=-W ;②a b b a =W W ;③若0a b =W ,则0b =或0a b +=;④()a b c a b a c +=+WW W ,其中正确的是 ( ) A .②④B .②③C .①④D .①③ 【答案】D【解析】【分析】先化简()()()2a b a b a b +-+-,然后各式利用题中的新定义化简得到结果,即可作出判断.【详解】解:()()()222222222=+-+-=++-+=+a b a b a b a b a ab b a b ab b W , ①()2632(6)323361818-=⨯-⨯+⨯=-+=-W ,故①正确; ②∵222=+b a ba a W ,当a b ¹时,≠a b b a WW ,故②错误; ③∵0a b =W ,即2222()0+=+=ab b b a b ,∴2b =0或a +b =0,即0b =或0a b +=,故③正确;④∵()2222()2()22242a b c a b c b c ab ac b bc c +=+++=++++W 222222222222+=+++=+++a b a c ab b ac c ab ac b c W W∴()+≠+a b c a b a c W WW ,故④错误; 故选:D .【点睛】本题考查了整式的混合运算和定义新运算,理解定义新运算并根据运算法则进行计算是解题的关键.6.是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请1的值( ) A .在1.1和1.2之间 B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间 【答案】B【解析】【分析】根据4.84<5<5.29,可得答案.【详解】∵4.84<5<5.29,∴2.2<5<2.3, ∴1.2<5-1<1.3,故选B .【点睛】 本题考查了估算无理数的大小,利用5≈2.236是解题关键.7.下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③2a 的算术平方根是a ;④算术平方根不可能是负数;⑤()24π-的算术平方根是4π-,其中不正确的个数是( )A .2个B .3个C .4个D .5个 【答案】B【解析】【分析】根据算术平方根的定义判断即可.【详解】负数没有算术平方根,①错误;0的算术平方根是0,②错误;2a 的算术平方根是a ,③错误;算术平方根不可能是负数,④正确;()24π-的算术平方根是4-π,⑤正确.所以不正确的个数为3个,选B .【点睛】掌握算术平方根的定义.注意:0的算术平方根是0、负数没有算术平方根.8.如图,数轴上的点P 表示的数可能是( )A 5B .5C .-3.8D .10-【答案】B【解析】【分析】【详解】5 2.2≈,所以P 点表示的数是5-9.2246-的值应在( ) A .2.5和3之间B .3和3.5之间C .3.5和4之间D .4和4.5之间 【答案】C【解析】【分析】直接利用二次根式乘法运算法则化简,进而估算无理数的大小即可.【详解】 224646636222--===13.5. ∵3.52=12.25,42=16,12.25<13.5<16,∴3.5<13.5<4.故选:C.【点睛】本题考查了估算无理数的大小,正确进行二次根式的运算是解题的关键.10.如图所示,数轴上表示3、13的对应点分别为C 、B ,点C 是AB 的中点,则点A 表示的数是 ( )A .13B .13C .13D 13 【答案】C【解析】 点C 是AB 的中点,设A 表示的数是c 1333c =-,解得:13C . 点睛:本题考查了实数与数轴的对应关系,注意利用“数形结合”的数学思想解决问题.11.设302a =.则a 在两个相邻整数之间,那么这两个整数是( ) A .1和2B .2和3C .3和4D .4和5 【答案】C【解析】【分析】 253036<<5306<<,进而可得出a 的范围,即可求得答案.【详解】253036<< ∴5306<<∴5230262-<<-,即33024<<,∴a 在3和4之间,故选:C .【点睛】此题主要考查了估算无理数的大小,利用完全平方数和算术平方根对无理数的大小进行估算是解题的关键.12.如图,数轴上的A、B、C、D四点中,与数﹣3表示的点最接近的是( )A.点A B.点B C.点C D.点D【答案】B【解析】【分析】≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.3 1.732【详解】3 1.732≈-,()---≈,1.7323 1.268()---≈,1.73220.268()---≈,1.73210.732因为0.268<0.732<1.268,-表示的点与点B最接近,所以3故选B.13.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是()A.2个B.3个C.4个D.5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B.【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.14.若x2=16,则5-x的算术平方根是()A.±1 B.±3 C.1或9 D.1或3【答案】D【解析】【分析】根据平方根和算术平方根的定义求解即可.【详解】∵x2=16,∴x=±4,∴5-x=1或5-x=9,∴5-x的算术平方根是1或3,故答案为:D.【点睛】本题考查了平方根和算术平方根的定义,解题的关键是要弄清楚算术平方根的概念与平方根的概念的区别.15.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;a<是不可能事件;③若a为实数,则0④16的平方根是4±4=±;其中正确的个数有()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】①根据概率的定义即可判断;②根据无理数的概念即可判断;③根据不可能事件的概念即可判断;④根据平方根的表示方法即可判断.【详解】①“明天降雨的概率是50%”表示明天有50%的可能会降雨,而不是半天都在降雨,故错误;②无理数是无限不循环小数,不只包含开方开不尽的数,故错误;③若根据绝对值的非负性可知0a ≥,所以0a <是不可能事件,故正确;④16的平方根是4±,用式子表示是4±,故错误;综上,正确的只有③,故选:A .【点睛】本题主要考查概率,无理数的概念,绝对值的非负性,平方根的形式,掌握概率,无理数的概念,绝对值的非负性,平方根的形式是解题的关键.16.已知:[]x 表示不超过x 的最大整数.例:[]3.93=,[]1.82-=-.记1()44k k f k +⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦(k 是正整数).例:3133144()f ⎡⎤⎡⎤+=-=⎢⎥⎢⎥⎣⎦⎣⎦.则下列结论正确的个数是( )(1)()10f =;(2)()()4f k f k +=;(3)()()1f k f k +≥;(4)()0f k =或1.A .1个B .2个C .3个D .4个【答案】C【解析】【分析】根据题中所给的定义,依次作出判断即可.【详解】 解:111(1)00044f +⎡⎤⎡⎤=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,正确; 41411(4)11()444444k k k k k k f k f k +++++⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=-=+-+=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,正确; 当k=3时,414(31)11044f +⎡⎤⎡⎤+=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,而(3)1f =,错误; 当k=3+4n (n 为自然数)时,f (k )=1,当k 为其它的正整数时,f (k )=0,正确; 正确的有3个,故选:C .【点睛】本题考查新定义下的实数运算,函数值.能理解题中新的定义,并根据题中的定义进行计算是解决此题的关键.17.用“☆”定义一种新运算:对于任意有理数x 和y ,21x y a x ay =++☆(a 为常数),如:2223231231a a a a =⋅+⋅+=++☆.若123=☆,则48☆的值为( )A .7B .8C .9D .10 【答案】C【解析】【分析】先根据123=☆计算出a 的值,进而再计算48☆的值即可. 【详解】因为212a 2a 13=++=☆,所以2a 2a 2+=,则()224a 8a 14a 2a 1421948=++=++=⨯+=☆,故选:C .【点睛】此题考查了定义新运算以及代数式求值.熟练运用整体代入思想是解本题的关键.18.计算2|=( )A . 1B .1﹣C .﹣1D .3【答案】D【解析】【分析】根据绝对值的性质去掉绝对值的符号后进行合并即可.【详解】原式=+2=3,故选D .【点睛】本题考查了实数的运算,熟练掌握绝对值的性质是解本题的关键.19.对于两个不相等的实数a ,b ,我们规定符号max {a ,b }表示a 、b 中的较大的数,如:max {2,4}=4,按照这个规定,方程max {x ,﹣x }=x 2﹣x ﹣1的解为( )A .或1B .1或﹣1C .1或1D .或﹣1 【答案】D【解析】【分析】根据题意应分为x>0和x<0两种情况讨论,并列出关于x 的分式方程求解,结合x 的取值范围确定方程max{x,﹣x}=x2﹣x﹣1的解即可.【详解】解:①当x≥﹣x,即x≥0时,∵max{x,﹣x}=x2﹣x﹣1,∴x=x2﹣x﹣1,解得:x=1+2(1﹣2<0,不符合舍去);②当﹣x>x,即x<0时,﹣x=x2﹣x﹣1,解得:x=﹣1(1>0,不符合舍去),即方程max{x,﹣x}=x2﹣x﹣1的解为1+2或﹣1,故选:D.【点睛】本题考查了解分式方程,有关实数、实数运算的新定义,掌握分式方程的解法是解题的关键.20.若将三个数-3,7,11表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A.3B7C11D.无法确定【答案】B【解析】【分析】【详解】解:根据二次根式的估算可知-2<3-1,27<3,311<4,7.故选B.。

北师大版九年级数学难题集锦

北师大版九年级数学难题集锦

北师大版九年级数学难题集锦A .12B .2C D2.经过某十字路口的汽车,可能直行,也可能左转或者右转。

如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是( )A .47B .49C .29 D . 193.如图,△AOB 是直角三角形,∠AOB =90°,OB=2OA,点A 在反比例函数xy 1=的图象上.若点B 在反比例函数xky =的图象上,则k 的值为A .4-B .4C .2-D .24.如图,已知直线334y x =-与x 轴、y 轴分别交于A 、B 两点,P 是以C (0,1)为圆心,1为半径的圆上一动点,连结PA 、P B .则△PAB 面积的最大值是( ) A .8 B .12 C .212 D .1725.二次函数y=ax 2+bx+c (a≠0)图象如图,下列结论:①abc ﹤0;②2a+b=0;③当m≠1时,a+b >am 2+bm ;④若ax 12+bx 1=ax 22+bx 2,且x 1≠x 2,则x 1+x 2=2.其中正确的有6.(本小题满分9分)如图,一次函数4y x =-+的图象与反比例ky x =(k 为常数,且0k ≠)的图象交于A 、B 两点,A 点的横坐标为1.(1)求反比例函数的表达式及点B 的坐标;(2)在x 轴上找一点P ,使PA PB +的值最小,求满足条件的点P 的坐标及PAB ∆的面积.7,如图,已知,在△ABC中,CA=CB,∠ACB=90°,E,F分别是CA,CB边的三等分点,将△ECF绕点C逆时针旋转α角(0°<α<90°),得到△MCN,连接AM,BN.(1)求证:AM=BN;(2)当MA∥CN时,试求旋转角α的余弦值.,8,如图所示,抛物线y=x2+bx+c经过A,B两点,A,B两点的坐标分别为(-1,0),(0,-3).(1)求抛物线的函数解析式;(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;(3)在直线DE上存在点P,使得以C,D,P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.1.如图,ABC ∆ 中,4AB AC ==,120BAC ∠=︒.点O 是BC 中点,点D 沿B →A →C 方向从B 运动到C.设点D 经过的路径长为x ,OD 长为y .则函数y 的图象大致为( ).BCDCBA2,如图,已知第一象限内的点A 在反比例函数2y x =的图象上,第二象限内的点B在反比例函数ky x=的图象上,且OA ⊥OB ,tan BAO ∠=则k = .3.如图,在Rt △ABC 中,∠C=90°,AB 的垂直平分线与AC,AB 的交点分别为D,E .BACED(1)若AD=15,4cos 5BDC ∠=,求AC 的长和tan A 的值; (2)若30BDC ∠=︒,求tan15︒的值.(结果保留根号)4,.如图,直线1y x 4=与双曲线k y x =相交于A 、B 两点,BC ⊥x 轴于点C (-4,0).(1)求A 、B 两点的坐标及双曲线的解析式;(2)若经过点A 的直线与x 轴的正半轴交于点D,与y 轴的正半轴交于点E,且△AOE 的面积为10,求CD 的长.5.如图1,在平面直角坐标系中,O 为坐标原点.直线y k x b =+与抛物线2194y mx x n =-+同时经过(0,3)(4,0)A B 、.图1备用图(1)求,m n 的值.(2)点M 是二次函数图象上一点,(点M 在AB 下方),过M 作MN ⊥ x 轴,与AB 交于点N ,与x 轴交于点Q .求MN 的最大值.(3)在(2)的条件下,是否存在点N ,使AOB ∆和 NOQ ∆相似?若存在,求出N 点坐标,不存在,说明理由.1太阳光线与地面成60°的角,照射在地面上的一只皮球上,皮球在地面上的投影长是,则皮球的直径是()A.B.15 C.10 D.B.C.D.42.如图,正方形ABCD的边长为1,E、F分别是边BC和CD上的动点(不与正方形的顶点重合),不管E、F怎样动,始终保持AE⊥EF.设BE=x,DF=y,则y是x的函数,函数关系式是3如图,已知一动圆的圆心P在抛物线y=x2﹣3x+3上运动.若⊙P半径为1,点P的坐标为(m,n),当⊙P与x轴相交时,点P的横坐标m的取值范围是_________.4,如图,二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C的坐标;(2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由.(3)当P,Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状,并求出D点坐标.1. 在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足,设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为是()A.B.C.D.图3图4图5图62.如图6,已知点A1、A2、A3、…、A n在x轴上,且OA1=A1A2=A2A3==A n-1A n=1,分别过点A1、A2、A3、…、A n作x轴的垂线,交反比例函数y=2x(x>0)的图象于点B1、B2、B3、…、B n,过点B2作B2P1⊥A1B1于点P1,过点B3作B3P2⊥A2B2于点P2,……,若记△B1P1B2的面积为S1,△B2P2B3的面积为S2,……,△B n P n B n+1的面积为S n,则S1+S2+…+S2017=_______________.3,如图,正比例函数y=ax与反比例函数>0)的图象交于点M(6,6).(1)求这两个函数的表达式;(2)如图1,若∠AMB=90°,且其两边分别于两坐标轴的正半轴交于点A、B.求四边形OAMB的面积.(3)如图2,点P是反比例函数y=kx(x>0)的图象上一点,过点P作x轴、y轴的垂线,垂足分别为E、F,PF交直线OM于点H,过作x轴的垂线,垂足为G.设点P的横坐标为m,当m>6时,是否存在点P,使得四边形PEGH 为正方形?若存在,求出P点的坐标;若不存在,请说明理由.5BBEE4,)如图,在△ABC 中,已知CA =CB =5,BA =6,点E 是线段AB 上的动点(不与端点重合),点F 是线段AC 上的动点,连接CE 、EF ,若在点E 、点F 的运动过程中,始终保证∠CEF =∠B .(1)求证:∠AEF =∠BCE ;(2)当以点C 为圆心,以CF 为半径的圆与AB 相切时,求BE 的长;(3)探究:在点E 、F 的运动过程中,△CEF 可能为等腰三角形吗?若能,求出BE 的长;若不能,请说明理由.5,如图1,抛物线y =ax 2+bx +3(a ≠0)与x 轴交于点A 、点B (点A 在点B 左侧),与y 轴交于点C ,点D 为抛物线的顶点,已知点A 、点B 的坐标分别为A (-1,0)、B (3,0).(1)求抛物线的解析式;(2)在直线BC 上方的抛物线上找一点P ,使△PBC 的面积最大,求P 点的坐标;(3)如图2,连接BD 、CD ,抛物线的对称轴与x 轴交于点E ,过抛物线上一点M 作MN ⊥CD ,交直线CD 于点N ,求当∠CMN =∠BDE 时点M 的坐标.。

(易错题精选)初中数学代数式难题汇编附答案(1)

(易错题精选)初中数学代数式难题汇编附答案(1)

(易错题精选)初中数学代数式难题汇编附答案(1)一、选择题1.下列运算正确的是( )A .236a a a ⋅=B .222()ab a b =C .()325a a =D .224a a a += 【答案】B【解析】【分析】根据积的乘方运算法则和同底数幂的运算法则分别计算即可解答.【详解】解:A. 235a a a ⋅=,故A 错误;B. 222()ab a b =,正确;C. ()326a a =,故C 错误;D. 2222a a a +=,故D 错误.故答案为B .【点睛】本题主要考查了积的乘方和同底数幂的运算运算法则,掌握并灵活运用相关运算法则是解答本题的关键.2.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .40【答案】B【解析】 试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n 个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n +个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B .考点:规律型:图形变化类.3.下列各式中,计算正确的是( )A .835a b ab -=B .352()a a =C .842a a a ÷=D .23a a a ⋅= 【答案】D【解析】【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.【详解】解:A 、8a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、()326a a =,故选项B 不合题意;C 、844a a a ÷=,故选项C 不符合题意;D 、23a a a ⋅=,故选项D 符合题意.故选:D .【点睛】本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.4.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩【答案】B【解析】【分析】根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.5.(x2﹣mx+6)(3x﹣2)的积中不含x的二次项,则m的值是()A.0 B.23C.﹣23D.﹣32【答案】C【解析】试题解析:(x2﹣mx+6)(3x﹣2)=3x3﹣(2+3m)x2+(2m+18)x﹣12,∵(x2﹣mx+6)(3x﹣2)的积中不含x的二次项,∴2+3m=0,解得,m=23 ,故选C.6.观察下列图形:()它们是按一定规律排列的,依照此规律,那么第7个图形中共有五角星的个数为() A.20B.21C.22D.23【答案】C【解析】【分析】设第n个图形共有a n(n为正整数)个五角星,根据各图形中五角星个数的变化可找出变化规律“a n=3n+1(n为正整数)”,再代入n=7即可得出结论.【详解】解:设第n个图形共有a n(n为正整数)个五角星,∵a1=4=3×1+1,a2=7=3×2+1,a3=10=3×3+1,a4=13=3×4+1,…,∴a n=3n+1(n为正整数),∴a7=3×7+1=22.故选:C.【点睛】本题考查了规律型:图形的变化类,根据各图形中五角星个数的变化,找出变化规律“a n=3n+1(n为正整数)”是解题的关键.7.下列计算正确的是()A.2x2•2xy=4x3y4B.3x2y﹣5xy2=﹣2x2yC.x﹣1÷x﹣2=x﹣1D.(﹣3a﹣2)(﹣3a+2)=9a2﹣4【答案】D【解析】A 选项:2x 2·2xy =4x 3y ,故是错误的;B 选项:3x 2y 和5xy 2不是同类项,不可直接相加减,故是错误的;C.选项:x -1÷x -2=x ,故是错误的;D 选项:(-3a -2)(-3a +2)=9a 2-4,计算正确,故是正确的.故选D.8.下列计算正确的是( )A .2571a a a -÷=B .()222a b a b +=+C .2+=D .()235a a =【答案】A【解析】 分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A 、2571a a a -÷=,正确; B 、(a+b )2=a 2+2ab+b 2,故此选项错误;C 、,无法计算,故此选项错误;D 、(a 3)2=a 6,故此选项错误;故选:A .点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.9.下列计算正确的是( )A .a 2+a 3=a 5B .a 2•a 3=a 6C .(a 2)3=a 6D .(ab )2=ab 2【答案】C【解析】试题解析:A.a 2与a 3不是同类项,故A 错误;B.原式=a 5,故B 错误;D.原式=a 2b 2,故D 错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.10.下列运算正确的是( )A .2352x x x +=B .()-=g 23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】 A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式.【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1.故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.11.如图1,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是( )A .(a +b )(a ﹣b )=a 2﹣b 2B .(a +b )2=a 2+2ab +b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .a (a ﹣b )=a 2﹣ab【答案】A【解析】【分析】 分别计算出两个图形中阴影部分的面积即可.【详解】图1阴影部分面积:a 2﹣b 2,图2阴影部分面积:(a +b )(a ﹣b ),由此验证了等式(a +b )(a ﹣b )=a 2﹣b 2,故选:A .【点睛】此题主要考查了平方差公式的几何背景,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.12.下面的图形都是由同样大小的棋子按照一定的规律组成,其中第①个图形有1颗棋子,第②个图形有6颗棋子,第③个图形有15颗棋子,第④个图中有28颗棋子,…,则第6个图形中棋子的颗数为( )A .63B .64C .65D .66【答案】D【解析】【分析】 根据图形中棋子的个数找到规律,从而利用规律解题.【详解】解:∵通过观察可以发现:第1个图形中棋子的个数为()11211=⨯⨯-;第2个图形中棋子的个数为()62221=⨯⨯-;第3个图形中棋子的个数为()153231=⨯⨯-;第4个图形中棋子的个数为()284241=⨯⨯-;L L第n 个图形中棋子的个数为()21n n -∴第6个图形中棋子的个数为()626166⨯⨯-=.故选:D【点睛】本题考查了图形变化规律的问题,能找出第n 个图形棋子的个数的表达式是解题的关键.13.下列计算正确的是()A .4482a a a +=B .236a a a •=C .4312()a a =D .623a a a ÷=【答案】C【解析】【分析】根据合并同类项、同底数幂的乘除法公式、幂的乘方公式逐项判断,即可求解.【详解】A 、4442a a a +=,故错误;B 、235a a a •=,故错误;C 、4312()a a =,正确;D 、624a a a ÷=,故错误;故答案为:C.【点睛】本题考查了整式的运算,解题的关键是熟练掌握合并同类项的运算法则、同底数幂的乘除法公式、幂的乘方公式.14.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1【答案】B【解析】【详解】 ∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,,…,, 下边三角形的数字规律为:1+2,,…,, ∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.15.计算(-2)2009+(-2)2010的结果是( )A .22019B .22009C .-2D .-22010【答案】B【解析】(-2)2009+(-2)2010=(-2)2009+(-2)2009+1=(-2)2009+(-2)2009×(-2)=(-2)2009×[1+(-2)]=-22009×(-1)=22009,故选B .16.若x +y =2,x ﹣y =3﹣222x y -的值为( )A.B.1 C.6 D.3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y=,x﹣y=3﹣,==1.故选:B.【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.17.若(x+4)(x﹣1)=x2+px+q,则()A.p=﹣3,q=﹣4 B.p=5,q=4C.p=﹣5,q=4 D.p=3,q=﹣4【答案】D【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:∵(x+4)(x﹣1)=x2+3x﹣4∴p=3,q=﹣4故选:D.【点睛】考查整式的运算,解题的关键是熟练运用整式的运算法则.18.若x2+2(m+1)x+25是一个完全平方式,那么m的值()A.4 或-6 B.4 C.6 或4 D.-6【答案】A【解析】【详解】解:∵x2+2(m+1)x+25是一个完全平方式,∴△=b2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m2+2m-24=0,解得m1=4,m2=-6,所以m的值为4或-6.故选A.19.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b )20的展开式中第三项的系数为( )A .2017B .2016C .191D .190【答案】D【解析】试题解析:找规律发现(a+b )3的第三项系数为3=1+2;(a+b )4的第三项系数为6=1+2+3;(a+b )5的第三项系数为10=1+2+3+4;不难发现(a+b )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1),∴(a+b )20第三项系数为1+2+3+…+20=190,故选 D .考点:完全平方公式.20.如图,是一块直径为2a +2b 的圆形钢板,从中挖去直径分别为2a 、2b 的两个圆,则剩下的钢板的面积为( )A .ab πB .2ab πC .3ab πD .4ab π【答案】B【解析】【分析】剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即可.【详解】解:S 剩下=S 大圆- 1S 小圆-2S 小圆=2222a+2b 2a 2b --222πππ()()() =()222a+b -a -b π⎡⎤⎣⎦=2ab π, 故选:B【点睛】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、 合并同类项法则,熟练掌握公式及法则是解本题的关键.。

新初中数学二次根式难题汇编含解析(1)

新初中数学二次根式难题汇编含解析(1)

新初中数学二次根式难题汇编含解析(1)一、选择题1.式子2a +有意义,则实数a 的取值范围是( ) A .a≥-1B .a≤1且a≠-2C .a≥1且a≠2D .a>2【答案】B【解析】【分析】直接利用二次根式有意义的条件分析得出答案.【详解】式子2a +有意义,则1-a≥0且a+2≠0, 解得:a≤1且a≠-2.故选:B .【点睛】 此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.2.下列各式中计算正确的是()A +=B .2+=C =D .22= 【答案】C【解析】【分析】结合选项,分别进行二次根式的乘法运算、加法运算、二次根式的化简、二次根式的除法运算,选出正确答案.【详解】解:不是同类二次根式,不能合并,故本选项错误;B.2=D.2=1,原式计算错误,故本选项错误. 故选:C.【点睛】本题考查二次根式的加减法和乘除法,在进行此类运算时,掌握运算法则是解题的关键.3.下列式子为最简二次根式的是( )A .B .C .D .【答案】A【解析】【分析】【详解】解:选项A ,被开方数不含分母;被开方数不含能开得尽方的因数或因式, A 符合题意; 选项B ,被开方数含能开得尽方的因数或因式,B 不符合题意;选项C ,被开方数含能开得尽方的因数或因式, C 不符合题意;选项D ,被开方数含分母, D 不符合题意,故选A .4.1x -x 的取值范围是( )A .x <1B .x ≥1C .x ≤﹣1D .x <﹣1【答案】B【解析】【分析】根据二次根式有意义的条件判断即可.【详解】解:由题意得,x ﹣1≥0,解得,x ≥1,故选:B .【点睛】本题主要考查二次根式有意义的条件,熟悉掌握是关键.5.67x -x 的取值范围是( ) A .x≥76 B .x >76 C .x≤76 D . x <76【答案】B【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】∵67x -是被开方数,∴670x -≥,又∵分母不能为零,∴670x ->,解得,x >76; 故答案为:B.本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,解题的关键是熟练掌握其意义的条件.6.把-( )AB .C .D 【答案】A【解析】【分析】由二次根式-a 是负数,根据平方根的定义将a 移到根号内是2a ,再化简根号内的因式即可.【详解】 ∵10a-≥,且0a ≠, ∴a<0,∴-,∴-= 故选:A.【点睛】此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于0得到a 的取值范围是解题的关键.7.若代数式y =有意义,则实数x 的取值范围是( ) A .0x ≥B .0x ≥且1x ≠C .0x >D .0x >且1x ≠【答案】B【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】 根据题意得:010x x ≥⎧⎨-≠⎩, 解得:x≥0且x≠1.【点睛】此题考查分式有意义的条件,二次根式有意义的条件,解题关键在于掌握分母不为0;二次根式的被开方数是非负数.8.下列运算正确的是()A B.1)2=3-1 C D5-3【答案】C【解析】【分析】根据二次根式的加减及乘除的法则分别计算各选项,然后与所给结果进行比较,从而可得出结果.【详解】解:≠,故本选项错误;1)2=3-,故本选项正确;= =4,故本选项错误.故选C.【点睛】本题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.9.在实数范围内有意义,则a的取值范围是()A.a≤﹣2 B.a≥﹣2 C.a<﹣2 D.a>﹣2【答案】B【解析】【分析】在实数范围内有意义,则其被开方数大于等于0;易得a+2≥0,解不等式a+2≥0,即得答案.【详解】在实数范围内有意义,∴a+2≥0,解得a≥-2.故选B.【点睛】本题是一道关于二次根式定义的题目,应熟练掌握二次根式有意义的条件;10.如果一个三角形的三边长分别为12、k 、72|2k ﹣5|的结果是( )A .﹣k ﹣1B .k +1C .3k ﹣11D .11﹣3k【答案】D【解析】【分析】 求出k 的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.【详解】 ∵一个三角形的三边长分别为12、k 、72, ∴72-12<k <12+72, ∴3<k <4,,=-|2k-5|,=6-k-(2k-5),=-3k+11,=11-3k ,故选D .【点睛】本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.11.估计值应在( ) A .3到4之间B .4到5之间C .5到6之间D .6到7之间 【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】解:=∵91216<<<<∴34<<∴估计值应在3到4之间. 故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.12.a =-成立,那么a 的取值范围是( )A .0a ≤B .0a ≥C .0a <D .0a >【答案】A【解析】【分析】由根号可知等号左边的式子为正,所以右边的式子也为正,所以可得答案.【详解】得-a≥0,所以a≤0,所以答案选择A 项.【点睛】本题考查了求解数的取值范围,等号两边的值相等是解答本题的关键.13.下列计算错误的是( )A .BCD 【答案】A【解析】【分析】【详解】选项A ,不是同类二次根式,不能够合并;选项B ,原式=2÷=选项C ,原式=选项D ,原式==. 故选A.14.有意义时,a 的取值范围是( ) A .a ≥2B .a >2C .a ≠2D .a ≠-2【答案】B【解析】解:根据二次根式的意义,被开方数a ﹣2≥0,解得:a ≥2,根据分式有意义的条件:a ﹣2≠0,解得:a≠2,∴a>2.故选B.15.计算÷的结果是()A B C.23D.34【答案】A【解析】【分析】根据二次根式的运算法则,按照运算顺序进行计算即可.【详解】解:÷1(24=⨯÷=16=⨯=.故选:A.【点睛】此题主要考查二次根式的运算,根据运算顺序准确求解是解题的关键.16.下列计算正确的是()A.=B=C.=D-=【答案】B【解析】【分析】根据二次根式的加减乘除运算法则逐一计算可得.【详解】A、-B、,此选项正确;C 、() 75153-÷=(53-15)÷3=5-5,此选项错误;D 、 1818339-=2222-=-,此选项错误; 故选B【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.17.已知1212a b ==+-,,则,a b 的关系是( ) A .a b =B .1ab =-C .1a b =D .=-a b 【答案】D【解析】【分析】根据a 和b 的值去计算各式是否正确即可.【详解】A. 1122212121212a b -+-+-=--==---,错误; B. 12112ab +=≠--,错误; C. 12112ab +=≠-,错误; D. 112221201212a b +-+-+=++==--,正确; 故答案为:D .【点睛】本题考查了实数的运算问题,掌握实数运算法则是解题的关键.18.如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为( )A .2B 6C .236223D .23225【答案】D【解析】【分析】将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,可得两个阴影部分的图形的长和宽,计算可得答案.【详解】将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,如下图所示:则阴影面积=()()222323⨯-+⨯-=222233-+-=23225+-故选:D【点睛】本题考查算术平方根,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结合的思想解答.19.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A .B .C .D . 【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】2x +∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.20.已知实数a 、b 在数轴上的位置如图所示,化简|a +b 2()b a - )A .2a -B .2aC .2bD .2b - 【答案】A【解析】【分析】 2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】 2a .。

中考数学专题:几何难题

中考数学专题:几何难题

A
B
C
E
F
D
13. 如 图 , Rt △ ABC 中 , ∠ ACB=90 ° , AC=BD, ∠ EDB= 1 CAB , BE ⊥ DE,CD= 2 5 ,
2
3
tan ABE 1 则 AE=_______. 2
A
E F
C
B
D
14.如图,Rt△ABC 中,∠ACB=90°,AD=BC,E 为 DB 中点,∠DFE=45°,DF= 2 ,则 AC=______.
A
F E
B
C
D
40 如图 1,等边△ABC 中,CE 平分∠ACB,D 为 BC 边上一点,且 DE=CD,连接 BE
(1)若 CE=4,BC=6 3 ,求线段 BE 的长;
(2)如图 2,取 BE 中点 P,连接 AP,PD,AD,求证:AP⊥PD,且 AP= 3 PD; (3)如图 3,把图 2 中的△CDE 绕点 C 顺时针旋转任意角度,然后连接 BE,点 P 为 BE 中点, 连接 AP,PD,AD,问(2)中的结论还成立吗?若成立,请证明;若不成立,请说明理由。
G
GM
A E
DA
E
F
D
N
B
CB
图1
图2
10
11
34.等边△ABC,AB=4,将△BEF 沿 EF 翻折使 B 落在 AC 边的 D 处,且 CD=1,连结 EC 交 FD 于 G,求 EG 的长。
A
E
D
G
B
F
C
35.如图,正方形 ABCD 中,点 P 在对角线 BD 上,E 在 CB 的延长线上,且 PE=PC,过点 P 作 PF⊥AE 于点 F,若 BE=1,AB=3,则 PF 的长为______.

中考数学难题集锦

中考数学难题集锦

中考数学难题集锦难题一:甲、乙两个机器同时开始工作。

甲每分钟可以工作4件产品,乙每分钟可以工作6件产品。

请问,甲、乙两个机器同时工作10分钟,能生产多少件产品?解析:甲每分钟可以生产4件产品,那么在10分钟内甲可以生产4x10=40件产品。

同样地,乙每分钟可以生产6件产品,所以在10分钟内乙可以生产6x10=60件产品。

因此,甲、乙两个机器同时工作10分钟,总共可以生产40+60=100件产品。

难题二:若一个角的余弦值等于0.6,那么这个角的弧度值是多少?解析:根据三角函数的定义,余弦值等于邻边长度与斜边长度的比例。

假设该角对应的直角边长为x,斜边长为1。

根据勾股定理,可得到x2+12=1,即x^2=0,所以x=0。

因此,该角的弧度值为0。

难题三:一个立方体的边长为a,体积为V,若将该立方体的体积增加到原来的8倍,边长变为原来的一半,求增加后的体积。

解析:原立方体的体积为V,边长为a。

增加后的立方体边长为a/2,体积为8V。

我们可以通过体积的公式得到方程:(a/2)3=8V。

将等式两边同时开立方,得到a3/8=8V,化简为a^3=64V。

所以,增加后的体积为64V。

难题四:某商场原价为100元的商品打六折促销,然后进行满减活动,满200元减20元。

问若购买者购买该商品2件,实际需要支付的金额是多少?解析:首先,打六折,原价100元的商品会有60元的折扣,所以每件商品的价格为100-60=40元。

购买2件商品的总价为2x40=80元。

然后,根据满减活动,若满200元减20元,则购买者需要支付的金额为总价80元-20元=60元。

难题五:若正方形的边长为x,那么它的对角线长度是多少?解析:正方形的对角线可以看作是直角三角形的斜边。

直角三角形的两条直角边分别为正方形的边长,假设为x。

根据勾股定理,可得对角线的长度为√(x2+x2)=√(2x^2)=x√2。

以上是一些中考数学的难题集锦及其解析。

这些题目涵盖了各个考点,帮助学生通过解题训练提高数学思维和解题能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学难题集锦
1.(本小题满分10分)
如图,AB 为⊙O 的直径,点C 在⊙O 上,过点C 作⊙O 的切线交AB 的延长线于点D ,已知∠D =30°.
⑴求∠A 的度数;
⑵若点F 在⊙O 上,CF ⊥AB ,垂足为E ,CF =34,求图中阴影部分的面积.
2.(本小题满分10分)
已知抛物线2
y ax bx =+(a ≠0)的顶点在直线1
12
y x =-
-上,且过点A (4,0). ⑴求这个抛物线的解析式;
⑵设抛物线的顶点为P ,是否在抛物线上存在一点B ,使四边形OPAB 为梯形?若存在,求出点B 的坐标;若不存在,请说明理由.
⑶设点C (1,-3),请在抛物线的对称轴确定一点D ,使AD CD -的值最大,请直接写出点D 的坐标.
3.(本小题满分12分)
已知在梯形ABCD 中,AB ∥DC ,且AB =40cm ,AD =BC =20cm ,∠ABC =120°.点P 从点B 出发以1cm/s 的速度沿着射线BC 运动,点Q 从点C 出发以2cm/s 的速度沿着线段CD 运动,当点Q 运动到点D 时,所有运动都停止. 设运动时间为t 秒.
⑴如图1,当点P 在线段BC 上且△CPQ ∽△DAQ 时,求t 的值;
⑵在运动过程中,设△APQ 与梯形ABCD 重叠部分的面积为S ,求S 关于t 的函数关系式,并写出自变量t 的取值范围;
图1Q
P
D C
B A
参考答案
1.(本小题满分10分)
⑴解:连结OC,∵CD切⊙O于点C,∴∠OCD=90°.
(1分)
∵∠D=30°,∴∠COD=60°. …………………(2分)
∵OA=OC,∴∠A=∠ACO=30°. ………………(4分)
⑵∵CF⊥直径AB,CF=3
4,∴CE=(5分)
∴在Rt△OCE中,OE=2,OC=4. ……………………(6分)

2
BOC
6048
3603
S
π
π

扇形
==,EOC
1
2
2
S⨯⨯
=…………………………(8分)

EOC
BOC
S S Sπ
阴影扇形
8
=-=-
3
…………………………………………………(10分)
2.(本小题满分10分)
⑴∵抛物线过点(0,0)、(4,0),
∴抛物线的对称轴为直线2
x=. ………………………………………………………(1分)
∵顶点在直线
1
1
2
y x
=--上,∴顶点坐标为(2,-2). …………………………(3分)
故设抛物线解析式为2
(2)2
y a x
=--,
∵过点(0,0),∴
1
2
a=,∴抛物线解析式为2
1
2
2
y x x
=-………………………(5分)
⑵当AP∥OB时,
如图,∠BOA=∠OAP=45°,过点B作BH⊥x轴于H,则OH=BH.
设点B(x,x),故2
1
2
2
x x x
=-,解得x=6或x=0(舍去)…………………………(6分)
∴B(6,6). …………………………………………………………………………(7分)
当OP∥AB时,同理设点B(4-x,x)
故21
(4)2(4)2
x x x =
---,解得x =6或x =0(舍去),∴B (-2,6) .……(8分)
⑶D (2,-6).………………………………………………………………………………(10分)
3.(本小题满分12分)
解:⑴如图1,分别过点作AM ⊥CD 于M ,BN ⊥CD 于N ,∵BC =20,∠C =180°-∠ABC =60°,
∴CN =10=DM ,BN =103,∴CD =60.
∵△CPQ ∽△DAQ ,∴CP CQ
DA DQ
=, ∴20220602t t
t
=--,∴110t =,260t =(不合题意), ∴t =10.………(5分)
图1 图2
⑵当点P 在线段BC 上时,如图2,过P 作FG ⊥CD 于G ,交AB 延长线于F. ∴PF =
32t ,PG =3(20)2
t -, ∴1
1032
ABP
S
AB PF t =
⨯=,13(20)22
CPQ
S CQ PG t t =
⋅=-, ADQ CPQ ABP ABCD S S
S
S S =梯形---=5003-1
602)1032
t ⨯(
- H
图1Q
P D C B
A M N
图1Q P D C B A F G
(20)t -

220400)t t -+. (020t <≤)(8分) 当点P 在线段BC 的延长线上时,如图3,过P 作PH ⊥AB 于H ,则
设AP 与CD 交于点E ,
∵EC PC AB PB
=,∴40800t EC t -=, ∴QE =CQ -CE =2
240800t t t
-+.
∴y =310800
402212⨯+-⨯
t
t t =
t
t t )
40020(3102+-.
(2030t <≤) ………………………………………(12分)。

相关文档
最新文档