磁芯材料的介绍

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力电子电路常用磁芯元件的设计

一、常用磁性材料的基本知识

磁性元件可以说是电力电子电路中关键的元件之一,它对电力电子装置的体积、效率等有重要影响,因此,磁性元件的设计也是电力电子电路系统设计的重要环节。磁性材料有很多种类,特性各异,不同的应用场合有不同的选择,以下是几种常用的磁性材料。

1.低碳钢

低碳钢是一种最常见的磁性材料,这种材料电阻率很低,因此涡流损耗较大,实际应用时常制成硅钢片。硅钢片是一种合金材料(通常由97%的铁和3%的硅组成),它具有很高的磁导率,并且每一薄片之间相互绝缘,使得材料的涡流损耗显著减小。磁芯损耗取决于材料的厚度与硅含量,硅含量越高、电阻率越大。这种材料大多应用于低频场合,工频磁性元件常用这种材料。

2.铁氧体

随着工作频率的提高,对磁芯损耗的要求更高,硅钢片由于制造工艺的限制,已经很难满足这种要求,铁氧体就是在这种形势下出现的。

铁氧体是一种暗灰色或者黑色的陶瓷材料。铁氧体的化合物是MeFe2O4,这里Me代表一种或几种二价的金属元素,例如,锰、锌、镍、钴、铜、铁或镁。这些化合物在特定的温度范围内表现出良好的磁性能,但是如果超出某个温度值,磁性将失去,这个温度称为居里温度(T c)。铁氧体材料非常容易磁化,并且具有相当高的电阻率。这些材料不需要像硅钢片那样分层隔离就能用在高频的应用场合。

高频铁氧体磁性材料主要可分为两大类:锰锌(MnZn)铁氧体材料和镍锌(NiZn)铁氧体材料。比较而言,NiZn材料的电阻率较高,一般认为在高频应用场合下具有较低的涡流损耗。但是最近的研究表明,如果颗粒的尺寸足够小而且均匀,在几兆赫兹范围内MnZn材料显示出较NiZn材料更为优越的特性,例如,TDK公司的H7F材料以及MAGNETICS公司的K材料就是采用这种技术,适用于兆赫兹工作频率下工作的新型铁氧体材料。

3.粉芯材料

粉芯材料是将一些合金原料研磨成精细的粉末状颗粒,然后在这些颗粒的表面覆盖上一层绝缘物质(它用来控制气隙的尺寸,并且降低涡流损耗),最后这些粉末在高压下形成各种磁芯形状。

由于原料成分的不同,粉芯材料又可分为铁粉芯、钼坡莫合金粉芯(MPP)和高磁通粉芯(铁镍磁粉芯)等材料。

铁粉芯是所有粉芯材料中最为便宜的材料,磁导率一般在4~80左右。由于颗粒之间相互都绝缘,与硅钢片相比虽然涡流损耗被大大地降低,但高频情况下由损耗导致的温升仍很高。所以铁粉芯一般用于较低开关频率的场合。铁粉芯的饱和磁感应强度一般在1特斯拉(T)左右。

MPP磁芯的相对磁导率一般在14~350,饱和磁感应强度为 0.7T左右。在现有的粉芯材料中,MPP具有损耗低、温度稳定性好的优势。此外,它也是磁导率选择范围最广的粉芯材料。但是由于镍的含量高,所以它也是最昂贵的粉芯材料。由于MPP磁芯在所有粉芯材料中磁损最低,所以它特别适合应用于反激电路,Buck/Boost以及功率因数校正电路,此外均匀分布的气隙使铜损大大降低。

高磁通粉芯是一种气隙均匀分布的磁环,由50%镍和50%铁合金粉末制成,它的相对磁导率一般在14~200。高磁通粉芯的饱和磁感应强度高达1.5T,而一般MPP为0.7T,铁氧体为0.45T。与铁粉芯相比,高磁通粉芯的磁损大大地降低,又由于高饱和磁感应强度,该磁芯使得绝大多数场合下铁粉环尺寸降低成为可能。

4.非晶及纳米晶软磁合金

非晶态金属与合金是20世纪70年代问世的一类新型材料,采用了超急冷凝固技术,从钢液到薄带成品一次成型。由于超急冷凝固,合金凝固时原子来不及有序排列结晶,得到的固态合金是长程无序结构,没有晶态合金的晶粒、晶界存在,称之为非晶合金。这种非晶合金具有优异的磁性、耐蚀性、耐磨性、高的强度、硬度和韧性,高的电阻率和机电耦合性能等。由于它的性能优异、工艺简单,从80年代开始成为国内外材料科学界的研究开发重点。目前美、日、德国已具有完善的生产规模,并且大量的非晶合金产品逐渐取代硅钢和坡莫合金及铁氧体而涌向市场。常用的非晶合金的种类有:铁基、铁镍基、钴基非晶合金以及铁基纳米晶合金。

二、磁芯材料的基本参数

(1)初始磁导率μi

初始磁导率是磁性材料的磁化曲线始端磁导率的极限值,即 H B H i lim 001

→=μμ 式中70104-⨯=πμH/m 为真空磁导率,H 为磁场强度(单位:A/ m ),B 为磁感应强度(单位:T )。初始磁导率i μ与温度和频率有关。

(2)有效磁导率μe

在闭合磁路中,磁芯的有效磁导率为

7e 2e 104⨯⨯=A l N

L πμ 式中L 为线圈的自感量(mH );N 为线圈匝数;e A l 为磁芯常数,是磁路长度l 与磁芯截面积A e 的比值(单位:mm -1)。

(3)饱和磁感应强度B s

在指定温度(25℃或100℃)下,用足够大的磁场强度磁化磁性物质,磁化曲线接近水平线(见附图1-1)时,

不再随外磁场强度增大而明显增大

对应的B 值,称饱和磁感应强度B s 。

(4)剩余磁感应强度B r

铁磁物质磁化到饱和后,又将磁

场强度下降到零时,铁磁物质中残留

的磁感应强度即为B r ,称为剩余磁感

应强度,简称剩磁。

(5)矫顽磁力 H c

磁芯从饱和状态去除磁场后,需要一

定的反向磁场强度-H c ,使磁感应强度减小到零,此时的磁场强度H c 称为矫顽磁力(或保磁力)。

(6)温度系数αμ

附图1-1 磁性材料磁滞回线

温度系数为温度在T 1~T 2内变化时,每变化1℃对应的磁导率相对变化量,即 121121T T -•-=μμμαμ , T 2 >T 1

式中1μ为温度为T 1时的磁导率, 2μ为温度为T 2时的磁导率。

(7)居里温度T c

居里温度是指材料可以在铁磁体和顺磁体之间改变的温度。低于居里温度时该物质成为铁磁体,此时和材料有关的磁场很难改变。当温度高于居里温度时,该物质成为顺磁体,磁体的磁场很容易随周围磁场的改变而改变。

(8)磁芯损耗(铁耗)P c

磁芯损耗是指磁芯在工作磁感应强度时的单位体积损耗。磁芯损耗包括:磁滞损耗、涡流损耗、殘留损耗。磁滞损耗是每

次磁化所消耗的能量,正比于磁滞回线的面

积,如附图1-2所示;涡流损耗是交变磁场

在磁芯中产生环流引起的欧姆损耗;残留损耗

是由磁化弛豫效应或磁性滞后效应引起的损

耗。前两项是磁芯损耗的主要部分。

(9)电感系数A L

电感系数是磁芯上每一匝线圈产生的自

感量,即 2N

L A L = 式中L 为磁芯线圈的自感量(单位:H ),N 为线圈匝数。

三、铁氧体磁芯的基本知识

1.材料的磁化

烧结后的铁氧体是由小的晶体组成,这种晶体的大小一般在10~20μm 的范围内,磁畴就是存在于这些晶体之中。

在没有外磁场作用时,这些磁畴排列的方向是杂乱无章的,如附图1-3(a )所示,小磁畴间的磁场是相互抵销的,对外不呈现磁性。当一个外加磁场(H )作用于该材料时,磁畴顺着磁场方向转动,加强了铁氧体内的磁场。随着外磁场的加强,转到外磁场方向的磁畴就越来越多,与外磁场同向的磁感应强度就越强,附图1-2 磁滞损耗曲线

相关文档
最新文档